1
|
Jamali F, Rahmati A. Amide modified cellulose-g-poly acrylic acid as a supple superabsorbent for water retention and soil conditioner. Int J Biol Macromol 2025; 295:139558. [PMID: 39778846 DOI: 10.1016/j.ijbiomac.2025.139558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Acrylamide has high hydrophilic properties due to the presence of hydrophilic amide functional groups and is frequently used to synthesize superabsorbents. However, the toxic and carcinogenic properties of acrylamide have caused environmental concerns. The main goal of this paper is the synthesis of superabsorbent with high water absorption from biodegradable and biocompatible cellulose polymer containing amide groups in the backbone of it instead of grafting harmful acrylamide monomers to cellulose. The supple superabsorbent of amide-2,4 modified cellulose-g-poly acrylic acid (Am-2,4 modified cellulose-g-poly (AA)) to reduce water consumption in agriculture and facilitate rooting and root penetration in clay was used. To investigate the effectiveness of superabsorbent in agriculture, its water retention in treated soil (0.2 %) with different temperatures, pHs, and soil textures (sandy loam (SL), sandy clay loam (SCL), clay loam (CL), and loam (L)) was studied. Also, water retention in SCL soil in 2 cycles showed good results. Furthermore, the study includes the optimization of the parameters affecting the water absorption capacity of the superabsorbent, which leads to the absorption of 1253.20 ± 49.67 g/g in distilled water, 86.88 ± 13.36 g/g in 1.0 wt% NaCl solution, and 395 ± 14.86 g/g in tap water under optimal conditions.
Collapse
Affiliation(s)
- Fatemeh Jamali
- Department of Chemistry, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Abbas Rahmati
- Department of Chemistry, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| |
Collapse
|
2
|
Yang H, Zhang F, Chen Y, Xie Y, Wang R, He Y, Song P. Xanthan gum/ZrMOF biodegradable gel fertilizer: Sustainable water retention and crop growth. Int J Biol Macromol 2025; 291:138969. [PMID: 39708874 DOI: 10.1016/j.ijbiomac.2024.138969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
To address the problems of ecological pollution and food safety caused by the excessive use of chemical fertilizers in modern agriculture, it has become a hot topic of current research to develop novel low-cost, biodegradable, and efficient gel slow-release fertilizers. Herein, using xanthan gum and ZrMOF as raw materials, urea as a nutrient, acrylic acid and itaconic acid as co-monomers, a novel ZrMOF gel slow-release fertilizer (ZrMOF@CpM) was prepared by free radical copolymerization. After being characterized, its swelling and water retention properties and slow-release behavior were investigated. It was demonstrated that ZrMOF@CpM with a high surface area and mesoporous structure provided rich water and fertilizer channels for slow-release fertilizer. Therefore, beside good water absorption (260.7 g/g) and water retention, its nutrient (N) slow-release performance (45 d, 49.1 %) was in accordance with the Committee for European Normalization (CEN) standards. The slow-release gel fertilizer also showed good degradation performance (35 d, 56.9 %). Additionally, maize pot trials showed that the synthesized slow-release fertilizer materials significantly promoted plant root and leaf growth. Overall, we provide a new strategy for the construction of high-efficiency, high-water retention and biodegradable agricultural gel slow-release fertilizers.
Collapse
Affiliation(s)
- Hua Yang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Feng Zhang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Chen
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Xie
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongmin Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yufeng He
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Pengfei Song
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
3
|
Hou W, He C, He Q, Mou H, Chen W, Ao T. Adsorption behavior and mechanism of lead by starch/tobermorite composite hydrogel. Int J Biol Macromol 2024; 283:137647. [PMID: 39547635 DOI: 10.1016/j.ijbiomac.2024.137647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/22/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Tobermorite (TOB) is a synthetic inorganic mineral material with a montmorillonite-like layered structure that removes heavy metals from water, and its incorporation into starch-based hydrogels can optimize the stability and adsorption properties of the hydrogels; it can also significantly reduce the storage pressure of fly ash (FA) and reduce environmental pollution. This study utilized starch/tobemolite/acrylic acid (LR/TOB/AA) as the raw material, successfully synthesizing a starch-tobemolite composite hydrogel (LR-TOB/AA) using aqueous solution polymerization. The hydrogel exhibits excellent water absorption and retention capabilities, as well as a significant adsorption effect on Pb(II). The influence of adsorption duration, starting concentration, temperature, and hydrogel incorporation on Pb(II) adsorption was examined by intermittent adsorption experiments. The maximal adsorption capacity of Pb(II) was 900.25 mg/g, surpassing the majority of reported hydrogel adsorbents, as determined by Langmuir isothermal adsorption model fitting. Following five adsorption-desorption cycles, the hydrogel's adsorption of Pb(II) persisted above 90 %.
Collapse
Affiliation(s)
- Wenjing Hou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Caiqing He
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Qilu He
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haiyan Mou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China.
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Sabuad A, Khaokong C, Kongseng P, Chantarak S. Superabsorbent ZnO/rubber-based hydrogel composite for removal and photocatalytic degradation of methylene blue. Int J Biol Macromol 2024; 275:133421. [PMID: 38945320 DOI: 10.1016/j.ijbiomac.2024.133421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
A superabsorbent hydrogel was prepared by the free-radical copolymerization of natural rubber (NR) latex with poly(acrylic acid) (PAA) at NR loadings up to 50 wt%. An NR/PAA hydrogel containing 40 wt% of NR (NR-40) had a water absorption capacity of 214 g/g (21,400 %) of its dry weight. The compressive modulus increased 512 % and sample integrity was improved due to the physical entanglement of NR chains. NR-40 hydrogel removed 97 % of methylene blue (MB) from the aqueous solution in 1 h (at initial concentrations of 10-1000 mg/L) and produced a maximum removal of 1191 mg MB/g of hydrogel at an initial MB concentration of 4500 mg/L. The adsorption of MB was an endothermic process. Fourier transform infrared spectroscopy indicated that hydrogen bonding and electrostatic interaction drove the process. After the in-situ incorporation of ZnO into NR-40, absorbed energy from sunlight generated active species that could photocatalytically degrade adsorbed MB in the hydrogel matrix. The scavenger tests indicated that superoxide radical anions and hydroxyl radicals were the main species for this process. The hydrogel composite material showed good stability and could be regenerated and reused over 10 cycles, degrading >80 % of the adsorbed dye. This novel natural-based hydrogel provides double functions of adsorption and photodegradation of toxic dyes without the requirement of chemicals and a separation process.
Collapse
Affiliation(s)
- Anussara Sabuad
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chuanpit Khaokong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
5
|
Etminani-Esfahani N, Rahmati A. Effect of chain structures of monomer on hydroxyethyl cellulose-based superabsorbent properties and improvement of chickpeas plant growth of water deficit-stressed. Int J Biol Macromol 2024; 269:131906. [PMID: 38679266 DOI: 10.1016/j.ijbiomac.2024.131906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The aim of this research was evaluation of the influence of distance between zwitterionic monomer ions on the performance of superabsorbents. For this purpose, two zwitterionic monomers 4-(3-aminopropyl) amino-4-oxo-2-butenoic acid (APOB) and 4-(6-aminohexyl) amino-4-oxo-2-butenoic acid (AHOB) were prepared and applied for synthesis of two new superabsorbents through graft copolymerization onto hydroxyethyl cellulose (HEC) in the presence of acrylic acid (AA). In synthesis of superabsorbents factors such as the highest water absorbency capacity, absorbency rate, gel strength, and environmental problems should be resolved or improved. The results demonstrated that the water absorbency capacity and rate parameters (τ) of HEC-g-p(AA-co-APOB) and HEC-g-p(AA-co-AHOB) in distilled water were 986.62, 664.38 g/g, and 98.04, 140.84 min, respectively. The biodegradability of HEC-g-p(AA-co-APOB) was approximately 4 times more than HEC-g-p(AA-co-AHOB). However, based on the rheological analyses (G'/G″) HEC-g-p(AA-co-AHOB) was stronger than the other. Additionally, studies of water retention on soil containing HEC-g-p(AA-co-AHOB) superabsorbent (soil with 0.25 wt% material) showed that the after 30 days has ≤5 % water while soil in the absence of superabsorbent after 10 days completely dried. Studies of the growth of plants in soil demonstrated in the presence of HEC-g-p(AA-co-AHOB) the average length of shoots was 36 cm while without superabsorbent were 25 cm.
Collapse
Affiliation(s)
| | - Abbas Rahmati
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
6
|
Saleem S, Sharma K, Sharma V, Kumar V, Sehgal R, Kumar V. Polysaccharide-based super moisture-absorbent hydrogels for sustainable agriculture applications. POLYSACCHARIDES-BASED HYDROGELS 2024:515-559. [DOI: 10.1016/b978-0-323-99341-8.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Ismaeilimoghadam S, Jonoobi M, Ashori A, Shahraki A, Azimi B, Danti S. Interpenetrating and semi-interpenetrating network superabsorbent hydrogels based on sodium alginate and cellulose nanocrystals: A biodegradable and high-performance solution for adult incontinence pads. Int J Biol Macromol 2023; 253:127118. [PMID: 37802434 DOI: 10.1016/j.ijbiomac.2023.127118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Superabsorbent hydrogels (SAHs) are essential in various applications, including hygienic products like adult incontinence pads. However, synthetic-based super absorbent polymers (SAPs) dominate the market despite being non-biodegradable. Alternatively, bio-based hydrogels, such as sodium alginate (SA)-based hydrogels, offer biodegradable alternatives. In this study, we aimed to enhance the practical applied properties of SA-based hydrogels by grafting SA with acrylic acid (AA) and incorporating cellulose nanocrystals (CNCs). Specifically, we investigated the potential of interpenetrating network (IPN) and semi-interpenetrating network (S-IPN) hydrogels as absorbent materials in adult incontinence pads. The fabricated SAHs were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). They were also evaluated for absorption and rheological properties. The results showed that in IPN/SAHs, the addition of CNCs decreased pore sizes, while in S-IPN/SAHs, CNC incorporation increased pore sizes. The S-IPN/SAHs exhibited a significantly higher free swelling capacity (FSC) with CNCs loading, reaching 142.29 g/g in 0.9 % NaCl solution and 817.4 g/g in distilled water. On the other hand, IPN/SAHs showed a higher storage modulus and lower loss modulus compared to S-IPN/SAHs. Notably, the superior samples from this study showed a 33 % reduction in SAP consumption compared to commercial SAPs, making them more cost-effective for adult incontinence pad manufacturers. Overall, our research demonstrates the potential of interpenetrating and semi-interpenetrating network superabsorbent hydrogels as high-performance absorbent materials. The results offer improved absorbency and cost savings for producers of adult incontinence pads, and bio-based hydrogels like SA-based hydrogels are promising biodegradable alternatives to synthetic-based SAPs.
Collapse
Affiliation(s)
- Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Afsaneh Shahraki
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy.
| |
Collapse
|
8
|
Prasad C, Park SY, Lee JS, Park JJ, Jang Y, Lee SW, Lee BM, Nam YR, Rao AK, Choi HY. Modeling and investigation of swelling kinetics of sodium carboxymethyl cellulose/starch/citric acid superabsorbent polymer. Int J Biol Macromol 2023; 253:127013. [PMID: 37734517 DOI: 10.1016/j.ijbiomac.2023.127013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Crosslinked hydrophilic polymers with high water absorption rates are known as superabsorbent polymers (SAPs). Most commercial superabsorbent polymers are made with acrylic acid, which is difficult to biodegrade. So, in this investigation, carboxymethyl cellulose (CMC) was utilized as a significant component in the synthesis of polysaccharide-based SAPs. Citric acid (CA) and starch were chosen as crosslinking agents because they are more eco-friendly, non-toxic, and biodegradable than traditional crosslinking agents. FTIR analysis revealed that the superabsorbent polymer product contains a crosslinked structure of CMC and starch with side chains that carry carboxylate functional groups. Superabsorbent weight loss and grafting data were satisfactorily studied using the TGA approach. Under optimum circumstances, the SAP2 water absorbency capacity in distilled water was 287.37 g.g-1 and SAP1 absorbency capacity in a solution containing 0.9 wt% NaCl was 52.18 g.g-1. Moreover, Schott's pseudo-second-order model was used to determine the kinetic swelling of the superabsorbent. The initial swelling rate of SAPs can be calculated using the Q∞ data acquired in the following order: SAP2 > SAP1 > SAP3 > SAP4 in distilled water and SAP1 > SAP2 > SAP3 > SAP4 in 0.9 wt% NaCl solution, respectively. The findings suggested that a small amount of citric acid introduced into the SAPs matrix could enhance the swelling rate of SAPs. The results of the cytotoxicity tests show that the extraction liquid of composite hydrogel fibers is less cytotoxic than the positive control. As well, SAP underwent in silico docking investigations on the DNA Gyrase enzyme. As the ligand is a monomer of SAP, it was a long chain of carbohydrate molecules with alcoholic groups, esters groups, and keto groups forms a strong binding interaction with DNA gyrase.
Collapse
Affiliation(s)
- Cheera Prasad
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea
| | - Seo Young Park
- Department of Chemical Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Jai Sung Lee
- R&D Center, Asia Nanotech, Cheongju 28150, Republic of Korea
| | - Jae Jun Park
- R&D Center, Asia Nanotech, Cheongju 28150, Republic of Korea
| | - Yeonju Jang
- Consumer Product Division, Products Conformity Center, Korea Conformity Laboratories, Seoul 08503, Republic of Korea
| | - Sung Woo Lee
- Central Laboratory Center, Hankyung National University, Anseong 17579, Republic of Korea
| | - Byoung-Min Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - You-Ree Nam
- Department of Food and Nutrition, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - A Karteek Rao
- Department of Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (A), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Hyeong Yeol Choi
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
9
|
Zafar N, Mahmood A, Ilyas S, Ijaz H, Muhammad Sarfraz R, Mahdi WA, Salem-Bekhit MM, Ibrahim MA, Benguerba Y, Ernst B. Novel Natrosol/Pectin-co-poly (acrylate) based pH-responsive polymeric carrier system for controlled delivery of Tapentadol Hydrochloride. Saudi Pharm J 2023; 31:101671. [PMID: 37484541 PMCID: PMC10362361 DOI: 10.1016/j.jsps.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Background & Objectives This study aimed to create a controlled delivery system for Tapentadol Hydrochloride by developing interpenetrating networks (IPNs) of Natrosol-Pectin copolymerized with Acrylic Acid and Methylene bisacrylamide, and to analyze the effects of various ingredients on the physical and chemical characteristics of the IPNs. Methods Novel Tapentadol Hydrochloride-loaded Natrosol-Pectin based IPNs were formulated by using the free radical polymerization technique. Co-polymerization of Acrylic Acid (AA) with Natrosol and Pectin was performed by using Methylene bisacrylamide (MBA). Ammonium persulfate (APS) was used as the initiator of crosslinking process. The impact of ingredients i.e. Natrosol, Pectin, MBA, and Acrylic Acid on the gel fraction, porosity, swelling (%), drug loading, and drug release was investigated. FTIR, DSC, TGA, SEM and EDX studies were conducted to confirm the grafting of polymers and to evaluate the thermal stability and surface morphology of the developed IPNs. Results Swelling studies exhibited an increase in swelling percentage from 84.27 to 91.17% upon increasing polymer (Natrosol and Pectin) contents. An increase in MBA contents resulted in a decrease in swelling from 85 to 67.63%. Moreover, the swelling was also observed to increase with higher AA contents. Significant drug release was noted at higher pH instead of gastric pH value. Oral toxicological studies revealed the nontoxic and biocompatible nature of Natrosol-Pectin IPNs. Interpretation & Conclusion The developed IPNs were found to be an excellent system for the controlled delivery of Tapentadol Hydrochloride.
Collapse
Affiliation(s)
- Nadiah Zafar
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Sehar Ilyas
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Pakistan
| | | | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif, Algeria
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000, Strasbourg, France
| |
Collapse
|
10
|
Li J, Zhu Y, Liu M, Liu Z, Zhou T, Liu Y, Cheng D. Network interpenetrating slow-release nitrogen fertilizer based on carrageenan and urea: A new low-cost water and fertilizer regulation carrier. Int J Biol Macromol 2023; 242:124858. [PMID: 37178883 DOI: 10.1016/j.ijbiomac.2023.124858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Modern agriculture presents new requirements of low cost, high water retention and degradability for superabsorbent and slow-release fertilizers. In this study, carrageenan (CG), acrylic acid (AA), N, N '-methylene diacrylamide (MBA), urea and ammonium persulfate (APS) were used as raw materials. A kind of high water absorption, water retention, nitrogen slow release and biodegradable carrageenan superabsorbent (CG-SA) was prepared by grafting copolymerization. The optimal CG-SA was obtained with a water absorption rate of 680.45 g/g by orthogonal L18(3)7 experiments and single-factor experiments. The water absorption behavior of CG-SA in deionized water and salt solution were studied. The CG-SA was characterized before and after degradation by FTIR, SEM. The nitrogen release behavior and kinetic characteristics of CG-SA were investigated. In addition, CG-SA degraded 58.33 % and 64.35 % in soil at 25 °C and 35 °C after 28 days. All the results indicated that the low-cost and degradable CG-SA can achieve simultaneous slow release of water and nutrients, which is expected to be widely used as a new water-fertilizer integration technology in arid and poor areas.
Collapse
Affiliation(s)
- Jinxi Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mingshang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zihan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tongtong Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dongdong Cheng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
11
|
Liang J, Yan Y, Chen L, Wu J, Li Y, Zhao Z, Li L. Synthesis of carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/polyvinyl alcohol sponge as a fast absorbent composite and its application in coral sand soil. Int J Biol Macromol 2023:124965. [PMID: 37236573 DOI: 10.1016/j.ijbiomac.2023.124965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
To improve the rapid absorption capacity of coral sand soil for rainfall, a composite of carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/polyvinyl alcohol sponge (CMC-g-P(AA-co-AM)/PVA) was designed and synthesized by coupling CMC-g-P(AA-co-AM) granules with a PVA sponge. The results showed that the rapid water absorption of CMC-g-P (AA-co-AM)/PVA in distilled water in 1 h was 26.45 g/g, twice that of CMC-g-P(AA-co-AM) and the PVA sponge, which is suitable for short-term rainfall. In addition, the cation had a slight influence on the water absorption capacity of CMC-g-P (AA-co-AM)/PVA, which were 29.5 and 18.9 g/g in 0.9 wt% NaCl and CaCl2 solutions, respectively, indicating the great adaptability of CMC-g-P (AA-co-AM)/PVA to high‑calcium coral sand. With the addition of 2 wt% CMC-g-P (AA-co-AM)/PVA, the water interception ratio of the coral sand increased from 13.8 % to 23.7 %, and 54.6 % of the total interception water remained after 15-day evaporation. Moreover, pot experiments demonstrated that 2 wt% CMC-g-P(AA-co-AM)/PVA in coral sand enhanced plant development under water scarcity, suggesting that CMC-g-P (AA-co-AM)/PVA is a promising soil amendment for coral sand soils.
Collapse
Affiliation(s)
- Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yulin Yan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Linhao Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jinxiang Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Zhiwei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
12
|
Hu J, Wang X. Modification Mechanisms and Properties of Poplar Wood via Grafting with 2-Hydroxyethyl Methacrylate/N,N'-methylenebis(acrylamide) onto Cell Walls. Polymers (Basel) 2023; 15:polym15081861. [PMID: 37112008 PMCID: PMC10145253 DOI: 10.3390/polym15081861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
As the only renewable resource among the four basic materials (steel, cement, plastic, wood), wood itself and wood products have a "low carbon" value and play an important role in storing carbon. The moisture absorption and expansion properties of wood limit its application scope and shorten its service life. To enhance the mechanical and physical properties of fast-growing poplars, an eco-friendly modification procedure has been used. This was accomplished by the in situ modification of wood cell walls by vacuum pressure impregnation with a reaction of water-soluble 2-hydroxyethyl methacrylate (HEMA) and N,N'-methylenebis(acrylamide) (MBA). The anti-swelling efficiency of HEMA/MBA-treated wood was improved (up to 61.13%), whereas HEMA/MBA-treated wood presented a lower weight-gain rate (WG) and water-absorption rate (WAR). It was observed that the modulus of elasticity, hardness, density, and other properties of modified wood had improved significantly, as indicated by XRD analysis. Modifiers diffuse primarily within cell walls and cell interstices of wood, causing crosslinks between the modifiers and the cell walls, reducing its hydroxyl content and blocking the channels for water movement, thereby enhancing its physical properties. This result can be obtained by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX), Nitrogen adsorption test imaging ATR-FTIR (Attenuated total reflection-Fourier-Transform Infrared) Spectroscopy, and nuclear magnetic resonance (NMR) and Nitrogen adsorption test. Overall, this straightforward, high-performance modification method is crucial for maximizing wood's efficiency and the sustainable development of human society.
Collapse
Affiliation(s)
- Jihang Hu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaoqing Wang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
13
|
Hao Y, Qu J, Tan L, Liu Z, Wang Y, Lin T, Yang H, Peng J, Zhai M. Synthesis and property of superabsorbent polymer based on cellulose grafted 2-acrylamido-2-methyl-1-propanesulfonic acid. Int J Biol Macromol 2023; 233:123643. [PMID: 36775220 DOI: 10.1016/j.ijbiomac.2023.123643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
An eco-friendly superabsorbent polymer (SAP) was prepared by grafting 2-acrylamido-2-methyl-1-propanesulfonic acid onto microcrystalline cellulose in lithium chloride/N, N-dimethylacetamide system. The synthesized SAP (cellulose-g-PAMPS) was characterized by FTIR, TGA, SEM, 1H NMR, 13C NMR and XRD. The water absorption equilibrium of cellulose-g-PAMPS could be achieved within 10 min in distilled water. Moreover, the maximum water absorption capacities of cellulose-g-PAMPS in distilled water, 0.9 wt% NaCl solution and 3.2 wt% Na2CO3 solution were 648.9, 298.4 and 207.3 g·g-1, respectively. The water absorption behavior of cellulose-g-PAMPS was interpreted by the pseudo-second-order model. Furthermore, cellulose-g-PAMPS could be used in some extreme conditions due to its high acid and alkali resistance. The water retention rate of cellulose-g-PAMPS could be maintained above 90 % at 25 °C for 6 h. As a consequence, the synthesized SAP can be applied to increase the plant growth and survival time under drought conditions, even under saline alkali conditions.
Collapse
Affiliation(s)
- Yan Hao
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China.
| | - Jing Qu
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Lei Tan
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Zunyi Liu
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Tingrui Lin
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., Putian, Fujian 351100, PR China
| | - Hui Yang
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
14
|
Hassaninejad Farahani F, Moraffah F, Samadi N, Sharifzadeh M, Motasadizadeh H, Vatanara A. Improved infectious burn wound healing by applying lyophilized particles containing probiotics and prebiotics. Int J Pharm 2023; 636:122800. [PMID: 36889414 DOI: 10.1016/j.ijpharm.2023.122800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Lactiplantibacillus plantarum cells were encapsulated in a mixture of cationic and anionic polymers, with the final composition stabilized through freeze-drying. A D-optimal design was used to examine the effects of different polymer concentrations as well as adding prebiotics on the probiotic viability and swelling behavior of the formulations. Scanning electron micrographs revealed stacked particles capable of rapidly absorbing significant amounts of water. These images corresponded to initial swelling percentages of around 2000% for the optimal formulation. The optimized formula had a viability percentage of more than 82%, with the stability studies suggesting that the powders should be stored at refrigerated temperatures. The physical characteristics of the optimized formula were examined to ensure compatibility with its application. According to antimicrobial evaluations, the difference in pathogen inhibition between formulated and fresh probiotics was less than a logarithm. The final formula was tested in vivo and showed improved wound healing indicators. The optimized formula resulted in a higher rate of wound closure and infection clearance. Furthermore, the molecular studies for oxidative stress indicated that the formula could modify wound inflammatory responses. In histological investigations, the probiotic-loaded particles functioned exactly as efficaciously as silver sulfadiazine ointment did.
Collapse
Affiliation(s)
| | - Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran; Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| |
Collapse
|
15
|
Maleic acid as an important monomer in synthesis of stimuli-responsive poly(acrylic acid-co-acrylamide-co-maleic acid) superabsorbent polymer. Sci Rep 2023; 13:3511. [PMID: 36864105 PMCID: PMC9981600 DOI: 10.1038/s41598-023-30558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Poly(acrylic acid-co-acrylamide-co-maleic acid) (p(AA-co-AM-co-MA)) superabsorbent polymer was synthesized from acrylic acid (AA), acrylamide (AM), and maleic acid (MA) via free radical copolymerization. Results showed the presence of maleic acid in structure of superabsorbent has the key and superior role in creating a smart superabsorbent. The structure, morphology, and strength of the superabsorbent were characterized using FT-IR, TGA, SEM, and rheology analysis. The effect of different factors was investigated to determine the ability of water absorbency of the superabsorbent. According to optimized conditions, the water absorbency capacity of the superabsorbent in distilled water (DW) was 1348 g/g and in a solution containing 1.0 wt.% NaCl (SCS) was 106 g/g. The water retention ability of the superabsorbent was also investigated. The kinetic swelling of superabsorbent was identified by Fickian diffusion and Schott's pseudo-second-order model. Furthermore, the reusability of superabsorbent was studied in distilled water and saline solution. The ability of superabsorbent was investigated in simulated urea and glucose solutions, and very good results were obtained. The response ability of the superabsorbent was confirmed by swelling and shrinking behavior against changes of temperature, pH, and ionic strength.
Collapse
|
16
|
Sulfonic Cryogels as Innovative Materials for Biotechnological Applications: Synthesis, Modification, and Biological Activity. Int J Mol Sci 2023; 24:ijms24032949. [PMID: 36769272 PMCID: PMC9917522 DOI: 10.3390/ijms24032949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Polymeric hydrogels based on sulfo-containing comonomers are promising materials for biotechnological application, namely, for use as a system for delivering water and minerals during seed germination in conditions of an unstable moisture zone. In this work, cryogels based on 3-sulfopropyl methacrylate and 2-hydroxyethyl methacrylate copolymers were obtained by the cryotropic gelation method. The morphology, specific surface area, and swelling behaviors of cryogels are found to depend on the total concentration of monomers in the reaction system and the content of the gel fraction in cryogels. Cryogels formed in the presence of nanodiamonds are shown to exhibit high biological activity during the germination of Lepidium sativum L. variety Ajur seeds, which manifests itself by stimulating seed germination and a significant increase in the raw weight of sprouts. These results indicate that sulfonic cryogels have a high potential to improve seed germination and plant growth, proving that such cryogels can be used as environmentally friendly materials for agricultural applications.
Collapse
|
17
|
Zhou P, Li X, Jiang Z, Zhou J, He G, Qu L. An approach of pectin from Citrus aurantium L. for superabsorbent resin with superior quality for hygiene products: Salt resistance, antibacterial, nonirritant and biodegradability. Int J Biol Macromol 2023; 227:241-251. [PMID: 36539172 DOI: 10.1016/j.ijbiomac.2022.12.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In this paper, a kind of superabsorbent resin (SAR) with superior quality for hygiene products was developed using Fructus Aurantii Immaturus pectin (FAIP) from Citrus aurantium L.. FAIP-g-AM/AMPS SAR was established by free radical graft co-polymerization with FAIP as skeleton structure, N, N'-Methylene-bis (acrylamide) (MBA) as the cross-linker. Meanwhile, the functional monomers of acrylamide (AM) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) were introduced. The structure and morphology of FAIP-g-AM/AMPS were characterized by FTIR, 13C NMR, XRD, SEM and TG-DSC analysis. The results confirmed that the AFIP-g-AM/AMPS SAR was successfully prepared, which exhibited a three-dimensional (3D) network structure and an excellent thermal stability. The absorption and retention capacity of FAIP-g-AM/AMPS was comparable to or even better than commercial diapers and sanitary napkins. Significantly, FAIP-g-AM/AMPS itself exhibited excellent antibacterial and safety. FAIP-g-AM/AMPS has an inhibition ratio of 97.1 % for Escherichia coli (E. coli) and 98.5 % for Staphylococcus aureus (S. aureus), and was non-irritating and non-allergic to the skin. In addition, FAIP-g-AM/AMPS presented amazing biodegradability and a weight loss reached 37.1 % after 30 days by soil burial test. The research provides a safe and high-performance SAR, which expected to be used in hygiene products such as baby diapers, adult incontinence pads and sanitary napkins.
Collapse
Affiliation(s)
- Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Institute of Natural Products Research and Development, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Zhi Jiang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Prima Drug Research Center Co., LTD, Changsha 410329, Hunan, China
| | - Jun Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Guang He
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Limin Qu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
18
|
Pourmadadi M, Farokh A, Rahmani E, Eshaghi MM, Aslani A, Rahdar A, Ferreira LFR. Polyacrylic acid mediated targeted drug delivery nano-systems: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Malik S, Chaudhary K, Malik A, Punia H, Sewhag M, Berkesia N, Nagora M, Kalia S, Malik K, Kumar D, Kumar P, Kamboj E, Ahlawat V, Kumar A, Boora K. Superabsorbent Polymers as a Soil Amendment for Increasing Agriculture Production with Reducing Water Losses under Water Stress Condition. Polymers (Basel) 2022; 15:polym15010161. [PMID: 36616513 PMCID: PMC9824677 DOI: 10.3390/polym15010161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/31/2022] Open
Abstract
With an increasing population, world agriculture is facing many challenges, such as climate change, urbanization, the use of natural resources in a sustainable manner, runoff losses, and the accumulation of pesticides and fertilizers. The global water shortage is a crisis for agriculture, because drought is one of the natural disasters that affect the farmers as well as their country's social, economic, and environmental status. The application of soil amendments is a strategy to mitigate the adverse impact of drought stress. The development of agronomic strategies enabling the reduction in drought stress in cultivated crops is, therefore, a crucial priority. Superabsorbent polymers (SAPs) can be used as an amendment for soil health improvement, ultimately improving water holding capacity and plant available water. These are eco-friendly and non-toxic materials, which have incredible water absorption ability and water holding capacity in the soil because of their unique biochemical and structural properties. Polymers can retain water more than their weight in water and achieve approximately 95% water release. SAP improve the soil like porosity (0.26-6.91%), water holding capacity (5.68-17.90%), and reduce nitrogen leaching losses from soil by up to 45%. This review focuses on the economic assessment of the adoption of superabsorbent polymers and brings out the discrepancies associated with the influence of SAPs application in the context of different textured soil, presence of drought, and their adoption by farmers.
Collapse
Affiliation(s)
- Shweta Malik
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Kautilya Chaudhary
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Anurag Malik
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
- Chandigarh Group of Business, Department of Agriculture, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
- Correspondence: (A.M.); (H.P.)
| | - Himani Punia
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
- Chandigarh Group of Business, Department of Sciences, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
- Correspondence: (A.M.); (H.P.)
| | - Meena Sewhag
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Neelam Berkesia
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Mehak Nagora
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Sonika Kalia
- Chandigarh Group of Business, Department of Sciences, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| | - Kamla Malik
- Department of Microbiology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Deepak Kumar
- Department Soil Science, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Pardeep Kumar
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Ekta Kamboj
- Department of Agronomy, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Vishal Ahlawat
- Department Soil Science, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Abhishek Kumar
- Department Pathology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Kavita Boora
- Department Soil Science, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| |
Collapse
|
20
|
Ismaeilimoghadam S, Jonoobi M, Hamzeh Y, Danti S. Effect of Nanocellulose Types on Microporous Acrylic Acid/Sodium Alginate Super Absorbent Polymers. J Funct Biomater 2022; 13:jfb13040273. [PMID: 36547534 PMCID: PMC9784917 DOI: 10.3390/jfb13040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the effect of different types of nanocellulose, i.e., cellulose nanocrystal (CNC), cellulose nanofiber (CNF) and bacterial nanocellulose (BNC), and also different drying methods (oven-drying and freeze-drying) on the properties of acrylic acid (AA)/sodium alginate (SA) super absorbent polymers (SAPs). In addition, the presence of ammonium per sulfate as an initiator and N-N methylene-bis-acrylamide as a cross-linker were considered. Synthesized SAPs were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The absorption and rheological properties (i.e., storage modulus and loss modulus) were also investigated. The results of FTIR spectroscopy demonstrated several types of interactions, such as hydrogen and esterification, between SA, AA and nanocellulose. SEM analysis revealed a microporous structure in the SAPs. All SAPs had a centrifuge retention capacity (CRC)/free swelling capacity (FSC) ≥ 69%. The absorption behavior showed that the oven-dried SAPs had superior (about 2×) CRC and FRC in different aqueous media compared to the freeze-dried counterparts. The freeze-dried SAPs showed increased rheological properties in comparison to the oven-dried ones, with SAPs containing BNC and CNC having the highest rheological properties, respectively. Overall, it can be concluded that oven-dried SAPs containing CNC had better absorption properties than the other ones tested in this study.
Collapse
Affiliation(s)
- Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
- Pisa Research Unit (UdR), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
- Correspondence: (M.J.); (S.D.)
| | - Yahya Hamzeh
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
- Correspondence: (M.J.); (S.D.)
| |
Collapse
|
21
|
Liang L, Guo Y, Wang H, Liao Z, Zhang J, Wei L, Hou K. Study on plasma‐modified corn stover‐humic acid‐based superabsorbent resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lanlan Liang
- School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an China
| | - Yani Guo
- School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an China
| | - Haoyu Wang
- School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an China
| | - Zi Liao
- School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an China
| | - Jiahui Zhang
- School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an China
| | - Lijie Wei
- School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an China
| | - Kang Hou
- School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an China
| |
Collapse
|
22
|
Liu Y, Wang J, Chen H, Cheng D. Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157303. [PMID: 35839887 DOI: 10.1016/j.scitotenv.2022.157303] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Superabsorbent hydrogel (SH) is three-dimensional (3D) cross-linked hydrophilic polymer that can absorb and retain large quantities of water or other aqueous solutions. SH is made of water-affinity monomers and is widely used in biomedicine, wastewater treatment, hygiene and slow-release fertilizers (SRFs). This article focused on the preparation methods of SH, superabsorbent hydrogel composite and the application of SH in agriculture. By selecting various synthetic technologies and cross-linking agents, a series of chemical cross-linking or physical networks can be designed and tailored to meet specific applications. In view of the excellent characteristics of water absorption, biodegradability, water retention and slow-release capacity, SH occupies a dominant position in the SRFs market. In this work, the agricultural application of SH in double coated SRFs and nutrients carriers is also discussed. Some mechanisms related to the nutrient release were analyzed by mathematical models. In addition, some agronomic benefits of using superabsorbent hydrogels in improving water absorption, water holding capacity and increasing crop yields were also discussed. Although SH has certain shortcomings, from the perspective of long-term development, it will further show great potential in sustainable agriculture.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Efficient Utilization of Soil and Fertilizer, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jinpeng Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Huiyu Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Dongdong Cheng
- National Engineering Research Center of Efficient Utilization of Soil and Fertilizer, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
23
|
Adjuik TA, Nokes SE, Montross MD, Wendroth O. The Impacts of Bio-Based and Synthetic Hydrogels on Soil Hydraulic Properties: A Review. Polymers (Basel) 2022; 14:polym14214721. [PMID: 36365717 PMCID: PMC9656743 DOI: 10.3390/polym14214721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Soil hydraulic properties are important for the movement and distribution of water in agricultural soils. The ability of plants to easily extract water from soil can be limited by the texture and structure of the soil, and types of soil amendments applied to the soil. Superabsorbent polymers (hydrogels) have been researched as potential soil amendments that could help improve soil hydraulic properties and make water more available to crops, especially in their critical growing stages. However, a lack of a comprehensive literature review on the impacts of hydrogels on soil hydraulic properties makes it difficult to recommend specific types of hydrogels that positively impact soil hydraulic properties. In addition, findings from previous research suggest contrasting effects of hydrogels on soil hydraulic properties. This review surveys the published literature from 2000 to 2020 and: (i) synthesizes the impacts of bio-based and synthetic hydrogels on soil hydraulic properties (i.e., water retention, soil hydraulic conductivity, soil water infiltration, and evaporation); (ii) critically discusses the link between the source of the bio-based and synthetic hydrogels and their impacts as soil amendments; and (iii) identifies potential research directions. Both synthetic and bio-based hydrogels increased water retention in soil compared to unamended soil with decreasing soil water pressure head. The application of bio-based and synthetic hydrogels both decreased saturated hydraulic conductivity, reduced infiltration, and decreased soil evaporation. Hybrid hydrogels (i.e., a blend of bio-based and synthetic backbone materials) may be needed to prolong the benefit of repeated water absorption in soil for the duration of the crop growing season.
Collapse
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
- Correspondence:
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Ole Wendroth
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY 40503, USA
| |
Collapse
|
24
|
Srikaew M, Jumpapaeng P, Suwanakood P, Kaiyasuan C, Promarak V, Saengsuwan S. Rapid synthesis and optimization of UV-photopolymerized cassava starch-based superabsorbent hydrogels as a biodegradable, low-cost, and effective adsorbent for MB removal. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Jomeh Farsangi Z, Song X, Yang K, Hoare T. Design and optimization of superabsorbent hydrogels based on acrylic acid/
2‐acrylamido‐2‐methylpropane
sulfonic acid copolymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Xuedong Song
- Global Research and Engineering Kimberly‐Clark Corp Roswell Georgia USA
| | - Kaiyuan Yang
- Global Research and Engineering Kimberly‐Clark Corp Roswell Georgia USA
| | - Todd Hoare
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| |
Collapse
|
27
|
de Prado EML, de Paula GA, Dutra JAP, Cipriano DF, Kitagawa RR, Siman FDM, Meira EF, de Freitas JCC, Severi JA, Carreira LG, Oréfice RL, Villanova JCO. Crude dry extract from Colocasia esculenta in association with poly(vinyl alcohol) as biomaterial to prepare bioactive wound dressing. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Al-Mughrabi W, Al-dossary AO, Abdel-Naby A. Free Radical Copolymerization of Diallylamine and Itaconic Acid for the Synthesis of Chitosan Base Superabsorbent. Polymers (Basel) 2022; 14:polym14091707. [PMID: 35566876 PMCID: PMC9100172 DOI: 10.3390/polym14091707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Copolymerization of diallylamine (DAA) and itaconic acid (IA) was synthesized using benzoyl peroxide as a free radical initiator, in dioxane as the solvent. The composition of the copolymer was determined by the nitrogen content using Edx. The solubility of the copolymer was also investigated. The water solubility of the synthesized copolymer depends on the comonomers’ ratio. The structure of the copolymer was confirmed by 13C-NMR spectroscopy. To increase the water insolubility of the copolymers, and keep their hydrophilicity, the copolymer was allowed to react with chitosan to form a superabsorbent polymeric material (SP). The structure of the synthesized superabsorbent was confirmed using 13C-NMR spectroscopy. The thermal property of the (SP) was also investigated by TGA. The investigation of the chitosan-based superabsorbent, as water-retaining agents, was studied. The results revealed that the superabsorbent polymers exhibited a good swelling ability and salt tolerance.
Collapse
Affiliation(s)
- Wafa Al-Mughrabi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.-M.); (A.O.A.-d.)
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abeer O. Al-dossary
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.-M.); (A.O.A.-d.)
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abir Abdel-Naby
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.-M.); (A.O.A.-d.)
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| |
Collapse
|
29
|
Lei C, Guo Y, Guan W, Lu H, Shi W, Yu G. Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angew Chem Int Ed Engl 2022; 61:e202200271. [PMID: 35089612 DOI: 10.1002/anie.202200271] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 01/13/2023]
Abstract
Atmospheric water harvesting (AWH) is regarded as one of the promising strategies for freshwater production desirable to provide sustainable water for landlocked and arid regions. Hygroscopic materials have attracted widespread attention because of their water harvesting performance. However, the introduction of many inorganic salts often leads to aggregation and leakage issues in practical use. Here, polyzwitterionic hydrogels are developed as an effective AWH material platform. Via anti-polyelectrolyte effects, the hygroscopic salt coordinated with polymer chains could capture moisture and enhance the swelling property, leading to a strong moisture sorption capacity. The hydrogel shows superior AWH performance (0.62 g g-1 , 120 minutes for equilibrium at 30 % relative humidity) and produces 5.87 L kg-1 freshwater per day. It is anticipated that the polyzwitterionic hydrogels with unique salt-responsive properties could provide new insights into the design and synthesis of next-generation AWH materials.
Collapse
Affiliation(s)
- Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Youhong Guo
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hengyi Lu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wen Shi
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
30
|
Slisenko O, Bei I, Budzinska V. Effect of Diaminosilane Derivative on Thermal and Swelling Behaviour of Acrylic Acid Based Hydrophilic Composites. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Organic-inorganic hydrophilic composites based on sodium polyacrylate (PAANa) and poly-N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (PAPTMS) showed the improved swelling capacity at incorporation of PAPTMS. Changing of non-Fickian to Super case II swelling behaviour is observed at 20 wt % PAPTMS content. Enhancing of thermal stability and heat-resistance index of composite hydrogels compared to PAA is shown.
Collapse
|
31
|
Xiang J, Wang Y, Yang L, Zhang X, Hong Y, Shen L. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: Synthesis, characterization and evaluation. Int J Biol Macromol 2022; 196:1-12. [PMID: 34843815 DOI: 10.1016/j.ijbiomac.2021.11.166] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023]
Abstract
The purpose of this study is to develop a new polysaccharide-based hydrogel. The Box-Behnken design was used to optimize the optimal synthesis conditions of the hydrogel, with the swelling parameters as indicators. The findings of rheologic tests confirm that free radical polymerization and the introduction of linear polymers improved the mechanical strength of the hydrogel. Combined with the characterization results, the gel mechanism of BSP-g-PAA/PVA DN hydrogel was proposed. The intermolecular association and entanglement increase, which effectively dissipates energy, thereby enhancing the mechanical properties of the hydrogel. In vitro blood compatibility experiments show that DN hydrogel has a low hemolysis rate and a good coagulation effect. The material is non-cytotoxic to L929 cells. The hepatic haemorrhage and mouse-tail amputation models of rats and mice were used to further evaluate the in vivo wound sealing and hemostatic properties of the hydrogel. The blood loss and hemostatic time were significantly lower than those of the control group, indicating that the hydrogel has excellent hemostatic effects. Therefore, the obtained BSP-g-PAA/PVA DN network hydrogel has good comprehensive properties and is expected to be used as a hemostatic material or a precursor of a drug carrier and a tissue engineering scaffold.
Collapse
Affiliation(s)
- Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Youjie Wang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese medicine of Ministry of Education, Shanghai University of TraditionalChinese Medicine, Shanghai 201203, China
| | - Luping Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai University of Traditional Chinese Medicine, Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai 201203,China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Modern Preparation Technology of Traditional Chinese medicine of Ministry of Education, Shanghai University of TraditionalChinese Medicine, Shanghai 201203, China.
| |
Collapse
|
32
|
Lei C, Guo Y, Guan W, Lu H, Shi W, Yu G. Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chuxin Lei
- UT Austin: The University of Texas at Austin Mechanical Engineering UNITED STATES
| | - Youhong Guo
- UT Austin: The University of Texas at Austin Mechanical Engineering 204 E Dean Keeton StAustin 78712 Austin UNITED STATES
| | - Weixin Guan
- UT Austin: The University of Texas at Austin Mechanical Engineering UNITED STATES
| | - Hengyi Lu
- UT Austin: The University of Texas at Austin Mechanical Engineering UNITED STATES
| | - Wen Shi
- UT Austin: The University of Texas at Austin Mechanical Engineering UNITED STATES
| | - Guihua Yu
- The University of Texas at Austin Mechanical Engineering 1 University Station C2200 78712 Austin UNITED STATES
| |
Collapse
|
33
|
Wang P, Zhang W, Wang L, Fan S, Deng Y, Liang Q, Chen B. Synthesis of Superabsorbent Polymer Hydrogels with Rapid Swelling: Effect of Reaction Medium Dosage and Polyvinylpyrrolidone on Water Absorption Rate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14614-14621. [PMID: 34872248 DOI: 10.1021/acs.langmuir.1c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A superabsorbent polymer (SAP) was synthesized by solution polymerization. The influence of synthesis technology was studied and optimized, and FTIR, SEM, and TGA were used to characterize the structure and morphology of the material. Under the optimal synthesis conditions, the water absorption of the material can achieve about 80% of the saturation value in the first 20 min, and the material absorbs distilled water up to 2013 g/g. The SAP also has remarkable water retention and reswelling capability. The excellent performance makes it have a promising application in agriculture. In addition, the results show that the dosage of the reaction medium is a major factor for performance. Under the condition of the optimum value of other factors, the influence of the dosage of the reaction medium on water absorption can reach about 1000 g in distilled water.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070 Lanzhou, China
| | - Wenxu Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070 Lanzhou, China
| | - Liang Wang
- Administration of Gansu Anxi Extra-arid Desert National Nature Reserve Service, 736100 Guazhou, China
| | - Suoting Fan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070 Lanzhou, China
| | - Yun Deng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070 Lanzhou, China
| | - Qian Liang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070 Lanzhou, China
| | - Bowen Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070 Lanzhou, China
| |
Collapse
|
34
|
Jing Y, Krauss M, Zschieschang S, Miltner A, Butkovskyi A, Eggen T, Kästner M, Nowak KM. Superabsorbent polymer as a supplement substrate of constructed wetland to retain pesticides from agricultural runoff. WATER RESEARCH 2021; 207:117776. [PMID: 34758439 PMCID: PMC8819157 DOI: 10.1016/j.watres.2021.117776] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Surface water runoff can export pesticides from agricultural fields into adjacent aquatic ecosystems, where they may pose adverse effects to organisms. Constructed wetlands (CWs) are widely used to treat agricultural runoff contaminated by pesticides, but the removal of hydrophilic pesticides is usually low. In this study, we suggest superabsorbent polymer (SAP), a cross-linked hydrophilic polymer, as a supplement to substrates of CWs and tested the hypothesis that SAP results in an enhanced removal of hydrophilic pesticides. Therefore, batch experiments were conducted to study the retention capacity of water-saturated SAP (w-SAP) for several hydrophilic pesticides. Retention of the pesticides on w-SAP was related to the ionization state and water solubility of the pesticides. The retention of neutral pesticides, imidacloprid, metalaxyl and propiconazole, was about 20% higher than that measured for anionic pesticides, bentazone, glyphosate and MCPA. The retention of the pesticides by w-SAP mainly resulted from their distribution in the gel-water phase of w-SAP, while less water soluble pesticides might have also been adsorbed on the molecular backbone of SAP. Furthermore, we tested the efficacy of w-SAP for treatment of runoff water contaminated by pesticides in lab-scale horizontal subsurface flow CWs. SAP in CWs improved the removal of the pesticides, including the recalcitrant ones. The removal enhancement was owing to the increase of hydraulic retention time and improvement of biodegradation. The removal of the pesticides in SAP containing CWs was > 93% for MCPA, glyphosate, and propiconazole, 62 - 99% for imidacloprid, 50 - 84% for metalaxyl, and 38 - 73% for bentazone. In the control gravel CWs, the removal was > 98% for glyphosate, generally > 83% for MCPA and propiconazole, 46 - 98% for imidacloprid, 32 - 97% for metalaxyl, and 9 - 96% for bentazone.
Collapse
Affiliation(s)
- Yuying Jing
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Krauss
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Simon Zschieschang
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Anja Miltner
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Andrii Butkovskyi
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Trine Eggen
- Norwegian Institute of Bioeconomy Research - NIBIO, Hogskoleringen 7, 1431-AS, Norway
| | - Matthias Kästner
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karolina M Nowak
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
35
|
Hashmi S, Nadeem S, García‐Peñas A, Ahmed R, Zahoor A, Vatankhah‐Varnoosfaderani M, Stadler FJ. Study the Effects of Supramolecular Interaction on Diffusion Kinetics in Hybrid Hydrogels of Zwitterionic Polymers and CNTs. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Saud Hashmi
- College of Materials Science and Engineering Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen University Shenzhen 518055 P. R. China
- Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology Karachi Sindh 75270 Pakistan
| | - Saad Nadeem
- Department of Chemical Engineering NED University of Engineering & Technology Karachi Sindh 75270 Pakistan
| | - Alberto García‐Peñas
- College of Materials Science and Engineering Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen University Shenzhen 518055 P. R. China
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB) Universidad Carlos III de Madrid Leganés Madrid 28911 Spain
| | - Rafiq Ahmed
- Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology Karachi Sindh 75270 Pakistan
| | - Awan Zahoor
- Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology Karachi Sindh 75270 Pakistan
| | | | - Florian J. Stadler
- College of Materials Science and Engineering Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|
36
|
Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer. Polymers (Basel) 2021; 13:polym13213692. [PMID: 34771249 PMCID: PMC8588134 DOI: 10.3390/polym13213692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022] Open
Abstract
Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young’s modulus (E), 53–250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37 °C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.
Collapse
|
37
|
Effect of Poly(acrylamide-acrylic acid) on the Fire Resistance and Anti-Aging Properties of Transparent Flame-Retardant Hydrogel Applied in Fireproof Glass. Polymers (Basel) 2021; 13:polym13213668. [PMID: 34771226 PMCID: PMC8587740 DOI: 10.3390/polym13213668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Poly(acrylamide-acrylic acid) (P(AM-co-AA)) was synthesized via the copolymerization of acrylamide and acrylic acid and well characterized by Fourier transform infrared spectroscopy. Afterward, the obtained P(AM-co-AA) was blended with flame retardants to prepare transparent flame-retardant hydrogel applied in the fireproof glass. The influence of poly(acrylamide-acrylic acid) on fire resistance and anti-aging properties of the transparent flame-retardant hydrogels were studied by assorted analysis methods. The optical transparency analysis shows that the light transmittance of the transparent flame-retardant hydrogel gradually decreases with the decreasing mass ratio of acrylamide to acrylic acid in P(AM-co-AA). Heat insulation testing shows that the heat insulation performance of fireproof glass applying the transparent flame-retardant hydrogel firstly decreases and then increases with decreasing mass ratio of acrylamide to acrylic acid in P(AM-co-AA). When the mass ratio of acrylamide to acrylic acid is 1:2, the obtained P(AM-co-AA) endows the resulting flame-retardant hydrogel applied in fireproof glass with the lowest light transmittance of 81.3% and lowest backside temperature of 131.4 °C at 60 min among the samples, which is attributed to the formation of a more dense and expanded char to prevent the heat transfer during combustion, as supported by the digital photos of char residues. The results of TG analysis indicate that P(AM-co-AA) imparts high thermal stability to the resulting hydrogels due to the hydrogen bonds between carboxyl and amide groups. The accelerated aging test shows that the transparent flame-retardant hydrogel containing P(AM-co-AA) is less affected by aging conditions. Especially, when the mass ratio of acrylamide to acrylic acid in P(AM-co-AA) is 4:1, the resulting transparent flame-retardant hydrogel shows a light transmittance of 82.9% and backside temperature of 173.1 °C at 60 min after 7 aging cycles, exhibiting the best comprehensive properties among the samples.
Collapse
|
38
|
Quantifying the combined effect of pH and salinity on the performance of water absorbing polymers used for drought management. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02795-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Yang M, Wu J, Graham GM, Lin J, Huang M. Hotspots, Frontiers, and Emerging Trends of Superabsorbent Polymer Research: A Comprehensive Review. Front Chem 2021; 9:688127. [PMID: 34395377 PMCID: PMC8358602 DOI: 10.3389/fchem.2021.688127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Superabsorbent polymer (SAP) is a kind of functional macromolecule with super-high water absorption and retention properties, which attracts extensive research and has wide application, especially in the areas of hygiene and agriculture. With reference to the Web of Science database, the SAP research literature from 2000 to 2019 is reviewed both quantitatively and qualitatively. By examining research hotspots, top research clusters, the most influential works, the representative frontier literature, and key emerging research trends, a visual panorama of the continuously and significantly increasing SAP research over the past 2 decades was presented, and issues behind the sharp increase in the literature were discovered. The findings are as follows. The top ten keywords/hotspots headed by hydrogel highlight the academic attention on SAP properties and composites. The top ten research themes headed by clay-based composites which boast the longest duration and the strongest impact have revealed the academic preference for application rather than theoretical study. Academically influential scholars and research studies have been acknowledged, and the Wu group was at the forefront of the research; however, more statistically significant works have been less detected in the last 10 years despite the sharper increase in publications. Hydrogel, internal curing, and aerogel are both current advances and future directions.
Collapse
Affiliation(s)
- Minmin Yang
- College of Foreign Languages, International School, Huaqiao Univ., Quanzhou, China
| | - Jihuai Wu
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| | - Geoffrey M. Graham
- College of Foreign Languages, International School, Huaqiao Univ., Quanzhou, China
| | - Jianming Lin
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| | - Miaoliang Huang
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| |
Collapse
|
40
|
Preparation and anti‐evaporation properties of organic–inorganic superabsorbent based on Tragacanth gum and clay. J Appl Polym Sci 2021. [DOI: 10.1002/app.50777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
41
|
Yang HC, Ham YM, Kim JA, Rhee WJ. Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads. J Extracell Vesicles 2021; 10:e12074. [PMID: 33664938 PMCID: PMC7902527 DOI: 10.1002/jev2.12074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) contain useful biomarkers for disease diagnosis and are promising biomaterials for the delivery of therapeutic molecules in vivo. Accordingly, an efficient concentration method is necessary for large-scale production or high-throughput isolation of EVs from bulk liquid samples, including culture medium and body fluids, to achieve their clinical application. However, current EV concentration methods, including ultrafiltration, are limited with respect to cost, efficiency, and centrifugation time. In this study, we developed the first single-step, equipment-free EV concentration method using super absorbent polymer (SAP) beads. SAP beads absorb small molecules, including water, via nano-sized channels but expel and thereby concentrate EVs. Consequently, the beads drastically enrich EVs by reducing the solution volume in a single step, without affecting EV characteristics. Moreover, the purity of the concentrated EV solution was high due to the absorption of protein impurities by SAP beads. To further demonstrate the versatility of the method, we showed that SAP beads successfully enrich EVs in human urine samples and culture medium, enabling better isolation performance than conventional ultrafiltration. We believe the newly developed approach and insight gained in this study will facilitate the use of EVs as prominent biomaterials for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Hee Cheol Yang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Yoo Min Ham
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Jeong Ah Kim
- Center for Scientific InstrumentationKorea Basic Science InstituteChungbukRepublic of Korea
- Department of Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Division of BioengineeringIncheon National UniversityIncheonRepublic of Korea
| |
Collapse
|
42
|
Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly(acrylic acid)/semi-coke superabsorbent. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03545-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Inverse Poly-High Internal Phase Emulsions Poly(HIPEs) Materials from Natural and Biocompatible Polysaccharides. MATERIALS 2020; 13:ma13235499. [PMID: 33276681 PMCID: PMC7729674 DOI: 10.3390/ma13235499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/28/2022]
Abstract
This paper shows one of the few examples in the literature on the feasibility of novel materials from natural and biocompatible polymers like inulin (INU) or glycol chitosan (GCS) templated by the formation of o/w (inverse) high internal phase emulsion (HIPE). To the best of our knowledge, this is the first example of inverse polyHIPEs obtained from glycol chitosan or inulin. The obtained polyHIPEs were specifically designed for possible wound dressing applications. The HIPE (pre-crosslinking emulsion) was obtained as inverse HIPE, i.e., by forming a cream-like 80:20 v/v o/w emulsion by using the isopropyl myristate in its oil phase, which is obtained from natural sources like palm oil or coconut oil. The surfactant amount was critical in obtaining the inverse HIPE and the pluronic F127 was effective in stabilizing the emulsion comprising up to 80% v/v as internal phase. The obtained inverse HIPEs were crosslinked by UV irradiation for methacrylated INU or by glutaraldehyde-crosslinking for GCS. In both cases, inverse poly-HIPEs were obtained, which were physicochemically characterized. This paper introduces a new concept in using hydrophilic, natural polymers for the formation of inverse poly-HIPEs.
Collapse
|
44
|
Etminani-Isfahani N, Mohammadbagheri Z, Rahmati A. 4-(6-Aminohexyl) amino-4-oxo-2-butenoic acid as a novel hydrophilic monomer for synthesis of cellulose-based superabsorbents with high water absorption capacity. Carbohydr Polym 2020; 250:116959. [DOI: 10.1016/j.carbpol.2020.116959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/17/2023]
|
45
|
Qureshi MA, Nishat N, Jadoun S, Ansari MZ. Polysaccharide based superabsorbent hydrogels and their methods of synthesis: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
46
|
Saha A, Sekharan S, Manna U, Sahoo L. Transformation of non-water sorbing fly ash to a water sorbing material for drought management. Sci Rep 2020; 10:18664. [PMID: 33122792 PMCID: PMC7596501 DOI: 10.1038/s41598-020-75674-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
Securing water in the soil through suitable amendments is one of the methods for drought management in arid regions. In this study, a poor water sorbing fly ash was transformed into a high water-absorbing material for improving soil water retention during the drought period. The fly ash water absorbent (FAWA) exhibited high water-absorbing capacity (WAC) of 310 g/g at par with commercially available superabsorbent hydrogel (SAH). The FAWA showed excellent re-swelling behavior for more than eight alternate wetting–drying cycles. The WAC of FAWA was sensitive to salt type, pH, and ionic strength of the solution. At maximum salinity level permitted for plant growth, the WAC of FAWA was 80 g/g indicating its suitability for drought management. There was only a marginal WAC variation in the range of pH (5.5–7.5) considered most suitable for plant growth. The drying characteristics of FAWA amended soil exhibited an increase in desaturation time by 3.3, 2.2, and 1.5 times for fine sand, silt loam, and clay loam, respectively. The study demonstrates the success of using a low rate of FAWA for drought management with the advantage of offering a non-toxic and eco-friendly solution to mass utilization of industrial solid waste for agricultural applications.
Collapse
Affiliation(s)
- Abhisekh Saha
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sreedeep Sekharan
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India.
| | - Uttam Manna
- Department of Chemistry and Center for Nanotechnology, Indian Institute of Technology, Guwahati, Assam, India
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
47
|
Moharrami P, Motamedi E. Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: Efficient and selective nanoadsorbent for removal of cationic dyes from water. BIORESOURCE TECHNOLOGY 2020; 313:123661. [PMID: 32563795 DOI: 10.1016/j.biortech.2020.123661] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 05/26/2023]
Abstract
A novel and bio-based hydrogel nanocomposite were developed using reinforcement of starch grafted copolymers of 2-acrylamido-2methyl propane sulfonate and acrylic acid (starch-g-(AMPS-co-AA)) hydrogel with magnetite-functionalized cellulose nanocrystals (MCNCs). The MCNCs-hydrogel was utilized as a proficient and environmentally benign nanoadsorbent for removal of cationic dyes with great capacity and selectivity. Sugar-beet pulp (SBP) was exploited for CNCs production through acid hydrolysis of enzymatic-mediated SBP. Fe3O4 nanoparticles were anchored on CNCs to synthesize MCNCs as the nanofiller of MCNCs/starch-g-(AMPS-co-AA) hydrogel. The synthesis of CNCs, MCNCs and hydrogel nanocomposite were confirmed using FESEM, FTIR, VSM and TGA analyses. Hydrogel nanocomposite showed excellent and reusable capacity for specific adsorption of cationic dyes. The effects of nanoadsorbent dosage, time, pH, dye initial concentration, and temperature on the adsorption were scrutinized for two model cationic dyes (crystal violet (CV) and methylene blue (MB). Adsorption capacities for CV and MB were 2500.0 mg/g and 1428.6 mg/g, respectively.
Collapse
Affiliation(s)
- Parisa Moharrami
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
48
|
Li Y, Li P, Lu J, Zhao Y. Synthesis of pH-, thermo- and salt-responsive hydrogels containing MCM-41 as crosslinker in situ for controlled drug release. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03325-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Sudarsan S, Selvi MS, Chitra G, Sakthivel S, Franklin DS, Guhanathan S. Nontoxic pH-sensitive silver nanocomposite hydrogels for potential wound healing applications. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1786584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. Sudarsan
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - M. S. Selvi
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - G. Chitra
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - S. Sakthivel
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - D. S. Franklin
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| |
Collapse
|
50
|
Zhang Q, Wang Z, Zhang C, Aluko RE, Yuan J, Ju X, He R. Structural and functional characterization of rice starch-based superabsorbent polymer materials. Int J Biol Macromol 2020; 153:1291-1298. [DOI: 10.1016/j.ijbiomac.2019.10.264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023]
|