1
|
Jäger R, Abou Sawan S, Orrú M, Tinlsey GM, Purpura M, Wells SD, Liao K, Godavarthi A. 1-Methylxanthine enhances memory and neurotransmitter levels. PLoS One 2025; 20:e0313486. [PMID: 39820866 PMCID: PMC11737676 DOI: 10.1371/journal.pone.0313486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 01/19/2025] Open
Abstract
1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control. Memory (escape latency in the Morris water maze test), neurotransmitters (acetylcholine, dopamine, gamma-amino butyric acid (GABA)), and neurochemicals (BDNF, catalase, glutathione, Amyloid Beta and cyclic GMP) were analyzed from whole brain samples in young (8-weeks-old) and aged (16-months-old) rats following 12 days of supplementation (100 mg/d HED of 1-MX [UPLEVEL®, Ingenious Ingredients L.P., Lewisville, TX, USA]) via oral gavage. 1-MX supplementation reduced escape latency by 39% in young animals and 27% in aged animals compared to controls (both p<0.001). Additionally, 1-MX increased the levels of acetylcholine, dopamine, GABA, and cyclic GMP (all p<0.001). Furthermore, 1-MX supplementation led to reduced amyloid beta and higher catalase, BDNF and glutathione concentrations (p<0.001). Collectively, our findings suggest that 1-MX may have cognitive-enhancing and neuroprotective properties.
Collapse
Affiliation(s)
- Ralf Jäger
- Ingenious Ingredients L.P., Lewisville, TX, United States of America
- Increnovo LLC, Whitefish Bay, WI, United States of America
| | | | - Marco Orrú
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States of America
| | - Grant M. Tinlsey
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States of America
| | - Martin Purpura
- Ingenious Ingredients L.P., Lewisville, TX, United States of America
- Increnovo LLC, Whitefish Bay, WI, United States of America
| | - Shawn D. Wells
- Ingenious Ingredients L.P., Lewisville, TX, United States of America
| | - Kylin Liao
- Ingenious Ingredients L.P., Lewisville, TX, United States of America
| | | |
Collapse
|
2
|
Reshetnikov DV, Ivanov ID, Baev DS, Rybalova TV, Mozhaitsev ES, Patrushev SS, Vavilin VA, Tolstikova TG, Shults EE. Design, Synthesis and Assay of Novel Methylxanthine-Alkynylmethylamine Derivatives as Acetylcholinesterase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248787. [PMID: 36557921 PMCID: PMC9788520 DOI: 10.3390/molecules27248787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Xanthine derivatives have been a great area of interest for the development of potent bioactive agents. Thirty-eight methylxanthine derivatives as acetylcholinesterase inhibitors (AChE) were designed and synthesized. Suzuki-Miyaura cross-coupling reactions of 8-chlorocaffeine with aryl(hetaryl)boronic acids, the CuAAC reaction of 8-ethynylcaffeine with several azides, and the copper(I) catalyzed one-pot three-component reaction (A3-coupling) of 8-ethynylcaffeine, 1-(prop-2-ynyl)-, or 7-(prop-2-ynyl)-dimethylxanthines with formaldehyde and secondary amines were the main approaches for the synthesis of substituted methylxanthine derivatives (yield 53-96%). The bioactivity of all new compounds was evaluated by Ellman's method, and the results showed that most of the synthesized compounds displayed good and moderate acetylcholinesterase (AChE) inhibitory activities in vitro. The structure-activity relationships were also discussed. The data revealed that compounds 53, 59, 65, 66, and 69 exhibited the most potent inhibitory activity against AChE with IC50 of 0.25, 0.552, 0.089, 0.746, and 0.121 μM, respectively. The binding conformation and simultaneous interaction modes were further clarified by molecular docking studies.
Collapse
Affiliation(s)
- Danila V. Reshetnikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia
| | - Igor D. Ivanov
- The Federal Research Center Institute of Molecular Biology and Biophysics, Timakov Str., 2/12, 630117 Novosibirsk, Russia
| | - Dmitry S. Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia
| | - Tatyana V. Rybalova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia
| | - Evgenii S. Mozhaitsev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia
| | - Sergey S. Patrushev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
| | - Valentin A. Vavilin
- The Federal Research Center Institute of Molecular Biology and Biophysics, Timakov Str., 2/12, 630117 Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
| | - Tatyana G. Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
| | - Elvira E. Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-3308533
| |
Collapse
|
3
|
Zhang Y, Zhu J, Shen Q. Bromodifluoromethyl Sulfonium Ylide: An Easily Available Electrophilic Bromodifluoromethylating Reagent for Bromodifluoromethylation of Styrenes and Heteroarenes by Visible-Light-Promoted Photoredox. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Facile N9-Alkylation of Xanthine Derivatives and Their Use as Precursors for N-Heterocyclic Carbene Complexes. Molecules 2021; 26:molecules26123705. [PMID: 34204439 PMCID: PMC8234118 DOI: 10.3390/molecules26123705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
The xanthine-derivatives 1,3,7-trimethylxanthine, 1,3-dimethyl-7-benzylxanthine and 1,3-dimethyl-7-(4-chlorobenzyl)xanthine are readily ethylated at N9 using the cheap alkylating agents ethyl tosylate or diethyl sulfate. The resulting xanthinium tosylate or ethyl sulfate salts can be converted into the corresponding PF6- and chloride salts. The reaction of these xanthinium salts with silver(I) oxide results in the formation of different silver(I) carbene-complexes. In the presence of ammonia, ammine complexes [Ag(NHC)(NH3)]PF6 are formed, whilst with Et2NH, the bis(carbene) salts [Ag(NHC)2]PF6 were isolated. Using the xanthinium chloride salts neutral silver(I) carbenes [Ag(NHC)Cl] were prepared. These silver complexes were used in a variety of transmetallation reactions to give the corresponding gold(I), ruthenium(II) as well as rhodium(I) and rhodium(III) complexes. The compounds were characterized by various spectroscopic methods as well as X-ray diffraction.
Collapse
|
5
|
Beteck RM, Jordaan A, Seldon R, Laming D, Hoppe HC, Warner DF, Khanye SD. Easy-To-Access Quinolone Derivatives Exhibiting Antibacterial and Anti-Parasitic Activities. Molecules 2021; 26:molecules26041141. [PMID: 33672753 PMCID: PMC7931078 DOI: 10.3390/molecules26041141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24–31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4–20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.
Collapse
Affiliation(s)
- Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa;
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
| | - Heinrich C. Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Setshaba D. Khanye
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| |
Collapse
|
6
|
Petrova KY, Kim DG, Eltsov OS, Eremenko TD. Reaction of 1-Allyl(methallyl)theobromine with Halogens. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219040091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Jefferson A, Srivastava RS. Re-catalyzed deoxydehydration of polyols to olefins using indoline reductants. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Divar M, Panahi F, Shariatipour SR, Khalafi-Nezhad A. Synthesis of Imidazole and Theophylline Derivatives Incorporating Pyrimidine-Fused Heterocycles Using Magnetic Nanoparticles-Supported Tungstic Acid (MNP-TA) Catalyst. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Divar
- Department of Chemistry, College of Sciences; Shiraz University; Shiraz 71454 Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences; Shiraz University; Shiraz 71454 Iran
| | | | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences; Shiraz University; Shiraz 71454 Iran
| |
Collapse
|
9
|
Andrs M, Muthna D, Rezacova M, Seifrtova M, Siman P, Korabecny J, Benek O, Dolezal R, Soukup O, Jun D, Kuca K. Novel caffeine derivatives with antiproliferative activity. RSC Adv 2016. [DOI: 10.1039/c5ra22889a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Beyond the psychoactive and cardiovascular effects of caffeine, this substance is also known for altering the cell's DNA damage response.
Collapse
|
10
|
Minor TR, Hanff TC. Adenosine signaling in reserpine-induced depression in rats. Behav Brain Res 2015; 286:184-91. [DOI: 10.1016/j.bbr.2015.02.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 02/05/2023]
|
11
|
Boucher-Jacobs C, Nicholas KM. Oxo-Rhenium-Catalyzed Deoxydehydration of Polyols with Hydroaromatic Reductants. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Camille Boucher-Jacobs
- Department of Chemistry and
Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Kenneth M. Nicholas
- Department of Chemistry and
Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
12
|
Yuan G, Gedeon NG, Jankins TC, Jones GB. Novel approaches for targeting the adenosine A2Areceptor. Expert Opin Drug Discov 2014; 10:63-80. [DOI: 10.1517/17460441.2015.971006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
|
14
|
Głowacka IE, Balzarini J, Andrei G, Snoeck R, Schols D, Piotrowska DG. Design, synthesis, antiviral and cytostatic activity of ω-(1H-1,2,3-triazol-1-yl)(polyhydroxy)alkylphosphonates as acyclic nucleotide analogues. Bioorg Med Chem 2014; 22:3629-41. [PMID: 24906510 PMCID: PMC7127666 DOI: 10.1016/j.bmc.2014.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 11/24/2022]
Abstract
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50=20μM-visual CPE score; EC50=18μM-MTS method; MCC >100μM, CC50 >100μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50=9 and 12μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50=2.9 and 4μM, respectively) and feline herpes virus in CRFK cells (EC50=4μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC⩾4μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4-50μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4-7μM range).
Collapse
Affiliation(s)
- Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Dorota G Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
15
|
Łysakowska M, Balzarini J, Piotrowska DG. Design, synthesis, antiviral, and cytostatic evaluation of novel isoxazolidine analogs of homonucleotides. Arch Pharm (Weinheim) 2014; 347:341-53. [PMID: 24535944 DOI: 10.1002/ardp.201300382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/30/2022]
Abstract
Moderate diastereoselectivities (d.e. 2-62%) of isoxazolidine homonucleotides were observed for cycloadditions between N-methyl-C-(diethoxyphosphoryl)nitrone and N-allyl nucleobases, with trans-isoxazolidines predominating. The stereochemistry of the substituted isoxazolidines was established based on 2D NOE experiments performed for uracil-containing cycloadducts. The cis- and trans-isoxazolidine phosphonates obtained herein were evaluated in vitro for activity against a broad range of DNA and RNA viruses. None of the compounds were endowed with antiviral activity at subtoxic concentrations, but some of them were found to inhibit the proliferation of L1210 cells with IC50 values in the range of 33-100 µM.
Collapse
Affiliation(s)
- Magdalena Łysakowska
- Faculty of Pharmacy, Bioorganic Chemistry Laboratory, Medical University of Łódź, Łódź, Poland
| | | | | |
Collapse
|
16
|
Khalafi-Nezhad A, Divar M, Panahi F. Synthesis of α-aminonitriles with benzimidazolic and theophyllinic backbones using the Strecker reaction. J Org Chem 2013; 78:10902-8. [PMID: 24090186 DOI: 10.1021/jo401890g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An example of the application of the Strecker reaction in the synthesis of a new class of α-aminonitriles with benzimidazole and theophylline backbones has been developed. For the synthesis of these compounds, first 4-hydroxybenzaldehyde was reacted with 1,3- and 1,5-dibromides/epibromohydrin to produce the corresponding bromo-substituted aldehydes. Then, benzimidazole/theophylline was reacted with the latter to generate the related benzimidazolic/theophyllinic aldehydes. Finally, the Strecker reactions of the synthetic benzimidazolic and theophyllinic aldehydes with different amines afforded the target products.
Collapse
Affiliation(s)
- Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University , Shiraz 71454, Iran
| | | | | |
Collapse
|
17
|
Głowacka IE, Balzarini J, Wróblewski AE. The synthesis, antiviral, cytostatic and cytotoxic evaluation of a new series of acyclonucleotide analogues with a 1,2,3-triazole linker. Eur J Med Chem 2013; 70:703-22. [PMID: 24219992 PMCID: PMC7115586 DOI: 10.1016/j.ejmech.2013.10.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 11/13/2022]
Abstract
The efficient synthesis of a new series of acyclonucleotide analogues with a 1,2,3-triazole linker is described starting from diethyl azidomethyl-, 2-azidoethyl-, 3-azidopropyl-, 4-azidobutyl-, 2-azido-1-hydroxyethyl-, 3-azido-2-hydroxypropyl- and 3-azido-1-hydroxypropylphosphonates and selected alkynes under microwave irradiation. Several O,O-diethylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and cytostatic activity against murine leukaemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Acyclonucleotide 22e exhibited activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 17 μM) and feline herpes virus (EC50 = 24 μM) in CRFK cell cultures, while compounds 20k, 21k, 22k and 23k preferentially inhibited proliferation of human T-lymphocyte CEM cells at IC50 in the 2.8–12 μM range. Nucleotide analogues with aliphatic linker between phosphorus and 1,2,3-triazole. Efficient synthesis of 1,2,3-triazole analogues of nucleotides. Antiviral activity and inhibitory effect on the proliferation of CEM cells.
Collapse
Affiliation(s)
- Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| | | | | |
Collapse
|
18
|
Koch P, Akkari R, Brunschweiger A, Borrmann T, Schlenk M, Küppers P, Köse M, Radjainia H, Hockemeyer J, Drabczyńska A, Kieć-Kononowicz K, Müller CE. 1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases. Bioorg Med Chem 2013; 21:7435-52. [PMID: 24139167 DOI: 10.1016/j.bmc.2013.09.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson's and Alzheimer's disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC(50) human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC(50) MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.
Collapse
Affiliation(s)
- Pierre Koch
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Głowacka IE, Balzarini J, Wróblewski AE. Synthesis and biological evaluation of novel 1,2,3-triazolonucleotides. Arch Pharm (Weinheim) 2013; 346:278-91. [PMID: 23427010 DOI: 10.1002/ardp.201200421] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/21/2012] [Indexed: 11/09/2022]
Abstract
A general procedure for the preparation of 1,2,3-triazole analogs of nucleosides from diethyl 2-azidoethoxymethyl- and 2-azidoethoxyethylphosphonates was elaborated. The application of microwave irradiation shortened the reaction time to 10 min in comparison to ca. 48 h when 1,3-dipolar cycloadditions were performed under standard conditions. All compounds were evaluated in vitro for inhibitory activity against a broad variety of DNA and RNA viruses. None of the compounds were antivirally active at subtoxic concentrations. Compound 17k exhibited moderate inhibitory effects on the proliferation of human T-lymphocyte cells (IC50=64 µM for CEM).
Collapse
Affiliation(s)
- Iwona E Głowacka
- Faculty of Pharmacy, Bioorganic Chemistry Laboratory, Medical University of Łódź, Łódź, Poland.
| | | | | |
Collapse
|
20
|
Newman RA, Kamimori GH, Wesensten NJ, Picchioni D, Balkin TJ. Caffeine Gum Minimizes Sleep Inertia. Percept Mot Skills 2013; 116:280-93. [DOI: 10.2466/29.22.25.pms.116.1.280-293] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Naps are an effective strategy for maintaining alertness and cognitive performance; however, upon abrupt wakening from naps, sleep inertia (temporary performance degradation) may ensue. In the present study, attenuation of post-nap sleep inertia was attempted by administration of caffeine gum. Using a double-blind, placebo-controlled crossover design, 15 healthy, non-smoking adults were awakened at 1 hr. and again at 6 hr. after lights out (0100 and 0600, respectively) and were immediately administered a gum pellet containing 100 mg of caffeine or placebo. A 5-min. psychomotor vigilance task was administered at 0 min., 6 min., 12 min., and 18 min. post-awakening. At 0100, response speed with caffeine was significantly better at 12 min. and 18 min. post-awakening compared to placebo; at 0600, caffeine's effects were evident at 18 min. post-awakening. Caffeinated gum is a viable means of rapidly attenuating sleep inertia, suggesting that the adenosine receptor system is involved in sleep maintenance.
Collapse
Affiliation(s)
- Rachel A. Newman
- Department of Behavioral Biology, Center for Military Psychiatry and Neurosciences Research, Walter Reed Army Institute of Research
| | - Gary H. Kamimori
- Department of Behavioral Biology, Center for Military Psychiatry and Neurosciences Research, Walter Reed Army Institute of Research
| | - Nancy J. Wesensten
- Department of Behavioral Biology, Center for Military Psychiatry and Neurosciences Research, Walter Reed Army Institute of Research
| | - Dante Picchioni
- Department of Behavioral Biology, Center for Military Psychiatry and Neurosciences Research, Walter Reed Army Institute of Research
| | - Thomas J. Balkin
- Department of Behavioral Biology, Center for Military Psychiatry and Neurosciences Research, Walter Reed Army Institute of Research
| |
Collapse
|
21
|
Anderson CB, Elliott ABS, McAdam CJ, Gordon KC, Crowley JD. fac-Re(CO)3Cl Complexes of [2-(4-R-1H-1,2,3-Triazol-1-yl)methyl]pyridine Inverse “Click” Ligands: A Systematic Synthetic, Spectroscopic, and Computational Study. Organometallics 2013. [DOI: 10.1021/om300868k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Christopher B. Anderson
- Department of Chemistry and ‡MacDiarmid
Institute for Advanced
Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Anastasia B. S. Elliott
- Department of Chemistry and ‡MacDiarmid
Institute for Advanced
Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - C. John McAdam
- Department of Chemistry and ‡MacDiarmid
Institute for Advanced
Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Keith C. Gordon
- Department of Chemistry and ‡MacDiarmid
Institute for Advanced
Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - James D. Crowley
- Department of Chemistry and ‡MacDiarmid
Institute for Advanced
Materials and Nanotechnology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
22
|
Jaiswal P, Singh SP, Aiyar P, Akkali R, Baskar R. Regulation of multiple tip formation by caffeine in cellular slime molds. BMC DEVELOPMENTAL BIOLOGY 2012; 12:26. [PMID: 22928977 PMCID: PMC3488011 DOI: 10.1186/1471-213x-12-26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND The multicellular slug in Dictyostelium has a single tip that acts as an organising centre patterning the rest of the slug. High adenosine levels at the tip are believed to be responsible for this tip dominance and the adenosine antagonist, caffeine overrides this dominance promoting multiple tip formation. RESULTS Caffeine induced multiple tip effect is conserved in all the Dictyostelids tested. Two key components of cAMP relay namely, cAMP phosphodiesterase (Pde4) and adenyl cyclase-A (AcaA) levels get reduced during secondary tip formation in Dictyostelium discoideum. Pharmacological inhibition of cAMP phosphodiesterase also resulted in multiple tips. Caffeine reduces cAMP levels by 16.4, 2.34, 4.71 and 6.30 folds, respectively in D. discoideum, D. aureostipes, D. minutum and Polysphondylium pallidum. We propose that altered cAMP levels, perturbed cAMP gradient and impaired signalling may be the critical factors for the origin of multiple tips in other Dictyostelids as well. In the presence of caffeine, slug cell movement gets impaired and restricted. The cell type specific markers, ecmA (prestalk) and pspA (prespore) cells are not equally contributing during additional tip formation. During additional tip emergence, prespore cells transdifferentiate to compensate the loss of prestalk cells. CONCLUSION Caffeine decreases adenyl cyclase-A (AcaA) levels and as a consequence low cAMP is synthesised altering the gradient. Further if cAMP phosphodiesterase (Pde4) levels go down in the presence of caffeine, the cAMP gradient breaks down. When there is no cAMP gradient, directional movement is inhibited and might favour re-differentiation of prespore to prestalk cells.
Collapse
Affiliation(s)
- Pundrik Jaiswal
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Shashi Prakash Singh
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Prasad Aiyar
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Rakhil Akkali
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Ramamurthy Baskar
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
23
|
Skwierawska A, Pazik A. Inhibition of impurities formation in the synthesis of N-alkyltheobromines stimulated by microwave irradiation. Cationic and anionic response of membrane electrodes. J INCL PHENOM MACRO 2012; 74:145-155. [PMID: 22866022 PMCID: PMC3405244 DOI: 10.1007/s10847-011-0093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/17/2011] [Indexed: 11/15/2022]
Abstract
Abstract N-Alkyltheobromine (1–9) derivatives were obtained by reacting theobromine with appropriate alkyl halide under microwave irradiation at 100–150 W and by conventional synthesis. Formation of by-products of oxygen atom alkylation and 1-N-alkyltheobromine ring opening were considered. The presented compounds 1–5 have been studied as ion carriers in ion-selective membrane electrodes. Selectivity of these membranes was studied towards various anions in addition to transition and heavy metal cations. Graphical Abstract Alkylations of theobromine under microwave irradiation at 100–150 W and by conventional synthesis were performed. Formation of by-products of oxygen atom alkylation and 1-N-alkyltheobromine ring opening were observed. The achieved compounds have been studied as ion carriers in ion-selective membrane electrodes.![]()
Collapse
Affiliation(s)
- A Skwierawska
- Department of Chemical Technology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | | |
Collapse
|
24
|
Preclinical evaluation of the antineoplastic efficacy of 7-(2-hydroxyethyl)theophylline on melanoma cancer cells. Melanoma Res 2012; 22:133-9. [DOI: 10.1097/cmr.0b013e328350d228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Lo HK, Luo FT. Synthesis of PS-supported NHC-Pd Catalyst Derived from Theobromine and its Applications in Suzuki-Miyaura Reaction. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201100565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
1,4-Dihydroxyanthraquinone-copper(II) nanoparticles immobilized on silica gel: a highly efficient, copper scavenger and recyclable heterogeneous nanocatalyst for a click approach to the three-component synthesis of 1,2,3-triazole derivatives in water. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-011-0046-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Abstract
The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogues were subsequently synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes.
Collapse
Affiliation(s)
- Christa Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany, Phone +49-228-73-2301, Fax +49-228-73-2567
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892, United States of America, Phone +1-301-496-9024, Fax +1-301-480-8422
| |
Collapse
|
28
|
Adenosine A(1) receptors in human brain and transfected CHO cells: Inhibition of [(3)H]CPFPX binding by adenosine and caffeine. Neurosci Lett 2010; 487:415-20. [PMID: 21056087 DOI: 10.1016/j.neulet.2010.10.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/14/2010] [Accepted: 10/28/2010] [Indexed: 11/30/2022]
Abstract
In vivo imaging of adenosine function has become feasible with the specific A(1) adenosine receptor ligand [(18)F]CPFPX and positron emission tomography (PET). It is, however, still an open question whether [(18)F]CPFPX is displaceable by endogenous adenosine, which would allow to detect activity-dependent adenosine release in vivo. We used the tritiated analog of [(18)F]CPFPX, [(3)H]CPFPX, to quantify A(1) adenosine receptors (A(1)AR) in grey matter tissue homogenates of four human brains and A(1)AR transfected Chinese hamster ovary cells, respectively. Saturation binding experiments in the presence of a stable GTP analog revealed a dissociation constant (K(D)) of 2.4±0.5nM. The unselective endogenous A(1)AR agonist adenosine and the antagonist caffeine displaced specific [(3)H]CPFPX binding completely at high doses. Concentrations sufficient to inhibit 50% of binding (IC(50)) were 6.9±2.7μM for adenosine and 148±15.4μM for caffeine. Respective inhibition constants (K(i)) were 2.8±0.9μM and 61.4±11.2μM.The present report supports the possibility of studying acute effects of adenosine and caffeine in vivo with [(18)F]CPFPX and PET. Pathophysiological conditions like hypoxia which increase endogenous adenosine concentrations several folds might interfere with in vivo [(18)F]CPFPX binding. Caffeine intake previous to the investigation should be considered as a confounding factor regarding the determination of receptor densities with [(18)F]CPFPX and PET.
Collapse
|
29
|
Liu G, Reddy PSMM, Barber JR, Ng SC, Zhou Y. Synthesis of Novel 3,7-Dihydro-purine-2,6-dione Derivatives. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903097260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Ningegowda R, Grover A, Basappa, Ranjith S, Rangappa KS, Priya BS, Nanjunda Swamy S. Synthesis, characterization and in vitro anti-tumor activities of novel 9-ethyl-9H-purine derivatives. Invest New Drugs 2009; 28:754-65. [DOI: 10.1007/s10637-009-9309-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 08/13/2009] [Indexed: 12/01/2022]
|
31
|
Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 2009; 29:871-81. [PMID: 19158311 DOI: 10.1523/jneurosci.4111-08.2009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During prolonged intervals of wakefulness, brain adenosine levels rise within the basal forebrain and cortex. The view that adenosine promotes sleep is supported by the corollary that N-methylated xanthines such as caffeine increase brain and behavioral arousal by blocking adenosine receptors. The four subtypes of adenosine receptors are distributed heterogeneously throughout the brain, yet the neurotransmitter systems and brain regions through which adenosine receptor blockade causes arousal are incompletely understood. This study tested the hypothesis that adenosine A(1) and A(2A) receptors in the prefrontal cortex contribute to the regulation of behavioral and cortical arousal. Dependent measures included acetylcholine (ACh) release in the prefrontal cortex, cortical electroencephalographic (EEG) power, and time to waking after anesthesia. Sleep and wakefulness were also quantified after microinjecting an adenosine A(1) receptor antagonist into the prefrontal cortex. The results showed that adenosine A(1) and A(2A) receptors in the prefrontal cortex modulate cortical ACh release, behavioral arousal, EEG delta power, and sleep. Additional dual microdialysis studies revealed that ACh release in the pontine reticular formation is significantly altered by dialysis delivery of adenosine receptor agonists and antagonists to the prefrontal cortex. These data, and early brain transection studies demonstrating that the forebrain is not needed for sleep cycle generation, suggest that the prefrontal cortex modulates EEG and behavioral arousal via descending input to the pontine brainstem. The results provide novel evidence that adenosine A(1) receptors within the prefrontal cortex comprise part of a descending system that inhibits wakefulness.
Collapse
|
32
|
Abstract
The development of potent and selective agonists and antagonists of adenosine receptors (ARs) has been a target of medicinal chemistry research for several decades, and recently the US Food and Drug Administration has approved Lexiscan, an adenosine derivative substituted at the 2 position, for use as a pharmacologic stress agent in radionuclide myocardial perfusion imaging. Currently, some other adenosine A(2A) receptor (A(2A)AR) agonists and antagonists are undergoing preclinical testing and clinical trials. While agonists are potent antiinflammatory agents also showing hypotensive effects, antagonists are being developed for the treatment of Parkinson's disease.However, since there are still major problems in this field, including side effects, low brain penetration (for the targeting of CNS diseases), short half-life, or lack of in vivo effects, the design and development of new AR ligands is a hot research topic.This review presents an update on the medicinal chemistry of A(2A)AR agonists and antagonists, and stresses the strong need for more selective ligands at the human A(2A)AR subtype, in particular in the case of agonists.
Collapse
Affiliation(s)
- Gloria Cristalli
- Dipartimento di Scienze Chimiche, Università di Camerino, 62032 Camerino (MC), Italy.
| | | | | |
Collapse
|
33
|
Islam R, Ashida N, Nagamatsu T. Synthesis and regioselective N- and O-alkylation of 3-alkyl-5-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones and 2-phenyl-9-propyl-9H-purin-6(1H)-one with evaluation of antiviral and antitumor activities. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Cristalli G, Cacciari B, Dal Ben D, Lambertucci C, Moro S, Spalluto G, Volpini R. Highlights on the development of A(2A) adenosine receptor agonists and antagonists. ChemMedChem 2008; 2:260-81. [PMID: 17177231 DOI: 10.1002/cmdc.200600193] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although significant progress has been made in the past few decades demonstrating that adenosine modulates a variety of physiological and pathophysiological processes through the interaction with four subtypes of a family of cell-surface G-protein-coupled receptors, clinical evaluation of some adenosine receptor ligands has been discontinued. Major problems include side effects due to the wide distribution of adenosine receptors, low brain penetration (which is important for the targeting of CNS diseases), short half-life of compounds, or a lack of effects, in some cases perhaps due to receptor desensitization or to low receptor density in the targeted tissue. Currently, three A(2A) adenosine receptor agonists have begun phase III studies. Two of them are therapeutically evaluated as pharmacologic stress agents and the third proved to be effective in the treatment of acute spinal cord injury (SCI), while avoiding the adverse effects of steroid agents. On the other hand, the great interest in the field of A(2A) adenosine receptor antagonists is related to their application in neurodegenerative disorders, in particular, Parkinson's disease, and some of them are currently in various stages of evaluation. This review presents an update of medicinal chemistry and molecular recognition of A(2A) adenosine receptor agonists and antagonists, and stresses the strong need for more selective ligands at the A(2A) human subtype.
Collapse
Affiliation(s)
- Gloria Cristalli
- Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This study aimed to investigate the potential for flavonoid action at A(1) adenosine receptors in vitro. In a radioligand binding assay for A(1) adenosine receptor occupancy in particulate preparations from guinea-pig cerebral cortex, flavonoids competed in concentration-dependent manners with Hill slopes typically not different from unity. Of the flavonoids tested, quercetin showed highest affinity (pKi value of 5.33). At a concentration of 28 mm, quercetin evoked a rightward shift in the N(6)-cyclopentyladenosine-induced inhibition of electrically evoked contractions of the guinea-pig isolated ileum, allowing the calculation of a pK(i) value of 4.71. These data suggest, therefore, that flavonoids represent an additional dietary source of A(1) adenosine receptor antagonists (beyond the methylxanthines, caffeine and theophylline).
Collapse
Affiliation(s)
- Stephen P H Alexander
- Institute of Neuroscience and School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK.
| |
Collapse
|
36
|
Magkos F, Kavouras SA. Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action. Crit Rev Food Sci Nutr 2005; 45:535-62. [PMID: 16371327 DOI: 10.1080/1040-830491379245] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Caffeine is the most widely consumed psychoactive 'drug' in the world and probably one of the most commonly used stimulants in sports. This is not surprising, since it is one of the few ergogenic aids with documented efficiency and minimal side effects. Caffeine is rapidly and completely absorbed by the gastrointestinal tract and is readily distributed throughout all tissues of the body. Peak plasma concentrations after normal consumption are usually around 50 microM, and half-lives for elimination range between 2.5-10 h. The parent compound is extensively metabolized in the liver microsomes to more than 25 derivatives, while considerably less than 5% of the ingested dose is excreted unchanged in the urine. There is, however, considerable inter-individual variability in the handling of caffeine by the body, due to both environmental and genetic factors. Evidence from in vitro studies provides a wealth of different cellular actions that could potentially contribute to the observed effects of caffeine in humans in vivo. These include potentiation of muscle contractility via induction of sarcoplasmic reticulum calcium release, inhibition of phosphodiesterase isoenzymes and concomitant cyclic monophosphate accumulation, inhibition of glycogen phosphorylase enzymes in liver and muscle, non-selective adenosine receptor antagonism, stimulation of the cellular membrane sodium/potassium pump, impairment of phosphoinositide metabolism, as well as other, less thoroughly characterized actions. Not all, however, seem to account for the observed effects in vivo, although a variable degree of contribution cannot be readily discounted on the basis of experimental data. The most physiologically relevant mechanism of action is probably the blockade of adenosine receptors, but evidence suggests that, at least under certain conditions, other biochemical mechanisms may also be operational.
Collapse
Affiliation(s)
- Faidon Magkos
- Laboratory of Nutrition and Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, 176 71 Kallithea, Athens, Greece
| | | |
Collapse
|
37
|
Sato A, Terata K, Miura H, Toyama K, Loberiza FR, Hatoum OA, Saito T, Sakuma I, Gutterman DD. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 2005; 288:H1633-40. [PMID: 15772334 DOI: 10.1152/ajpheart.00575.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine is a key myocardial metabolite that elicits coronary vasodilation in a variety of pathophysiological conditions. We examined the mechanism of adenosine-induced vasodilation in coronary arterioles from patients with heart disease. Human coronary arterioles (HCAs) were dissected from pieces of the atrial appendage obtained at the time of cardiac surgery and cannulated for the measurement of internal diameter with videomicroscopy. Adenosine-induced vasodilation was not inhibited by endothelial denudation, but A(2) receptor antagonism with 3,7-dimethyl-1-propargylxanthine and adenylate cyclase (AC) inhibition with SQ22536 significantly attenuated the dilation. In contrast, A(1) receptor antagonism with 8-cyclopentyl-1,3-dipropylxanthine significantly augmented the sensitivity to adenosine. Moreover, dilation to A(2a) receptor activation with 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido-adenosine hydrochloride was reduced by the A(1) receptor agonist (2S)-N(6)-(2-endo-norbornyl)adenosine. The nonspecific calcium-activated potassium (K(Ca)) channel blocker tetrabutylammonium attenuated adenosine-induced dilation, as did the intermediate-conductance K(Ca) blocker clotrimazole. Neither the large-conductance K(Ca) blocker iberiotoxin nor small-conductance K(Ca) blocker apamin altered the dilation. In conclusion, adenosine endothelium independently dilates HCAs from patients with heart disease through a receptor-mediated mechanism that involves the activation of intermediate-conductance K(Ca) channels via an AC signaling pathway. The roles of A(1) and A(2) receptor subtypes are opposing, with the former being inhibitory to AC-mediated dilator actions of the latter. These observations identify unique fundamental physiological characteristics of the human coronary circulation and may help to target the use of novel adenosine analogs for vasodilation in perfusion imaging or suggest new strategies for myocardial preconditioning.
Collapse
Affiliation(s)
- Atsushi Sato
- Dept. of Medicine, Cardiovascular Center, and Veterans Administration Medical Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shi D, Padgett WL, Daly JW. Caffeine analogs: effects on ryanodine-sensitive calcium-release channels and GABAA receptors. Cell Mol Neurobiol 2003; 23:331-47. [PMID: 12825831 PMCID: PMC11530164 DOI: 10.1023/a:1023688604792] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Caffeine at 0.3-10 mM enhanced the binding of [3H]ryanodine to calcium-release channels of rabbit muscle sarcoplasmic reticulum. A variety of other xanthines were as efficacious as caffeine or nearly so, but none appeared markedly more potent. 2. Caffeine at 1 mM markedly inhibited binding of [3H]diazepam to GABAA receptors in rat cerebral cortical membranes. 3. Other xanthines also inhibited binding with certain dimethylpropargylxanthines being nearly fivefold more potent than caffeine. 4. Caffeine at 1 mM stimulated binding of [35S]TBPS to GABAA receptors as did certain other xanthines. 5. The dimethylpropargylxanthines had little effect. 1,3-Dipropyl-8-cyclopentylxanthine at 100 microM had no effect on [3H]diazepam binding, but markedly inhibited [35S]TBPS binding. 6. Structure-activity relationships for xanthines do differ for calcium-release channels and and for different sites on GABAA receptors, but no highly selective lead compounds were identified.
Collapse
Affiliation(s)
- Dan Shi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
39
|
Fhid O, Pawlowski M, Jurczyk S, Muller CE, Schumacher B. Pyrimidin-8-on[2,1-f]theophylline-9-alkylcarboxylic acids amides as A1 and A2A adenosine receptor ligands. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2003; 58:439-44. [PMID: 12767383 DOI: 10.1016/s0014-827x(03)00066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Starting from the appropriate esters (1-3), pyrimidin-8-on[2,1-f]theophylline-9-alkylcarboxylic acids amides (4-10) were synthesized and evaluated as hydrochlorides (4a-10a) for their affinity at brain A(1) and A(2A) adenosine receptor subtypes. Radioligand binding assay showed that morpholine-ethyl(-propyl) amide of pyrimidin-8-on[2,1-f]theophylline-9-acetic acid (4a, 5a) exhibited greater affinity and selectivity for A(1) and A(2A) receptors than parent compounds (theophylline and caffeine), with K(i) values: 12.2 and 3.1 microM for A(1) and 1.11 and 5.89 microM for A(2A), respectively. Morpholine-ethyl amide of pyrimidin-8-on[2,1-f]theophylline-9-propanoic acid (6a) and the dimethyl-amino analog (10a) exhibited much lower affinity for A(1) and A(2A) adenosine receptors, with K(i) values, respectively: 53.9 and 72.6 microM for A(1) and 120 and 115 microM for A(2A). Morpholine-propyl amide of pyrimidin-8-on[2,1-f]theophylline-9-propanoic acid (7a) exhibited relatively higher affinity for A(1) adenosine receptor with K(i) value 32.8 microM, comparable to caffeine, but it showed weaker affinity to A(2A) receptor. The variation of affinity at A(1) and A(2A) adenosine receptors depends on the structure of substituent in N9-position of fused tricyclic theophylline derivatives. The most interesting were morpholino-ethyl(-propyl) amides of pyrimidin-8-on[2,1-f]theophylline-9-acetic acid (4a, 5a). The longer alkylene chain (propylene) between amide nitrogen and the basic center (5a) resulted in higher A(1) but lower A(2A) receptor affinity.
Collapse
Affiliation(s)
- Omeran Fhid
- Department of Pharmaceutical Chemistry, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | | | | | | | | |
Collapse
|
40
|
Diniz C, Leal S, Gonçalves J. Regional differences in the adenosine A(2) receptor-mediated modulation of contractions in rat vas deferens. Eur J Pharmacol 2003; 460:191-9. [PMID: 12559381 DOI: 10.1016/s0014-2999(02)02926-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine receptors involved in modulation of contractions were characterized in the bisected rat vas deferens by combining pharmacological and immunohistochemical approaches. In both portions, noradrenaline-elicited contractions were enhanced by the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), and inhibited by the non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) in the presence of the adenosine A(1) receptor antagonist 1,3-dipropyl-8-cyclopentyl-l,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine (CGS 21680) also inhibited noradrenaline-elicited contractions but only in the prostatic portion. Contractions elicited by the stable ATP analogue alpha,beta-methyleneATP (alpha,beta-MeATP) were inhibited only by NECA in the presence of DPCPX and only in the prostatic portion. This study provides functional evidence for the presence, in both portions of the rat vas deferens, of an adenosine A(1) receptor-mediated enhancement and of an adenosine A(2) receptor-mediated inhibition of contractions. The latter effect is mediated by both A(2A) and A(2B) subtypes in the prostatic portion but only by the A(2B) subtype in the epididymal portion. This regional variation is supported by the immunohistochemical results that revealed an adenosine A(2A) receptor immunoreactivity not co-localized with nerve fibres more abundant in the prostatic than in the epididymal portion.
Collapse
Affiliation(s)
- Carmen Diniz
- Laboratório de Farmacologia, CEQOFF/FCT, Faculdade de Farmácia, Universidade do Porto, Rua Anibal Cunha 164, P 4050-047 Porto, Portugal
| | | | | |
Collapse
|
41
|
|
42
|
Queiroz G, Diniz C, Gonçalves J. Facilitation of noradrenaline release by adenosine A(2A) receptors in the epididymal portion and adenosine A(2B) receptors in the prostatic portion of the rat vas deferens. Eur J Pharmacol 2002; 448:45-50. [PMID: 12126970 DOI: 10.1016/s0014-2999(02)01906-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The adenosine-receptor modulation of noradrenaline release was compared in prostatic and epididymal portions of rat vas deferens. In both portions, tritium overflow elicited by electrical stimulation (100 pulses/8 Hz) was reduced by the adenosine A(1) receptor agonist, N(6)-cyclopentyladenosine, and enhanced by the nonselective receptor agonist, 5'-N-ethylcarboxamidoadenosine, in the presence of the adenosine A(1) receptor antagonist, 1,3-dipropyl-8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 and 100 nM). The adenosine A(2A) receptor agonist, 2-p-(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine, increased tritium overflow, but only in the epididymal portion. The enhancement caused by NECA was prevented by the adenosine A(2A) receptor antagonist, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 20 nM), in the epididymal and by the adenosine A(2B) receptor antagonist, alloxazine (1 microM), in the prostatic portion. Inhibition of adenosine uptake enhanced tritium overflow in both portions, an effect blocked by ZM 241385 in the epididymal and by alloxazine in the prostatic portion. The results indicate that adenosine exerts an adenosine A(1) receptor-mediated inhibition, in both portions, and facilitation mediated by adenosine A(2A) receptors in the epididymal and by A(2B) receptors in the prostatic portion.
Collapse
Affiliation(s)
- Glória Queiroz
- Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4050-047 Porto, Portugal
| | | | | |
Collapse
|
43
|
Kim SA, Marshall MA, Melman N, Kim HS, Müller CE, Linden J, Jacobson KA. Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J Med Chem 2002; 45:2131-8. [PMID: 12014951 PMCID: PMC6927247 DOI: 10.1021/jm0104318] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the search for improved selective antagonist ligands of the A2B adenosine receptor, which have the potential as antiasthmatic or antidiabetic drugs, we have synthesized and screened a variety of alkylxanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. Competition for 125I-ABOPX (125I-3-(4-amino-3-iodobenzyl)-8-(phenyl-4-oxyacetate)-1-propylxanthine) binding in membranes of stably transfected HEK-293 cells revealed uniformly higher affinity (<10-fold) of these xanthines for human than for rat A2B adenosine receptors. Binding to rat brain membranes expressing A1 and A2A adenosine receptors revealed greater A2B selectivity over A2A than A1 receptors. Substitution at the 1-position with 2-phenylethyl (or alkyl/olefinic groups) and at N-3 with hydrogen or methyl favored A2B selectivity. Relative to enprofylline 2b, pentoxifylline 35 was equipotent and 1-propylxanthine 3 was >13-fold more potent at human A2B receptors. Most N-7 substituents did not enhance affinity over hydrogen, except for 7-(2-chloroethyl), which enhanced the affinity of theophylline by 6.5-fold to 800 nM. The A2B receptor affinity-enhancing effects of 7-(2-chloroethyl) vs 7-methyl were comparable to the known enhancement produced by an 8-aryl substitution. Among 8-phenyl analogues, a larger alkyl group at the 1-position than at the 3-position favored affinity at the human A2B receptor, as indicated by 1-allyl-3-methyl-8-phenylxanthine, with a K(i) value of 37 nM. Substitution on the 8-phenyl ring indicated that an electron-rich ring was preferred for A2B receptor binding. In conclusion, new leads for the design of xanthines substituted in the 1-, 3-, 7-, and 8-positions as A2B receptor-selective antagonists have been identified.
Collapse
|
44
|
Bhat VB, Madyastha KM. Antioxidant and radical scavenging properties of 8-oxo derivatives of xanthine drugs pentoxifylline and lisofylline. Biochem Biophys Res Commun 2001; 288:1212-7. [PMID: 11700041 DOI: 10.1006/bbrc.2001.5922] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The antioxidant and radical scavenging properties of 8-oxo derivatives of pentoxifylline, lisofylline, enprofylline (3-propyl xanthine), and 1,7-dimethyl enprofylline were studied in vitro. The results show that 8-oxopentoxifylline and 8-oxolisofylline are significantly better hydroxyl and peroxyl radical scavengers and more potent inhibitors of t-butylhydroperoxide-induced lipid peroxidation in human erythrocyte membranes than the parent drugs. The hydroxyl radical scavenging property of 8-oxoenprofylline and its analogue 1,7-dimethyl-8-oxoenprofylline is marginally better than their corresponding xanthines. Interestingly, 1,7-dimethyl-8-oxoenprofylline is an effective inhibitor of lipid peroxidation whereas enprofylline, 1,7-dimethylenprofylline, and 8-oxoenprofylline exhibit significantly less activity. All the 8-oxo derivatives tested are better hydroxyl radical scavengers than uric acid, a natural antioxidant and a free radical scavenger in humans. The rate constant for the reaction between 8-oxopentoxifylline and hydroxyl radical is 1.6-4.2 x 10(10) M(-1) s(-1) which is comparable to that of dimethyl sulfoxide (1.4-1.6 x 10(10) M(-1) s(-1)) and better than that of mannitol (1.9-2.5 x 10(9) M(-1) s(-1)), the known hydroxyl radical scavengers. Both 8-oxo pentoxifylline (IC(50), 1.8 +/- 0.08 microM) and 8-oxolisofylline (IC(50), 2.2 +/- 0.13 microM) are as efficient peroxyl radical scavengers as uric acid (IC(50), 1.9 +/- 0.05 microM). The results presented clearly indicate that the anti-inflammatory property of pentoxifylline and lisofylline is exerted more through their 8-oxo derivatives than through the parent drugs.
Collapse
Affiliation(s)
- V B Bhat
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
45
|
Müller CE, Maurinsh J, Sauer R. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors. Eur J Pharm Sci 2000; 10:259-65. [PMID: 10838015 DOI: 10.1016/s0928-0987(00)00064-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.
Collapse
Affiliation(s)
- C E Müller
- Pharmaceutical Institute, Universität Bonn, Germany.
| | | | | |
Collapse
|
46
|
Abstract
Despite the progress that has occurred in recent years in the development of therapy, there is still a need for effective and potent analgesics, especially for the treatment of chronic pain. One of the most important analgesic drugs employed in clinical practice today continues to be the alkaloid morphine. In this review, emphasis will be given to the important contribution and the history of Papaver somniferum, Salix species, Capsicum species and Cannabis sativa in the development of new analgesics and their importance in the understanding of the complex pathways related to electrophysiological and molecular mechanisms associated with pain transmission. Recently discovered antinociceptive substances include alkaloids, terpenoids and flavonoid. Plant-derived substances have, and will certainly continue to have, a relevant place in the process of drug discovery, particularly in the development of new analgesic drugs.
Collapse
Affiliation(s)
- J B Calixto
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | | | | | | | | | | |
Collapse
|
47
|
Jiang X, Lim LY, Daly JW, Li AH, Jacobson KA, Roberge M. Structure-activity relationships for G2 checkpoint inhibition by caffeine analogs. Int J Oncol 2000; 16:971-8. [PMID: 10762633 PMCID: PMC4801034 DOI: 10.3892/ijo.16.5.971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caffeine inhibits the G2 checkpoint activated by DNA damage and enhances the toxicity of DNA-damaging agents towards p53-defective cancer cells. The relationship between structure and G2 checkpoint inhibition was determined for 56 caffeine analogs. Replacement of the methyl group at position 3 or 7 resulted in loss of activity, while replacement at position 1 by ethyl or propyl increased activity slightly. 8-Substituted caffeines retained activity, but were relatively insoluble. The structure-activity profile did not resemble those for other known pharmacological activities of caffeine. The active analogs also potentiated the killing of p53-defective cells by ionizing radiation, but none was as effective as caffeine.
Collapse
Affiliation(s)
- X Jiang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Kato K, Thomas TP, Stevens MJ, Greene DA, Nakamura J. 2-Chloroadenosine reverses hyperglycemia-induced inhibition of phosphoinositide synthesis in cultured human retinal pigment epithelial cells and prevents reduced nerve conduction velocity in diabetic rats. Metabolism 1999; 48:827-33. [PMID: 10421220 DOI: 10.1016/s0026-0495(99)90213-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of the adenosine (AD) analog 2-chloroadenosine (C-AD) on glucose-induced inhibition of phosphoinositide synthesis was studied in human retinal pigment epithelial (RPE) cells by monitoring the level of the phosphatidylinositol (PI) synthase substrate, cytidine diphosphate diglyceride (CDP-DG). In high-aldose reductase (AR)-expressing RPE 91 cells, C-AD decreased CDP-DG at 5 mmol/L glucose and reversed the increase by 20 mmol/L glucose. AD deaminase (ADA), which inactivates endogenously released AD, potentiated the hyperglycemia-induced increase in CDP-DG. Theophylline, an AD-A1 and AD-A2 receptor antagonist, caused an increase in CDP-DG at 20 mmol/L glucose. C-AD did not alter CDP-DG in low-AR-expressing RPE 45 cells, but did decrease CDP-DG after cells were conditioned in 300 mmol/L glucose for 1 week (which induces AR). The mechanism by which AD regulates PI synthase in cells with high AR activity is unknown, but it is independent of Gi or Gs proteins, adenylate cyclase and phospholipase C (PLC) activation, myo-inositol (MI) uptake, or MI efflux. Administration of C-AD to streptozotocin-induced diabetic rats prevented the slowing of motor nerve conduction velocity (MNCV). Thus, AD derivatives, which reverse a glucose-induced deficit in phosphoinositide metabolism, might serve as a useful pharmacological tool to intervene in hyperglycemia-induced diabetic complications.
Collapse
Affiliation(s)
- K Kato
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109-0354, USA
| | | | | | | | | |
Collapse
|
49
|
Characterization and tissue location of the neural adenosine receptor in the rat ileum. Br J Pharmacol 1999. [PMID: 10205018 DOI: 10.1038/sj.bjp.0702411].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The aim of the present investigation was to characterize and determine the tissue location of the adenosine receptors present in the rat ileum using a method that detects drug action on the cholinergic nerves innervating the longitudinal and circular muscles. 2. The non-selective adenosine agonist, NECA (10 and 100 nM) caused significant concentration-related reductions in the circular muscle responses to transmural stimulation over the frequency range of 2.5-40 Hz, but did not affect the responses of the longitudinal muscle, nor did it reduce the muscle responses of the guinea-pig ileum. 3. The affinity order of antagonists at inhibiting the effect of NECA on the circular muscle was: CPDPX>8-PT>DMPX with apparent pA2 values of 9.31, 7.54 and 5.63 respectively. CPDPX (10-100 nM) caused parallel displacements of the concentration-effect curves to CPA with a pKb value of 9.15 and Schild slope of 1.03. 4. The agonists previously tested in the rat jejunum peristaltic reflex preparation were also shown to inhibit responses of the rat ileum in the following decreasing order of potency: CPA>NECA>2-CADO>R-PIA>S-PIA>>PAA. In addition, CHA and CCPA were also potent agonists. NECA (100 nM) and CPA (32 nM) did not inhibit carbachol (1 microM)-induced tone of tissues pre-treated with TTX (1 microM). 5. In conclusion, the rat ileum contains inhibitory A1 adenosine receptors situated on cholinergic nerve endings innervating the circular muscle.
Collapse
|
50
|
Coupar IM. Characterization and tissue location of the neural adenosine receptor in the rat ileum. Br J Pharmacol 1999; 126:1269-75. [PMID: 10205018 PMCID: PMC1565885 DOI: 10.1038/sj.bjp.0702411] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The aim of the present investigation was to characterize and determine the tissue location of the adenosine receptors present in the rat ileum using a method that detects drug action on the cholinergic nerves innervating the longitudinal and circular muscles. 2. The non-selective adenosine agonist, NECA (10 and 100 nM) caused significant concentration-related reductions in the circular muscle responses to transmural stimulation over the frequency range of 2.5-40 Hz, but did not affect the responses of the longitudinal muscle, nor did it reduce the muscle responses of the guinea-pig ileum. 3. The affinity order of antagonists at inhibiting the effect of NECA on the circular muscle was: CPDPX>8-PT>DMPX with apparent pA2 values of 9.31, 7.54 and 5.63 respectively. CPDPX (10-100 nM) caused parallel displacements of the concentration-effect curves to CPA with a pKb value of 9.15 and Schild slope of 1.03. 4. The agonists previously tested in the rat jejunum peristaltic reflex preparation were also shown to inhibit responses of the rat ileum in the following decreasing order of potency: CPA>NECA>2-CADO>R-PIA>S-PIA>>PAA. In addition, CHA and CCPA were also potent agonists. NECA (100 nM) and CPA (32 nM) did not inhibit carbachol (1 microM)-induced tone of tissues pre-treated with TTX (1 microM). 5. In conclusion, the rat ileum contains inhibitory A1 adenosine receptors situated on cholinergic nerve endings innervating the circular muscle.
Collapse
Affiliation(s)
- I M Coupar
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, Parkville, Australia
| |
Collapse
|