1
|
Thomas NV, Monica Diyya AS, Kim SK, Faraj KA, Ghafoor DD, Qian ZJ, Tigabu BM. Bioactives from Marine Organisms and their Potential Role as Matrix Metalloproteinase Inhibitors. Curr Pharm Des 2022; 28:3351-3362. [PMID: 36411577 DOI: 10.2174/1381612829666221121145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Recent research has revealed the role of metalloproteinases in a number of severe pathological illnesses, including cardiac, cartilage, neurological, and cancer-related diseases that are fatal to humans. Metalloproteinases are a subclass of endopeptidases that comprise structurally identical enzymes known as Matrix Metalloproteinases (MMPs) that are solely involved in extracellular matrix degradation and play a significant regulatory function in tissue remodeling. Improper regulation and expression of MMPs have been linked to several life-threatening pathological conditions in humans. Hence there is an ever-growing interest in various research communities to identify and report the Matrix Metalloproteinase Inhibitors (MMPIs). In spite of several chemically synthesized MMPIs being available currently, several unpleasant side effects, un-successful clinical trials have made use of synthetic MMPIs as a risky strategy. Several natural product researchers have strongly recommended and reported many natural resources like plants, microorganisms, and animals as greater resources to screen for bioactives that can function as potential natural MMPIs. Marine environment is one of the vast and promising resources that harbor diverse forms of life known to synthesize biologically active compounds. These bioactive compounds from marine organisms have been reported for their unparalleled biological effects and have profound applications in cosmeceutical, nutraceutical, and pharmaceutical research. Several research groups have reported an umpteen number of medicinally unmatched compounds from marine flora and fauna, thus driving researchers to screen marine organisms for natural MMPIs. In this review, our group has reported the potential MMPIs from marine organisms.
Collapse
Affiliation(s)
- Noel Vinay Thomas
- Department of Biomedical Science, College of Science, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Apoorva Salomy Monica Diyya
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do, 11558, Korea
| | - Kaeuis Aziz Faraj
- Department of Nursing, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Dlzar Dlshad Ghafoor
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq.,Department of Chemistry, College of Science, University of Sulaymaniyah, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Zhong Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bereket Molla Tigabu
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Weng Z, Zhao J, Wang Z, Chen J, Luo Q, Yang R, Chen H, Zhang P, Wang T. Responses of isomeric floridosides under stress in two heteromorphic generations of Neoporphyra haitanensis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
3
|
Yang S, Xiao Z, Lin L, Tang Y, Hong P, Sun S, Zhou C, Qian ZJ. Mechanism Analysis of Antiangiogenic d-Isofloridoside from Marine Edible Red algae Laurencia undulata in HUVEC and HT1080 cell. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13787-13795. [PMID: 34767715 DOI: 10.1021/acs.jafc.1c05007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Laurencia undulata, as one of the most biologically active species in the genus Laurencia, is an edible folk herb red algae. Among them, d-isofloridoside (DIF, 940.68 Da) is isolated from Laurencia undulata, which has antioxidant and matrix metalloproteinases (MMP) inhibitory activities. However, its mechanism of action on tumor angiogenesis has not yet been reported. In this study, we have studied the mechanism of DIF on tumor metastasis and angiogenesis in HT1080 cell and human vascular endothelial cell (HUVEC). The results show that DIF can reduce the activity of MMP-2/9, and can inhibit the expression of hypoxia-inducible factor-1α (HIF-1α) by regulating the downstream PI3K/AKT and mitogen-activated protein kinases (MAPK) pathways, thereby down-regulating the production of vascular endothelial growth factor (VEGF) in CoCl2-induced HT1080 cell. In addition, DIF can inhibit the activation of VEGF receptor (VEGFR-2), regulate downstream PI3K/AKT, MAPK, nuclear factor-kappa B (NF-κB) signal pathways, activate apoptosis, and thus down-regulate the production of platelet-derived growth factor (PDGF) in VEGF-induced HUVEC. In conclusion, our research shows that DIF has the potential to develop into a tumor-preventing functional food and tumor angiogenesis inhibitor, and it can provide theoretical guidance for the high-value comprehensive utilization of edible red algae Laurencia undulata.
Collapse
Affiliation(s)
- Shengtao Yang
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Zhenbang Xiao
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liyuan Lin
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Yanfei Tang
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Shengli Sun
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| |
Collapse
|
4
|
Wang J, Cao X, Chen W, Xu J, Wu B. Identification and Characterization of a Thermostable GH36 α-Galactosidase from Anoxybacillusvitaminiphilus WMF1 and Its Application in Synthesizing Isofloridoside by Reverse Hydrolysis. Int J Mol Sci 2021; 22:10778. [PMID: 34639118 PMCID: PMC8509150 DOI: 10.3390/ijms221910778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
An α-galactosidase-producing strain named Anoxybacillus vitaminiphilus WMF1, which catalyzed the reverse hydrolysis of d-galactose and glycerol to produce isofloridoside, was isolated from soil. The α-galactosidase (galV) gene was cloned and expressed in Escherichia coli. The galV was classified into the GH36 family with a molecular mass of 80 kDa. The optimum pH and temperature of galV was pH 7.5 and 60 °C, respectively, and it was highly stable at alkaline pH (6.0-9.0) and temperature below 65 °C. The specificity for p-nitrophenyl α-d-galactopyranoside was 70 U/mg, much higher than that for raffinose and stachyose. Among the metals and reagents tested, galV showed tolerance in the presence of various organic solvents. The kinetic parameters of the enzyme towards p-nitrophenyl α-d-galactopyranoside were obtained as Km (0.12 mM), Vmax (1.10 × 10-3 mM s-1), and Kcat/Km (763.92 mM-1 s-1). During the reaction of reverse hydrolysis, the enzyme exhibited high specificity towards the glycosyl donor galactose and acceptors glycerol, ethanol and ethylene glycol. Finally, the isofloridoside was synthesized using galactose as the donor and glycerol as the acceptor with a 26.6% conversion rate of galactose. This study indicated that galV might provide a potential enzyme source in producing isofloridoside because of its high thermal stability and activity.
Collapse
Affiliation(s)
- Jialing Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Xuefei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| | - Weihao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| | - Jiaxing Xu
- College of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Jiangxi Road, Huai’an 223300, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| |
Collapse
|
5
|
Tziveleka LA, Tammam MA, Tzakou O, Roussis V, Ioannou E. Metabolites with Antioxidant Activity from Marine Macroalgae. Antioxidants (Basel) 2021; 10:1431. [PMID: 34573063 PMCID: PMC8470618 DOI: 10.3390/antiox10091431] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) attack biological molecules, such as lipids, proteins, enzymes, DNA, and RNA, causing cellular and tissue damage. Hence, the disturbance of cellular antioxidant homeostasis can lead to oxidative stress and the onset of a plethora of diseases. Macroalgae, growing in stressful conditions under intense exposure to UV radiation, have developed protective mechanisms and have been recognized as an important source of secondary metabolites and macromolecules with antioxidant activity. In parallel, the fact that many algae can be cultivated in coastal areas ensures the provision of sufficient quantities of fine chemicals and biopolymers for commercial utilization, rendering them a viable source of antioxidants. This review focuses on the progress made concerning the discovery of antioxidant compounds derived from marine macroalgae, covering the literature up to December 2020. The present report presents the antioxidant potential and biogenetic origin of 301 macroalgal metabolites, categorized according to their chemical classes, highlighting the mechanisms of antioxidative action when known.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Mohamed A. Tammam
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Olga Tzakou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (M.A.T.); (O.T.); (V.R.)
| |
Collapse
|
6
|
Ibrahim NM, Ibrahim SR, Ashour OH, Abdel-Kader TG, Hassan MM, Ali RS. The effect of Red Seaweed ( Chondrus crispus) on the fertility of male albino rats. Saudi J Biol Sci 2021; 28:3864-3869. [PMID: 34220241 PMCID: PMC8241699 DOI: 10.1016/j.sjbs.2021.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 10/25/2022] Open
Abstract
At different parts of the world, Red Seaweeds are one component of human diets especially at Southeast Asia. Red Seaweeds structurally contain bioactive molecules so; we studied the effect of Chondrus crispus on increasing the male albino rat fertility. Twelve male albino rats are used in this study as two group pre-treated group and post- treated one each with 6 animals. The pretreated group was dissected before the post-treated group injection. Each post treated rat injected intramuscular with 1 mg of Chondrus crispus with dose 0.1 ml/ twice per week for 48 day (Mukhtar et al., 2013). The results showed that increasing on the total testosterone levels insignificantly, sperm motility significantly, and decreasing in both FSH and DPPH levels insignificantly and significantly for the MDA levels in the post-treated group. The morphological appearance and histological examination for the sperm, testis and liver were normal as the pretreated group. The molecular studies showed absence of any DNA fragmentation for the testis of both group. The Red Seaweed has an enhanced effect in the testicular function of the animal which might increase their fertility and sexual activities.
Collapse
Affiliation(s)
- Nehad M Ibrahim
- Department of Zoology & Entomology, Faculty of Science, Helwan University, 11795 Cairo, Egypt
| | - Shimaa R Ibrahim
- Molecular Biology and Genetics Division, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Osama H Ashour
- Biochemistry, Division, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tharwat G Abdel-Kader
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Monaser M Hassan
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Rania S Ali
- Department of Zoology & Entomology, Faculty of Science, Helwan University, 11795 Cairo, Egypt
| |
Collapse
|
7
|
Ishihara K, Seko T, Oyamada C, Kunitake H, Muraoka T. Synergistic effect of dietary glycerol galactoside and porphyran from nori on cecal immunoglobulin A levels in mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenji Ishihara
- Research Center for Biochemistry and Food Technology, National Research Institute of Fisheries Science
| | - Takuya Seko
- Research Center for Biochemistry and Food Technology, National Research Institute of Fisheries Science
| | - Chiaki Oyamada
- Research Center for Biochemistry and Food Technology, National Research Institute of Fisheries Science
| | - Hiromi Kunitake
- Food Science Research Division, Kumamoto Prefectural Fisheries Research Center
| | - Toshihiko Muraoka
- Food Science Research Division, Kumamoto Prefectural Fisheries Research Center
| |
Collapse
|
8
|
Maneffa AJ, Whitwood AC, Whitehouse AS, Powell H, Clark JH, Matharu AS. Unforeseen crystal forms of the natural osmolyte floridoside. Commun Chem 2020; 3:128. [PMID: 36703387 PMCID: PMC9814874 DOI: 10.1038/s42004-020-00376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023] Open
Abstract
Floridoside (2-α-O-D-galactopyranosyl glycerol) is a glycerol glycoside that is biosynthesised by most species of red algae and has been implicated as an intracellular regulator of various homeostatic functions. Here, we report the identification of two unforeseen crystal forms of the ubiquitous natural osmolyte floridoside including a seemingly unheralded second anhydrous conformational polymorph and the unambiguous description of an elusive monohydrated variant. By employing a variety of thermal and spectroscopic techniques, we begin to explore both their macro and molecular physicochemical properties, which are notably different to that of the previously reported polymorph. This work advances the characterisation of this important natural biomolecule which could aid in facilitating optimised utilisation across a variety of anthropocentric applications and improve comprehension of its role in-vivo as a preeminent compatible solute.
Collapse
Affiliation(s)
- Andrew J. Maneffa
- grid.5685.e0000 0004 1936 9668Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD UK
| | - Adrian C. Whitwood
- grid.5685.e0000 0004 1936 9668Department of Chemistry, University of York, Heslington, York YO10 5DD UK
| | - A. Steve Whitehouse
- Nestlé Product Technology Centre (Nestec York Ltd.), Clifton, York YO31 8FY UK
| | - Hugh Powell
- Nestlé Product Technology Centre (Nestec York Ltd.), Clifton, York YO31 8FY UK
| | - James H. Clark
- grid.5685.e0000 0004 1936 9668Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD UK
| | - Avtar S. Matharu
- grid.5685.e0000 0004 1936 9668Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD UK
| |
Collapse
|
9
|
The Protective Effect of the Polysaccharide Precursor, D-Isofloridoside, from Laurencia undulata on Alcohol-Induced Hepatotoxicity in HepG2 Cells. Molecules 2020; 25:molecules25051024. [PMID: 32106572 PMCID: PMC7179215 DOI: 10.3390/molecules25051024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Alcoholic liver disease (ALD) threatens human health, so it is imperative that we find ways to prevent or treat it. In recent years, the study of polysaccharides has shown that they have different kinds of bioactivities. Among them are many biological effects that have been attributed to polysaccharide precursors. D-Isofloridoside (DIF) is one of the polysaccharide precursors from the marine red alga Laurencia undulata. This study evaluated the effect of DIF on alcohol-induced oxidative stress in human hepatoma cells (HepG2). As a result, DIF attenuated alcohol-induced cytotoxicity, reduced the amount of intracellular reactive oxygen species (ROS), and effectively reduced alcohol-induced DNA damage in HepG2 cells. In addition, a western blot showed that, after DIF treatment, the expression levels of glutathione (GSH), superoxide dismutase (SOD), and B-cell lymphoma-2 (bcl-2) increased, while the expression levels of γ-glutamyl transferase (GGT), BCL2-associated X (bax), cleaved caspase-3, and mitogen-activated protein kinase (p38 and c-Jun N-terminal kinase) signal transduction proteins reduced. This showed that DIF may protect cells by reducing the amount of intracellular ROS and inhibiting intracellular oxidative stress and apoptotic processes. Finally, molecular docking demonstrated that DIF can bind to SOD, GGT, B-cell lymphoma-2, and bax proteins. These results indicated that DIF can protect HepG2 cells from alcohol-induced oxidative stress damage, making it an effective potential ingredient in functional foods.
Collapse
|
10
|
Niu T, Fu G, Zhou J, Han H, Chen J, Wu W, Chen H. Floridoside Exhibits Antioxidant Properties by Activating HO-1 Expression via p38/ERK MAPK Pathway. Mar Drugs 2020; 18:md18020105. [PMID: 32050604 PMCID: PMC7074132 DOI: 10.3390/md18020105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/02/2022] Open
Abstract
Floridoside is a low-molecular-weight organic compound, which can be accumulated by red algae under stressful conditions to protect cells via its excellent antioxidant properties. In the present study, we investigated the antioxidant mechanism of floridoside toward human hepatocyte L-02 cells. We found that floridoside had no toxicity to L-02 cells, and no reactive oxidative species were induced by it either. However, the expression of hemoxygenase-1 (HO-1) protein was up-regulated upon exposure to floridoside, and two antioxidant enzymes, superoxide dismutase (SOD) and GSH-Px, were activated by floridoside. Moreover, we investigated the pathway involved in the production of these antioxidants, p38/extracellular signal-regulated kinase (ERK) MAPK-nuclear factor-erythroid-2-related factor 2 (Nrf2) pathway. ERK1/2 and p38 phosphorylation, nuclear translocation of Nrf2, and activation of ARE luciferase activity were observed upon exposure to floridoside. siRNA interference and inhibitor treatment suppressed the HO-1 expression and the phosphorylation of ERK1/2 and p38, respectively. These results indicated that floridoside exerted its antioxidant activity by activating HO-1 expression via p38/ERK MAPK-Nrf2 pathway in human hepatocyte L-02 cells.
Collapse
|
11
|
Gegner HM, Rädecker N, Ochsenkühn M, Barreto MM, Ziegler M, Reichert J, Schubert P, Wilke T, Voolstra CR. High levels of floridoside at high salinity link osmoadaptation with bleaching susceptibility in the cnidarian-algal endosymbiosis. Biol Open 2019; 8:8/12/bio045591. [PMID: 31843766 PMCID: PMC6918757 DOI: 10.1242/bio.045591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coral reefs are in global decline mainly due to increasing sea surface temperatures triggering coral bleaching. Recently, high salinity has been linked to increased thermotolerance and decreased bleaching in the sea anemone coral model Aiptasia. However, the underlying processes remain elusive. Using two Aiptasia host–endosymbiont pairings, we induced bleaching at different salinities and show reduced reactive oxygen species (ROS) release at high salinities, suggesting a role of osmoadaptation in increased thermotolerance. A subsequent screening of osmolytes revealed that this effect was only observed in algal endosymbionts that produce 2-O-glycerol-α-D-galactopyranoside (floridoside), an osmolyte capable of scavenging ROS. This result argues for a mechanistic link between osmoadaptation and thermotolerance, mediated by ROS-scavenging osmolytes (e.g., floridoside). This sheds new light on the putative mechanisms underlying the remarkable thermotolerance of corals from water bodies with high salinity such as the Red Sea or Persian/Arabian Gulf and holds implications for coral thermotolerance under climate change. This article has an associated First Person interview with the first author of the paper. Summary: Using the coral model Aiptasia, we show increased thermotolerance at high salinities, concomitant with a reduced reactive oxygen species (ROS) release by algal endosymbionts. This suggests a mechanistic link between osmoadaptation and thermotolerance, mediated by ROS-scavenging osmolytes.
Collapse
Affiliation(s)
- Hagen M Gegner
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nils Rädecker
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Michael Ochsenkühn
- Division of Science and Engineering, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Marcelle M Barreto
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.,Department of Animal Ecology & Systematics, Justus Liebig University, 35390 Giessen, Germany
| | - Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, 35390 Giessen, Germany
| | - Patrick Schubert
- Department of Animal Ecology & Systematics, Justus Liebig University, 35390 Giessen, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, 35390 Giessen, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia .,Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
12
|
Sanina N. Vaccine Adjuvants Derived from Marine Organisms. Biomolecules 2019; 9:E340. [PMID: 31382606 PMCID: PMC6723903 DOI: 10.3390/biom9080340] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Vaccine adjuvants help to enhance the immunogenicity of weak antigens. The adjuvant effect of certain substances was noted long ago (the 40s of the last century), and since then a large number of adjuvants belonging to different groups of chemicals have been studied. This review presents research data on the nonspecific action of substances originated from marine organisms, their derivatives and complexes, united by the name 'adjuvants'. There are covered the mechanisms of their action, safety, as well as the practical use of adjuvants derived from marine hydrobionts in medical immunology and veterinary medicine to create modern vaccines that should be non-toxic and efficient. The present review is intended to briefly describe some important achievements in the use of marine resources to solve this important problem.
Collapse
Affiliation(s)
- Nina Sanina
- Department of Biochemistry, Microbiology and Biotechnology, School of Natural Sciences, Far Eastern, Federal University, Sukhanov Str., 8, Vladivostok 690091, Russia.
| |
Collapse
|
13
|
Oceans as a Source of Immunotherapy. Mar Drugs 2019; 17:md17050282. [PMID: 31083446 PMCID: PMC6562586 DOI: 10.3390/md17050282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Marine flora is taxonomically diverse, biologically active, and chemically unique. It is an excellent resource, which offers great opportunities for the discovery of new biopharmaceuticals such as immunomodulators and drugs targeting cancerous, inflammatory, microbial, and fungal diseases. The ability of some marine molecules to mediate specific inhibitory activities has been demonstrated in a range of cellular processes, including apoptosis, angiogenesis, and cell migration and adhesion. Immunomodulators have been shown to have significant therapeutic effects on immune-mediated diseases, but the search for safe and effective immunotherapies for other diseases such as sinusitis, atopic dermatitis, rheumatoid arthritis, asthma and allergies is ongoing. This review focuses on the marine-originated bioactive molecules with immunomodulatory potential, with a particular focus on the molecular mechanisms of specific agents with respect to their targets. It also addresses the commercial utilization of these compounds for possible drug improvement using metabolic engineering and genomics.
Collapse
|
14
|
Torres P, Santos JP, Chow F, dos Santos DY. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Agar Extraction By-Products from Gelidium sesquipedale as a Source of Glycerol-Galactosides. Molecules 2018; 23:molecules23123364. [PMID: 30572590 PMCID: PMC6320990 DOI: 10.3390/molecules23123364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022] Open
Abstract
Alkaline treatment is a common step largely used in the industrial extraction of agar, a phycocolloid obtained from red algae such as Gelidium sesquipedale. The subsequent residue constitutes a poorly valorized by-product. The present study aimed to identify low-molecular-weight compounds in this alkaline waste. A fractionation process was designed in order to obtain the oligosaccharidic fraction from which several glycerol-galactosides were isolated. A combination of electrospray ion (ESI)-mass spectrometry, ¹H-NMR spectroscopy, and glycosidic linkage analyses by GC-MS allowed the identification of floridoside, corresponding to Gal-glycerol, along with oligogalactosides, i.e., (Gal)2⁻4-glycerol, among which α-d-galactopyranosyl-(1→3)-β-d-galactopyranosylα1-2⁻glycerol and α-d-galactopyranosyl-(1→4)-β-d-galactopyranosylα1-2⁻glycerol were described for the first time in red algae.
Collapse
|
16
|
Vasconcelos AA, Pomin VH. Marine Carbohydrate-Based Compounds with Medicinal Properties. Mar Drugs 2018; 16:E233. [PMID: 29987239 PMCID: PMC6070937 DOI: 10.3390/md16070233] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023] Open
Abstract
The oceans harbor a great diversity of organisms, and have been recognized as an important source of new compounds with nutritional and therapeutic potential. Among these compounds, carbohydrate-based compounds are of particular interest because they exhibit numerous biological functions associated with their chemical diversity. This gives rise to new substances for the development of bioactive products. Many are the known applications of substances with glycosidic domains obtained from marine species. This review covers the structural properties and the current findings on the antioxidant, anti-inflammatory, anticoagulant, antitumor and antimicrobial activities of medium and high molecular-weight carbohydrates or glycosylated compounds extracted from various marine organisms.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
17
|
Ochsenkühn MA, Röthig T, D’Angelo C, Wiedenmann J, Voolstra CR. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. SCIENCE ADVANCES 2017; 3:e1602047. [PMID: 28835914 PMCID: PMC5559212 DOI: 10.1126/sciadv.1602047] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 07/19/2017] [Indexed: 05/12/2023]
Abstract
The endosymbiosis between Symbiodinium dinoflagellates and stony corals provides the foundation of coral reef ecosystems. The survival of these ecosystems is under threat at a global scale, and better knowledge is needed to conceive strategies for mitigating future reef loss. Environmental disturbance imposing temperature, salinity, and nutrient stress can lead to the loss of the Symbiodinium partner, causing so-called coral bleaching. Some of the most thermotolerant coral-Symbiodinium associations occur in the Persian/Arabian Gulf and the Red Sea, which also represent the most saline coral habitats. We studied whether Symbiodinium alter their metabolite content in response to high-salinity environments. We found that Symbiodinium cells exposed to high salinity produced high levels of the osmolyte 2-O-glycerol-α-d-galactopyranoside (floridoside), both in vitro and in their coral host animals, thereby increasing their capacity and, putatively, the capacity of the holobiont to cope with the effects of osmotic stress in extreme environments. Given that floridoside has been previously shown to also act as an antioxidant, this osmolyte may serve a dual function: first, to serve as a compatible organic osmolyte accumulated by Symbiodinium in response to elevated salinities and, second, to counter reactive oxygen species produced as a consequence of potential salinity and heat stress.
Collapse
Affiliation(s)
- Michael A. Ochsenkühn
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Science and Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cecilia D’Angelo
- Coral Reef Laboratory/Institute for Life Sciences, Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Jörg Wiedenmann
- Coral Reef Laboratory/Institute for Life Sciences, Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Corresponding author.
| |
Collapse
|
18
|
|
19
|
Fernando IPS, Nah JW, Jeon YJ. Potential anti-inflammatory natural products from marine algae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:22-30. [PMID: 27716532 DOI: 10.1016/j.etap.2016.09.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Inflammatory diseases have become one of the leading causes of health issue throughout the world, having a considerable influence on healthcare costs. With the emerging developments in natural product, synthetic and combinatorial chemistry, a notable success has been achieved in discovering natural products and their synthetic structural analogs with anti-inflammatory activity. However, many of these therapeutics have indicated detrimental side effects upon prolonged usage. Marine algae have been identified as an underexplored reservoir of unique anti-inflammatory compounds. These include polyphenols, sulfated polysaccharides, terpenes, fatty acids, proteins and several other bioactives. Consumption of these marine algae could provide defense against the pathophysiology of many chronic inflammatory diseases. With further investigation, algal anti-inflammatory phytochemicals have the potential to be used as therapeutics or in the synthesis of structural analogs with profound anti-inflammatory activity with reduced side effects. The current review summarizes the latest knowledge about the potential anti-inflammatory compounds discovered from marine algae.
Collapse
Affiliation(s)
- I P Shanura Fernando
- Department of Marine Life Science, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Jae-Woon Nah
- Department of High Polymer Engineering, Sunchon National University, Jungang-ro, 13, Suncheon, Jeollanam-do, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 690-756, Republic of Korea.
| |
Collapse
|
20
|
Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. JOURNAL OF APPLIED PHYCOLOGY 2016; 29:949-982. [PMID: 28458464 PMCID: PMC5387034 DOI: 10.1007/s10811-016-0974-5] [Citation(s) in RCA: 581] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches.
Collapse
Affiliation(s)
- Mark L. Wells
- School of Marine Sciences, University of Maine, Orono, ME 04469 USA
| | - Philippe Potin
- Integrative Biology of Marine Models, Station Biologique Roscoff, CNRS-Université Pierre et Marie Curie, Place Georges Teissier, 29680 Roscoff, France
| | - James S. Craigie
- National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - John A. Raven
- Division of Plant Sciences, University of Dundee (James Hutton Inst), Invergowrie, Dundee, DD2 5DA Scotland UK
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Sabeeha S. Merchant
- Department of Chemistry & Biochemistry, University of California-Los Angeles, 607 Charles E. Young Dr., East, Los Angeles, CA 90095-1569 USA
| | - Katherine E. Helliwell
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA UK
- Marine Biological Association of the UK, Citadel Hill, Plymouth, PL1 2PB UK
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA UK
| | - Mary Ellen Camire
- School of Food and Agriculture, University of Maine, Orono, ME 04469 USA
| | - Susan H. Brawley
- School of Marine Sciences, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
21
|
Harizani M, Ioannou E, Roussis V. The Laurencia Paradox: An Endless Source of Chemodiversity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2016; 102:91-252. [PMID: 27380407 DOI: 10.1007/978-3-319-33172-0_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nature, the most prolific source of biological and chemical diversity, has provided mankind with treatments for health problems since ancient times and continues to be the most promising reservoir of bioactive chemicals for the development of modern drugs. In addition to the terrestrial organisms that still remain a promising source of new bioactive metabolites, the marine environment, covering approximately 70% of the Earth's surface and containing a largely unexplored biodiversity, offers an enormous resource for the discovery of novel compounds. According to the MarinLit database, more than 27,000 metabolites from marine macro- and microorganisms have been isolated to date providing material and key structures for the development of new products in the pharmaceutical, food, cosmeceutical, chemical, and agrochemical sectors. Algae, which thrive in the euphotic zone, were among the first marine organisms that were investigated as sources of food, nutritional supplements, soil fertilizers, and bioactive metabolites.Red algae of the genus Laurencia are accepted unanimously as one of the richest sources of new secondary metabolites. Their cosmopolitan distribution, along with the chemical variation influenced to a significant degree by environmental and genetic factors, have resulted in an endless parade of metabolites, often featuring multiple halogenation sites.The present contribution, covering the literature until August 2015, offers a comprehensive view of the chemical wealth and the taxonomic problems currently impeding chemical and biological investigations of the genus Laurencia. Since mollusks feeding on Laurencia are, in many cases, bioaccumulating, and utilize algal metabolites as chemical weaponry against natural enemies, metabolites of postulated dietary origin of sea hares that feed on Laurencia species are also included in the present review. Altogether, 1047 secondary metabolites, often featuring new carbocyclic skeletons, have been included.The chapter addresses: (1) the "Laurencia complex", the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; (2) the secondary metabolites, which are organized according to their chemical structures and are classified into sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds, as well as their sources of isolation which are depicted in tabulated form, and (3) the biological activity organized according to the biological target and the ecological functions of Laurencia metabolites.
Collapse
Affiliation(s)
- Maria Harizani
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| |
Collapse
|
22
|
Wei D, Chen D, Lou Y, Ye Y, Yang R. Metabolomic Profile Characteristics of Pyropia haitanensis as Affected by Harvest Time. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Dandan Wei
- School of Marine Sciences, Ningbo University
| | - Daian Chen
- School of Marine Sciences, Ningbo University
| | | | - Yangfang Ye
- School of Marine Sciences, Ningbo University
| | - Rui Yang
- School of Marine Sciences, Ningbo University
| |
Collapse
|
23
|
Ryu B, Li YX, Kang KH, Kim SK, Kim DG. Floridoside from Laurencia undulata promotes osteogenic differentiation in murine bone marrow mesenchymal cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
24
|
Liu J, Banskota AH, Critchley AT, Hafting J, Prithiviraj B. Neuroprotective effects of the cultivated Chondrus crispus in a C. elegans model of Parkinson's disease. Mar Drugs 2015; 13:2250-66. [PMID: 25874922 PMCID: PMC4413210 DOI: 10.3390/md13042250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the elderly people, currently with no cure. Its mechanisms are not well understood, thus studies targeting cause-directed therapy or prevention are needed. This study uses the transgenic Caenorhabditis elegans PD model. We demonstrated that dietary supplementation of the worms with an extract from the cultivated red seaweed Chondrus crispus decreased the accumulation of α-synulein and protected the worms from the neuronal toxin-, 6-OHDA, induced dopaminergic neurodegeneration. These effects were associated with a corrected slowness of movement. We also showed that the enhancement of oxidative stress tolerance and an up-regulation of the stress response genes, sod-3 and skn-1, may have served as the molecular mechanism for the C. crispus-extract-mediated protection against PD pathology. Altogether, apart from its potential as a functional food, the tested red seaweed, C. crispus, might find promising pharmaceutical applications for the development of potential novel anti-neurodegenerative drugs for humans.
Collapse
Affiliation(s)
- Jinghua Liu
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada.
| | - Arjun H Banskota
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada.
| | - Alan T Critchley
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth, NS B3B 1X8, Canada.
| | - Jeff Hafting
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth, NS B3B 1X8, Canada.
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
25
|
Lai XJ, Yang R, Luo QJ, Chen JJ, Chen HM, Yan XJ. Glycerol-3-phosphate metabolism plays a role in stress response in the red alga Pyropia haitanensis. JOURNAL OF PHYCOLOGY 2015; 51:321-331. [PMID: 26986527 DOI: 10.1111/jpy.12276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/02/2014] [Indexed: 06/05/2023]
Abstract
Glycerol-3-phosphate (G3P) has been suggested as a novel regulator of plant defense signaling, however, its role in algal resistance remains largely unknown. The glycerol kinase (also designated as NHO1) and NAD-dependent G3P dehydrogenase (GPDH) are two key enzymes involved in the G3P biosynthesis. In our study, we cloned the full-length cDNA of NHO1 (NHO1Ph ) and GPDH (GPDHP h ) from the red alga Pyropia haitanensis (denoted as NHO1Ph and GPDHP h ) and examined their expression level under flagellin peptide 22 (flg22) stimulation or heat stress. We also measured the level of G3P and floridoside (a downstream product of G3P in P. haitanensis) under flg22 stimulation or heat stress. Both NHO1Ph and GPDHP h shared high sequence identity and structural conservation with their orthologs from different species, especially from red algae. Phylogenetic analysis showed that NHO1s and GPDHs from red algae were closely related to those from animals. Under flg22 stimulation or heat stress, the expression levels of NHO1Ph and GPDHP h were up-regulated, G3P levels increased, and the contents of floridoside decreased. But the floridoside level increased in the recovery period after heat stress. Taken together, we found that G3P metabolism was associated with the flg22-induced defense response and heat stress response in P. haitanensis, indicating the general conservation of defense response in angiosperms and algae. Furthermore, floridoside might also participate in the stress resistance of P. haitanensis.
Collapse
Affiliation(s)
- Xiao-Juan Lai
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Rui Yang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qi-Jun Luo
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Juan-Juan Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hai-Min Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiao-Jun Yan
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
26
|
Kang HK, Seo CH, Park Y. The effects of marine carbohydrates and glycosylated compounds on human health. Int J Mol Sci 2015; 16:6018-56. [PMID: 25785562 PMCID: PMC4394518 DOI: 10.3390/ijms16036018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 02/02/2023] Open
Abstract
Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed.
Collapse
Affiliation(s)
- Hee-Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju 314-701, Korea.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea.
| |
Collapse
|
27
|
Nogueira CCR, de Palmer Paixão ICN, Teixeira VL. Antioxidant Activity of Natural Products Isolated from Red Seaweeds. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The present work describes more than 60 natural products from marine red seaweeds (Rhodophyta) and their antioxidant activities. The results indicate that algae belonging to the order Ceramiales, family Rhodomelaceae are the most promising as potential producers of antioxidants. This activity seems to be related to the ability to synthesize polyphenols and their derivatives, as bromophenols.
Collapse
Affiliation(s)
- Caio Cesar Richter Nogueira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210–130, Brazil
- Laboratório ALGAMAR, Departmento de Biologia Marinha, Instituto de Biologia, P.O.Box 100.644, Niterói, RJ, 24001-970, Brazil
- Laboratório de Virologia Molecular, Departamento de Biologia Celular e Molecular, Instituto de Biologia Niterói, RJ, 24210–13, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210–130, Brazil
- Laboratório de Virologia Molecular, Departamento de Biologia Celular e Molecular, Instituto de Biologia Niterói, RJ, 24210–13, Brazil
| | - Valéria Laneuville Teixeira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210–130, Brazil
- Laboratório ALGAMAR, Departmento de Biologia Marinha, Instituto de Biologia, P.O.Box 100.644, Niterói, RJ, 24001-970, Brazil
| |
Collapse
|
28
|
Ryu J, Park SJ, Kim IH, Choi YH, Nam TJ. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int J Mol Med 2014; 34:796-803. [PMID: 24946848 PMCID: PMC4121349 DOI: 10.3892/ijmm.2014.1815] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/11/2014] [Indexed: 01/07/2023] Open
Abstract
The significant increase in life expectancy is closely related to the growing interest in the impact of aging on the function and appearance of the skin. Skin aging is influenced by several factors, and solar ultraviolet (UV) irradiation is considered one of the most important causes of skin photoaging. The aim of this study was to examine the anti-photoaging role of porphyra-334 from Porphyra (P.) yezoensis, a mycosporine-like amino acid (MAA), using high-performance liquid chromatography (HPLC), and electrospray ionization-mass spectrometry (ESI-MS). In the present study, extracted UV-absorbing compounds from P. yezoensis included palythine, asterina-330 and porphyra-334. Porphyra-334 was the most abundant MAA in P. yezoensis, and it was therefore used for conducting antiphotoaging experiments. The effect of porphyra-334 on the prevention of photoaging was investigated by measuring reactive oxygen species (ROS) production and matrix metalloproteinase (MMP) levels, as well as extracellular matrix (ECM) components and protein expression in UVA-irradiated human skin fibroblasts. Porphyra-334 suppressed ROS production and the expression of MMPs following UVA irradiation, while increasing levels of ECM components, such as procollagen, type I collagen, elastin. These results suggest that porphyra-334 has various applications in cosmetics and toiletries because of its anti-photoaging activities and may serve as a novel anti-aging agent.
Collapse
Affiliation(s)
- Jina Ryu
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Su-Jin Park
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - In-Hye Kim
- Institute of Fisheries Sciences, Pukyong National University, Busan 619-911, Republic of Korea
| | - Youn Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 619-911, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
29
|
Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS One 2014; 9:e94354. [PMID: 24709783 PMCID: PMC3978056 DOI: 10.1371/journal.pone.0094354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/14/2014] [Indexed: 01/12/2023] Open
Abstract
Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1) At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2) After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3) Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.
Collapse
|
30
|
Kim M, Li YX, Dewapriya P, Ryu B, Kim SK. Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep 2014; 46:398-403. [PMID: 23977987 PMCID: PMC4133907 DOI: 10.5483/bmbrep.2013.46.8.237] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammatory conditions mediated by activated microglia lead to chronic neuro-degenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. This study was conducted to determine the effect of floridoside isolated from marine red algae Laurencia undulata on LPS (100 ng/ml) activated inflammatory responses in BV-2 microglia cells. The results show that floridoside has the ability to suppress pro-inflammatory responses in microglia by markedly inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS). Moreover, floridoside down-regulated the protein and gene expression levels of iNOS and COX-2 by significantly blocking the phosphorylation of p38 and ERK in BV-2 cells. Collectively, these results indicate that floridoside has the potential to be developed as an active agent for the treatment of neuro-inflammation. [BMB Reports 2013; 46(8): 398-403]
Collapse
Affiliation(s)
- MinJeong Kim
- Department of Chemistry; Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea
| | | | | | | | | |
Collapse
|
31
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 2013; 11:2510-73. [PMID: 23880931 PMCID: PMC3736438 DOI: 10.3390/md11072510] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-630-515-6951; Fax: +1-630-971-6414
| | - Abimael D. Rodríguez
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, USA; E-Mail:
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, I-80131 Napoli, Italy; E-Mail:
| | | |
Collapse
|
32
|
Bioactive components of the edible strain of red alga, Chondrus crispus, enhance oxidative stress tolerance in Caenorhabditis elegans. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
33
|
Javan AJ, Javan MJ, Tehrani ZA. Theoretical investigation on antioxidant activity of bromophenols from the marine red alga Rhodomela confervoides: H-atom vs electron transfer mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1534-1541. [PMID: 23347257 DOI: 10.1021/jf304926m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bromophenols are known as antioxidant radical scavengers for some biomolecules such as those in marine red alga. Full understanding of the role played by bromophenols requires detailed knowledge of the radical scavenging activities in probable pathways, a focus of ongoing research. To gain detailed insight into two suggested pathways, H-atom transfer and electron transfer, theoretical studies employing first principle quantum mechanical calculations have been carried out on selected bromophenols. Detailed investigation of the aforementioned routes revealed that upon H-atom abstraction or the electron transfer process, bromophenols cause an increase in radical species in which the unpaired electron appears to be delocalized as much as possible over the whole aromatic ring, especially in the bromine substituent. The O-H bond dissociation energies (BDEs) and ionization potential energies (IPs) are reported at the B3LYP level of theory, providing the first complete series of BDEs and IPs for bromophenols. The observations are compared to those of other antioxidants for which BDEs and IPs have been previously obtained.
Collapse
Affiliation(s)
- Ashkan Jebelli Javan
- Department of Food Hygiene, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | | | | |
Collapse
|
34
|
Shebis Y, Iluz D, Kinel-Tahan Y, Dubinsky Z, Yehoshua Y. Natural Antioxidants: Function and Sources. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.46083] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Olsson MG, Allhorn M, Larsson J, Cederlund M, Lundqvist K, Schmidtchen A, Sørensen OE, Mörgelin M, Akerström B. Up-regulation of A1M/α1-microglobulin in skin by heme and reactive oxygen species gives protection from oxidative damage. PLoS One 2011; 6:e27505. [PMID: 22096585 PMCID: PMC3214066 DOI: 10.1371/journal.pone.0027505] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/18/2011] [Indexed: 01/02/2023] Open
Abstract
During bleeding the skin is subjected to oxidative insults from free heme and radicals, generated from extracellular hemoglobin. The lipocalin α1-microglobulin (A1M) was recently shown to have reductase properties, reducing heme-proteins and other substrates, and to scavenge heme and radicals. We investigated the expression and localization of A1M in skin and the possible role of A1M in the protection of skin tissue from damage induced by heme and reactive oxygen species. Skin explants, keratinocyte cultures and purified collagen I were exposed to heme, reactive oxygen species, and/or A1M and investigated by biochemical methods and electron microscopy. The results demonstrate that A1M is localized ubiquitously in the dermal and epidermal layers, and that the A1M-gene is expressed in keratinocytes and up-regulated after exposure to heme and reactive oxygen species. A1M inhibited the heme- and reactive oxygen species-induced ultrastructural damage, up-regulation of antioxidation and cell cycle regulatory genes, and protein carbonyl formation in skin and keratinocytes. Finally, A1M bound to purified collagen I (Kd = 0.96×10−6 M) and could inhibit and repair the destruction of collagen fibrils by heme and reactive oxygen species. The results suggest that A1M may have a physiological role in protection of skin cells and matrix against oxidative damage following bleeding.
Collapse
Affiliation(s)
- Magnus G Olsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li K, Li XM, Gloer JB, Wang BG. Isolation, characterization, and antioxidant activity of bromophenols of the marine red alga Rhodomela confervoides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9916-9921. [PMID: 21838299 DOI: 10.1021/jf2022447] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A total of 19 naturally occurring bromophenols, with six new and 13 known structures, were isolated and identified from the methanolic extract of the marine red alga Rhodomela confervoides. The new compounds were identified by spectroscopic methods as 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (1), 3,4-dibromo-5-((2,3-dihydroxypropoxy)methyl)benzene-1,2-diol (2), 5-(aminomethyl)-3,4-dibromobenzene-1,2-diol (3), 2-(2,3-dibromo-4,5-dihydroxyphenyl)acetic acid (4), 2-methoxy-3-bromo-5-hydroxymethylphenol (5), and (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (6). Each compound was evaluated for free radical scavenging activity against DPPH (α,α-diphenyl-β-dipicrylhydrazyl) and ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt] radicals. Most of them exhibited potent activities stronger than or comparable to the positive controls butylated hydroxytoluene (BHT) and ascorbic acid. The results from this study suggest that R. confervoides is an excellent source of natural antioxidants, and inclusion of these antioxidant-rich algal components would likely help prevent the oxidative deterioration of food.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Venkatesan J, Kim SK. Osteoporosis treatment: marine algal compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011; 64:417-27. [PMID: 22054965 DOI: 10.1016/b978-0-12-387669-0.00032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteoporosis is one of the most common bone diseases that occur due to imbalance during bone formation and bone resorption. About half of all women over the age of 50 will have a fracture on the hip, wrist, or vertebra. Research and treatment of osteoporosis are challenging for researchers and physicians. There are several types of treatments for osteoporosis including most famous bisphosphonates, estrogen agonists/antagonists, parathyroid hormone, estrogen therapy, hormone therapy, and recently developed RANKL inhibition. In the recent days, much attention has been paid for marine algal extracts and compounds for osteoporosis treatment. In this chapter, we extensively deal with marine algae compounds and their rich mineral constituents for osteoporosis treatment.
Collapse
|
38
|
Metalloproteinase inhibitors: status and scope from marine organisms. Biochem Res Int 2010; 2010:845975. [PMID: 21197102 PMCID: PMC3004377 DOI: 10.1155/2010/845975] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/01/2010] [Accepted: 10/28/2010] [Indexed: 01/06/2023] Open
Abstract
Marine environment has been the source of diverse life forms that produce different biologically active compounds. Marine organisms are consistently contributing with unparalleled bioactive compounds that have profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals. In this process, screening of natural products from marine organisms that could potentially inhibit the expression of metalloproteinases has gained a huge popularity, which became a hot field of research in life sciences. Metalloproteinases, especially, matrix metalloproteinases (MMPs) are a class of structurally similar enzymes that contribute to the extracellular matrix degradation and play major role in normal and pathological tissue remodeling. Imbalance in the expression of MMPs leads to severe pathological condition that could initiate cardiac, cartilage, and cancer-related diseases. Three decades of endeavor for designing potent matrix metalloproteinase inhibitory substances (MMPIs) with many not making upto final clinical trials seek new resources for devising MMPIs. Umpteen number of medicinally valuable compounds being reported from marine organisms, which encourage current researchers to screen potent MMPIs from marine organisms. In this paper, we have made an attempt to report the metalloproteinase inhibiting substances from various marine organisms.
Collapse
|
39
|
Olsson MG, Nilsson EJC, Rutardóttir S, Paczesny J, Pallon J, Åkerström B. Bystander Cell Death and Stress Response is Inhibited by the Radical Scavenger α1-Microglobulin in Irradiated Cell Cultures. Radiat Res 2010; 174:590-600. [DOI: 10.1667/rr2213.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|