1
|
Serio F, Girelli CR, Acito M, Imbriani G, Sabella E, Moretti M, Fanizzi FP, Valacchi G. Preliminary Characterization of "Salice Salentino" PDO Wines from Salento (South Italy) Negroamaro Grapes: NMR-Based Metabolomic and Biotoxicological Analyses. Foods 2024; 13:3554. [PMID: 39593970 PMCID: PMC11592925 DOI: 10.3390/foods13223554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: A preliminary investigation of Protected Designation of Origin (PDO) wines (red and rosé) produced from Negroamaro grapes-a native Salento (Apulia, Southern Italy) vine that is part of the Salice s.no PDO area-was performed in this work. (2) Methods: 1H-NMR spectroscopy, in combination with multivariate statistical analysis (MVA), was employed to characterize the metabolic profiles of 39 wine samples. Spectrophotometric methods were used to obtain preliminary information on the phenolic composition of wines and the associated antioxidant activity. The HepG2 liver cell line was used to assess the biological activity (effect on cell viability and genotoxicity activity) of wine samples. (3) Results: The NMR spectra analysis revealed the presence of signals ascribable to phenolic compounds such as gallic, hydroxycinnamic, and syringic acids. Relative content of these metabolites has been shown to be higher in red than in rosés wines and related to the wine producers. Interestingly, a similar pattern was observed in biological analyses. Red wines compared to the rosé wines display great variations in antioxidant capacity when evaluated as fresh samples using the DPPH and ORAC methods. Furthermore, all red wines exhibited a concentration-dependent decrease in cellular viability and live cells; this phenomenon is much less pronounced in rosé wines. (4) Conclusions: The resulting findings from this study reveal that winemaking operations could lead to final products with different chemical compositions and related properties. Even when starting from the same crop variety and cultivation region, significant differences were observed in the wine samples NMR-metabolic profiles and in vitro biotoxicological activity.
Collapse
Affiliation(s)
- Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (E.S.); (F.P.F.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (E.S.); (F.P.F.)
| | - Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy; (M.A.); (M.M.)
| | - Giovanni Imbriani
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (E.S.); (F.P.F.)
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (E.S.); (F.P.F.)
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy; (M.A.); (M.M.)
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (E.S.); (F.P.F.)
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Ghini V, Meoni G, Vignoli A, Di Cesare F, Tenori L, Turano P, Luchinat C. Fingerprinting and profiling in metabolomics of biosamples. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:105-135. [PMID: 38065666 DOI: 10.1016/j.pnmrs.2023.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.
Collapse
Affiliation(s)
- Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy; Giotto Biotech S.r.l., Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Herbert-Pucheta JE, Austin-Quiñones P, Rodríguez-González F, Pino-Villar C, Flores-Pérez G, Arguello-Campos SJ, Arámbula VV. Current trends in ŒNO-NMR based metabolomics. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Present work discusses strengths and limitations of two Nuclear Magnetic Resonance outliers obtained with a water-to-ethanol solvent multi pre saturation acquisition method, recently included in the Compendium of International Methods of Analysis of Wines and Musts, published as OIV-MA-AS316-01, and their accuracy for metabolomics analysis. Furthermore, it is also presented an alternative to produce more discriminant and sensitive NMR data matrices for metabolomics studies, comprising the use of a novel NMR acquisition strategy in wines, the double pulsed-field gradient echo (DPFGE) NMR scheme, with a refocusing band-selective uniform-response pure-phase selective pulse, for a selective excitation of the 5-10 ppm chemical shift range of wine samples, that reveals novel broad aromatic 1H resonances, directly associated to complex polyphenols. Both aromatics and full binned OIV-MA-AS316-01,as well as the selective 5-10 ppm DPFGE NMR outliers were statistically analyzed with diverse non-supervised Principal Component Analysis (PCA) and supervised Partial Least Squares -Discriminant Analysis (PLS-DA), sparse (sPLS-DA) least squares- discriminant analysis, and orthogonal projections to latent structures discriminant analysis (OPLS-DA). Supervised multivariate statistical analysis of DPFGE and aromatics’ binned OIV-MA-AS316-01NMR data have shown their robustness to broadly discriminate geographical origins and narrowly differentiate between different fermentation schemes of wines from identical variety and region.
Collapse
|
4
|
Technological screening and application of Saccharomyces cerevisiae strains isolated from fermented honey by-products for the sensory improvement of Spiritu re fascitrari, a typical Sicilian distilled beverage. Food Microbiol 2022; 104:103968. [DOI: 10.1016/j.fm.2021.103968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
|
5
|
QU Q, JIN L. Application of nuclear magnetic resonance in food analysis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Le Mao I, Martin-Pernier J, Bautista C, Lacampagne S, Richard T, Da Costa G. 1H-NMR Metabolomics as a Tool for Winemaking Monitoring. Molecules 2021; 26:6771. [PMID: 34833863 PMCID: PMC8621607 DOI: 10.3390/molecules26226771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The chemical composition of wine is known to be influenced by multiple factors including some viticulture practices and winemaking processes. 1H-NMR metabolomics has been successfully applied to the study of wine authenticity. In the present study, 1H-NMR metabolomics in combination with multivariate analysis was applied to investigate the effects of grape maturity and enzyme and fining treatments on Cabernet Sauvignon wines. A total of forty wine metabolites were quantified. Three different stages of maturity were studied (under-maturity, maturity and over-maturity). Enzyme treatments were carried out using two pectolytic enzymes (E1 and E2). Finally, two proteinaceous fining treatments were compared (vegetable protein, fining F1; pea protein and PVPP, fining F2). The results show a clear difference between the three stages of maturity, with an impact on different classes of metabolites including amino acids, organic acids, sugars, phenolic compounds, alcohols and esters. A clear separation between enzymes E1 and E2 was observed. Both fining agents had a significant effect on metabolite concentrations. The results demonstrate that 1H-NMR metabolomics provides a fast and robust approach to study the effect of winemaking processes on wine metabolites. These results support the interest to pursue the development of 1H-NMR metabolomics to investigate the effects of winemaking on wine quality.
Collapse
Affiliation(s)
| | | | | | | | - Tristan Richard
- University of Bordeaux, INRAE, Bordeaux INP, UR OENO, EA 4577, USC 1366, F-33140 Villenave d’Ornon, France; (I.L.M.); (J.M.-P.); (C.B.); (S.L.); (G.D.C.)
| | | |
Collapse
|
7
|
Herbert-Pucheta JE, Lozada-Ramírez JD, Ortega-Regules AE, Hernández LR, Anaya de Parrodi C. Nuclear Magnetic Resonance Metabolomics with Double Pulsed-Field-Gradient Echo and Automatized Solvent Suppression Spectroscopy for Multivariate Data Matrix Applied in Novel Wine and Juice Discriminant Analysis. Molecules 2021; 26:molecules26144146. [PMID: 34299421 PMCID: PMC8307358 DOI: 10.3390/molecules26144146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
The quality of foods has led researchers to use various analytical methods to determine the amounts of principal food constituents; some of them are the NMR techniques with a multivariate statistical analysis (NMR-MSA). The present work introduces a set of NMR-MSA novelties. First, the use of a double pulsed-field-gradient echo (DPFGE) experiment with a refocusing band-selective uniform response pure-phase selective pulse for the selective excitation of a 5–10-ppm range of wine samples reveals novel broad 1H resonances. Second, an NMR-MSA foodomics approach to discriminate between wine samples produced from the same Cabernet Sauvignon variety fermented with different yeast strains proposed for large-scale alcohol reductions. Third a comparative study between a nonsupervised Principal Component Analysis (PCA), supervised standard partial (PLS-DA), and sparse (sPLS-DA) least squares discriminant analysis, as well as orthogonal projections to a latent structures discriminant analysis (OPLS-DA), for obtaining holistic fingerprints. The MSA discriminated between different Cabernet Sauvignon fermentation schemes and juice varieties (apple, apricot, and orange) or juice authentications (puree, nectar, concentrated, and commercial juice fruit drinks). The new pulse sequence DPFGE demonstrated an enhanced sensitivity in the aromatic zone of wine samples, allowing a better application of different unsupervised and supervised multivariate statistical analysis approaches.
Collapse
Affiliation(s)
- José Enrique Herbert-Pucheta
- Consejo Nacional de Ciencia y Tecnología-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Carretera México-Texcoco km 38.5, Chapingo, Estado de México 56230, Mexico;
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, Ciudad de México 11340, Mexico
| | - José Daniel Lozada-Ramírez
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | - Ana E. Ortega-Regules
- Departamento de Ciencias de la Salud, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
- Correspondence: (L.R.H.); (C.A.d.P.); Tel.: +52-222-2292412 (L.R.H.); +52-222-2292005 (C.A.d.P.)
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
- Correspondence: (L.R.H.); (C.A.d.P.); Tel.: +52-222-2292412 (L.R.H.); +52-222-2292005 (C.A.d.P.)
| |
Collapse
|
8
|
Matraxia M, Alfonzo A, Prestianni R, Francesca N, Gaglio R, Todaro A, Alfeo V, Perretti G, Columba P, Settanni L, Moschetti G. Non-conventional yeasts from fermented honey by-products: Focus on Hanseniaspora uvarum strains for craft beer production. Food Microbiol 2021; 99:103806. [PMID: 34119099 DOI: 10.1016/j.fm.2021.103806] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
The increasing interest in novel beer productions focused on non-Saccharomyces yeasts in order to pursue their potential in generating groundbreaking sensory profiles. Traditional fermented beverages represent an important source of yeast strains which could express interesting features during brewing. A total of 404 yeasts were isolated from fermented honey by-products and identified as Saccharomyces cerevisiae, Wickerhamomyces anomalus, Zygosaccharomyces bailii, Zygosaccharomyces rouxii and Hanseniaspora uvarum. Five H. uvarum strains were screened for their brewing capability. Interestingly, Hanseniaspora uvarum strains showed growth in presence of ethanol and hop and a more rapid growth than the control strain S. cerevisiae US-05. Even though all strains showed a very low fermentation power, their concentrations ranged between 7 and 8 Log cycles during fermentation. The statistical analyses showed significant differences among the strains and underlined the ability of YGA2 and YGA34 to grow rapidly in presence of ethanol and hop. The strain YGA34 showed the best technological properties and was selected for beer production. Its presence in mixed- and sequential-culture fermentations with US-05 did not influence attenuation and ethanol concentration but had a significant impact on glycerol and acetic acid concentrations, with a higher sensory complexity and intensity, representing promising co-starters during craft beer production.
Collapse
Affiliation(s)
- Michele Matraxia
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Antonio Alfonzo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Rosario Prestianni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Nicola Francesca
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy.
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Aldo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Vincenzo Alfeo
- Italian Brewing Research Centre, Department of Agricultural, Food and Environmental Science, University of Perugia, 06126, Perugia, Italy
| | - Giuseppe Perretti
- Italian Brewing Research Centre, Department of Agricultural, Food and Environmental Science, University of Perugia, 06126, Perugia, Italy
| | - Pietro Columba
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Giancarlo Moschetti
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| |
Collapse
|
9
|
López-Aguilar R, Zuleta-Prada H, Hernández-Montes A, Herbert-Pucheta JE. Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes. Foods 2021; 10:foods10010157. [PMID: 33451115 PMCID: PMC7828614 DOI: 10.3390/foods10010157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 01/06/2023] Open
Abstract
The oenological industry has benefited from the use of Nuclear Magnetic Resonance (1H-NMR) spectroscopy in combination with Multivariate Statistical Analysis (MSA) as a foodomics tool for retrieving discriminant features related to geographical origins, grape varieties, and further quality controls. Said omics methods have gained such attention that Intergovernmental Organizations and Control Agencies are currently recommending their massive use amongst countries as quality compliances for tracking standard and degradation parameters, fermentation products, polyphenols, amino acids, geographical origins, appellations d’origine contrôlée and type of monovarietal strains in wines. This study presents, for the first time, a 1H-NMR/MSA profiling of industrial Mexican wines, finding excellent statistical features to discriminate between oenological regions and grape varieties with supervised Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA). In a comparative way, it is applied with the 1H-NMR/OPLS-DA workflow for the first time in ancestral and artisanal Mexican mezcals with promising results to discriminate between regions, agave species and manufacturing processes. The central aim of this comparative study is to extrapolate the know-how of wine-omics into the non-professionalized mezcal industry for establishing the NMR acquisition, preprocessing and statistical analysis basis to implement novel, non-invasive and highly reproducible regional, agave species and manufacturing-quality controls.
Collapse
Affiliation(s)
- Rosa López-Aguilar
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, km. 38.5 Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico;
| | - Holber Zuleta-Prada
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km. 38.5 Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico;
| | - Arturo Hernández-Montes
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, km. 38.5 Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico;
- Correspondence: (A.H.-M.); (J.E.H.-P.); Tel.: +52-5959521787 (A.H.-M.); +52-5521050381 (J.E.H.-P.)
| | - José Enrique Herbert-Pucheta
- Consejo Nacional de Ciencia y Tecnología-Laboratorio Nacional de Investigación y Servicio Agroalimentario Forestal, Universidad Autónoma Chapingo, 56230 Chapingo, Estado de México, Mexico
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Estado de México, Mexico
- Correspondence: (A.H.-M.); (J.E.H.-P.); Tel.: +52-5959521787 (A.H.-M.); +52-5521050381 (J.E.H.-P.)
| |
Collapse
|
10
|
Viskić M, Bandić LM, Korenika AMJ, Jeromel A. NMR in the Service of Wine Differentiation. Foods 2021; 10:foods10010120. [PMID: 33429968 PMCID: PMC7827514 DOI: 10.3390/foods10010120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
NMR is a swift and highly reproducible spectrometric technique that makes it possible to obtain spectra containing a lot of information about the sample analyzed. This approach helps major components be described in complex mixtures such as wine in just one analysis. Analysis of wine metabolites is very often used to understand the impact of geographical origin or variety on wine quality. NMR is often used for tracing the geographical origin of wine. Research on NMR metabolic effects of geographical origin is of great importance as the high added value of wines results from compliance with state legislation on the protected denomination of origin (PDO) and protected geographical indication (PGI) for the administration of the appellation of wines. A review of NMR with emphasis on SNIF-NMR in the analysis of wine authenticity is given. SNIF-NMR remains a method of choice for the detection of wine chaptalization as it is the only approach which provides position-specific information on the origin of sugar in wine. However, the sample preparation step, which lacks major improvements since its conception, is strenuous and expensive, and suffers from drawbacks in terms of low sample throughput. Mainstream 1D and 2D NMR experiments provide a fast and affordable way to authenticate wine based on the geographical origin, vintage, and variety discrimination, and include a simple and non-destructive sample preparation step. With this approach, spectral data processing often represents a crucial step of the analysis. With properly performed NMR experiments good to excellent differentiation of wines from different vintages, regions, and varieties was achieved recently.
Collapse
Affiliation(s)
- Marko Viskić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10 000 Zagreb, Croatia;
| | - Luna Maslov Bandić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10 000 Zagreb, Croatia;
- Correspondence:
| | - Ana-Marija Jagatić Korenika
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10 000 Zagreb, Croatia; (A.-M.J.K.); (A.J.)
| | - Ana Jeromel
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10 000 Zagreb, Croatia; (A.-M.J.K.); (A.J.)
| |
Collapse
|
11
|
He NX, Bayen S. An overview of chemical contaminants and other undesirable chemicals in alcoholic beverages and strategies for analysis. Compr Rev Food Sci Food Saf 2020; 19:3916-3950. [PMID: 33337040 DOI: 10.1111/1541-4337.12649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
The presence of chemical contaminant in alcoholic beverages is a widespread and notable problem with potential implications for human health. With the complexity and wide variation in the raw materials, production processes, and contact materials involved, there are a multitude of opportunities for a diverse host of undesirable compounds to make their way into the final product-some of which may currently remain unidentified and undetected. This review provides an overview of the notable contaminants (including pesticides, environmental contaminants, mycotoxins, process-induced contaminants, residues of food contact material [FCM], and illegal additives) that have been detected in alcoholic products thus far based on prior reviews and findings in the literature, and will additionally consider the potential sources for contamination, and finally discuss and identify gaps in current analytical strategies. The findings of this review highlight a need for further investigation into unwanted substances in alcoholic beverages, particularly concerning chemical migrants from FCMs, as well as a need for comprehensive nontargeted analytical techniques capable of determining unanticipated contaminants.
Collapse
Affiliation(s)
- Nancy Xiaohe He
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
12
|
Zava A, Sebastião PJ, Catarino S. Wine traceability and authenticity: approaches for geographical origin, variety and vintage assessment. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2020. [DOI: 10.1051/ctv/20203502133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The aim of this work is to identify and discuss physicochemical wine characteristics, to provide to some extent a link to the vintage, variety, and/or geographical origin. Bibliographic datasets were attempted to provide the main information for topic comprehension, identifying the sources of wine compositional variability and how these can be expressed in terms of the belonging categories. Since all the environmental and technological conditions which vineyard and wine are subjected are rarely known, different sources were inspected. Great importance was given to the study of isotopic composition because of its importance in food frauds detection history. The interaction of the plant genotype with the environmental conditions of the vintage is the main responsible for the wines organic and inorganic fraction variability in terms of both total and relative content. This phenotypical expression, together with human and abiotic variability sources, has been examined since it contains to some extent the information for the discrimination of wines according to their category. Recently, new proton nuclear magnetic resonance (1H NMR) spectroscopy techniques have been under study and, used concurrently to chemometric data management procedures, showed to be an interesting and promising tool for wine characterization according to both vintage and variety.
Collapse
|
13
|
Mascellani A, Hoca G, Babisz M, Krska P, Kloucek P, Havlik J. 1H NMR chemometric models for classification of Czech wine type and variety. Food Chem 2020; 339:127852. [PMID: 32889133 DOI: 10.1016/j.foodchem.2020.127852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
A set of 917 wines of Czech origin were analysed using nuclear magnetic resonance spectroscopy (NMR) with the aim of building and evaluating multivariate statistical models and machine learning methods for the classification of 6 types based on colour and residual sugar content, 13 wine grape varieties and 4 locations based on 1H NMR spectra. The predictive models afforded greater than 93% correctness for classifying dry and medium dry, medium, and sweet white wines and dry red wines. The trained Random Forest (RF) model classified Pinot noir with 96% correctness, Blaufränkisch 96%, Riesling 92%, Cabernet Sauvignon 77%, Chardonnay 76%, Gewürtztraminer 60%, Hibernal 60%, Grüner Veltliner 52%, Pinot gris 48%, Sauvignon Blanc 45%, and Pálava 40%. Pinot blanc and Chardonnay, varieties that are often mistakenly interchanged, were discriminated with 71% correctness. The findings support chemometrics as a tool for predicting important features in wine, particularly for quality assessment and fraud detection.
Collapse
Affiliation(s)
- Anna Mascellani
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6 - Suchdol, Czech Republic
| | - Gokce Hoca
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6 - Suchdol, Czech Republic
| | - Marek Babisz
- The National Wine Centre, Zamek 1, 691 42 Valtice, Czech Republic
| | - Pavel Krska
- The National Wine Centre, Zamek 1, 691 42 Valtice, Czech Republic
| | - Pavel Kloucek
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6 - Suchdol, Czech Republic
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6 - Suchdol, Czech Republic.
| |
Collapse
|
14
|
Mannu A, Karabagias IK, Di Pietro ME, Baldino S, Karabagias VK, Badeka AV. 13C NMR-Based Chemical Fingerprint for the Varietal and Geographical Discrimination of Wines. Foods 2020; 9:foods9081040. [PMID: 32748828 PMCID: PMC7466255 DOI: 10.3390/foods9081040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
A fast, economic, and eco-friendly methodology for the wine variety and geographical origin differentiation using 13C nuclear magnetic resonance (NMR) data in combination with machine learning was developed. Wine samples of different grape varieties cultivated in different regions in Greece were subjected to 13C NMR analysis. The relative integrals of the 13C spectral window were processed and extracted to build a chemical fingerprint for the characterization of each specific wine variety, and then subjected to factor analysis, multivariate analysis of variance, and k-nearest neighbors analysis. The statistical analysis results showed that the 13C NMR fingerprint could be used as a rapid and accurate indicator of the wine variety differentiation. An almost perfect classification rate based on training (99.8%) and holdout methods (99.9%) was obtained. Results were further tested on the basis of Cronbach's alpha reliability analysis, where a very low random error (0.30) was estimated, indicating the accuracy and strength of the aforementioned methodology for the discrimination of the wine variety. The obtained data were grouped according to the geographical origin of wine samples and further subjected to principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The PLS-DA and variable importance in projection (VIP) allowed the determination of a chemical fingerprint characteristic of each geographical group. The statistical analysis revealed the possibility of acquiring useful information on wines, by simply processing the 13C NMR raw data, without the need to determine any specific metabolomic profile. In total, the obtained fingerprint can be used for the development of rapid quality-control methodologies concerning wine.
Collapse
Affiliation(s)
- Alberto Mannu
- Department of Chemistry, University of Turin, Via Pietro Giuria, 7, I-10125 Turin, Italy;
- Correspondence: (A.M.); (I.K.K.)
| | - Ioannis K. Karabagias
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (V.K.K.); (A.V.B.)
- Correspondence: (A.M.); (I.K.K.)
| | - Maria Enrica Di Pietro
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Salvatore Baldino
- Department of Chemistry, University of Turin, Via Pietro Giuria, 7, I-10125 Turin, Italy;
| | - Vassilios K. Karabagias
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (V.K.K.); (A.V.B.)
| | - Anastasia V. Badeka
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (V.K.K.); (A.V.B.)
| |
Collapse
|
15
|
Bordet F, Joran A, Klein G, Roullier-Gall C, Alexandre H. Yeast-Yeast Interactions: Mechanisms, Methodologies and Impact on Composition. Microorganisms 2020; 8:E600. [PMID: 32326124 PMCID: PMC7232261 DOI: 10.3390/microorganisms8040600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
During the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them.
Collapse
Affiliation(s)
- Fanny Bordet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
- Lallemand SAS, 19, rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France
| | - Alexis Joran
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Géraldine Klein
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Chloé Roullier-Gall
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| |
Collapse
|
16
|
Metabolomics Reveals Discrimination of Chinese Propolis from Different Climatic Regions. Foods 2020; 9:foods9040491. [PMID: 32295098 PMCID: PMC7230208 DOI: 10.3390/foods9040491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
The chemical profiles of propolis vary greatly due to the botanic sources and geographic origins, which limit its standardization for modern usages. Here, we proposed a reliable 1H NMR-based metabolomic approach, to discriminate the function and quality of Chinese propolis. A total 63 Chinese propolis samples from different temperate regions were collected and extracted for NMR analysis. Twenty-one compositions in ethanol extracts were assigned based on characteristic chemical shifts and previous literature reports. Significant geographic indicators were identified after the PCA and orthogonal partial least squares discriminant analysis (OPLS-DA) analysis of the obtained 1H NMR data. It was found that the composition discriminations arose from long-term acclimation of the different climates of botanic origin and caused the differences in the biological activities. This study provides us a reasonable instruction for the quality control of Chinese propolis.
Collapse
|
17
|
|
18
|
Hu B, Cao Y, Zhu J, Xu W, Wu W. Analysis of metabolites in chardonnay dry white wine with various inactive yeasts by 1H NMR spectroscopy combined with pattern recognition analysis. AMB Express 2019; 9:140. [PMID: 31486932 PMCID: PMC6728109 DOI: 10.1186/s13568-019-0861-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 04/19/2023] Open
Abstract
The study aimed to investigate the effect of five inactive yeasts on the metabolites of Chardonnay dry white wines vinified in 2016 in Shacheng Manor Wine Co. Ltd., Hebei province, China. In this research, proton nuclear magnetic resonance (NMR) spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) were applied to identify and discriminate the different wine products. The results of principle component analysis (PCA) showed that there was significant difference between the metabolites of sample wines with different inactive yeasts, among them, the content of polyols, organic acids, amino acids and choline was notably influenced. The results of partial least squares discrimination analysis (PLS-DA) confirmed that the metabolites contributed to the discrimination of the wines were 2,3-butanediol, ethyl acetate, malic acid, valine, succinic acid, lactic acid, tartaric acid, glycerol, gallic acid, choline, proline, and alanine.
Collapse
|
19
|
Gougeon L, da Costa G, Guyon F, Richard T. 1H NMR metabolomics applied to Bordeaux red wines. Food Chem 2019; 301:125257. [PMID: 31357002 DOI: 10.1016/j.foodchem.2019.125257] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023]
Abstract
The q-NMR metabolomics has already demonstrated its potential for classifying wines of different geographical origins, grape varieties, or vintages. This study focuses on the characterisation of Bordeaux red wines, seeking to discriminate them from others produced in the major French wine regions. A sampling of 224 commercial French wines was analysed by 1H NMR and forty compounds were quantified. Non-supervised and supervised statistical analyses revealed a singular imprint of Bordeaux wines in comparison with other French wines, with classification rates ranging from 71% to 100%. Within the Bordeaux vineyards, red wines from the different Bordeaux subdivisions were analysed from different vintages. Our results indicate that q-NMR metabolomics enables the differentiation of Médoc and Libournais vineyard highlighting the most discriminant constituents. In addition, the effects of wine evolution during bottle aging and vintage on Bordeaux red wines were pointed out and discussed.
Collapse
Affiliation(s)
- Louis Gougeon
- Univ. Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche Œnologie, 210 chemin de Leysotte, F-33882 Villenave d'Ornon, France
| | - Gregory da Costa
- Univ. Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche Œnologie, 210 chemin de Leysotte, F-33882 Villenave d'Ornon, France
| | - François Guyon
- Service Commun des Laboratoires, 3 avenue du Dr. Albert Schweitzer, 33600 Pessac, France
| | - Tristan Richard
- Univ. Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche Œnologie, 210 chemin de Leysotte, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
20
|
Mazzei P, Celano G, Palese AM, Lardo E, Drosos M, Piccolo A. HRMAS-NMR metabolomics of Aglianicone grapes pulp to evaluate terroir and vintage effects, and, as assessed by the electromagnetic induction (EMI) technique, spatial variability of vineyard soils. Food Chem 2019; 283:215-223. [DOI: 10.1016/j.foodchem.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 12/21/2022]
|
21
|
Optimization and validation of a DHS-TD-GC-MS method to wineomics studies. Talanta 2019; 192:301-307. [DOI: 10.1016/j.talanta.2018.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/02/2023]
|
22
|
Diamantidou D, Zotou A, Theodoridis G. Wine and grape marc spirits metabolomics. Metabolomics 2018; 14:159. [PMID: 30830493 DOI: 10.1007/s11306-018-1458-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Mass spectrometry (MS)-based and nuclear magnetic resonance (NMR) spectroscopic analyses play a key role in the field of metabolomics due to their important advantages. The use of metabolomics in wine and grape marc spirits allows a more holistic perspective in monitoring and gaining information on the making processes and thus it can assist on the improvement of their quality. OBJECTIVES This review surveys the latest metabolomics approaches for wine and grape marc spirits with a focus on the description of MS-based and NMR spectroscopic analytical techniques. METHODS We reviewed the literature to identify metabolomic studies of wine and grape marc spirits that were published until the end of 2017, with the key term combinations of 'metabolomics', 'wine' and 'grape marc spirits'. Through the reference lists from these studies, additional articles were identified. RESULTS The results of this review showed that the application of different metabolomics approaches has significantly increased the knowledge of wine metabolome and grape marc spirits; however there is not yet a single analytical platform that can completely separate, detect and identify all metabolites in one analysis. CONCLUSIONS The authentication and quality control of wines and grape marc spirits has to be taken with caution, since the product's chemical composition could be affected by many factors. Despite intrinsic limitations, NMR spectroscopy and MS based strategies remain the key analytical methods in metabolomics studies. Authenticity, traceability and health issues related to their consumption are the major research initiatives in wine and grape marc spirits metabolomics analysis.
Collapse
Affiliation(s)
- Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia Zotou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
23
|
Hatzakis E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 18:189-220. [PMID: 33337022 DOI: 10.1111/1541-4337.12408] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a robust method, which can rapidly analyze mixtures at the molecular level without requiring separation and/or purification steps, making it ideal for applications in food science. Despite its increasing popularity among food scientists, NMR is still an underutilized methodology in this area, mainly due to its high cost, relatively low sensitivity, and the lack of NMR expertise by many food scientists. The aim of this review is to help bridge the knowledge gap that may exist when attempting to apply NMR methodologies to the field of food science. We begin by covering the basic principles required to apply NMR to the study of foods and nutrients. A description of the discipline of chemometrics is provided, as the combination of NMR with multivariate statistical analysis is a powerful approach for addressing modern challenges in food science. Furthermore, a comprehensive overview of recent and key applications in the areas of compositional analysis, food authentication, quality control, and human nutrition is provided. In addition to standard NMR techniques, more sophisticated NMR applications are also presented, although limitations, gaps, and potentials are discussed. We hope this review will help scientists gain some of the knowledge required to apply the powerful methodology of NMR to the rich and diverse field of food science.
Collapse
Affiliation(s)
- Emmanuel Hatzakis
- Dept. of Food Science and Technology, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A.,Foods for Health Discovery Theme, The Ohio State Univ., Parker Building, 2015 Fyffe Rd., Columbus, OH, U.S.A
| |
Collapse
|
24
|
Managing wine quality using Torulaspora delbrueckii and Oenococcus oeni starters in mixed fermentations of a red Barbera wine. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3161-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Mazzei P, Cozzolino V, Piccolo A. High-Resolution Magic-Angle-Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of Maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2580-2588. [PMID: 29323890 DOI: 10.1021/acs.jafc.7b04340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Both high-resolution magic-angle-spinning (HRMAS) and magnetic resonance imaging (MRI) NMR spectroscopies were applied here to identify the changes of metabolome, morphology, and structural properties induced in seeds (caryopses) of maize plants grown at field level under either mineral or compost fertilization in combination with the inoculation by arbuscular mycorrhizal fungi (AMF). The metabolome of intact caryopses was examined by HRMAS-NMR, while the morphological aspects, endosperm properties and seed water distribution were investigated by MRI. Principal component analysis (PCA) was applied to evaluate 1H CPMG (Carr-Purcel-Meiboom-Gill) HRMAS spectra as well as several MRI-derived parameters ( T1, T2, and self-diffusion coefficients) of intact maize caryopses. PCA score-plots from spectral results indicated that both seeds metabolome and structural properties depended on the specific field treatment undergone by maize plants. Our findings show that a combination of multivariate statistical analyses with advanced and nondestructive NMR techniques, such as HRMAS and MRI, enables the evaluation of the effects induced on maize caryopses by different fertilization and management practices at field level. The spectroscopic approach adopted here may become useful for the objective appraisal of the quality of seeds produced under a sustainable agriculture.
Collapse
|
26
|
Ramakrishnan V, Luthria DL. Recent applications of NMR in food and dietary studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:33-42. [PMID: 27435122 DOI: 10.1002/jsfa.7917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Over the last decade, a wide variety of new foods have been introduced into the global marketplace, many with health benefits that exceed those of traditional foods. Simultaneously, a wide range of analytical technologies has evolved that allow greater capability for the determination of food composition. Nuclear magnetic resonance (NMR), traditionally a research tool used for structural elucidation, is now being used frequently for metabolomics and chemical fingerprinting. Its stability and inherent ease of quantification have been exploited extensively to identify and quantify bioactive components in foods and dietary supplements. In addition, NMR fingerprints have been used to differentiate cultivars, evaluate sensory properties of food and investigate the influence of growing conditions on food crops. Here we review the latest applications of NMR in food analysis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Venkatesh Ramakrishnan
- Food Composition Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Devanand L Luthria
- Food Composition Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| |
Collapse
|
27
|
Determination of Alcohol Content in Alcoholic Beverages Using 45 MHz Benchtop NMR Spectrometer. ACTA ACUST UNITED AC 2016. [DOI: 10.1155/2016/2526946] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alcohol or ethanol is considered the most widely used recreational drug worldwide, and its production, consumption, and sale are strictly regulated by laws. Alcohol content of alcoholic beverages (wine, beers, and spirits) is about 3–50% v/v. Analytical methods to determine the alcohol content must be reliable, precise, and accurate. In this study, the amount of ethanol in several alcoholic beverages was determined using a 45 MHz low-field benchtop NMR (nuclear magnetic resonance) spectrometer. Internal standard and standard addition analytical methods were utilized to quantify ethanol. For both methods, acetic acid or acetonitrile was used as internal standard to quantify alcohol content by using the peak area corresponding to the methyl peaks of ethanol, acetic acid, or acetonitrile. Results showed that internal standard method gave values of percent alcohol that are in close agreement with the indicated label as confirmed by running the samples in a 400 MHz high-field NMR spectrometer using acetic acid as internal standard. This study demonstrates the utility of a benchtop NMR spectrometer that can provide an alternative technique to analyze percent alcohol in alcoholic products.
Collapse
|
28
|
Danezis GP, Tsagkaris AS, Brusic V, Georgiou CA. Food authentication: state of the art and prospects. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.07.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Martin-Pastor M, Guitian E, Riguera R. Joint NMR and Solid-Phase Microextraction–Gas Chromatography Chemometric Approach for Very Complex Mixtures: Grape and Zone Identification in Wines. Anal Chem 2016; 88:6239-46. [DOI: 10.1021/acs.analchem.5b04505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Manuel Martin-Pastor
- Unidade de Resonancia Magnética,
RIAIDT, Edificio CACTUS, ‡Unidade de Espectrometría
de Masas e Proteómica, RIAIDT, Edificio CACTUS, and §Centro Singular
de Investigación en Química Biológica y Materiales
Moleculares, CIQUS, Universidad de Santiago, Campus Vida, Santiago de Compostela, 15782, Spain
| | - Esteban Guitian
- Unidade de Resonancia Magnética,
RIAIDT, Edificio CACTUS, ‡Unidade de Espectrometría
de Masas e Proteómica, RIAIDT, Edificio CACTUS, and §Centro Singular
de Investigación en Química Biológica y Materiales
Moleculares, CIQUS, Universidad de Santiago, Campus Vida, Santiago de Compostela, 15782, Spain
| | - Ricardo Riguera
- Unidade de Resonancia Magnética,
RIAIDT, Edificio CACTUS, ‡Unidade de Espectrometría
de Masas e Proteómica, RIAIDT, Edificio CACTUS, and §Centro Singular
de Investigación en Química Biológica y Materiales
Moleculares, CIQUS, Universidad de Santiago, Campus Vida, Santiago de Compostela, 15782, Spain
| |
Collapse
|
30
|
Cozzolino D. Metabolomics in Grape and Wine: Definition, Current Status and Future Prospects. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0502-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
|
32
|
The application of flow cytometry in microbiological monitoring during winemaking: two case studies. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-1025-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
33
|
Viticultural practice and winemaking effects on metabolic profile of Negroamaro. Food Chem 2014; 161:112-9. [PMID: 24837928 DOI: 10.1016/j.foodchem.2014.03.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 01/29/2023]
Abstract
Metabolic profiles of 32 Negroamaro red wines were analysed using (1)H NMR spectroscopy and multivariate statistical analyses (Principal Component Analysis, PCA, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Among winemaking technologies three were compared: ultrasounds (U; 12 samples), cryomaceration using dry ice (C; 12 samples) and traditional (T; 8 samples). Moreover, each vinification technology was used for grapes grown by two different soil management practices, soil tillage (ST; 16 samples) and cover crop (CC; 16 samples), and by two different training systems, monolateral (M; 16 samples) and bilateral Guyot (B; 16 samples). All statistical models applied on NMR data revealed a good separation between ST (soil tillage) and CC (cover crop), showing a higher influence of the soil management practices compared to the winemaking technologies (ultrasound, cryomaceration and traditional). The differentiation among samples, due to soil management practices, was mainly caused by metabolites such as glycerol, 2,3-butanediol, malic acid, α/β-glucose and phenolic compounds, such as tyrosine and caffeic acid.
Collapse
|