1
|
Ma T, Mo W, Lv B, Wang W, He H, Jian C, Liu X, Li S, Guo Y. A Review of the Nutritional Composition, Storage Challenges, Processing Technology and Widespread Use of Bamboo Shoots. Foods 2024; 13:3539. [PMID: 39593955 PMCID: PMC11592693 DOI: 10.3390/foods13223539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Bamboo shoots, as the young bamboo stems, are rich in protein, fiber, vitamins, and minerals, as well as many bioactive substances beneficial to health, and are gaining in importance worldwide as a healthy food and dietary supplement. However, fresh bamboo shoots lignify rapidly after harvesting and contain cyanogenic glycosides, limiting the safe and healthy consumption of bamboo shoots. To this end, based on the changes in nutritional composition and the physiological properties of fresh and post-harvest bamboo shoots, factors affecting the preservation of post-harvest bamboo shoots are emphasized, including a series of physical and chemical regimes and various processing methods for post-harvest preservation. Furthermore, a systematic biorefinery approach for using bamboo shoot processing residue to prepare value-added products is also discussed. Finally, the article also discusses issues related to sustainable development, safeguarding food security, and addressing potential health impacts in order to provide a scientific basis for researchers to further develop and increase the added value of bamboo shoots.
Collapse
Affiliation(s)
- Ting Ma
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Wenfeng Mo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Beibei Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Wenxuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Hailin He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Cuiwen Jian
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (T.M.); (W.M.); (B.L.); (W.W.); (H.H.); (C.J.); (X.L.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yuan Guo
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530012, China
| |
Collapse
|
2
|
Peker T, Boyraz B. The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case-Control Study. J Clin Med 2023; 12:6606. [PMID: 37892744 PMCID: PMC10607128 DOI: 10.3390/jcm12206606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Resistant hypertension is hypertension that cannot be controlled despite the use of three antihypertensive drugs, one of which is a diuretic. Resistant hypertension often coexists with advanced age, obesity, smoking, and diabetes. Advanced glycation end products (AGEs) are substances that are generated as a result of the glycation of proteins, lipids, and nucleic acids due to conditions such as hyperlipidemia, oxidative stress, and hyperglycemia. There are studies showing the relationships between AGE levels and aortic stiffness, hypertension, and microvascular and macrovascular complications in diabetes. In our study, we examined the relationship between resistant hypertension and AGE levels. Our study was planned as a case-control study, and 88 patients with resistant hypertension were included in the focus group, while 88 patients with controlled hypertension were included in the control group. The AGE levels of the patients were measured using the skin autofluorescence method. AGE levels were found to be significantly higher in patients with resistant hypertension than those recorded in the control group. A significant increase in AGE levels was also observed in patients with resistant hypertension and without diabetes compared with the control group. The levels of AGEs, which can be measured cheaply, noninvasively, and quickly with the skin autofluorescence method, may provide benefits in identifying these patients with resistant hypertension.
Collapse
Affiliation(s)
- Tezcan Peker
- Cardiology Department, Medicalpark Hospital, Mudanya University, Bursa 16200, Turkey
| | - Bedrettin Boyraz
- Cardiology Department, Medicalpark Hospital, Mudanya University, Bursa 16200, Turkey
| |
Collapse
|
3
|
Ishaq M, Khan MF, Verma G, Rathi A, Adil M, Faizan M, Najmi AK, Akhtar M, Al kamaly O, Alshawwa SZ, Shahat AA, Alhalmi A. Curcumin Nanoemulsion: Unveiling Cardioprotective Effects via ACE Inhibition and Antioxidant Properties in Hypertensive Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1748. [PMID: 37893466 PMCID: PMC10608169 DOI: 10.3390/medicina59101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Curcumin, derived from Curcuma longa, is a well-known traditional medicinal compound recognized for its therapeutic attributes. Nevertheless, its efficacy is hampered by limited bioavailability, prompting researchers to explore the application of nanoemulsion as a potential alternative. Materials and Methods: This study delves into the antihypertensive effects of curcumin nanoemulsion (SNEC) by targeting the renin-angiotensin-aldosterone system (RAAS) and oxidative stress in deoxycorticosterone acetate (DOCA) salt-induced hypertensive rats. To gauge the cardio-protective impact of SNEC in DOCA salt-induced hypertension, molecular docking was undertaken, uncovering curcumin's high affinity and adept binding capabilities to the active site of angiotensin-converting enzyme (ACE). Additionally, the investigation employed uninephrectomized rats to assess hemodynamic parameters via an AD instrument. Serum ACE, angiotensin II, blood urea nitrogen (BUN), and creatinine levels were quantified using ELISA kits, while antioxidant parameters were evaluated through chemical assays. Result: The outcomes of the molecular docking analysis revealed robust binding of curcumin to the ACE active site. Furthermore, oral administration of SNEC significantly mitigated systolic, diastolic, and mean arterial blood pressure in contrast to the DOCA-induced hypertensive group. SNEC administration also led to a reduction in left ventricular end-diastolic pressure (LVEDP) and an elevation in the maximum rate of left ventricular pressure rise (LV (dP/dt) max). Moreover, SNEC administration distinctly lowered serum levels of ACE and angiotensin II compared to the hypertensive DOCA group. Renal markers, including serum creatinine and BUN, displayed a shift toward normalized levels with SNEC treatment. Additionally, SNEC showcased potent antioxidant characteristics by elevating reduced glutathione, catalase, and superoxide dismutase levels, while decreasing the concentration of thiobarbituric acid reactive substances. Conclusions: Collectively, these findings underscore that curcumin nanoemulsion exerts noteworthy cardio-protective effects through ACE activity inhibition and remarkable antioxidant properties.
Collapse
Affiliation(s)
- Mohd Ishaq
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Mohemmed Faraz Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow 226026, India;
| | - Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdrad, New Delhi 110062, India;
| | - Akshoo Rathi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Mohammad Adil
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Mohammad Faizan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.I.); (A.R.); (M.A.); (M.F.); (A.K.N.)
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (S.Z.A.)
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (S.Z.A.)
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
4
|
Sarantidi E, Ainatzoglou A, Papadimitriou C, Stamoula E, Maghiorou K, Miflidi A, Trichopoulou A, Mountzouris KC, Anagnostopoulos AK. Egg White and Yolk Protein Atlas: New Protein Insights of a Global Landmark Food. Foods 2023; 12:3470. [PMID: 37761179 PMCID: PMC10528800 DOI: 10.3390/foods12183470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: The chicken egg is an animal product of great agronomic interest. The egg white and yolk constitute high-quality protein sources for humans with high digestibility and well-balanced amino acid profiles. Despite the egg white and yolk protein's undisputed value, research to unravel their full proteome content and its properties is still ongoing. We aimed to exhaustively analyze the proteome of egg white and yolk by applying intrinsic proteomics and bioinformatics approaches in order to unravel the full protein potential of this landmark food. (2) Methods: A total of 45 freshly laid, unfertilized, chicken eggs were subjected to nanoLC-MS/MS Orbitrap analysis following a peptide pre-fractionation step. A comprehensive bioinformatics processing step was undertaken towards elucidating potential activities and roles of identified molecules. In parallel, the literature was mined concerning all reported egg white and yolk protein identifications. (3) Results: Our analysis revealed 371 and 428 new proteins, reported for the first time to be present in the egg white and yolk, respectively. From the bioactivity standpoint, egg white and yolk proteins showed high enrichment for antioxidant and anti-inflammatory processes, while exerting high relevance for the apoptosis and focal adhesion pathways. (4) Conclusions: Egg white and yolk proteins exert diverse and multifaceted properties. A total of 799 proteins were reported for the first time as being part of the egg and yolk. Our novel protein data enriched those already published in the literature and the first ever chicken egg white and yolk Protein Atlas, comprising 1392 protein entries, was generated. This dataset will provide a cornerstone reference for future studies involving egg proteins.
Collapse
Affiliation(s)
- Eleana Sarantidi
- Department of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Alexandra Ainatzoglou
- Department of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Christine Papadimitriou
- Department of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Eleni Stamoula
- Department of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Katerina Maghiorou
- Department of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Argyro Miflidi
- Department of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Antonia Trichopoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Athanasios K. Anagnostopoulos
- Department of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Lamptey RNL, Sun C, Layek B, Singh J. Neurogenic Hypertension, the Blood-Brain Barrier, and the Potential Role of Targeted Nanotherapeutics. Int J Mol Sci 2023; 24:2213. [PMID: 36768536 PMCID: PMC9916775 DOI: 10.3390/ijms24032213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Hypertension is a major health concern globally. Elevated blood pressure, initiated and maintained by the brain, is defined as neurogenic hypertension (NH), which accounts for nearly half of all hypertension cases. A significant increase in angiotensin II-mediated sympathetic nervous system activity within the brain is known to be the key driving force behind NH. Blood pressure control in NH has been demonstrated through intracerebrovascular injection of agents that reduce the sympathetic influence on cardiac functions. However, traditional antihypertensive agents lack effective brain permeation, making NH management extremely challenging. Therefore, developing strategies that allow brain-targeted delivery of antihypertensives at the therapeutic level is crucial. Targeting nanotherapeutics have become popular in delivering therapeutics to hard-to-reach regions of the body, including the brain. Despite the frequent use of nanotherapeutics in other pathological conditions such as cancer, their use in hypertension has received very little attention. This review discusses the underlying pathophysiology and current management strategies for NH, as well as the potential role of targeted therapeutics in improving current treatment strategies.
Collapse
Affiliation(s)
| | | | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
6
|
Ribeiro JVV, Graziani D, Carvalho JHM, Mendonça MM, Naves LM, Oliveira HF, Campos HM, Fioravanti MCS, Pacheco LF, Ferreira PM, Pedrino GR, Ghedini PC, Fernandes KF, Batista KDA, Xavier CH. A peptide fraction from hardened common beans ( Phaseolus vulgaris) induces endothelium-dependent antihypertensive and renal effects in rats. Curr Res Food Sci 2022; 6:100410. [PMID: 36545514 PMCID: PMC9762200 DOI: 10.1016/j.crfs.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Beans reached the research spotlight as a source of bioactive compounds capable of modulating different functions. Recently, we reported antioxidant and oxidonitrergic effect of a low molecular weight peptide fraction (<3 kDa) from hardened bean (Phaseolus vulgaris) in vitro and ex vivo, which necessitate further in vivo assessments. This work aimed to evaluate the hypotensive effect and the involved physiological mechanisms of the hardened common bean peptide (Phaseolus vulgaris) in normotensive (Wistar) and hypertensive (SHR) animals. Bean flour was combined with a solution containing acetonitrile, water and formic acid (25: 24: 1). Protein extract (PV3) was fractioned (3 kDa membrane). We assessed PV3 effects on renal function and hemodynamics of wistar (WT-normotensive) and spontaneously hypertensive rats (SHR) and measured systemic arterial pressure and flow in aortic and renal beds. The potential endothelial and oxidonitrergic involvements were tested in isolated renal artery rings. As results, we found that PV3: I) decreased food consumption in SHR, increased water intake and urinary volume in WT, increased glomerular filtration rate in WT and SHR, caused natriuresis in SHR; II) caused NO- and endothelium-dependent vasorelaxation in renal artery rings; III) reduced arterial pressure and resistance in aortic and renal vascular beds; IV) caused antihypertensive effects in a dose-dependent manner. Current findings support PV3 as a source of bioactive peptides and raise the potential of composing nutraceutical formulations to treat renal and cardiovascular diseases.
Collapse
Key Words
- ABF, Aortic blood flow
- AVR, Aortic vascular resistance
- Bioactive peptides
- Common beans
- GFR, Glomerular filtration rate
- HTC, Hard-to-Cook effects
- Hard-to-cook
- Hydroelectrolytic balance
- Hypertension
- L-NAME, nitroarginine methyl ester
- NO, Nitric oxide
- PV3, Phaseolus vulgaris extract with peptides smaller than 3 kDa
- Phaseolus vulgaris
- RBF, Renal blood flow
- RVR, Renal vascular resistance
- Renal function
- SHR, Spontaneously hypertensive rat
- WT, Wistar rat
Collapse
Affiliation(s)
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | | | | | - Lara Marques Naves
- Center of Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Helton Freires Oliveira
- Molecule, Cell and Tissue Analysis Laboratory, School of Veterinary and Animal Science, Federal University of Goiás, Brazil
| | - Hericles Mesquita Campos
- Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | | | | | - Patricia Maria Ferreira
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Center of Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Paulo César Ghedini
- Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Kátia Flávia Fernandes
- Polymer Chemistry Laboratory, Institute of Biological of Sciences, Federal University of Goiás, Brazil
| | | | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil,Corresponding author. Systems Neurobiology Laboratory. Department of Physiological Sciences, room 203, Institute of Biological Sciences. Federal University of Goiás, Esperança Avenue, Campus II, Goiania, GO, 74690-900, Brazil.
| |
Collapse
|
7
|
Hou D, Lu H, Zhao Z, Pei J, Yang H, Wu A, Yu X, Lin X. Integrative transcriptomic and metabolomic data provide insights into gene networks associated with lignification in postharvest Lei bamboo shoots under low temperature. Food Chem 2022; 368:130822. [PMID: 34411853 DOI: 10.1016/j.foodchem.2021.130822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/04/2022]
Abstract
Lei bamboo (Phyllostachys violascens) shoots are delicious food in Asia. Here, the molecular basis of lignification in postharvest Lei bamboo shoots under low temperature (LT) is revealed by transcriptomic and metabolomics analyses for the first time. We identified substantial accumulations of jasmonates (JAs) and major lignin biosynthesis precursors (coumarin, trans-4-coumaric acid, trans-ferulic acid and L-phenylalanine). Transcriptome analysis indicated that some regulatory genes were significantly differentially expressed, and the expression patterns of them were highly consistent with the changes in the key lignin precursors or JA profiles. Co-expression analysis showed that the LT responsive genes PvCRPK-4/-5, PvICE2-1/2, PvDREB2B might form a network module with the lignin (PvC3H-2/3, PvC4H-2/4, PvCAD-1/2/3/4, etc.) or JA biosynthesis genes (PvOPR2, PvJAZ-4 and PvPEX5, etc.), indicating a LT-lignification or LT-JA-lignification regulatory pathway in Lei bamboo shoots. Above all, our findings provide new an insight into the LT-associated lignification in postharvest bamboo shoots.
Collapse
Affiliation(s)
- Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou 311300, China
| | - Haiwen Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou 311300, China
| | - Zhongyu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou 311300, China
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou 311300, China
| | - Huqing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou 311300, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xuejun Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou 311300, China.
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
8
|
Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Due to the rapid growth in the global population, the consumption of animal-based food products/food compounds has been associated with negative implications for food sustainability/security. As a result, there is an increasing demand for the development of plant-based food and compounds as alternatives. Meanwhile, a growing number of studies report the health benefits of food protein-based peptides prepared via enzymatic hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive, anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some peptides hinders their application in food products as ingredients. This article aims to provide the latest findings on plant-based bioactive peptides, particularly their health benefits, manufacturing methods, detection and qualification of their bitterness properties, as well as debittering methods to reduce or eliminate this negative sensory characteristic. However, there is still a paucity of research on the biological property of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides to meet the health targets of the Sustainable Development Goals can only be realised if advances are made in the industrial-scale bioprocessing and debittering of these peptides.
Collapse
|
9
|
Wang Y, Chen J, Wang D, Ye F, He Y, Hu Z, Zhao G. A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
10
|
Lin Z, Chen J, Zhang J, Brooks MSL. Potential for Value-Added Utilization of Bamboo Shoot Processing Waste—Recommendations for a Biorefinery Approach. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2088-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Abstract
The remarkable growth of therapeutic peptide development in the past decade has led to a large number of market approvals and the market value is expected to hit $25 billion by 2018. This significant market increase is driven by the increasing incidences of metabolic and cardiovascular diseases and technological advancements in peptide synthesis. For this reason, the search for bioactive peptides has also increased exponentially. Many bioactive peptides from food and nonfood sources have shown positive health effects yet, obstacles such as the need to implement efficient and cost-effective strategies for industrial scale production, good manufacturing practices as well as well-designed clinical trials to provide robust evidence for supporting health claims continue to exist. Several other factors such as the possibility of allergenicity, toxicity and the stability of biological functions of the peptides during gastrointestinal digestion would need to be addressed.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Byong H Lee
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea.,b Department of Microbiology/Immunology , McGill University , Montreal , QC , H3A 2B4 , Canada
| | - Deog H Oh
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| |
Collapse
|
12
|
Daliri EBM, Oh DH, Lee BH. Bioactive Peptides. Foods 2017; 6:E32. [PMID: 28445415 PMCID: PMC5447908 DOI: 10.3390/foods6050032] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea.
| | - Deog H Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea.
| | - Byong H Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea.
- Department of Microbiology/Immunology, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
13
|
Sun L, Sun J, Thavaraj P, Yang X, Guo Y. Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage. Food Chem 2016; 224:372-381. [PMID: 28159283 DOI: 10.1016/j.foodchem.2016.12.097] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the effects of young apple polyphenols (YAP) on the quality of grass cap surimi (GCS) during storage at 4°C. The addition of YAP into GCS was found to be effective in delaying lipid oxidation, soluble myofibrillar protein (SMP) degradation and changes of L∗, a∗ and b∗ values of GCS. Chlorogenic acid was screened to be the primary component showing preservative effects. YAP was shown to protect the functional properties of SMP during cold storage, retarding both the decrease in emulsifying activity and stability, and the increase in surface hydrophobicity of SMP. Additionally, the loss of gel strength and texture of GCS with YAP were significantly (P<0.05) lower than that of GCS without YAP during cold storage. Therefore, YAP may be developed as a natural antioxidant to maintain the quality and to extend the shelf life of freshwater fish surimi.
Collapse
Affiliation(s)
- Lijun Sun
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China; Centre for Nutrition and Food Science, Queensland Alliance for Agricultural and Food Innovation, The University of Queensland, Brisbane 4072, Australia.
| | - Jiaojiao Sun
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Pridhuvi Thavaraj
- Centre for Nutrition and Food Science, Queensland Alliance for Agricultural and Food Innovation, The University of Queensland, Brisbane 4072, Australia
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
14
|
|
15
|
Affiliation(s)
- Rotimi E. Aluko
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2;
| |
Collapse
|
16
|
Gútiez L, Borrero J, Jiménez JJ, Gómez-Sala B, Recio I, Cintas LM, Herranz C, Hernández PE. Genetic and biochemical evidence that recombinant Enterococcus spp. strains expressing gelatinase (GelE) produce bovine milk-derived hydrolysates with high angiotensin converting enzyme-inhibitory activity (ACE-IA). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5555-5564. [PMID: 24877744 DOI: 10.1021/jf5006269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, genes encoding gelatinase (gelE) and serine proteinase (sprE), two extracellular proteases produced by Enterococcus faecalis DBH18, were cloned in the protein expression vector pMG36c, containing the constitutive P32 promoter, generating the recombinant plasmids pCG, pCSP, and pCGSP encoding gelE, sprE, and gelE-sprE, respectively. Transformation of noncaseinolytic E. faecalis P36, E. faecalis JH2-2, E. faecium AR24, and E. hirae AR14 strains with these plasmids permitted detection of caseinolytic activity only in the strains transformed with pCG or pCGSP. Complementation of a deletion (knockout) mutant of E. faecalis V583 for production of gelatinase (GelE) with pCG unequivocally supported that gelE is responsible for the caseinolytic activity of the transformed strain grown in bovine skim milk (BSM). RP-HPLC-MS/MS analysis of hydrolysates of transformed Enterococcus spp. strains grown in BSM permitted the identification of 38 major peptide fragments including peptides with previously reported angiotensin converting enzyme-inhibitory activity (ACE-IA), antihypertensive activity, and antioxidant activity.
Collapse
Affiliation(s)
- Loreto Gútiez
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Girgih AT, He R, Aluko RE. Kinetics and molecular docking studies of the inhibitions of angiotensin converting enzyme and renin activities by hemp seed (Cannabis sativa L.) peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4135-44. [PMID: 24766098 DOI: 10.1021/jf5002606] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Four novel peptide sequences (WVYY, WYT, SVYT, and IPAGV) identified from an enzymatic digest of hemp seed proteins were used for enzyme inhibition kinetics and molecular docking studies. Results showed that WVYY (IC50 = 0.027 mM) was a more potent (p < 0.05) ACE-inhibitory peptide than WYT (IC50 = 0.574 mM). However, WYT (IC50 = 0.054 mM) and SVYT (IC50 = 0.063 mM) had similar renin-inhibitory activity, which was significantly better than that of IPAGV (IC50 = 0.093 mM). Kinetics studies showed that WVYY had a lower inhibition constant (Ki) of 0.06 mM and hence greater affinity for ACE when compared to the 1.83 mM obtained for WYT. SVYT had lowest Ki value of 0.89 mM against renin, when compared to the values obtained for WYT and IPAGV. Molecular docking results showed that the higher inhibitory activities of WVYY and SVYT were due to the greater degree of noncovalent bond-based interactions with the enzyme protein, especially formation of higher numbers of hydrogen bonds with active site residues.
Collapse
Affiliation(s)
- Abraham T Girgih
- Department of Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba , Winnipeg, Manitoba R3T2N2, Canada
| | | | | |
Collapse
|