1
|
Chen S, Zhang M, Luo S, Ning M, Chen Y, Tan L, Tang X, Liu X, Zheng L, Saarloos A, Zhang T, Liu C. Multi-Omics analysis reveals the sensory quality and fungal communities of Tibetan teas produced by wet- and dry-piling fermentation. Food Res Int 2025; 201:115690. [PMID: 39849727 DOI: 10.1016/j.foodres.2025.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
Ya'an Tibetan tea, a dark tea with a rich historical heritage, is typically processed using two primary piling fermentation methods: wet piling with rolled leaves (moisture content around 60%) and dry piling with sun-dried or baked green tea leaves (moisture content below 30%). This study employed sensory evaluation, targeted and non-targeted metabolomics, and fungal Internal Transcribed Spacer (ITS) sequencing to investigate changes in quality components and fungal composition in Tibetan tea processed by both wet and dry-piling methods. The results revealed that 3,7-Dimethyl-1,5,7-octatriene-3-ol and D-limonene were identified as key volatile metabolites contributing to the aroma variations between the dry and wet-piled teas. More pronounced differences were observed in non-volatile components, with 407 differential metabolites identified between the wet- and dry-piled teas. Linear discriminant analysis effect size (LEfSe) identified Rhizomucor, Aspergillus, Thermomyces, Setophoma, and Debaryomyces as the key fungal genera with significant differences between the two piling methods, also dominating in abundance and playing a crucial role in the fermentation process of Tibetan tea. Correlation analysis between microbial communities and differential metabolites showed that Debaryomyces, Thermomyces, and Setophoma were significant contributors to the aroma differences between the teas produced by the two piling methods, while Rhizomucor and Aspergillus had a greater influence on non-volatile metabolites. Since Rhizomucor and Aspergillus were the most dominant fungi in the wet (63.05%) and dry-piled (68.70%) samples, respectively, and showed opposite correlations with major non-volatile differential metabolites, they may underlie the flavor differences between the two piled teas, such as mellowness, thickness, and sweet aftertaste. This study sheds light on the chemical and fungal mechanisms underlying the quality formation of Ya'an Tibetan tea processed by wet and dry piling methods, providing theoretical guidance for the improvement, standardization, and potential enhancement of production efficiency of Ya'an Tibetan tea production.
Collapse
Affiliation(s)
- Shengxiang Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Mengxue Zhang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Shijie Luo
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Meiyi Ning
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yuxi Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Liqiang Tan
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xiaobo Tang
- Tea Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Xiao Liu
- Tea Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Liang Zheng
- Division of Toxicology, Wageningen University and Research, Wageningen, NL 6703 HE, the Netherlands
| | - Aafke Saarloos
- Division of Toxicology, Wageningen University and Research, Wageningen, NL 6703 HE, the Netherlands
| | - Ting Zhang
- Tea Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China.
| | - Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
2
|
Wang S, Sun S, Du Z, Gao F, Li Y, Han W, Wu R, Yu X. Characterization of CsUGT73AC15 as a Multifunctional Glycosyltransferase Impacting Flavonol Triglycoside Biosynthesis in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13328-13340. [PMID: 38805380 DOI: 10.1021/acs.jafc.4c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Flavonol glycosides, contributing to the health benefits and distinctive flavors of tea (Camellia sinensis), accumulate predominantly as diglycosides and triglycosides in tea leaves. However, the UDP-glycosyltransferases (UGTs) mediating flavonol multiglycosylation remain largely uncharacterized. In this study, we employed an integrated proteomic and metabolomic strategy to identify and characterize key UGTs involved in flavonol triglycoside biosynthesis. The recombinant rCsUGT75AJ1 exhibited flavonoid 4'-O-glucosyltransferase activity, while rCsUGT75L72 preferentially catalyzed 3-OH glucosylation. Notably, rCsUGT73AC15 displayed substrate promiscuity and regioselectivity, enabling glucosylation of rutin at multiple sites and kaempferol 3-O-rutinoside (K3R) at the 7-OH position. Kinetic analysis revealed rCsUGT73AC15's high affinity for rutin (Km = 9.64 μM). Across cultivars, CsUGT73AC15 expression inversely correlated with rutin levels. Moreover, transient CsUGT73AC15 silencing increased rutin and K3R accumulation while decreasing their respective triglycosides in tea plants. This study offers new mechanistic insights into the key roles of UGTs in regulating flavonol triglycosylation in tea plants.
Collapse
Affiliation(s)
- Shuyan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenghua Du
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fuquan Gao
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yeye Li
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Han
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruimei Wu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Yu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Chik C, Larroque AL, Zhuang Y, Feinstein S, Smith DL, Andonian S, Ryan AK, Jean-Claude B, Gupta IR. A Nuclear Magnetic Resonance (NMR)- and Mass Spectrometry (MS)-Based Saturation Kinetics Model of a Bryophyllum pinnatum Decoction as a Treatment for Kidney Stones. Int J Mol Sci 2024; 25:5280. [PMID: 38791318 PMCID: PMC11121557 DOI: 10.3390/ijms25105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Bryophyllum pinnatum (BP) is a medicinal plant used to treat many conditions when taken as a leaf juice, leaves in capsules, as an ethanolic extract, and as herbal tea. These preparations have been chemically analyzed except for decoctions derived from boiled green leaves. In preparation for a clinical trial to validate BP tea as a treatment for kidney stones, we used NMR and MS analyses to characterize the saturation kinetics of the release of metabolites. During boiling of the leaves, (a) the pH decreased to 4.8 within 14 min and then stabilized; (b) regarding organic acids, citric and malic acid were released with maximum release time (tmax) = 35 min; (c) for glycoflavonoids, quercetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (Q-3O-ArRh), myricetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (M-3O-ArRh), kappinatoside, myricitrin, and quercitrin were released with tmax = 5-10 min; and (d) the total phenolic content (TPC) and the total antioxidant capacity (TAC) reached a tmax at 55 min and 61 min, respectively. In summary, 24 g of leaves boiled in 250 mL of water for 61 min ensures a maximal release of key water-soluble metabolites, including organic acids and flavonoids. These metabolites are beneficial for treating kidney stones because they target oxidative stress and inflammation and inhibit stone formation.
Collapse
Affiliation(s)
- Candus Chik
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Anne-Laure Larroque
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Yuan Zhuang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shane Feinstein
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Donald L. Smith
- Plant Science Department, McDonald Campus, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Sero Andonian
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Division of Urology, McGill University, Montreal, QC H4A 3J1, Canada
| | - Aimee K. Ryan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| | - Bertrand Jean-Claude
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Medical Oncology, McGill University, Montreal, QC H4A 3J1, Canada
| | - Indra R. Gupta
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Li Y, Luo Q, Qin M, Xu W, Wang X, Zhou J, He C, Chen Y, Yu Z, Ni D. Study on color, aroma, and taste formation mechanism of large-leaf yellow tea during an innovative manufacturing process. Food Chem 2024; 438:138062. [PMID: 38064793 DOI: 10.1016/j.foodchem.2023.138062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
This study used samples processed with an innovative manufacturing process to explore the dynamic changes of large-leaf yellow tea (LYT) in color, aroma, and taste substances, and the quality components were most significantly affected in the stages of first pile-yellowing (FP) and over-fired drying (TD). In this process, the moisture and temperature conditions caused chlorophyll degradation, Maillard reactions, caramelization reactions, and isomerization of phenolic substances, forming the quality of LYT. Specifically, chlorophyll degradation favored the formation of color quality; the taste quality was determined by the content of soluble sugars, amino acids, catechins, etc.; the aroma quality was dependent on the content changes of alcohols and aldehydes, as well as the increase of sweet and roasting aroma substances in the third drying stage. Additionally, twelve key aroma components, including linalool, (E)-β-ionone, 2,3-diethyl-5-methyl-pyrazine, etc., were identified as contributors to revealing LYT rice crust-like and sweet aroma formation mechanism.
Collapse
Affiliation(s)
- Yuchuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Muxue Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Wenluan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xiaoyong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
5
|
Wang X, He C, Cui L, Liu Z, Liang J. Effects of Different Expansion Temperatures on the Non-Volatile Qualities of Tea Stems. Foods 2024; 13:398. [PMID: 38338533 PMCID: PMC10855559 DOI: 10.3390/foods13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Tea stems are a type of tea by-product, and a considerable amount of them is discarded during picking, with their value often being overlooked. To enhance the utilization of tea stems, we investigated the effects of different expansion temperatures on the non-volatile compounds of tea stems. The results showed that the contents of EC, EGC, EGCG, tea polyphenols, and amino acids all decreased with the expansion temperature, while the contents of GA and C increased. The best effect was observed at 220 °C for 20 s. Additionally, as the temperature increased, the umami and aftertaste of astringency values of tea stems decreased, and the value of bitterness increased. Meanwhile, the value of sweetness decreased first and then increased. EGC was identified as the key differential compound of tea stems at different temperatures. In this investigation, determining the optimum expansion temperature was deemed advantageous for enhancing the flavor quality of tea stems, consequently elevating the utilization efficacy of tea stems and tea by-products.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changxu He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Leyin Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Li G, Yu Q, Li M, Zhang D, Yu J, Yu X, Xia C, Lin J, Han L, Huang H. Phyllanthus emblica fruits: a polyphenol-rich fruit with potential benefits for oral management. Food Funct 2023; 14:7738-7759. [PMID: 37529983 DOI: 10.1039/d3fo01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The fruit of Phyllanthus emblica Linn., which mainly grows in tropical and subtropical regions, is well-known for its medicine and food homology properties. It has a distinctive flavor, great nutritional content, and potent antioxidant, anti-inflammatory, anti-cancer and immunoregulatory effects. According to an increasing amount of scientific and clinical evidence, this fruit shows significant potential for application and development in the field of oral health management. Through the supplementation of vitamins, superoxide dismutase (SOD) and other nutrients reduce virulence expression of various oral pathogens, prevent tissue and mucosal damage caused by oxidative stress, etc. Phyllanthus emblica fruit can promote saliva secretion, regulate the balance of the oral microecology, prevent and treat oral cancer early, promote alveolar bone remodeling and aid mucosal wound healing. Thus, it plays a specific role in the prevention and treatment of common oral disorders, producing surprising results. For instance, enhancing the effectiveness of scaling and root planing in the treatment of periodontitis, relieving mucosal inflammation caused by radiotherapy for oral cancer, and regulating the blood glucose metabolism to alleviate oral discomfort. Herein, we systematically review the latest research on the use of Phyllanthus emblica fruit in the management of oral health and examine the challenges and future research directions based on its chemical composition and characteristics.
Collapse
Affiliation(s)
- Gefei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mengqi Li
- Pharmacy department, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohan Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chenxi Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haozhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| |
Collapse
|
7
|
Cheng Y, Xue F, Yang Y. Hot Water Extraction of Antioxidants from Tea Leaves—Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks. Molecules 2023; 28:molecules28073030. [PMID: 37049793 PMCID: PMC10095724 DOI: 10.3390/molecules28073030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
There are billions of tea drinkers around the world. However, the optimized tea-brewing temperature and time conditions for achieving a higher concentration of antioxidants in tea drinks have not been thoroughly studied. Finding out the optimized brewing conditions can benefit tea drinkers significantly. In this work, we have studied ten antioxidants from seven different popular green, Oolong, black, and scented teas using hot water extraction followed by HPLC analysis. The antioxidant yield was evaluated at 25–100 °C with 5 to 720 min of brewing time. Our results show that the extraction efficiency was enhanced by increasing the water temperature and the highest yield of antioxidants was achieved at 100 °C. The antioxidant yield increased with prolonged brewing time. However, the degradation of antioxidants occurred when tea leaves were extracted for 120 to 720 min. Caffeine was found in all seven tea samples. At 100 °C, the caffein concentration in the tea extract ranged from 7.04 to 20.4 mg/g in Rizhao green tea. Longjing green tea contained the highest concentration of antioxidants (88 mg/g) in the 100 °C extract. Epigallocatechin and caffeine were the most abundant compounds found in all tea samples studied, ranging from 4.77 to 26.88 mg/g. The antioxidant yield was enhanced by increasing the extraction time to up to 60–120 min for all ten compounds studied.
Collapse
Affiliation(s)
- Yan Cheng
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Fumin Xue
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yu Yang
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| |
Collapse
|
8
|
Cui HN, Gu HW, Li ZQ, Sun W, Ding B, Li Z, Chen Y, Long W, Yin XL, Fu H. Integration of lipidomics and metabolomics approaches for the discrimination of harvest time of green tea in spring season by using UPLC-Triple-TOF/MS coupled with chemometrics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1119314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The production season is one of the judgment standards of the green tea quality and spring tea is generally considered of higher quality. Moreover, early spring tea is usually more precious and sells for a higher price. Therefore, a multifaceted strategy that integrates lipidomics and metabolomics, based on UPLC-Triple-TOF/MS coupled with chemometrics, was developed to discriminate early spring green tea (ET) and late spring green tea (LT). Twenty-six lipids and forty-five metabolites were identified as characteristic components. As for characteristic lipids, most of glycerophospholipids and acylglycerolipids have higher contents in ET. By contrast, glycoglycerolipids, sphingolipids and hydroxypheophytin a were shown higher levels in LT samples. Most of the differential metabolites identified were more abundant in ET samples. LT samples have much higher catechin, procyanidin B2, and 3',8-dimethoxyapigenin 7-glucoside contents. Based on the integration of differential lipids and metabolites, the reconstructed orthogonal partial least squares discriminant analysis (OPLS-DA) model displayed 100% correct classification rates for harvest time discrimination of green tea samples. These results demonstrated that the integration of lipidomics and metabolomics approaches is a promising method for the discrimination of tea quality.
Collapse
|
9
|
Liu F, Tu Z, Chen L, Lin J, Zhu H, Ye Y. Analysis of metabolites in green tea during the roasting process using non-targeted metabolomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:213-220. [PMID: 35871448 DOI: 10.1002/jsfa.12133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Roasting plays an important role in the formation of flavor of roasted green tea; however, the changes in chemicals during this process have not been systematically studied until now. To reveal the dynamic changes in chemicals in green tea during roasting, non-targeted metabolomics, coupled with chemometrics, was employed. RESULTS A total of 101 non-volatile metabolites were identified in tea samples, and 29 metabolites were identified as characteristic metabolites of roasting. A significant increase in catechins and their derivatives, organic acids, and flavonoid glycosides was observed, while the content of some amino acids and their derivatives decreased over 50% during roasting. The content of theanine glucoside increased dramatically (by 21.23-fold at the roasting stage), and Maillard-derived compounds also increased to varying degrees. CONCLUSION Glycosylation, oxidative polymerization, and pyrolysis were important reactions responsible for the formation and transformation of flavor compounds in roasted green tea during roasting. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Liu
- Tea Research Institute of Sichuan Academy of Agricultural Science, Chengdu, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Zheng Tu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Chen
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiazheng Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hongkai Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Nurmilah S, Cahyana Y, Utama GL. Metagenomics Analysis of the Polymeric and Monomeric Phenolic Dynamic Changes Related to the Indigenous Bacteria of Black Tea Spontaneous Fermentation. BIOTECHNOLOGY REPORTS 2022; 36:e00774. [DOI: 10.1016/j.btre.2022.e00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
11
|
Li R, Liu K, Liang Z, Luo H, Wang T, An J, Wang Q, Li X, Guan Y, Xiao Y, Lv C, Zhao M. Unpruning improvement the quality of tea through increasing the levels of amino acids and reducing contents of flavonoids and caffeine. Front Nutr 2022; 9:1017693. [PMID: 36245481 PMCID: PMC9558131 DOI: 10.3389/fnut.2022.1017693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tea tree [Camellia sinensis var. sinensis or assamica (L.) O. Kuntze], an important crop worldwide, is usually pruned to heights of 70 to 80 cm, forming pruned tea tree (PTT) plantations. Currently, PTTs are transformed into unpruned tea tree (UPTT) plantations in Yunnan, China. This has improved the quality of tea products, but the underlying reasons have not been evaluated scientifically. Here, 12 samples of sun-dried green teas were manufactured using fresh leaves from an UPTT and the corresponding PTT. Using sensory evaluation, it was found that the change reduced the bitterness and astringency, while increasing sweetness and umami. Using high performance liquid chromatography detection showed that the contents of free amino acids (theanine, histidine, isoleucine and phenylalanine) and catechin gallate increased significantly (P < 0.05), whereas the content of alanine decreased significantly (P < 0.05). A liquid chromatography–mass spectrometry-based metabolomics analysis showed that the transformation to UPTT significantly decreased the relative levels of the majority of flavonols and tannins (P < 0.05), as well as γ-aminobutyric acid, caffeine and catechin (epigallocatechin, catechin, epigallocatechin gallate, gallocatechin gallate), while it significantly increased the relative contents of catechins (gallocatechin, epicatechin, epicatechin gallate and catechin gallate), phenolic acids and some amino acids (serine, oxidized glutathione, histidine, aspartic acid, glutamine, lysine, tryptophan, tyramine, pipecolic acid, and theanine) (P < 0.05). In summary, after transforming to UPTT, levels of amino acids, such as theanine increased significantly (P < 0.05), which enhanced the umami and sweetness of tea infusions, while the flavonoids (such as kaempferol, myricetin and glycosylated quercetin), and caffeine contents decreased significantly (P < 0.05), resulting in a reduction in the bitterness and astringency of tea infusions and an increase in tea quality.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Kunyi Liu
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin, China
| | - Zhengwei Liang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hui Luo
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Teng Wang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jiangshan An
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Qi Wang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xuedan Li
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yanhui Guan
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yanqin Xiao
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Caiyou Lv
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- *Correspondence: Caiyou Lv,
| | - Ming Zhao
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Ming Zhao,
| |
Collapse
|
12
|
Wang S, Zeng T, Zhao S, Zhu Y, Feng C, Zhan J, Li S, Ho CT, Gosslau A. Multifunctional health-promoting effects of oolong tea and its products. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Peng J, Dai W, Lu M, Yan Y, Zhang Y, Chen D, Wu W, Gao J, Dong M, Lin Z. New insights into the influences of baking and storage on the nonvolatile compounds in oolong tea: A nontargeted and targeted metabolomics study. Food Chem 2021; 375:131872. [PMID: 34953237 DOI: 10.1016/j.foodchem.2021.131872] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
A nontargeted and targeted metabolomics method was applied to comprehensively investigate the influences of baking and storage on chemical constituents in fresh-, strong-, and aged-scent types of Foshou oolong teas. The contents of N-ethyl-2-pyrrolidone-substituted flavanols (EPSFs), flavone C-glycosides, gallic acid, and most lipids increased after baking and storage, while the contents of cis-flavanols, alkaloids, flavonol O-glycosides, and most amino acids decreased. Degradation, epimerization, and interaction with theanine were main pathways for the decrease in cis-flavanols. Approximately 20.7%, 12.8%, and 11.6% of epigallocatechin gallate were degraded, epimerized, and interacted with theanine after baking, respectively; 22.5% and 8.71% of epigallocatechin gallate were degraded and interacted with theanine after 10-year storage, respectively. Simulated reactions confirmed that the increases in EPSFs and apigenin C-glycosides were caused by interactions between theanine and flavanols and between apigenin aglycone and glucose, respectively. This study offers novel insights into chemical changes during baking and storage of oolong tea.
Collapse
Affiliation(s)
- Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| | - Meiling Lu
- Agilent Technologies (China) Limited, Beijing 100102, China
| | - Yongquan Yan
- Yongchun County Agricultural and Rural Bureau, Quanzhou, Fujian 362600, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minghua Dong
- Yongchun County Agricultural and Rural Bureau, Quanzhou, Fujian 362600, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
15
|
Hwang HJ, Kim YG, Chung MS. Improving the Extraction of Catechins of Green Tea ( Camellia sinensis) by Subcritical Water Extraction (SWE) Combined with Pulsed Electric Field (PEF) or Intense Pulsed Light (IPL) Pretreatment. Foods 2021; 10:foods10123092. [PMID: 34945642 PMCID: PMC8701373 DOI: 10.3390/foods10123092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to find the optimum condition of pulsed electric field (PEF) and intense pulsed light (IPL) for the enhancement of subcritical water extraction (SWE), which is an eco-friendly extraction method, for extracting tea catechins from green tea leaves (Camellia sinensis). The leaves were treated with PEF under conditions of electric field strength (1, 2 and 3 kV/cm) during 60 s. Moreover, IPL was applied at various voltages (800, 1000, and 1200 V) for 60 s. The SWE was performed for 5 min at varying temperatures (110, 130, 150, 170, and 190 °C). The maximum yield of total catechin was 44.35 ± 2.00 mg/g dry green tea leaves at PEF treatment conditions of 2 kV/cm during 60 s, as well as the SWE temperature of 130 °C. In the case of IPL treatment, the largest amount of total catechin was 48.06 ± 5.03 mg/g dry green tea leaves at 800 V during 60 s when the extraction temperature was 130 °C. The total catechin content was increased by 15.43% for PEF and 25.09% for IPL compared to the value of untreated leaves. This study verified that PEF and IPL had a positive effect on the enhancement of tea catechins extraction from green tea leaves using SWE.
Collapse
Affiliation(s)
- Hee-Jeong Hwang
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Seoul 10326, Korea;
| | - Yu-Gyeong Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Myong-Soo Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: ; Tel.: +82-232-774-508
| |
Collapse
|
16
|
Chavan S, Bhuvad S, Kumbhlakar B, Auti J, Walunj T, Pathak S, Tanpure R, Gujar S, Shinde J, Kulkarni A, Gupta V, Deshmukh V, Sardeshmukh S. Antimicrobial and antioxidant potential of a standardized Ayurvedic formulation explains its clinical efficacy as gargles in post-radiotherapy oral cancer patients. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Widely Targeted Metabolomics Analysis Reveals Great Changes in Nonvolatile Metabolites of Oolong Teas during Long-Term Storage. Molecules 2021; 26:molecules26237278. [PMID: 34885857 PMCID: PMC8658923 DOI: 10.3390/molecules26237278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
As a semifermented tea, oolong is exceedingly popular worldwide for its elegant, flowery aroma and mellow, rich taste. However, recent marketing trends for old oolong teas and their chemical quality largely remain unexplored. In this study, we applied widely targeted metabolomics using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with multivariate analysis to investigate the chemical change of oolong teas in the aging process. With the increasing of store time, most nongalloylated catechins; tannins, including TFs and proanthocyanidins; flavonols and glycosylated flavonols; amino acids and their derivatives; nucleotides and their derivatives; and lots of alkaloids and phospholipids declined, while most fatty acids and organic acids increased, and galloylated catechins, GA, and caffeine were almost stable. The result also suggested that approximately seven years (but not an infinite extension) was a special period for oolong tea storage, which brings about excellent taste.
Collapse
|
18
|
Zhao F, Chen M, Jin S, Wang S, Yue W, Zhang L, Ye N. Macro-composition quantification combined with metabolomics analysis uncovered key dynamic chemical changes of aging white tea. Food Chem 2021; 366:130593. [PMID: 34314928 DOI: 10.1016/j.foodchem.2021.130593] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022]
Abstract
It is a common belief in China that aging could improve the quality of white tea. However, the stored-induced compositional changes remain elusive. In this study, ten subsets of white tea samples, which had been stored for 1-, 2-, 3-, 4-, 5-, 6-, 7-, 10-, 11- and 13- years, were selected. Macro-compositions were quantified firstly. As the results showed, it was interesting to find total flavonoids, thearubigins (TRs), and theabrownines (TBs) increasing, accompanied with a gradual decrease of total polyphenols, which suggest a conversion of phenolic component in the aging process. Then, nontargeted metabolomics was further conducted on selected subsets of samples, including 1-, 7- and 13- years stored to profile their conversion. As a result, most different metabolites were related to flavonol glycosides and flavone glycosides, suggesting dynamic phenolic component changes were vital in aging. The partial least-squares-discriminant analysis (PLS-DA) also identified them as markers in distinguishing.
Collapse
Affiliation(s)
- Feng Zhao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Mingjie Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; College of Life Science, Xinyang Normal University, Xinyang, Henan, 464000 China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuyan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenjie Yue
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lixiong Zhang
- Zhangyuanji Tea Co., Ltd., Fuding City, Fujian 355200, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
19
|
Fan FY, Huang CS, Tong YL, Guo HW, Zhou SJ, Ye JH, Gong SY. Widely targeted metabolomics analysis of white peony teas with different storage time and association with sensory attributes. Food Chem 2021; 362:130257. [PMID: 34118510 DOI: 10.1016/j.foodchem.2021.130257] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/06/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
The sensory features of white peony teas (WPTs) significantly change with storage age; however, their comprehensive associations with composition are still unclear. This study aimed to clarify the sensory quality-related chemical changes in WPTs during storage. Liquid chromatography-tandem mass spectrometry based on widely targeted metabolomics analysis was performed on WPTs of 1-13 years storage ages. Weighted gene co-expression network analysis (WGCNA) was used to correlate metabolites with sensory traits including color difference values and taste attributes. 323 sensory trait-related metabolites were obtained from six key modules via WGCNA, verified by multiple factor analysis. The decline and transformation of abundant flavonoids, tannins and amino acids were related to the reduced astringency, umami and increased browning of tea infusions. In contrast, the total contents of phenolic acids and organic acids increased with storage. This study provides a high-throughput method for the association of chemical compounds with various sensory traits of foods.
Collapse
Affiliation(s)
- Fang-Yuan Fan
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chuang-Sheng Huang
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yi-Lin Tong
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hao-Wei Guo
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Sen-Jie Zhou
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Shu-Ying Gong
- Zhejiang University Tea Research Institute, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
20
|
Huang A, Jiang Z, Tao M, Wen M, Xiao Z, Zhang L, Zha M, Chen J, Liu Z, Zhang L. Targeted and nontargeted metabolomics analysis for determining the effect of storage time on the metabolites and taste quality of keemun black tea. Food Chem 2021; 359:129950. [PMID: 33945989 DOI: 10.1016/j.foodchem.2021.129950] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/20/2023]
Abstract
The black tea could be stored for a long time, and subsequently affects the flavor characteristics. In the present study, the effects of storage years (1, 2, 3, 4, 5, 10, 17 and 20 years) on the chemical profiling and taste quality of keemun black tea (KBT) were compared by metabolomics and quantitative sensory evaluation. The main polyphenols were degraded during the storing, especially 10-year storage, but caffeine and theobromine were stable. The intensity of bitterness, astringency, umami was negatively correlated to storage years, with correlation coefficient at -0.95, -0.91 and -0.83 respectively, whereas sweetness had positive correlation coefficient at 0.74. Quinic acid, galloylated catechins, linolenic acid, linoleic acid, malic acid, palamitic acid, and theaflavin-3́-gallate were marker compounds which were responsible for distinguishing short and long time preserved KBT. The contents of fatty acids were positively correlated to storage time and sweet intensity.
Collapse
Affiliation(s)
- Ai Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Meng Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhipeng Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lan Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Minyu Zha
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jiayu Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Rehman MU, Rather IA. Myricetin Abrogates Cisplatin-Induced Oxidative Stress, Inflammatory Response, and Goblet Cell Disintegration in Colon of Wistar Rats. PLANTS 2019; 9:plants9010028. [PMID: 31878169 PMCID: PMC7020155 DOI: 10.3390/plants9010028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Cisplatin [cis-diamminedichloroplatinum II] is an extensively prescribed drug in cancer chemotherapy; it is also useful for the treatment of diverse types of malignancies. Conversely, cisplatin is associated with a range of side effects such as nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, and so on. Myricetin (3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4chromenone) is a very common natural flavonoid found in fruits, tea, and plants. It has been found to have high-value pharmacological properties and strong health benefits. To examine the role of myricetin in colon toxicity induced by cisplatin, we conducted a concurrent prophylactic study in experimental animals that were treated orally with myricetin for 14 days at two doses—25 and 50 mg/kg of body weight. On the 14th day, a single intraperitoneal injection of cisplatin (7.5 mg/kg body weight) was administered in all groups except control. The effects of myricetin in cisplatin-induced toxicity in the colon were assessed in terms of antioxidant status, phase-II detoxification enzymes, the level of inflammatory markers, and goblet cell disintegration. Myricetin was found to restore the level of all the antioxidant enzymes analyzed in the study. In addition, the compound ameliorated cisplatin-induced lipid peroxidation, increase in xanthine oxidase activity, and phase-II detoxifying enzyme activity. Myricetin also attenuated deteriorative effects induced by cisplatin by regulating the level of molecular markers of inflammation (NF-κB, Nrf-2, IL-6, and TNF-α), restoring Nrf-2 levels, and controlling goblet cell disintegration. The current study reinforces the conclusion that myricetin exerts protection in colon toxicity via up-regulation of inflammatory markers, improving anti-oxidant status, and protecting tissue damage.
Collapse
Affiliation(s)
- Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
- Division of Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKAUST-Kashmir, Alustang, Srinagar, J&K 190006, India
- Correspondence: (M.U.R.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU) P.O. Box-80141, Jeddah 21589, Saudi Arabia
- Correspondence: (M.U.R.); (I.A.R.)
| |
Collapse
|
22
|
Rothenberg DO, Zhang L. Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients 2019; 11:E1361. [PMID: 31212946 PMCID: PMC6627400 DOI: 10.3390/nu11061361] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This article is a comprehensive review of the literature pertaining to the antidepressant effects and mechanisms of regular tea consumption. Meta-data supplemented with recent observational studies were first analyzed to assess the association between tea consumption and depression risk. The literature reported risk ratios (RR) were 0.69 with 95% confidence intervals of 0.62-0.77. Next, we thoroughly reviewed human trials, mouse models, and in vitro experiments to determine the predominant mechanisms underlying the observed linear relationship between tea consumption and reduced risk of depression. Current theories on the neurobiology of depression were utilized to map tea-mediated mechanisms of antidepressant activity onto an integrated framework of depression pathology. The major nodes within the network framework of depression included hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, inflammation, weakened monoaminergic systems, reduced neurogenesis/neuroplasticity, and poor microbiome diversity affecting the gut-brain axis. We detailed how each node has subsystems within them, including signaling pathways, specific target proteins, or transporters that interface with compounds in tea, mediating their antidepressant effects. A major pathway was found to be the ERK/CREB/BDNF signaling pathway, up-regulated by a number of compounds in tea including teasaponin, L-theanine, EGCG and combinations of tea catechins and their metabolites. Black tea theaflavins and EGCG are potent anti-inflammatory agents via down-regulation of NF-κB signaling. Multiple compounds in tea are effective modulators of dopaminergic activity and the gut-brain axis. Taken together, our findings show that constituents found in all major tea types, predominantly L-theanine, polyphenols and polyphenol metabolites, are capable of functioning through multiple pathways simultaneously to collectively reduce the risk of depression.
Collapse
Affiliation(s)
- Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Lingyun Zhang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
23
|
Abstract
Teaghrelins, identified originally in Chin-shin oolong tea, are unique acylated flavonoid tetraglycosides and proposed to be potential oral analogues of ghrelin. In the present study, two new teaghrelin-like compounds were characterized from tea cultivars (TTES No. 12), and their chemical structures were established by the spectroscopic and spectrometric analysis. However, due to the different location of rhamnose, these two teaghrelin-like compounds may not show significant ghrelin receptor affinity.[Figure: see text].
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yue-Chiun Li
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Ruo-Hsuan Wu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
Wang Y, Kan Z, Thompson HJ, Ling T, Ho CT, Li D, Wan X. Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5423-5436. [PMID: 30403138 DOI: 10.1021/acs.jafc.8b05140] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
While the Camellia sinensis cultivar and processing method are key factors that affect tea flavor and aroma, the chemical changes in nonvolatile components associated with the tea processing method using a single cultivar of C. sinensis have not been reported. Fresh leaves from C. sinensis Longjing 43 were subjected to six tea processing methods and evaluated by targeted and untargeted chromatographic procedures. On the basis of targeted assessment of the total catechin content, three clusters were identified: yellow-green, oolong-white-dark, and black. However, principal component analysis of the total tea metabolome identified four chemical phenotypes: green-yellow, oolong, black-white, and dark. Differences in the non-catechin components included amino acids and γ-aminobutyric acid, which increased in white tea, and dihydroxyphenylalanine, valine, betaine, and theophylline, which increased in dark tea. Overall, this study identified a wide range of chemicals that are affected by commonly used tea processing methods and potentially affect the bioactivity of various tea types.
Collapse
Affiliation(s)
| | | | - Henry J Thompson
- Cancer Prevention Laboratory , Colorado State University , Fort Collins , Colorado 80523 , United States
| | | | - Chi-Tang Ho
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | | | | |
Collapse
|
25
|
Li YC, Wu CJ, Lin YC, Wu RH, Chen WY, Kuo PC, Tzen JTC. Identification of two teaghrelins in Shy-jih-chuen oolong tea. J Food Biochem 2019; 43:e12810. [PMID: 31353599 DOI: 10.1111/jfbc.12810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 12/25/2022]
Abstract
Teaghrelins are unique acylated flavonoid tetraglycosides originally identified in Chin-shin oolong tea, and proposed to be potential oral analogs of ghrelin. Two acylated flavonoid tetraglycosides were isolated from Shy-jih-chuen oolong tea, and their chemical structures were determined to be quercetin and kaempferol 3-O-[α-L-arabinopyranosyl(1 → 3)][2"-O-(E)-p-coumaroyl] [β-D-glucopyranosyl(1 → 3)-α-L-rhamnopyranosyl(1 → 6)]-β-D-glucoside. These two compounds were extremely similar to the two teaghrelins (teaghrelin-1 and teaghrelin-2) in Chin-shin oolong tea by simply replacing a glucopyranosyl group with an arabinopyranosyl group. Molecular modeling showed that the two putative teaghrelins identified in Shy-jih-chuen docked to and interacted with the ghrelin receptor as well as teaghrelin-1 and teaghrelin-2. Mixture of these two putative teaghrelins was shown to enhance the release of growth hormone from primary anterior pituitary cells of rats. The results suggest that two teaghrelins, named teaghrelin-3 and teaghrelin-4, are present in Shy-jih-chuen oolong tea and possess biological activities analogous to teaghrelins in Chin-shin oolong tea. PRACTICAL APPLICATIONS: According to this study, teaghrelin-3 and teaghrelin-4 may be regarded as active ingredients for the quality control of Shy-jih-chuen oolong tea. The content of teaghrelins may serve as a key factor for the farmers to select new tea plants in their next propagation of Shy-jih-chuen cultivar. Crude water extract of Shy-jih-chuen oolong tea containing teaghrelins is considered to be an adequate food supplement or additive in functional food products.
Collapse
Affiliation(s)
- Yue-Chiun Li
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chieh-Ju Wu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Chiao Lin
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Ruo-Hsuan Wu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
26
|
Fang ZT, Song CJ, Xu HR, Ye JH. Dynamic changes in flavonol glycosides during production of green, yellow, white, oolong and black teas from Camellia sinensis
L. (cv. Fudingdabaicha). Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13961] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhou-Tao Fang
- Zhejiang University Tea Research Institute; 388 Yuhangtang Road Hangzhou 310058 China
| | - Chu-Jun Song
- Zhejiang University Tea Research Institute; 388 Yuhangtang Road Hangzhou 310058 China
| | - Hai-Rong Xu
- Zhejiang University Tea Research Institute; 388 Yuhangtang Road Hangzhou 310058 China
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute; 388 Yuhangtang Road Hangzhou 310058 China
| |
Collapse
|
27
|
Pancreatic lipase inhibition of strictinin isolated from Pu’er tea (Cammelia sinensis) and its anti-obesity effects in C57BL6 mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Estimation of Phenolic and Flavonoid Compounds and Antioxidant Activity of Spent Coffee and Black Tea (Processing) Waste for Potential Recovery and Reuse in Sudan. RECYCLING 2018. [DOI: 10.3390/recycling3020027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Relative content of gallic acid over 5-galloylquinic acid as an index for the baking intensity of oolong teas. J Food Drug Anal 2018; 26:609-619. [PMID: 29567230 PMCID: PMC9322233 DOI: 10.1016/j.jfda.2017.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/14/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds in a series of old oolong teas prepared by baking annually were monitored and compared. The results showed that the relative content of gallic acid over 5-galloylquinic acid was subsequently elevated during this preparatory process. To reveal the effect was mainly resulted from baking or aging, two sets of oolong teas were collected and examined; one set was generated from fresh oolong tea via continually daily baking and the other set was composed of aged oolong teas with no or light baking in the storage period. The relative content of gallic acid over 5-galloylquinic acid was observed to be subsequently elevated when oolong tea was continually baked at 90, 100, 110, and 120 °C for 8 h day after day. In contrast, the relative contents of gallic acid over 5-galloylquinic acid in aged oolong teas with no or light baking were found to be similar to or slightly higher than that in fresh oolong tea. The results suggest that the relative content of gallic acid over 5-galloylquinic acid seems to be a suitable index for the baking intensity of oolong tea in different preparations.
Collapse
|
30
|
Yang C, Hu Z, Lu M, Li P, Tan J, Chen M, Lv H, Zhu Y, Zhang Y, Guo L, Peng Q, Dai W, Lin Z. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Res Int 2018; 106:909-919. [PMID: 29580004 DOI: 10.1016/j.foodres.2018.01.069] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
Three subtypes of white tea, Silver Needle (SN), White Peony (WP), and Shou Mei (SM), differ in their taste, aroma, bioactivity, and commercial value. Here, a metabolomics investigation on the chemical compositions combining taste equivalent-quantification and dose-over-threshold (DoT) determination on the taste qualities were applied to comprehensively characterize the white tea subtypes for the first time. Significant differences in the contents of catechins, dimeric catechins, amino acids, phenolic acids, flavonol/flavone glycosides, and aroma precursors were observed among these 3 white teas. Metabolite content comparison and partial least-squares (PLS) analysis suggest that theanine, aspartic acid, asparagine, and AMP were positively correlated with the umami taste in white tea, and flavan-3-ols, theasinensins, procyanidin B3, and theobromine had positive correlations with higher bitterness and astringency tastes. In addition, puckering astringent (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG) and theogallin, bitter-tasting caffeine, and the mouth-drying/velvety-like astringent γ-aminobutyric acid (GABA) were identified as key taste compounds of white tea infusion by absolute quantification and DoT factor calculations. This work provided systematic and comprehensive knowledge on the chemical components, taste qualities, and sensory active metabolites for the subtypes of white tea.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, Zhejiang 310051, People's Republic of China
| | - Meiling Lu
- Agilent Technologies (China) Limited, No. 3 Wangjing North Road, Chaoyang District, Beijing 100102, People's Republic of China
| | - Pengliang Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Junfeng Tan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Mei Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Li Guo
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
31
|
Ng KW, Cao ZJ, Chen HB, Zhao ZZ, Zhu L, Yi T. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk. Crit Rev Food Sci Nutr 2017; 58:2957-2980. [PMID: 28678527 DOI: 10.1080/10408398.2017.1347556] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oolong tea (OT) is a traditional Chinese tea (Camellia sinensis) and is especially popular in south China. This review is to comprehensively summarize the miscellaneous research that has been done towards to the processing, phytochemistry, health benefit, and risk of OT. These literatures were carried out not only from different electronic databases but also from text books written in English, Japanese, and Chinese, including those traditional records tracing back to the Tang Dynasty (A.D. 618-907). The full process OT producing is depicted below in this review. The phytochemistry of OT has been comprehensively investigated. More than 100 chemical compositions have been isolated and identified. In health benefit, OT performs outstandingly in reducing obesity and controlling diabetes explained by modern pharmacological studies. (-)-Epigallocatechin-3-gallate (6) in OT prevention of cancerous cells developing. OT can also improve and reduce on heart and vascular disease, protect teeth and bone, function as anti-oxidative and antibacterial agents. This review also mentioned the risk, summarized briefly on various forms of toxicity and harmful associated with OT. In short, this review can provided a natural product library of OT, gave inspirations for further new garden systems, designed idea on quality, bioactivity-oriented screening. In addition, it is suggested more scientists and education is necessary to guarantee the stability and safety of drinking OT.
Collapse
Affiliation(s)
- Kwan-Wai Ng
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Zi-Jun Cao
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Hu-Biao Chen
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Zhong-Zhen Zhao
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Lin Zhu
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Tao Yi
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| |
Collapse
|
32
|
Siddiqui MW, Sharangi AB, Singh JP, Thakur PK, Ayala-Zavala JF, Singh A, Dhua RS. Antimicrobial Properties of Teas and Their Extracts in vitro. Crit Rev Food Sci Nutr 2017; 56:1428-39. [PMID: 25675116 DOI: 10.1080/10408398.2013.769932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tea has recently received the attention of pharmaceutical and scientific communities due to the plethora of natural therapeutic compounds. As a result, numerous researches have been published in a bid to validate their biological activity. Moreover, major attention has been drawn to antimicrobial activities of tea. Being rich in phenolic compounds, tea has the preventive potential for colon, esophageal, and lung cancers, as well as urinary infections and dental caries, among others. The venture of this review was to illustrate the emerging findings on the antimicrobial properties of different teas and tea extracts, which have been obtained from several in vitro studies investigating the effects of these extracts against different microorganisms. Resistance to antimicrobial agents has become an increasingly important and urgent global problem. The extracts of tea origin as antimicrobial agents with new mechanisms of resistance would serve an alternative way of antimicrobial chemotherapy targeting the inhibition of microbial growth and the spread of antibiotic resistance with potential use in pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Md Wasim Siddiqui
- a Department of Food Science and Postharvest Technology , Bihar Agricultural University , Sabour, Bhagalpur , Bihar , India
| | - A B Sharangi
- b Department of Spices and Plantation Crops , Bidhan Chandra Krishi Viswavidyalaya , Mohanpur, Nadia, Kalyani , West Bengal , India
| | - J P Singh
- a Department of Food Science and Postharvest Technology , Bihar Agricultural University , Sabour, Bhagalpur , Bihar , India
| | - Pran K Thakur
- c Department of Post-Harvest Technology of Horticultural Crops , Bidhan Chandra Krishi Viswavidyalaya , Mohanpur, Nadia, Kalyani , West Bengal , India
| | - J F Ayala-Zavala
- d Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, AC), La Victoria . Hermosillo , Sonora , México
| | - Archana Singh
- e Postgraduate Department of Botany , Government M. S. J. Postgraduate College , Bharatpur Rajasthan , India
| | - R S Dhua
- c Department of Post-Harvest Technology of Horticultural Crops , Bidhan Chandra Krishi Viswavidyalaya , Mohanpur, Nadia, Kalyani , West Bengal , India
| |
Collapse
|
33
|
Chen M, Zhu Y, Zhang H, Wang J, Liu X, Chen Z, Zheng M, Liu B. Phenolic compounds and the biological effects of Pu-erh teas with long-term storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1217877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Meichun Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Haifeng Zhang
- Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jieping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiaogang Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Zheng Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Bo Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
34
|
Hsieh SK, Xu JR, Lin NH, Li YC, Chen GH, Kuo PC, Chen WY, Tzen JTC. Antibacterial and laxative activities of strictinin isolated from Pu'er tea (Camellia sinensis). J Food Drug Anal 2016; 24:722-729. [PMID: 28911609 PMCID: PMC9337302 DOI: 10.1016/j.jfda.2016.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/19/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022] Open
Abstract
Strictinin, the major phenolic compound in Pu'er teas produced from young leaves and buds of wild trees, was isolated to evaluate its antibacterial and laxative activities. The minimum inhibitory concentrations of strictinin against Propionibacterium acnes and Staphylococcus epidermidis were determined as 250 μM and 2000 μM, respectively, apparently higher than those of several antibiotics commonly used for bacterial infections. The additive and synergistic effects on the inhibitory activities of strictinin combined with other commercial antibiotics were observed in two bacteria tested in this study via the analysis of fractional inhibitory concentrations. Laxative activity was observed on defecation of the rats fed with strictinin. Further analysis showed that the laxative effect of strictinin was presumably caused by accelerating small intestinal transit, instead of enhancing gastric emptying, increasing food intake, or inducing diarrhea in the rats. Taken together with the antiviral activities demonstrated previously, it is suggested that strictinin is one of the active ingredients responsible for the antiviral, antibacterial, and laxative effects of wild Pu'er tea, and has the potential to be developed as a mild natural substitute for antibiotics and laxatives.
Collapse
Affiliation(s)
- Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Jun-Rui Xu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Nan-Hei Lin
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Yue-Chiun Li
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Guan-Heng Chen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Ping-Chung Kuo
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan, ROC
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan, ROC.
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC.
| |
Collapse
|
35
|
Sheibani E, Duncan SE, Kuhn DD, Dietrich AM, Newkirk JJ, O'Keefe SF. Changes in flavor volatile composition of oolong tea after panning during tea processing. Food Sci Nutr 2016; 4:456-68. [PMID: 27247775 PMCID: PMC4867765 DOI: 10.1002/fsn3.307] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022] Open
Abstract
Panning is a processing step used in manufacturing of some varieties of oolong tea. There is limited information available on effects of panning on oolong tea flavors. The goal of this study was to determine effects of panning on flavor volatile compositions of oolong using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Olfactometry (GC-O). SDE and SPME techniques were applied for extraction of volatiles in panned and unpanned teas. A total of 190 volatiles were identified from SDE and SPME extractions using GC-MS and GC-O. There were no significant differences (P > 0.05) in aldehyde or terpene contents of unpanned and panned tea. However, alcohols, ketones, acids and esters contents were significantly reduced by panning. Among 12 major volatiles previously used for identification and quality assessment of oolong tea, trans nerolidol, 2- hexenal, benzaldehyde, indole, gernaiol, and benzenacetaldehyde contents were significantly decreased (P < 0.05) by panning. Panning increased (P < 0.05) contents of linalool oxide, cis jasmone, and methyl salicylate. The GC-O study also showed an increase of aroma active compounds with sweet descriptions and decrease of aroma active compounds with fruity and smoky descriptions after panning. Panning significantly changes the volatile compositions of the tea and created new aroma active compounds. Results from this study can be used in quality assessment of panned oolong tea.
Collapse
Affiliation(s)
- Ershad Sheibani
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia 24061
| | - Susan E Duncan
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia 24061
| | - David D Kuhn
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia 24061
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering Virginia Tech Blacksburg Virginia 24061
| | - Jordan J Newkirk
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia 24061
| | - Sean F O'Keefe
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia 24061
| |
Collapse
|
36
|
Significant elevation of antiviral activity of strictinin from Pu'er tea after thermal degradation to ellagic acid and gallic acid. J Food Drug Anal 2014; 23:116-123. [PMID: 28911434 PMCID: PMC9351740 DOI: 10.1016/j.jfda.2014.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 11/23/2022] Open
Abstract
Compared with abundant catechins, strictinin is a minor constituent in teas and has been demonstrated to possess inhibitory potency on influenza virus. In this study, strictinin was found as the major phenolic compound in Pu’er teas produced from leaves and buds of wild trees. Due to its thermal instability, strictinin, in tea infusion or in an isolated form, was completely decomposed to ellagic acid and gallic acid after being autoclaved for 7 minutes. A plaque reduction assay was employed to compare the relative inhibitory potency between strictinin and its thermally degraded products against human influenza virus A/ Puerto Rico/8/34. The results showed that the antiviral activity of ellagic acid regardless of the presence or absence of gallic acid was significantly higher than that of strictinin. Thermal degradation of strictinin to ellagic acid and gallic acid seems to be beneficial for the preparation of Pu’er teas in terms of enhancing antiviral activity.
Collapse
|
37
|
Analysis of lipophilic compounds of tea coated on the surface of clay teapots. J Food Drug Anal 2014; 23:71-81. [PMID: 28911448 PMCID: PMC9351758 DOI: 10.1016/j.jfda.2014.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
The surface of a clay teapot tends to be coated with a waterproof film after constant use for tea preparation. The waterproof films of two kinds of teapots (zisha and zhuni) used for preparing oolong tea and old oolong tea were extracted and subjected to gas chromatography–mass spectrometry analysis. The results showed that comparable constituents were detected in these films; they were primarily fatty acids and linear hydrocarbons that were particularly rich in palmitic acid and stearic acid. To explore the source of these two abundant fatty acids, the fatty acid compositions of fresh tea leaves, granules, infusion, and vapor of infusion were analyzed by gas chromatography. Fresh tea leaves were rich in palmitic acid (C-16:0), unsaturated linolenic acid (C-18:3), linoleic acid (C-18:2), and oleic acid (C-18:1), which were presumably from the phospholipid membrane. During the process of manufacturing oolong tea, the three unsaturated fatty acids may be substantially degraded or oxidized to stearic acid (C-18:0), which was enriched with palmitic acid in the tea granules and in the infusion. The vapor of the tea infusion is primarily composed of palmitic acid and stearic acid. Thus, the coated films of teapots mostly originated from the lipophilic compounds of the tea infusions.
Collapse
|
38
|
Lo YH, Chen YJ, Chang CI, Lin YW, Chen CY, Lee MR, Lee VSY, Tzen JTC. Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5085-5091. [PMID: 24832927 DOI: 10.1021/jf501425m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chin-shin oolong tea, a popular tea in Taiwan, was empirically perceived to induce hunger and accelerate gastric emptying in a manner similar to the physiological effects of ghrelin, an endogenous acylated peptide known as the hunger hormone. Two unique acylated flavonoid tetraglycosides previously identified in Chin-shin oolong tea were demonstrated to induce hunger of rats in a food intake assay and, thus, named teaghrelin-1 and teaghrelin-2. Similar to GHRP-6, a synthetic analogue of ghrelin, teaghrelin-1 stimulated growth hormone secretion of rat primary anterior pituitary cells in a dose-dependent manner, and the stimulation was inhibited by [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, an antagonist of the ghrelin receptor. While teaghrelin-2 remained unmodified, a meta-O-methylated metabolite of teaghrelin-1 was detected in bile of rats after intravenous injection. Presumably, teaghrelins are promising oral agonists of the ghrelin receptor.
Collapse
Affiliation(s)
- Yuan-Hao Lo
- Graduate Institute of Biotechnology, National Chung Hsing University , Taichung 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen GH, Yang CY, Lee SJ, Wu CC, Tzen JTC. Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude. J Food Drug Anal 2014; 22:303-309. [PMID: 28911419 PMCID: PMC9354868 DOI: 10.1016/j.jfda.2013.12.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/28/2013] [Accepted: 12/06/2013] [Indexed: 01/09/2023] Open
Abstract
The taste quality of oolong tea generated from leaves of Camellia sinensis L. cultivated in the same mountain area is positively correlated to the cultivation altitude, partly due to the inverse correlation with the astringency of the tea infusion. The astringency of oolong tea mostly results from the presence of polyphenolic compounds, mainly catechins and their derivatives. Four catechins, (−)-epicatechin (EC) and (−)-epigallocatechin (EGC) together with their gallate derivatives (with relatively high astringency), (−)-EC gallate (ECG) and (−)-EGC gallate (EGCG), were detected as major compounds in oolong tea. The degrees of catechin galloylation, designated as ECG/(EC + ECG) and EGCG/(EGC + EGCG), in both oolong tea infusions and their fresh tea leaves, were found to be inversely correlated to the cultivation altitude at 200 m, 800 m, and 1300 m. A similar inverse correlation was observed when seven more oolong tea infusions and seven more fresh leaves harvested at altitude ranging from 170 m to 1600 m were recruited for the analyses. Moreover, catechin contents in oolong tea infusions were also found to be inversely correlated to the cultivation altitude. It is proposed that catechin content and the degree of its galloylation account for, at least partly, the inverse correlation between the astringency of oolong tea and the cultivation altitude.
Collapse
Affiliation(s)
- Guan-Heng Chen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Chin-Ying Yang
- Department of Agronomy, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Sin-Jie Lee
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Chia-Chang Wu
- Wunshan Branch, Tea Research and Extension Station, New Taipei City, Taiwan, ROC
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC; School of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
40
|
Liu CM, Chen CY, Lin YW. Estimation of tea catechin levels using micellar electrokinetic chromatography: a quantitative approach. Food Chem 2013; 150:145-50. [PMID: 24360431 DOI: 10.1016/j.foodchem.2013.10.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 06/12/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
A simple, inexpensive micellar electrokinetic chromatography (MEKC) method with UV detection was used to determine seven catechins and one xanthine (caffeine) in tea. All the compounds were successfully separated (15kV) within a 15-min migration period with a high number of theoretical plates (>8.0×10(4)) in a running buffer (pH 7) containing 10mmoll(-1) sodium tetraborate, 4mmoll(-1) sodium phosphate, and 25mmoll(-1) SDS. The regression lines of all standard catechins were linear within the range of 0.03-4μgml(-1). Green tea infused at 95°C for 10min showed higher levels of catechins (especially epigallocatechin galate, epicatechin gallate, and epicatechin) than tea infused at 80°C. In addition, major differences were observed in the levels of catechins in the first and second infusions (both brewed at 95°C for 10min). Finally, green tea leaves were infused separately with tap water, deionised water, spring water, reverse osmosis water, and distilled water at 95°C, and the catechin content of the infusions was investigated by the proposed method. In the infusion brewed with tap water, catechins appeared to be epimerisation from the epistructure to the nonepistructure. This epimerisation may take place more readily in tap water than in distilled water owing to the complexity of the ions present in tap water.
Collapse
Affiliation(s)
- Chao-Ming Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chung-Yu Chen
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan.
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan.
| |
Collapse
|
41
|
|
42
|
Chen YJ, Kuo PC, Yang ML, Li FY, Tzen JT. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Quesille-Villalobos AM, Torrico JS, Ranilla LG. Phenolic compounds, antioxidant capacity, andin vitro α-amylase inhibitory potential of tea infusions (Camellia sinensis) commercialized in Chile. CYTA - JOURNAL OF FOOD 2013. [DOI: 10.1080/19476337.2012.688219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
|
45
|
Wu C, Xu H, Héritier J, Andlauer W. Determination of catechins and flavonol glycosides in Chinese tea varieties. Food Chem 2012; 132:144-9. [DOI: 10.1016/j.foodchem.2011.10.045] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/31/2011] [Accepted: 10/12/2011] [Indexed: 11/16/2022]
|
46
|
Lee JE, Lee BJ, Hwang JA, Ko KS, Chung JO, Kim EH, Lee SJ, Hong YS. Metabolic dependence of green tea on plucking positions revisited: a metabolomic study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10579-85. [PMID: 21899366 DOI: 10.1021/jf202304z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dependence of global green tea metabolome on plucking positions was investigated through (1)H nuclear magnetic resonance (NMR) analysis coupled with multivariate statistical data set. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), were employed for a finding metabolic discrimination among fresh green tea leaves plucked at different positions from young to old leaves. In addition to clear metabolic discrimination among green tea leaves, elevations in theanine, caffeine, and gallic acid levels but reductions in catechins, such as epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG), glucose, and sucrose levels were observed, as the green tea plant grows up. On the other hand, the younger the green tea leaf is, the more theanine, caffeine, and gallic acid but the lesser catechins accumlated in the green tea leaf, revealing a reverse assocation between theanine and catechins levels due to incorporaton of theanine into catechins with growing up green tea plant. Moreover, as compared to the tea leaf, the observation of marked high levels of theanine and low levels of catechins in green tea stems exhibited a distinct tea plant metabolism between the tea leaf and the stem. This metabolomic approach highlights taking insight to global metabolic dependence of green tea leaf on plucking position, thereby providing distinct information on green tea production with specific tea quality.
Collapse
Affiliation(s)
- Jang-Eun Lee
- School of Life Science and Biotechnology, Korea University , Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kuo PC, Lai YY, Chen YJ, Yang WH, Tzen JTC. Changes in volatile compounds upon aging and drying in oolong tea production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:293-301. [PMID: 20945506 DOI: 10.1002/jsfa.4184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Long-term storage (aging) with periodic drying of fresh oolong tea gives rise to so-called old oolong tea. Alteration of aroma compounds is expected when a fresh oolong tea is converted into an old one, as the two teas smell drastically different. The aim of this study was to compare the volatile compounds in fresh and old oolong teas. RESULTS Significant differences were observed between the volatile compounds in fresh and old oolong teas. This observation suggested that long straight chains of alcohols and acids were putatively decomposed while shorter-chain acids, their amide derivatives and many nitrogen-containing compounds were generated during the tea conversion processes. The overall patterns of volatile compounds observed in five different preparations of old oolong tea were fundamentally identical. This consensus pattern was different from that observed in oolong tea either stored for more than 10 years without drying or prepared at relatively low temperatures and short baking time. CONCLUSION Characteristic aroma nitrogen-containing compounds, including N-ethylsuccinimide, 2-acetylpyrrole, 2-formylpyrrole and 3-pyridinol, were consistently found in the examined old oolong teas. These compounds might be regarded as typical constituents at least for a certain kind of old oolong tea.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | | | | | | | | |
Collapse
|
48
|
Lu RL, Hu FL, Xia T. Activity-Guided Isolation and Identification of Radical Scavenging Components in Gao-Cha Tea. J Food Sci 2010; 75:H239-43. [DOI: 10.1111/j.1750-3841.2010.01804.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Kim JM, Lee EK, Kim DH, Yu BP, Chung HY. Kaempferol modulates pro-inflammatory NF-kappaB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. AGE (DORDRECHT, NETHERLANDS) 2010; 32:197-208. [PMID: 20431987 PMCID: PMC2861750 DOI: 10.1007/s11357-009-9124-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/30/2009] [Indexed: 05/26/2023]
Abstract
Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-kB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-kB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-kappaB activity and NF-kB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-kappaB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-kappaB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies.
Collapse
Affiliation(s)
- Ji Min Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735 Korea
| | - Eun Kyeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735 Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735 Korea
| | - Byung Pal Yu
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, South Korea
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900 USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735 Korea
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, South Korea
| |
Collapse
|
50
|
Lee RJ, Lee VSY, Tzen JTC, Lee MR. Study of the release of gallic acid from (-)-epigallocatechin gallate in old oolong tea by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:851-858. [PMID: 20201026 DOI: 10.1002/rcm.4442] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Liquid chromatography combined with multiple-stage mass spectrometry (LC/MS(n)) was used to study the pathway of the release of gallic acid (GA) from epigallocatechin gallate (EGCG) in infusion of old oolong tea. The possibility of releasing GA from EGCG in old tea preparations was supported by an in vitro observation of GA degraded from EGCG under heating conditions mimicking the drying process. Negative electrospray ionization with the data-dependent mode of MS(n) was used to study the formation pathway of GA in old oolong tea. The MS(n) data show that GA was released from the dimer of EGCG, not directly degraded from EGCG.
Collapse
Affiliation(s)
- Ren-Jye Lee
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | |
Collapse
|