1
|
Jung HS, Park YJ, Gu BH, Han G, Ji W, Hwang SM, Kim M. Coumarin derivatives ameliorate the intestinal inflammation and pathogenic gut microbiome changes in the model of infectious colitis through antibacterial activity. Front Cell Infect Microbiol 2024; 14:1362773. [PMID: 39081865 PMCID: PMC11287663 DOI: 10.3389/fcimb.2024.1362773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Coumarin, a phenolic compound, is a secondary metabolite produced by plants such as Tanga and Lime. Coumarin derivatives were prepared via Pechmann condensation. In this study, we performed in vitro and in vivo experiments to determine the antimicrobial and gut immune-regulatory functions of coumarin derivatives. For the in vitro antimicrobial activity assay, coumarin derivatives C1 and C2 were selected based on their pathogen-killing activity against various pathogenic microbes. We further demonstrated that the selected coumarin derivatives disrupted bacterial cell membranes. Next, we examined the regulatory function of the coumarin derivatives in gut inflammation using an infectious colitis model. In an in vivo infectious colitis model, administration of selected C1 coumarin derivatives reduced pathogen loads, the number of inflammatory immune cells (Th1 cells and Th17 cells), and inflammatory cytokine levels (IL-6 and IL-1b) in the intestinal tissue after pathogen infection. In addition, we found that the administration of C1 coumarin derivatives minimized abnormal gut microbiome shift-driven pathogen infection. Potential pathogenic gut microbes, such as Enterobacteriaceae and Staphylococcaceae, were increased by pathogen infection. However, this pathogenic microbial expansion was minimized and beneficial bacteria, such as Ligilactobacillus and Limosilactobacillus, increased with C1 coumarin derivative treatment. Functional gene enrichment assessment revealed that the relative abundance of genes associated with lipid and nucleotide metabolism was reduced by pathogen infection; however, this phenomenon was not observed in C1 coumarin derivative-treated animals. Collectively, our data suggest that C1 coumarin derivative is effective antibacterial agents that minimize pathogen-induced gut inflammation and abnormal gut microbiome modulation through their antibacterial activity.
Collapse
Affiliation(s)
- Hui-su Jung
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Yei Ju Park
- R & D Center, EyeGene, Goyang, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Goeun Han
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| | - Woonhak Ji
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Su mi Hwang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Sangji University, Wonju, Republic of Korea
| | - Myunghoo Kim
- Laboratory of Animal Immunology, Department of Animal Science, College of Natural Resource & Life Science, Pusan National University, Miryang, Republic of Korea
- Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
2
|
Napiórkowska A, Khaneghah AM, Kurek MA. Essential Oil Nanoemulsions-A New Strategy to Extend the Shelf Life of Smoothies. Foods 2024; 13:1854. [PMID: 38928796 PMCID: PMC11202876 DOI: 10.3390/foods13121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Over the years, consumer awareness of proper, healthy eating has increased significantly, but the consumption of fruits and vegetables remains too low. Smoothie drinks offer a convenient way to supplement daily diets with servings of fruits and vegetables. These ready-to-eat beverages retain the nutritional benefits of the raw ingredients from which they are made. Furthermore, they cater to the growing demand for quick and nutritious meal options. To meet consumer expectations, current trends in the food market are shifting towards natural, high-quality products with minimal processing and extended shelf life. Food manufacturers are increasingly aiming to reduce or eliminate synthetic preservatives, replacing them with plant-based alternatives. Plant-based preservatives are particularly appealing to consumers, who often view them as natural and organic substitutes for conventional preservatives. Essential oils, known for their antibacterial and antifungal properties, are effective against the microorganisms and fungi present in fruit and vegetable smoothies. However, the strong taste and aroma of essential oils can be a significant drawback, as the concentrations needed for microbiological stability are often unpalatable to consumers. Encapsulation of essential oils in nanoemulsions offers a promising and effective solution to these challenges, allowing for their use in food production without compromising sensory qualities.
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, bud. 32, pok. 109B, 02-787 Warszawa, Poland;
| | - Amin Mousavi Khaneghah
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 1435713715, Iran;
| | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, bud. 32, pok. 109B, 02-787 Warszawa, Poland;
| |
Collapse
|
3
|
Transcriptome and Metabolome Analysis Reveal the Flavonoid Biosynthesis Mechanism of Abelmoschus manihot L. at Different Anthesis Stages. Metabolites 2023; 13:metabo13020216. [PMID: 36837835 PMCID: PMC9960708 DOI: 10.3390/metabo13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Abelmoschus manihot L. (HSK) is a rare and endangered species in the wild that grows on the cliffs of deep mountains. As a natural plant, the chemical composition of HSK is relatively complex, which mainly includes flavonoids, organic acids, polysaccharides, and various trace elements with good effects of clearing away heat, anti-inflammatory, analgesic, and calming nerves, and inhibiting tumor cells. In this experiment, different developmental stages of HSK flowers were used for optimization of the flavonoid extraction and determining method. The antioxidant activities, flavonoid accumulation pattern, and synthesis regulatory network were analyzed using biochemistry, RNA-seq, and UPLC-MS/MS. The total content of flavonoids, vitexin rhamnoside, hyperoside, and rutin in HSK flowers at T3 stage (flower wilting) was significantly higher than in T2 (full flowering) and T1 (bud) stages. Compared with T1 and T2, the antioxidant capacity of the T3 flower alcohol extract was also the strongest, including the total reducing ability, DPPH clearance, OH clearance, O2- clearance, and total antioxidant capacity. A total of 156 flavonoids and 47,179 unigenes were detected by UPLC-MS/MS and RNA-Seq, respectively. The candidate genes and key metabolites involved in flavonoid biosynthesis were identified and the regulatory networks were also analyzed in this study. qRT-PCR test further proved that the gene expression level was consistent with the results of RNA sequence data. The relationship between the gene expression and flavonoid accumulation network provides a theoretical basis for the mining and regulation of functional genes related to the flavonoid biosynthesis and metabolism in Abelmoschus manihot L.
Collapse
|
4
|
Rai RK, Karri R, Dubey KD, Roy G. Regulation of Tyrosinase Enzyme Activity by Glutathione Peroxidase Mimics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9730-9747. [PMID: 35861245 DOI: 10.1021/acs.jafc.2c02359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide plays a crucial role in the melanogenesis process by regulating the activity of the key melanin-forming enzyme tyrosinase, responsible for the browning of fruits, vegetables, and seafood. Therefore, a molecule with dual activities, both efficient tyrosinase inhibition and strong hydrogen peroxide degrading ability, may act as a promising antibrowning agent. Herein, we report highly efficient selone-based mushroom tyrosinase inhibitors 2 and 3 with remarkable glutathione peroxidase (GPx) enzyme-like activity. The presence of benzimidazole moiety enhances the tyrosinase inhibition efficiency of selone 2 (IC50 = 0.4 μM) by almost 600 times higher than imidazole-based selone 1 (IC50 = 238 μM). Interestingly, the addition of another aromatic ring to the benzimidazole moiety has led to the development of an efficient lipid-soluble tyrosinase inhibitor 3 (IC50 = 2.4 μM). The selenium center and the -NH group of 2 and 3 are extremely crucial to exhibit high GPx-like activity and tyrosinase inhibition potency. The hydrophobic moiety of the inhibitors (2 and 3) further assists them in tightly binding at the active site of the enzyme and facilitates the C═Se group to strongly coordinate with the copper ions. Inhibitor 2 exhibited excellent antibrowning and polyphenol oxidase inhibition properties in banana and apple juice extracts.
Collapse
Affiliation(s)
- Rakesh Kumar Rai
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Ramesh Karri
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Gouriprasanna Roy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
5
|
Juárez-Méndez MT, Borges-Argáez R, Ayora-Talavera G, Escalante-Rebolledo SE, Escalante-Erosa F, Cáceres-Farfán M. Diospyros anisandra phytochemical analysis and anti-hemagglutinin-neuraminidase activity on influenza AH1N1pdm09 virus. Nat Prod Res 2021; 36:2666-2672. [PMID: 34109896 DOI: 10.1080/14786419.2021.1917568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Influenza viral proteins Haemagglutinin (HA) and Neuraminidase (NA) are important targets for antiviral design. We analyzed for the first time the anti-HA activity and the NA inhibitory activity of extracts and their fractions from Diospyros anisandra on the influenza AH1N1pdm09 virus. The n-hexane fruit extract exhibited HA inhibitory (HAI) activity, and fraction F3 inhibited the hemagglutination from 12.5 up to 100 μg/ml. Gas chromatography-mass spectrometry analysis (GC-MS) on fraction F3, and the n-hexane fruit extract, identified six compounds that were individually evaluated. Only vitamin E and lupeol showed a slight inhibitory activity on HA at 100 μg/ml. Regarding the NA assays, the presence of fluorescent (coumarin) and antioxidant (α-tocopherol) compounds in the root extract, masked the NA assays when using fluorescence techniques. We concluded that D. anisandra is a promising source of bioactive compounds with diverse properties including anti-HA activity on the influenza AH1N1pdm09 virus.
Collapse
Affiliation(s)
| | | | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Mérida, México
| | | | | | | |
Collapse
|
6
|
Sumudu Chandana NGAS, Morlock GE. Eight different bioactivity profiles of 40 cinnamons by multi-imaging planar chromatography hyphenated with effect-directed assays and high-resolution mass spectrometry. Food Chem 2021; 357:129135. [PMID: 33905984 DOI: 10.1016/j.foodchem.2021.129135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Spices contain plenty of bioactive compounds, used to valorize foods. However, product quality may be affected by contaminations and adulterations along the global production chain. A newly developed multi-imaging in combination with bioactivity screening directly pointed to individual multi-potent compounds. For cinnamon as prominent example, the multi-imaging results provided a wealth of new information on their effects and clearly visualized the valorizing potential of cinnamon to foods. The separation focus was in the mid-polar to apolar range. Eight effect-directed assays (EDA, i.e. one radical scavenging, two biological and five biochemical assays) were performed in situ the high-performance thin-layer chromatography (HPTLC) adsorbent. Several multi-potent compound zones were revealed and further characterized by high-resolution mass spectrometry (HRMS), highlighting the bioactive potential of cinnamaldehyde, cinnamic acid, benzoic acid, coumarin, linoleic acid, oleic acid, stearic acid, palmitic acid, caproic acid, and linalool oxide. This HPTLC-UV/Vis/FLD-EDA-HRMS profiling provided comprehensive information on product quality and safety.
Collapse
Affiliation(s)
- N G A S Sumudu Chandana
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
7
|
Salim AA, Bakhtiar H, Ghoshal SK, Huyop F. Customised structural, optical and antibacterial characteristics of cinnamon nanoclusters produced inside organic solvent using 532 nm Q-switched Nd:YAG-pulse laser ablation. OPTICS AND LASER TECHNOLOGY 2020; 130:106331. [PMID: 32457554 PMCID: PMC7239794 DOI: 10.1016/j.optlastec.2020.106331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Biomedical values of organic natural cinnamon that are buried in their bulk counterpart can be exposed and customised via nanosizing. Based on this factor, a new type of spherical cinnamon nanoclusters (Cin-NCs) were synthesised using eco-friendly nanosecond pulse laser ablation in liquid (PLAL) approach. As-grown nontoxic Cin-NCs suspended in the citric acid of pH 4.5 (acted as organic solvent) were characterised thoroughly to evaluate their structural, optical and bactericidal properties. The effects of various laser fluences (LF) at the fixed wavelength (532 nm) on the physiochemical properties of these Cin-NCs were determined. The FTIR spectra of the Cin-NCs displayed the symmetric-asymmetric stretching of the functional groups attached to the heterocyclic/cinnamaldehyde compounds. The HR-TEM image of the optimum sample revealed the nucleation of the crystalline spherical Cin-NCs with a mean diameter of approximately 10 ± 0.3 nm and lattice fringe spacing around 0.14 nm. In addition, the inhibition zone diameter (IZD) and optical density (OD600) of the proposed Cin-NCs were measured to assess their antibacterial potency against the Staphylococcus aureus (IZD ≈ 24 mm) and Escherichia coli (IZD ≈ 25 mm) bacterial strains. The strong UV absorption (in the range of 269 and 310 nm) shown by these NCs was established to be useful for the antibacterial drug development and food treatment.
Collapse
Affiliation(s)
- Ali Aqeel Salim
- Laser Center and Physics Department, Faculty of Science, UniversitiTeknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Hazri Bakhtiar
- Laser Center and Physics Department, Faculty of Science, UniversitiTeknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Sib Krishna Ghoshal
- Laser Center and Physics Department, Faculty of Science, UniversitiTeknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Fahrul Huyop
- Biosciences Department, Faculty of Science, UniversitiTeknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
8
|
Effect of Cinnamon Essential Oil Nanoemulsion Combined with Ascorbic Acid on Enzymatic Browning of Cloudy Apple Juice. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02443-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Klimczak I, Gliszczyńska-Świgło A. Green tea extract as an anti-browning agent for cloudy apple juice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1420-1426. [PMID: 27378649 DOI: 10.1002/jsfa.7880] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/05/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Enzymatic browning of fruits and vegetables and their products is an important factor worsening their quality. The influence of five green tea extracts at the concentrations of 1 g L-1 , 2 g L-1 and 3 g L-1 on polyphenol oxidase (PPO) activity in fresh cloudy apple juice was investigated. Moreover, PPO inhibition by tea extract and colour stability of juice during short-time refrigerated storage was studied. The changes of juice colour during storage was expressed as the total colour differences (ΔE*), browning index (BI), yellowness index (YI), and the absorbance at 420 nm (A420 ). RESULTS All extracts inhibited PPO activity in fresh apple juice in concentration-dependent manner. PPO activity in pure apple juice decreased by 7% after 48 h, whereas PPO activity in samples with 1 g L-1 , 2 g L-1 and 3 g L-1 tea extract decreased by 53%, 74%, and 96%, respectively. Browning of apple juice during storage decreased with increased concentration of green tea extract. After 48 h, extract at 1 g L-1 , 2 g L-1 and 3 g L-1 inhibited browning of juice expressed as BI by 48%, 60%, and 86%, respectively, comparing to pure apple juice. CONCLUSION Green tea extract may be an effective anti-browning agent for short-time stored cloudy apple juices. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Inga Klimczak
- Poznań University of Economics and Business, Faculty of Commodity Science, al. Niepodległości 10, 61-875, Poznań, Poland
| | - Anna Gliszczyńska-Świgło
- Poznań University of Economics and Business, Faculty of Commodity Science, al. Niepodległości 10, 61-875, Poznań, Poland
| |
Collapse
|
10
|
Molnar M, Jerković I, Suknović D, Bilić Rajs B, Aladić K, Šubarić D, Jokić S. Screening of Six Medicinal Plant Extracts Obtained by Two Conventional Methods and Supercritical CO₂ Extraction Targeted on Coumarin Content, 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity and Total Phenols Content. Molecules 2017; 22:molecules22030348. [PMID: 28245577 PMCID: PMC6155378 DOI: 10.3390/molecules22030348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 11/30/2022] Open
Abstract
Six medicinal plants Helichrysum italicum (Roth) G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane) extraction, maceration with ethanol (EtOH), and supercritical CO2 extraction (SC-CO2) targeted on coumarin content (by high performance liquid chromatography with ultraviolet detection, HPLC-UV), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging capacity, and total phenols (TPs) content (by Folin–Ciocalteu assay). The highest extraction yields were obtained by EtOH, followed by hexane and SC-CO2. The highest coumarin content (316.37 mg/100 g) was found in M. officinalis EtOH extracts, but its SC-CO2 extraction yield was very low for further investigation. Coumarin was also found in SC-CO2 extracts of S. officinalis, R. graveolens, A. archangelica, and L. officinalis. EtOH extracts of all plants exhibited the highest DPPH scavenging capacity. SC-CO2 extracts exhibited antiradical capacity similar to hexane extracts, while S. officinalis SC-CO2 extracts were the most potent (95.7%). EtOH extracts contained the most TPs (up to 132.1 mg gallic acid equivalents (GAE)/g from H. italicum) in comparison to hexane or SC-CO2 extracts. TPs content was highly correlated to the DPPH scavenging capacity of the extracts. The results indicate that for comprehensive screening of different medicinal plants, various extraction techniques should be used in order to get a better insight into their components content or antiradical capacity.
Collapse
Affiliation(s)
- Maja Molnar
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia.
| | - Dragica Suknović
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Huttlerova 4, 31000 Osijek, Croatia.
| | - Blanka Bilić Rajs
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| | - Krunoslav Aladić
- Croatian Veterinary Institute, Branch, Veterinary Institute Vinkovci, Josipa Kozarca 24, 32100 Vinkovci, Croatia.
| | - Drago Šubarić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| | - Stela Jokić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| |
Collapse
|
11
|
Jasicka-Misiak I, Makowicz E, Stanek N. Polish Yellow Sweet Clover (Melilotus officinalis L.) Honey, Chromatographic Fingerprints, and Chemical Markers. Molecules 2017; 22:E138. [PMID: 28098847 PMCID: PMC6155788 DOI: 10.3390/molecules22010138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
A case study of Polish Melilotus officinalis honey was presented for the first time. Gas chromatography-mass spectrometry (GC-MS) (after steam distillation, Soxhlet extraction, ultrasonic solvent extraction, and solid phase extraction (SPE)) and targeted high performance liquid chromatography with a photodiode array detector (HPLC-PAD) were applied to determine the characteristic components of honey. While ubiquitous in most honeys, carbohydrates, terpene derivatives, and phenylacetic acid dominated in the Soxhlet extracts (25.54%) and in the application of SPE (13.04%). In addition, lumichrome (1.85%) was found, and may be considered as a marker of this honey. Due to the presence of these compounds, Polish yellow sweet clover honey is similar to French lavender honeys. The major compounds determined in the methanolic extract were (+)-catechine (39.7%) and gallic acid (up to 30%), which can be regarded as specific chemical markers of the botanical origin of melilot honey. With respect to total phenolic and flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were determined spectrophotometrically. The honey exhibited a moderate antioxidant activity, typical for light honeys, which correlates well with its phenolic and flavonoid composition.
Collapse
Affiliation(s)
| | - Ewa Makowicz
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland.
| | - Natalia Stanek
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland.
| |
Collapse
|
12
|
Gadeyne F, De Neve N, Vlaeminck B, Claeys E, Van der Meeren P, Fievez V. Polyphenol Oxidase Containing Sidestreams as Emulsifiers of Rumen Bypass Linseed Oil Emulsions: Interfacial Characterization and Efficacy of Protection against in Vitro Ruminal Biohydrogenation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3749-3759. [PMID: 27111580 DOI: 10.1021/acs.jafc.6b01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The low transfer in ruminants of dietary polyunsaturated fatty acids to the milk or peripheral tissues is largely due to ruminal biohydrogenation. Lipids emulsified by a polyphenol oxidase (PPO) rich protein extract of red clover were shown before to be protected against this breakdown after cross-linking with 4-methylcatechol. Protein extracts of 13 other vegetal resources were tested. Surprisingly, the effectiveness to protect emulsified lipids against in vitro ruminal biohydrogenation largely depended on the origin of the extract and its protein concentration but was not related to PPO activity. Moreover, PPO isoforms in vegetal sources, effectively protecting emulsified lipids, were diverse and their presence at the emulsion interface did not seem essential. Potato tuber peels were identified as an interesting biological source of emulsifying proteins and PPO, particularly since protein extracts of industrial potato sidestreams proved to be suitable for the current application.
Collapse
Affiliation(s)
- Frederik Gadeyne
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University , Proefhoevestraat 10, 9090 Melle, Belgium
| | - Nympha De Neve
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University , Proefhoevestraat 10, 9090 Melle, Belgium
| | - Bruno Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University , Proefhoevestraat 10, 9090 Melle, Belgium
| | - Erik Claeys
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University , Proefhoevestraat 10, 9090 Melle, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University , Proefhoevestraat 10, 9090 Melle, Belgium
| |
Collapse
|
13
|
Asthana S, Zucca P, Vargiu AV, Sanjust E, Ruggerone P, Rescigno A. Structure-Activity Relationship Study of Hydroxycoumarins and Mushroom Tyrosinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7236-7244. [PMID: 26263396 DOI: 10.1021/acs.jafc.5b02636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The structure-activity relationships of four hydroxycoumarins, two with the hydroxyl group on the aromatic ring of the molecule and two with the hydroxyl group replacing hydrogen of the pyrone ring, and their interactions with mushroom tyrosinase were studied. These compounds displayed different behaviors upon action of the enzyme. The two compounds, ar-hydroxylated 6-hydroxycoumarin and 7-hydroxycoumarin, were both weak substrates of the enzyme. Interestingly, in both cases, the product of the catalysis was the 6,7-hydroxycoumarin, although 5,6- and 7,8-isomers could also theoretically be formed. Additionally, both were able to reduce the formation of dopachrome when tyrosinase acted on its typical substrate, L-tyrosine. Although none of the compounds that contained a hydroxyl group on the pyrone ring were substrates of tyrosinase, the 3-hydroxycoumarin was a potent inhibitor of the enzyme, and the 4-hydroxycoumarin was not an inhibitor. These results were compared with those obtained by in silico molecular docking predictions to obtain potentially useful information for the synthesis of new coumarin-based inhibitors that resemble the structure of the 3-hydroxycoumarin.
Collapse
Affiliation(s)
- Shailendra Asthana
- †Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Haryana 121001, India
| | - Paolo Zucca
- §Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
- #Consorzio UNO Università Oristano, 09170 Oristano, Italy
| | - Attilio V Vargiu
- ⊥Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Enrico Sanjust
- §Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Paolo Ruggerone
- ⊥Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Antonio Rescigno
- §Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
14
|
Phukan S, Saha M, Pal AK, Bhasikuttan A, Mitra S. Intramolecular charge transfer in coumarin based donor-acceptor systems: Formation of a new product through planar intermediate. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|