1
|
O'Mahony AG, Mazzocchi M, Morris A, Morales-Prieto N, Guinane C, Wyatt SL, Collins LM, Sullivan AM, O'Keeffe GW. The class-IIa HDAC inhibitor TMP269 promotes BMP-Smad signalling and is neuroprotective in in vitro and in vivo 6-hydroxydopamine models of Parkinson's disease. Neuropharmacology 2025; 268:110319. [PMID: 39842624 DOI: 10.1016/j.neuropharm.2025.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models. However as there are several classes of HDACs (ClassI-IV), class-specific inhibition will be important to ensure target specificity. Here we examine the neuroprotective potential of the Class-IIa HDAC inhibitor, TMP269. We show that TMP269 protected against 6-hydroxydopamine (6-OHDA)-induced neurite injury in SH-SY5Y cells and cultured rat ventral mesencephalic dopaminergic neurons. We find that TMP269 upregulated the neurotrophic factor BMP2 and BMP-Smad dependent transcription signalling in SH-SY5Y cells, which was necessary for its neuroprotective effect against 6-OHDA-induced injury. Furthermore, peripheral continuous infusion of 0.5 mg/kg of TMP269 for 7 days via a mini-osmotic pump, reduced forelimb impairments induced by striatal 6-OHDA administration. TMP269 also protected dopaminergic neurons in the substantia nigra and their striatal terminals from striatal 6-OHDA-induced neurodegeneration and prevented the 6-OHDA-induced increases in the numbers of IBA1-positive microglia in the striatum and substantia nigra in vivo. TMP269 also prevented 6-OHDA-induced decreases in BMP2, pSmad1/5 and acetylated histone 3 levels, and it reversed 6-OHDA-induced increase in nuclear HDAC5 in dopaminergic neurons in the substantia nigra. These data add to the growing body of evidence that Class-IIa specific HDAC inhibitors may be pharmacological agents of interest for peripheral delivery with the goal of neuroprotection in PD.
Collapse
Affiliation(s)
- Adam G O'Mahony
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Martina Mazzocchi
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Alex Morris
- Department of Biological Sciences, Munster Technological University (MTU), Cork Campus, Cork, Ireland
| | - Noelia Morales-Prieto
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Caitriona Guinane
- Department of Biological Sciences, Munster Technological University (MTU), Cork Campus, Cork, Ireland
| | - Sean L Wyatt
- Cardiff School of Biosciences, Cardiff University, Wales, UK
| | - Louise M Collins
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland; Department of Physiology, School of Medicine, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Pharmacology and Therapeutics, School of Medicine, UCC, Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
2
|
Ramadan WS, Alseksek RK, Mouffak S, Talaat IM, Saber-Ayad MM, Menon V, Ilce BY, El-Awady R. Impact of HDAC6-mediated progesterone receptor expression on the response of breast cancer cells to hormonal therapy. Eur J Pharmacol 2024; 983:177001. [PMID: 39284403 DOI: 10.1016/j.ejphar.2024.177001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Modulation of estrogen receptor (ER) and progesterone receptor (PR) expression, as well as their emerging functional crosstalk, remains a potential approach for enhancing the response to hormonal therapy in breast cancer. Aberrant epigenetic alterations induced by histone deacetylases (HDACs) were massively implicated in dysregulating the function of hormone receptors in breast cancer. Although much is known about the regulation of ER signaling by HDAC, the precise role of HDAC in modulating the expression of PR and its impact on the outcomes of hormonal therapy is poorly defined. Here, we demonstrate the involvement of HDAC6 in regulating PR expression in breast cancer cells. The correlation between HDAC6 and hormone receptors was investigated in patients' tissues by immunohistochemistry (n = 80) and publicly available data (n = 3260) from breast cancer patients. We explored the effect of modulating the expression of HDAC6 as well as its catalytic inhibition on the level of hormone receptors by a variety of molecular analyses, including Western blot, immunofluorescence, Real-time PCR, RNA-seq analysis and chromatin immunoprecipitation. Based on our in-silico and immunohistochemistry analyses, HDAC6 levels were negatively correlated with PR status in breast cancer tissues. The downregulation of HDAC6 enhanced the expression of PR-B in hormone receptor-positive and triple-negative breast cancer (TNBC) cells. The selective targeting of HDAC6 by tubacin resulted in the enrichment of the H3K9 acetylation mark at the PGR-B gene promoter region and enhanced the expression of PR-B. Additionally, transcriptomic analysis of tubacin-treated cells revealed enhanced activity of acetyltransferase and growth factor signaling pathways, along with the enrichment of transcription factors involved in the transcriptional activity of ER, underscoring the crucial role of HDAC6 in regulating hormone receptors. Notably, the addition of HDAC6 inhibitor potentiated the effects of anti-ER and anti-PR drugs mainly in TNBC cells. Together, these data highlight the role of HDAC6 in regulating PR expression and provide a promising therapeutic approach for boosting breast cancer sensitivity to hormonal therapy.
Collapse
Affiliation(s)
- Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Rahma K Alseksek
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University City Road, Sharjah, 27272, United Arab Emirates
| | - Soraya Mouffak
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Clinical Sciences Department, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Champollion Street, Alexandria, 21131, Egypt
| | - Maha M Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Clinical Sciences Department, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University City Road, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
3
|
Abbasi Shiran J, Kaboudin B, Panahi N, Razzaghi-Asl N. Privileged small molecules against neglected tropical diseases: A perspective from structure activity relationships. Eur J Med Chem 2024; 271:116396. [PMID: 38643671 DOI: 10.1016/j.ejmech.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Neglected tropical diseases (NTDs) comprise diverse infections with more incidence in tropical/sub-tropical areas. In spite of preventive and therapeutic achievements, NTDs are yet serious threats to the public health. Epidemiological reports of world health organization (WHO) indicate that more than 1.5 billion people are afflicted with at least one NTD type. Among NTDs, leishmaniasis, chagas disease (CD) and human African trypanosomiasis (HAT) result in substantial morbidity and death, particularly within impoverished countries. The statistical facts call for robust efforts to manage the NTDs. Currently, most of the anti-NTD drugs are engaged with drug resistance, lack of efficient vaccines, limited spectrum of pharmacological effect and adverse reactions. To circumvent the issue, numerous scientific efforts have been directed to the synthesis and pharmacological development of chemical compounds as anti-infectious agents. A survey of the anti-NTD agents reveals that the majority of them possess privileged nitrogen, sulfur and oxygen-based heterocyclic structures. In this review, recent achievements in anti-infective small molecules against parasitic NTDs are described, particularly from the SAR (Structure activity relationship) perspective. We also explore current advocating strategies to extend the scope of anti-NTD agents.
Collapse
Affiliation(s)
- J Abbasi Shiran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran
| | - B Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - N Panahi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
4
|
Mehmood SA, Sahu KK, Sengupta S, Partap S, Karpoormath R, Kumar B, Kumar D. Recent advancement of HDAC inhibitors against breast cancer. Med Oncol 2023; 40:201. [PMID: 37294406 DOI: 10.1007/s12032-023-02058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Recent studies highlight the great potential impact of HDAC inhibitors (HDACis) in suppressing TNBC, even though clinical trials including a single HDACis demonstrated unsatisfactory outcomes against TNBC. New compounds created to achieve isoform selectivity and/or a polypharmacological HDAC strategy have also produced interesting results. The current study discusses the HDACis pharmacophoric models and the structural alterations that produced drugs with strong inhibitory effects on TNBC progression. With more than 2 million new cases reported in 2018, breast cancer-the most common cancer among women worldwide-poses a significant financial burden on an already deteriorating public health system. Due to a lack of therapies being developed for triple-negative breast cancers and the development of resistance to the current treatment options, it is imperative to plan novel therapeutics in order to bring new medications to the pipeline. Additionally, HDACs deacetylate a large number of nonhistone cellular substrates that control a variety of biological processes, such as the beginning and development of cancer. The significance of HDACs in cancer and the therapeutic potential of HDAC inhibitor. Furthermore, we also reported molecular docking study with four HDAC inhibitors and performed molecular dynamic stimulation of the best dock score compound. Among the four ligands belinostat compound showed best binding affinity with histone deacetylase protein which was -8.7 kJ/mol. It also formed five conventional hydrogen bond with Gly 841, His 669, His 670, pro 809, and His 709 amino acid residues.
Collapse
Affiliation(s)
- Syed Abdulla Mehmood
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Humdard University, New Delhi, India
| | - Kantrol Kumar Sahu
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Sangh Partap
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
5
|
Wang Y, Abrol R, Mak JYW, Das Gupta K, Ramnath D, Karunakaran D, Fairlie DP, Sweet MJ. Histone deacetylase 7: a signalling hub controlling development, inflammation, metabolism and disease. FEBS J 2023; 290:2805-2832. [PMID: 35303381 PMCID: PMC10952174 DOI: 10.1111/febs.16437] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) catalyse removal of acetyl groups from lysine residues on both histone and non-histone proteins to control numerous cellular processes. Of the 11 zinc-dependent classical HDACs, HDAC4, 5, 7 and 9 are class IIa HDAC enzymes that regulate cellular and developmental processes through both enzymatic and non-enzymatic mechanisms. Over the last two decades, HDAC7 has been associated with key roles in numerous physiological and pathological processes. Molecular, cellular, in vivo and disease association studies have revealed that HDAC7 acts through multiple mechanisms to control biological processes in immune cells, osteoclasts, muscle, the endothelium and epithelium. This HDAC protein regulates gene expression, cell proliferation, cell differentiation and cell survival and consequently controls development, angiogenesis, immune functions, inflammation and metabolism. This review focuses on the cell biology of HDAC7, including the regulation of its cellular localisation and molecular mechanisms of action, as well as its associative and causal links with cancer and inflammatory, metabolic and fibrotic diseases. We also review the development status of small molecule inhibitors targeting HDAC7 and their potential for intervention in different disease contexts.
Collapse
Affiliation(s)
- Yizhuo Wang
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Rishika Abrol
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - David P. Fairlie
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| |
Collapse
|
6
|
Di Bello E, Sian V, Bontempi G, Zwergel C, Fioravanti R, Noce B, Castiello C, Tomassi S, Corinti D, Passeri D, Pellicciari R, Mercurio C, Varasi M, Altucci L, Tripodi M, Strippoli R, Nebbioso A, Valente S, Mai A. Novel pyridine-containing histone deacetylase inhibitors strongly arrest proliferation, induce apoptosis and modulate miRNAs in cancer cells. Eur J Med Chem 2023; 247:115022. [PMID: 36549114 DOI: 10.1016/j.ejmech.2022.115022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
After over 30 years of research, the development of HDAC inhibitors led to five FDA/Chinese FDA-approved drugs and many others under clinical or preclinical investigation to treat cancer and non-cancer diseases. Herein, based on our recent development of pyridine-based isomers as HDAC inhibitors, we report a series of novel 5-acylamino-2-pyridylacrylic- and -picolinic hydroxamates and 2'-aminoanilides 5-8 as anticancer agents. The hydroxamate 5d proved to be quite HDAC3/6-selective exhibiting IC50 values of 80 and 11 nM, respectively, whereas the congener 5e behaved as inhibitor of HDAC1-3, -6, -8, and -10 (class I/IIb-selective inhibitor) at nanomolar level. Compound 5e provided a huge antiproliferative activity (nanomolar IC50 values) against both haematological and solid cancer cell lines. In leukaemia U937 cells, the hydroxamate 5d and the 2'-aminoanilide 8f induced remarkable cell death after 48 h, with 76% and 100% pre-G1 phase arrest, respectively, showing a stronger effect with respect to SAHA and MS-275 used as reference compounds. In U937 cells, the highest dose- and time-dependent cytodifferentiation was obtained by the 2'-aminoanilide 8d (up to 35% of CD11c positive/propidium iodide negative cells at 5 μM for 48 h). The same 8d and the hydroxamates 5d and 5e were the most effective in inducing p21 protein expression in the same cell line. Mechanistically, 5d, 5e, 8d and 8f increased mRNA expression of p21, BAX and BAK, downregulated cyclin D1 and BCL-2 and modulated pro- and anti-apoptotic microRNAs towards apoptosis induction. Finally, 5e strongly arrested proliferation in nine different haematological cancer cell lines, with dual-digit nanomolar potency towards MV4-11, Kasumi-1, and NB4, being more potent than mocetinostat, used as reference drug.
Collapse
Affiliation(s)
- Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Veronica Sian
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy; Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carola Castiello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Davide Corinti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Daniela Passeri
- TES Pharma S.r.l., Via P. Togliatti 20, Corciano, 06073, Perugia, Italy
| | | | - Ciro Mercurio
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Lucia Altucci
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy; Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy; Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Via Portuense, 292, 00149, Rome, Italy.
| | - Angela Nebbioso
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
7
|
Noce B, Di Bello E, Zwergel C, Fioravanti R, Valente S, Rotili D, Masotti A, Salik Zeya Ansari M, Trisciuoglio D, Chakrabarti A, Romier C, Robaa D, Sippl W, Jung M, Häberli C, Keiser J, Mai A. Chemically Diverse S. mansoni HDAC8 Inhibitors Reduce Viability in Worm Larval and Adult Stages. ChemMedChem 2023; 18:e202200510. [PMID: 36250286 DOI: 10.1002/cmdc.202200510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Indexed: 02/05/2023]
Abstract
Schistosoma mansoni HDAC8 is a reliable target to fight schistosomiasis, and several inhibitors have been reported in the literature up to now. Nevertheless, only a few displayed selectivity over the human deacetylases and some exhibited very low or no activity against parasite larvae and/or adult worms. We report here the in vitro enzyme and biological activity of a small library of HDAC inhibitors from our lab, in many cases exhibiting submicromolar/nanomolar potency against smHDAC8 and diverse degrees of selectivity over hHDAC1 and/or hHDAC6. Such compounds were tested against schistosomula, and a selection of them against the adult forms of S. mansoni, to detect their effect on viability. Some of them showed the highest viability reduction for the larval stage with IC50 values around 1 μM and/or displayed ∼40-50 % activity in adult worms at 10 μM, joined to moderate to no toxicity in human fibroblast MRC-5 cells.
Collapse
Affiliation(s)
- Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| | | | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council (CNR), 00185, Rome, Italy
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404, Illkirch Cedex, France
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Cécile Häberli
- Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185, Rome, Italy
| |
Collapse
|
8
|
Zhang L, Liu Y, Lu Y, Wang G. Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochem Pharmacol 2022; 206:115295. [DOI: 10.1016/j.bcp.2022.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
9
|
Parrella E, Porrini V, Scambi I, Gennari MM, Gussago C, Bankole O, Benarese M, Mariotti R, Pizzi M. Synergistic association of resveratrol and histone deacetylase inhibitors as treatment in amyotrophic lateral sclerosis. Front Pharmacol 2022; 13:1017364. [PMID: 36339574 PMCID: PMC9633661 DOI: 10.3389/fphar.2022.1017364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, progressive paralysis and finally death. Despite the research efforts, currently there is no cure for ALS. In recent years, multiple epigenetic mechanisms have been associated with neurodegenerative diseases. A pathological role for histone hypoacetylation and the abnormal NF-κB/RelA activation involving deacetylation of lysines, with the exclusion of lysine 310, has been established in ALS. Recent findings indicate that the pathological acetylation state of NF-κB/RelA and histone 3 (H3) occurring in the SOD1(G93A) murine model of ALS can be corrected by the synergistic combination of low doses of the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator resveratrol and the histone deacetylase (HDAC) inhibitors MS-275 (entinostat) or valproate. The combination of the epigenetic drugs, by rescuing RelA and the H3 acetylation state, promotes a beneficial and sexually dimorphic effect on disease onset, survival and motor neurons degeneration. In this mini review, we discuss the potential of the epigenetic combination of resveratrol with HDAC inhibitors in the ALS treatment.
Collapse
Affiliation(s)
- Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilaria Scambi
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele M. Gennari
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Gussago
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Oluwamolakun Bankole
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Benarese
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Mariotti
- Section of Anatomy and Histology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Di Bello E, Noce B, Fioravanti R, Zwergel C, Valente S, Rotili D, Fianco G, Trisciuoglio D, Mourão MM, Sales P, Lamotte S, Prina E, Späth GF, Häberli C, Keiser J, Mai A. Effects of Structurally Different HDAC Inhibitors against Trypanosoma cruzi, Leishmania, and Schistosoma mansoni. ACS Infect Dis 2022; 8:1356-1366. [PMID: 35732073 PMCID: PMC9274761 DOI: 10.1021/acsinfecdis.2c00232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Neglected tropical
diseases (NTDs), including trypanosomiasis,
leishmaniasis, and schistosomiasis, result in a significant burden
in terms of morbidity and mortality worldwide every year. Current
antiparasitic drugs suffer from several limitations such as toxicity,
no efficacy toward all of the forms of the parasites’ life
cycle, and/or induction of resistance. Histone-modifying enzymes play
a crucial role in parasite growth and survival; thus, the use of epigenetic
drugs has been suggested as a strategy for the treatment of NTDs.
We tested structurally different HDACi 1–9, chosen from our in-house library or newly synthesized,
against Trypanosoma cruzi,
Leishmania spp, and Schistosoma mansoni. Among them, 4 emerged as the most potent against all
of the tested parasites, but it was too toxic against host cells,
hampering further studies. The retinoic 2′-aminoanilide 8 was less potent than 4 in all parasitic assays,
but as its toxicity is considerably lower, it could be the starting
structure for further development. In T. cruzi, compound 3 exhibited a single-digit micromolar inhibition of parasite
growth combined with moderate toxicity. In S. mansoni, 4’s close analogs 17–20 were tested in new transformed schistosomula (NTS) and
adult worms displaying high death induction against both parasite
forms. Among them, 17 and 19 exhibited very
low toxicity in human retinal pigment epithelial (RPE) cells, thus
being promising compounds for further optimization.
Collapse
Affiliation(s)
- Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Giulia Fianco
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, 00185 Rome, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, 00185 Rome, Italy
| | - Marina M Mourão
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | - Policarpo Sales
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, 30190-002 Belo Horizonte, Brazil
| | - Suzanne Lamotte
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Eric Prina
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Cécile Häberli
- Swiss Tropical and Public Health Institute, 4002 Allschwil, Switzerland.,University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, 4002 Allschwil, Switzerland.,University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Hawsawi YM, Shams A, Theyab A, Abdali WA, Hussien NA, Alatwi HE, Alzahrani OR, Oyouni AAA, Babalghith AO, Alreshidi M. BARD1 mystery: tumor suppressors are cancer susceptibility genes. BMC Cancer 2022; 22:599. [PMID: 35650591 PMCID: PMC9161512 DOI: 10.1186/s12885-022-09567-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
The full-length BRCA1-associated RING domain 1 (BARD1) gene encodes a 777-aa protein. BARD1 displays a dual role in cancer development and progression as it acts as a tumor suppressor and an oncogene. Structurally, BARD1 has homologous domains to BRCA1 that aid their heterodimer interaction to inhibit the progression of different cancers such as breast and ovarian cancers following the BRCA1-dependant pathway. In addition, BARD1 was shown to be involved in other pathways that are involved in tumor suppression (BRCA1-independent pathway) such as the TP53-dependent apoptotic signaling pathway. However, there are abundant BARD1 isoforms exist that are different from the full-length BARD1 due to nonsense and frameshift mutations, or deletions were found to be associated with susceptibility to various cancers including neuroblastoma, lung, breast, and cervical cancers. This article reviews the spectrum of BARD1 full-length genes and its different isoforms and their anticipated associated risk. Additionally, the study also highlights the role of BARD1 as an oncogene in breast cancer patients and its potential uses as a prognostic/diagnostic biomarker and as a therapeutic target for cancer susceptibility testing and treatment.
Collapse
Affiliation(s)
- Yousef M Hawsawi
- King Faisal Specialist Hospital and Research Center- Research Center, KFSH&RC, MBC-J04, P.O. Box 40047, Jeddah, 21499, Saudi Arabia. .,College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia.
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia.,Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Wed A Abdali
- King Faisal Specialist Hospital and Research Center- Research Center, KFSH&RC, MBC-J04, P.O. Box 40047, Jeddah, 21499, Saudi Arabia
| | - Nahed A Hussien
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.,Department of Biology, College of Science, Taif University, P.O Box 11099, Taif, 21944, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Othman R Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad O Babalghith
- Medical genetics Department, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Mousa Alreshidi
- Departement of biology, College of Science, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostic and Personalized Therapeutic Unit, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
12
|
Mazzocchi M, Goulding SR, Morales-Prieto N, Foley T, Collins LM, Sullivan AM, O'Keeffe GW. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson's disease. Brain Behav Immun 2022; 102:151-160. [PMID: 35217173 DOI: 10.1016/j.bbi.2022.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by nigrostriatal dopaminergic (DA) neurodegeneration. There is a critical need for neuroprotective therapies, particularly those that do not require direct intracranial administration. Small molecule inhibitors of histone deacetylases (HDIs) are neuroprotective in in vitro and in vivo models of PD, however it is unknown whether Class IIa-specific HDIs are neuroprotective when administered peripherally. Here we show that 6-hydroxydopamine (6-OHDA) treatment induces protein kinase C (PKC)-dependent nuclear accumulation of the Class IIa histone deacetylase (HDAC)5 in SH-SY5Y cells and cultured DA neurons in vitro. Treatment of these cultures with the Class IIa-specific HDI, MC1568, partially protected against 6-OHDA-induced cell death. In the intrastriatal 6-OHDA lesion in vivo rat model of PD, MC1568 treatment (0.5 mg/kg i.p.) for 7 days reduced forelimb akinesia and partially protected DA neurons in the substantia nigra and their striatal terminals from 6-OHDA-induced neurodegeneration. MC1568 treatment prevented 6-OHDA-induced increases in microglial activation in the striatum and substantia nigra. Furthermore, MC1568 treatment decreased 6-OHDA-induced increases in nuclear HDAC5 in nigral DA neurons. These data suggest that peripheral administration of Class IIa-specific HDIs may be a potential therapy for neuroprotective in PD.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | | | - Tara Foley
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Department of Physiology, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
13
|
Lecce L, Xu Y, V’Gangula B, Chandel N, Pothula V, Caudrillier A, Santini MP, d’Escamard V, Ceholski DK, Gorski PA, Ma L, Koplev S, Bjørklund MM, Björkegren JL, Boehm M, Bentzon JF, Fuster V, Kim HW, Weintraub NL, Baker AH, Bernstein E, Kovacic JC. Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. J Clin Invest 2021; 131:131178. [PMID: 34338228 PMCID: PMC8321575 DOI: 10.1172/jci131178] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is associated with various cardiovascular diseases and in particular with atherosclerosis and plaque instability. However, the molecular pathways that govern EndMT are poorly defined. Specifically, the role of epigenetic factors and histone deacetylases (HDACs) in controlling EndMT and the atherosclerotic plaque phenotype remains unclear. Here, we identified histone deacetylation, specifically that mediated by HDAC9 (a class IIa HDAC), as playing an important role in both EndMT and atherosclerosis. Using in vitro models, we found class IIa HDAC inhibition sustained the expression of endothelial proteins and mitigated the increase in mesenchymal proteins, effectively blocking EndMT. Similarly, ex vivo genetic knockout of Hdac9 in endothelial cells prevented EndMT and preserved a more endothelial-like phenotype. In vivo, atherosclerosis-prone mice with endothelial-specific Hdac9 knockout showed reduced EndMT and significantly reduced plaque area. Furthermore, these mice displayed a more favorable plaque phenotype, with reduced plaque lipid content and increased fibrous cap thickness. Together, these findings indicate that HDAC9 contributes to vascular pathology by promoting EndMT. Our study provides evidence for a pathological link among EndMT, HDAC9, and atherosclerosis and suggests that targeting of HDAC9 may be beneficial for plaque stabilization or slowing the progression of atherosclerotic disease.
Collapse
Affiliation(s)
- Laura Lecce
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bhargavi V’Gangula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nirupama Chandel
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Venu Pothula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Axelle Caudrillier
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Paola Santini
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Valentina d’Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Delaine K. Ceholski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Przemek A. Gorski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lijiang Ma
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martin Mæng Bjørklund
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Johan L.M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Jacob Fog Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Valentin Fuster
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ha Won Kim
- Department of Medicine, Cardiology Division and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Neal L. Weintraub
- Department of Medicine, Cardiology Division and Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Andrew H. Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Bernstein
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
14
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. Valproic acid upregulates the expression of the p75NTR/sortilin receptor complex to induce neuronal apoptosis. Apoptosis 2021; 25:697-714. [PMID: 32712736 PMCID: PMC7527367 DOI: 10.1007/s10495-020-01626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The antiepileptic and mood stabilizer agent valproic acid (VPA) has been shown to exert anti-tumour effects and to cause neuronal damage in the developing brain through mechanisms not completely understood. In the present study we show that prolonged exposure of SH-SY5Y and LAN-1 human neuroblastoma cells to clinically relevant concentrations of VPA caused a marked induction of the protein and transcript levels of the common neurotrophin receptor p75NTR and its co-receptor sortilin, two promoters of apoptotic cell death in response to proneurotrophins. VPA induction of p75NTR and sortilin was associated with an increase in plasma membrane expression of the receptor proteins and was mimicked by cell treatment with several histone deacetylase (HDAC) inhibitors. VPA and HDAC1 knockdown decreased the level of EZH2, a core component of the polycomb repressive complex 2, and upregulated the transcription factor CASZ1, a positive regulator of p75NTR. CASZ1 knockdown attenuated VPA-induced p75NTR overexpression. Cell treatment with VPA favoured proNGF-induced p75NTR/sortilin interaction and the exposure to proNGF enhanced JNK activation and apoptotic cell death elicited by VPA. Depletion of p75NTR or addition of the sortilin agonist neurotensin to block proNGF/sortilin interaction reduced the apoptotic response to VPA and proNGF. Exposure of mouse cerebellar granule cells to VPA upregulated p75NTR and sortilin and induced apoptosis which was enhanced by proNGF. These results indicate that VPA upregulates p75NTR apoptotic cell signalling through an epigenetic mechanism involving HDAC inhibition and suggest that this effect may contribute to the anti-neuroblastoma and neurotoxic effects of VPA.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Luisa Marras
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Angela Ingianni
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy.
| |
Collapse
|
15
|
Elmezayen AD, Al-Obaidi A, Yelekçi K. Discovery of novel isoform-selective histone deacetylases 5 and 9 inhibitors through combined ligand-based pharmacophore modeling, molecular mocking, and molecular dynamics simulations for cancer treatment. J Mol Graph Model 2021; 106:107937. [PMID: 34049193 DOI: 10.1016/j.jmgm.2021.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Class IIa histone deacetylases (HDACs) 5 and 9 play crucial roles in several human disorders such as cancer, making them important targets for drug design. Continuous research is pursed to overcome the cytotoxicity side effect that comes with the currently available broad-spectrum HDACs inhibitors. Herein, common features of active HDACs inhibitors in clinical trials and use have been calculated to generate the best pharmacophore hypothesis. Guner-Henry scoring system was used to validate the generated hypotheses. Hypo1 of HDAC5 and Hypo2 of HDAC9 exhibited the most statistically significance hypotheses. Compounds with fit value of 3 and more were examined by QuickVina 2 docking tool to calculate their binding affinity toward all class IIa HDACs. A total of 6 potential selective compounds were subjected to 100 molecular dynamics (MD) simulation to examine their binding modes. The free binding energy calculations were computed according to the MM-PBSA method. Proposed selective compounds displayed good stability with their targets and thus they may offer potent leads for the designing of HDAC5 and HDAC9 isoform selective inhibitors.
Collapse
Affiliation(s)
- Ammar D Elmezayen
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| | - Anas Al-Obaidi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| |
Collapse
|
16
|
Klingl YE, Pakravan D, Van Den Bosch L. Opportunities for histone deacetylase inhibition in amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:1353-1372. [PMID: 32726472 PMCID: PMC9327724 DOI: 10.1111/bph.15217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. ALS patients suffer from a progressive loss of motor neurons, leading to respiratory failure within 3 to 5 years after diagnosis. Available therapies only slow down the disease progression moderately or extend the lifespan by a few months. Epigenetic hallmarks have been linked to the disease, creating an avenue for potential therapeutic approaches. Interference with one class of epigenetic enzymes, histone deacetylases, has been shown to affect neurodegeneration in many preclinical models. Consequently, it is crucial to improve our understanding about histone deacetylases and their inhibitors in (pre)clinical models of ALS. We conclude that selective inhibitors with high tolerability and safety and sufficient blood-brain barrier permeability will be needed to interfere with both epigenetic and non-epigenetic targets of these enzymes. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Yvonne E. Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| | - Donya Pakravan
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
17
|
Truong V, Jain A, Anand-Srivastava MB, Srivastava AK. Angiotensin II-induced histone deacetylase 5 phosphorylation, nuclear export, and Egr-1 expression are mediated by Akt pathway in A10 vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2021; 320:H1543-H1554. [PMID: 33606583 DOI: 10.1152/ajpheart.00683.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiotensin II (ANG II) regulates an array of physiological and pathological responses in vascular smooth muscle cells (VSMCs) by activating ERK1/2 and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. We have demonstrated that ANG II and insulin-like growth factor-1 (IGF-1) induce the expression of early growth response protein-1 (Egr-1), a zinc finger transcription factor, which regulates the transcription of cell cycle regulatory genes network in VSMCs. We have reported that IGF-1 induces the phosphorylation of histone deacetylase 5 (HDAC5), which has been implicated in the expression of genes linked to VSMC growth and hypertrophy, via a PI3K/Akt-dependent pathway in VSMCs. However, the involvement of PI3K/Akt pathways in ANG II-induced HDAC5 phosphorylation and the contribution of HDAC5 in Egr-1 expression and hypertrophy in VSMCs remain unexplored. Here, we show that pharmacological blockade of the PI3K/Akt pathway either by wortmannin/SC66 or siRNA-induced silencing of Akt attenuated ANG II-induced HDAC5 phosphorylation and its nuclear export. Moreover, SC66 or Akt knockdown also suppressed ANG II-induced Egr-1 expression. Furthermore, pharmacological inhibition of HDAC5 by MC1568 or TMP-195 or knockdown of HDAC5 and the blockade of the nuclear export of HDAC5 by leptomycin B or KPT-330 significantly reduced ANG II-induced Egr-1 expression. In addition, depletion of either HDAC5 or Egr-1 by siRNA attenuated VSMC hypertrophy in response to ANG II. In summary, our results demonstrate that ANG II-induced HDAC5 phosphorylation and its nuclear exclusion are mediated by PI3K/Akt pathway and HDAC5 is an upstream regulator of Egr-1 expression and hypertrophy in VSMCs.NEW & NOTEWORTHY ANG II-induced histone deacetylase 5 (HDAC5) phosphorylation and nuclear export occurs via the phosphoinositide 3-kinase/Akt pathway. Akt, through HDAC5, regulates ANG II-induced expression of early growth response protein-1 (Egr-1), which is a transcription factor linked with vascular dysfunction. Inhibition of HDAC5 exclusion by nuclear export inhibitors suppresses ANG II-induced Egr-1 expression. HDAC5 is an upstream mediator of Egr-1 expression and cell hypertrophy in response to ANG II in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Vanessa Truong
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Ashish Jain
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ashok K Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Sako K, Nguyen HM, Seki M. Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants. PLANT & CELL PHYSIOLOGY 2021; 61:1995-2003. [PMID: 32966567 DOI: 10.1093/pcp/pcaa119] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/07/2020] [Indexed: 05/23/2023]
Abstract
Abiotic stress is considered a major factor limiting crop yield and quality. The development of effective strategies that mitigate abiotic stress is essential for sustainable agriculture and food security, especially with continuing global population growth. Recent studies have demonstrated that exogenous treatment of plants with chemical compounds can enhance abiotic stress tolerance by inducing molecular and physiological defense mechanisms, a process known as chemical priming. Chemical priming is believed to represent a promising strategy for mitigating abiotic stress in crop plants. Plants biosynthesize various compounds, such as phytohormones and other metabolites, to adapt to adverse environments. Research on artificially synthesized compounds has also resulted in the identification of novel compounds that improve abiotic stress tolerance. In this review, we summarize current knowledge of both naturally synthesized and artificial priming agents that have been shown to increase the abiotic stress tolerance of plants.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara, 631-8505 Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Huong Mai Nguyen
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| |
Collapse
|
19
|
Zwergel C, Di Bello E, Fioravanti R, Conte M, Nebbioso A, Mazzone R, Brosch G, Mercurio C, Varasi M, Altucci L, Valente S, Mai A. Novel Pyridine-Based Hydroxamates and 2'-Aminoanilides as Histone Deacetylase Inhibitors: Biochemical Profile and Anticancer Activity. ChemMedChem 2020; 16:989-999. [PMID: 33220015 DOI: 10.1002/cmdc.202000854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/31/2022]
Abstract
Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide (5 b) previously described by us as a HDAC inhibitor, we prepared four aza-analogues, 6-8, 9 b, as regioisomers containing the pyridine nucleus. Preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide (9 b) as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9 a, 9 c-f, and 11 a-f) and 2'-aminoanilides (10 a-f and 12 a-f), related to 9 b, to be tested against HDACs. Among them, the nicotinic hydroxamate 11 d displayed sub-nanomolar potency (IC50 : 0.5 nM) and selectivity up to 34 000 times that of HDAC4 and from 100 to 1300 times that of all the other tested HDAC isoforms. The 2'-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12 d being the most effective (IC50 HDAC3 =0.113 μM). When tested in U937 leukemia cells, the hydroxamates 9 e, 11 c, and 11 d blocked over 80 % of cells in G2/M phase, whereas the anilides did not alter cell-cycle progress. In the same cell line, the hydroxamate 11 c and the anilide 10 b induced about 30 % apoptosis, and the anilide 12 c displayed about 40 % cytodifferentiation. Finally, the most potent compounds in leukemia cells 9 b, 11 c, 10 b, 10 e, and 12 c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro, 500185, Rome, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro, 500185, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro, 500185, Rome, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Roberta Mazzone
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro, 500185, Rome, Italy
| | - Gerald Brosch
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ciro Mercurio
- Department of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- Department of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Lucia Altucci
- Department of Precision Medicine Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro, 500185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro, 500185, Rome, Italy
| |
Collapse
|
20
|
Elmezayen AD, Yelekçi K. Homology modeling and in silico design of novel and potential dual-acting inhibitors of human histone deacetylases HDAC5 and HDAC9 isozymes. J Biomol Struct Dyn 2020; 39:6396-6414. [PMID: 32715940 DOI: 10.1080/07391102.2020.1798812] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs) are a group of enzymes that have prominent and crucial effect on various biological systems, mainly by their suppressive effect on transcription. Searching for inhibitors targeting their respective isoforms without affecting other targets is greatly needed. Some histone deacetylases have no crystal structures, such as HDAC5 and HDAC9. Lacking proper and suitable crystal structure is obstructing the designing of appropriate isoform selective inhibitors. Here in this study, we constructed human HDAC5 and HDAC9 protein models using human HDAC4 (PDB:2VQM_A) as a template by the means of homology modeling approach. Based on the Z-score of the built models, model M0014 of HDAC5 and model M0020 of HDAC9 were selected. The models were verified by MODELLER and validated using the Web-based PROCHECK server. All selected known inhibitors displayed reasonable binding modes and equivalent predicted Ki values in comparison to the experimental binding affinities (Ki/IC50). The known inhibitor Rac26 showed the best binding affinity for HDAC5, while TMP269 showed the best binding affinity for HDAC9. The best two compounds, CHEMBL2114980 and CHEMBL217223, had relatively similar inhibition constants against HDAC5 and HDAC9. The built models and their complexes were subjected to molecular dynamic simulations (MD) for 100 ns. Examining the MD simulation results of all studied structures, including the RMSD, RMSF, radius of gyration and potential energy suggested the stability and reliability of the built models. Accordingly, the results obtained in this study could be used for designing de novo inhibitors against HDAC5 and HDAC9. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ammar D Elmezayen
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
21
|
The class II histone deacetylases as therapeutic targets for Parkinson's disease. Neuronal Signal 2020; 4:NS20200001. [PMID: 32714601 PMCID: PMC7373248 DOI: 10.1042/ns20200001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by specific motor impairments. The neuropathological hallmarks of PD include progressive degeneration of midbrain dopaminergic neurons, and loss of their axonal projections to the striatum. Additionally, there is progressive accumulation and spread of intracellular aggregates of α-synuclein. Although dopamine-replacement pharmacotherapy can treat PD symptoms in the short-term, there is a critical need for the development of disease-modifying therapies based on an understanding of the underlying disease mechanisms. One such mechanism is histone acetylation, which is a common epigenetic modification that alters gene transcription. A number of studies have described alterations in histone acetylation in the brains of PD patients. Moreover, α-synuclein accumulation has been linked to alterations in histone acetylation and pharmacological strategies aimed at modulating histone acetylation are under investigation as novel approaches to disease modification in PD. Currently, such strategies are focused predominantly on pan-inhibition of histone deacetylase (HDAC) enzymes. Inhibition of specific individual HDAC enzymes is a more targeted strategy that may allow for future clinical translation. However, the most appropriate class of HDACs that should be targeted for neuroprotection in PD is still unclear. Recent work has shed new light on the role of class-II HDACs in dopaminergic degeneration. For this reason, here we describe the regulation of histone acetylation, outline the evidence for alterations in histone acetylation in the PD brain, and focus on the roles of class II HDACs and the potential of class-II HDAC inhibition as a therapeutic approach for neuroprotection in PD.
Collapse
|
22
|
Schröder C, Khatri R, Petry SF, Linn T. Class I and II Histone Deacetylase Inhibitor LBH589 Promotes Endocrine Differentiation in Bone Marrow Derived Human Mesenchymal Stem Cells and Suppresses Uncontrolled Proliferation. Exp Clin Endocrinol Diabetes 2020; 129:357-364. [PMID: 32052390 DOI: 10.1055/a-1103-1900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells are useful tools employed in clinical and preclinical medicine. Their beneficial potential in especially degenerative as well as autoimmune diseases is a constant focus of research. Regarding diabetes mellitus, transplantation of stem cells is seen as a possible therapeutic approach to overcome the loss of endocrine pancreatic cells. It was reported that co-transplantation of mesenchymal stem cells with pancreatic islet cells improves function and survival of the graft. However, these multipotent progenitors may be able to form tumors, especially under immunosuppressed conditions. Histone deacetylase inhibitors might offer the potential to overcome this issue. These small molecules can induce cell differentiation and control proliferation. Their potential to control lineage development of stem cells has been distinctly demonstrated in the treatment of cancer, mainly in hematopoietic neoplasias.In this study, we demonstrate that human bone marrow-derived mesenchymal stem cells exhibit low carcinogenic potential in an immunosuppressed condition in vivo. Further, the effect of histone deacetylase inhibitors LBH589, MS-275, and MGCD0103 was examined after normalizing histone deacetylase activities in culture. Interestingly, transcripts of insulin gene enhancer protein and paired-box-gene 6, two markers of pancreatic endocrine differentiation were constitutively expressed in the cell line. The broad spectrum inhibitor of class I and class II histone deacetylases LBH589 upregulated the expression of these transcription factors in a significant way, whereas addition of selective class I histone deacetylase inhibitors MS-275 and MGCD0103 did not result in significant changes in gene expression.In conclusion, we deliver evidence that a combined class I and II histone deacetylase inhibition is able to modulate the transcripts of differentiation markers of mesenchymal stem cells. The treatment holds the capability to facilitate endocrine differentiation in future approaches to replace endocrine cells by stem cell therapy.
Collapse
Affiliation(s)
- Christoph Schröder
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Rahul Khatri
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany
| | | | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Germany
| |
Collapse
|
23
|
Mazzocchi M, Wyatt SL, Mercatelli D, Morari M, Morales-Prieto N, Collins LM, Sullivan AM, O’Keeffe GW. Gene Co-expression Analysis Identifies Histone Deacetylase 5 and 9 Expression in Midbrain Dopamine Neurons and as Regulators of Neurite Growth via Bone Morphogenetic Protein Signaling. Front Cell Dev Biol 2019; 7:191. [PMID: 31572723 PMCID: PMC6753186 DOI: 10.3389/fcell.2019.00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease is characterized by the intracellular accumulation of α-synuclein which has been linked to early dopaminergic axonal degeneration. Identifying druggable targets that can promote axonal growth in cells overexpressing α-synuclein is important in order to develop strategies for early intervention. Class-IIa histone deacetylases (HDACs) have previously emerged as druggable targets, however, it is not known which specific class-IIa HDACs should be targeted to promote neurite growth in dopaminergic neurons. To provide insight into this, we used gene co-expression analysis to identify which, if any, of the class-IIa HDACs had a positive correlation with markers of dopaminergic neurons in the human substantia nigra. This revealed that two histone deacetylases, HDAC5 and HDAC9, are co-expressed with TH, GIRK2 and ALDH1A1 in the human SN. We further found that HDAC5 and HDAC9 are expressed in dopaminergic neurons in the adult mouse substantia nigra. We show that siRNAs targeting HDAC5 or HDAC9 can promote neurite growth in SH-SY5Y cells, and that their pharmacological inhibition, using the drug MC1568, promoted neurite growth in cultured rat dopaminergic neurons. Moreover, MC1568 treatment upregulated the expression of the neurotrophic factor, BMP2, and its downstream transcription factor, SMAD1. In addition, MC1568 or siRNAs targeting HDAC5 or HDAC9 led to an increase in Smad-dependent GFP expression in a reporter assay. Furthermore, MC1568 treatment of cultured rat dopaminergic neurons increased cellular levels of phosphorylated Smad1, which was prevented by the BMP receptor inhibitor, dorsomorphin. Dorsomorphin treatment prevented the neurite growth-promoting effects of siRNAs targeting HDAC5, as did overexpression of dominant-negative Smad4 or of the inhibitory Smad7, demonstrating a functional link to BMP signaling. Supplementation with BMP2 prevented the neurite growth-inhibitory effects of nuclear-restricted HDAC5. Finally, we report that siRNAs targeting HDAC5 or HDAC9 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein and that MC1568 protected cultured rat dopaminergic neurons against the neurotoxin, MPP+. These findings establish HDAC5 and HDAC9 as novel regulators of BMP-Smad signaling, that additionally may be therapeutic targets worthy of further exploration in iPSC-derived human DA neurons and in vivo models of Parkinson's disease.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L. Wyatt
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Daniela Mercatelli
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | | | - Louise M. Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. Downregulation of TrkB Expression and Signaling by Valproic Acid and Other Histone Deacetylase Inhibitors. J Pharmacol Exp Ther 2019; 370:490-503. [PMID: 31308194 DOI: 10.1124/jpet.119.258129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/14/2019] [Indexed: 01/27/2023] Open
Abstract
Valproic acid (VPA) has been shown to regulate the levels of brain-derived neurotrophic factor (BDNF), but it is not known whether this drug can affect the neuronal responses to BDNF. In the present study, we show that in retinoic acid-differentiated SH-SY5Y human neuroblastoma cells, prolonged exposure to VPA reduces the expression of the BDNF receptor TrkB at the protein and mRNA levels and inhibits the intracellular signaling, neurotrophic activity, and prosurvival function of BDNF. VPA downregulates TrkB and curtails BDNF-induced signaling also in differentiated Kelly and LAN-1 neuroblastoma cells and primary mouse cortical neurons. The VPA effect is mimicked by several histone deacetylase (HDAC) inhibitors, including the class I HDAC inhibitors entinostat and romidepsin. Conversely, the class II HDAC inhibitor MC1568, the HDAC6 inhibitor tubacin, the HDAC8 inhibitor PCI-34051, and the VPA derivative valpromide have no effect. In neuroblastoma cells and primary neurons both VPA and entinostat increase the cellular levels of the transcription factor RUNX3, which negatively regulates TrkB gene expression. Treatment with RUNX3 siRNA attenuates VPA-induced RUNX3 elevation and TrkB downregulation. VPA, entinostat, HDAC1 depletion by siRNA, and 3-deazaneplanocin A (DZNep), an inhibitor of the polycomb repressor complex 2 (PRC2), decrease the PRC2 core component EZH2, a RUNX3 suppressor. Like VPA, HDAC1 depletion and DZNep increase RUNX3 and decrease TrkB expression. These results indicate that VPA downregulates TrkB through epigenetic mechanisms involving the EZH2/RUNX3 axis and provide evidence that this effect implicates relevant consequences with regard to BDNF efficacy in stimulating intracellular signaling and functional responses. SIGNIFICANCE STATEMENT: The tropomyosin-related kinase receptor B (TrkB) mediates the stimulatory effects of brain-derived neurotrophic factor (BDNF) on neuronal growth, differentiation, and survival and is highly expressed in aggressive neuroblastoma and other tumors. Here we show that exposure to valproic acid (VPA) downregulates TrkB expression and functional activity in retinoic acid-differentiated human neuroblastoma cell lines and primary mouse cortical neurons. The effects of VPA are mimicked by other histone deacetylase (HDAC) inhibitors and HDAC1 knockdown and appear to be mediated by an epigenetic mechanism involving the upregulation of RUNX3, a suppressor of TrkB gene expression. TrkB downregulation may have relevance for the use of VPA as a potential therapeutic agent in neuroblastoma and other pathologies characterized by an excessive BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Luisa Marras
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Angela Ingianni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| |
Collapse
|
25
|
Peng X, Liao G, Sun P, Yu Z, Chen J. An Overview of HDAC Inhibitors and their Synthetic Routes. Curr Top Med Chem 2019; 19:1005-1040. [DOI: 10.2174/1568026619666190227221507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Epigenetics play a key role in the origin, development and metastasis of cancer. Epigenetic processes include DNA methylation, histone acetylation, histone methylation, and histone phosphorylation, among which, histone acetylation is the most common one that plays important roles in the regulation of normal cellular processes, and is controlled by histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDACs are involved in the regulation of many key cellular processes, such as DNA damage repair, cell cycle control, autophagy, metabolism, senescence and chaperone function, and can lead to oncogene activation. As a result, HDACs are considered to be an excellent target for anti-cancer therapeutics like histone deacetylase inhibitors (HDACi) which have attracted much attention in the last decade. A wide-ranging knowledge of the role of HDACs in tumorigenesis, and of the action of HDACi, has been achieved. The primary purpose of this paper is to summarize recent HDAC inhibitors and the synthetic routes as well as to discuss the direction for the future development of new HDAC inhibitors.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Hu T, Schreiter FC, Bagchi RA, Tatman PD, Hannink M, McKinsey TA. HDAC5 catalytic activity suppresses cardiomyocyte oxidative stress and NRF2 target gene expression. J Biol Chem 2019; 294:8640-8652. [PMID: 30962285 PMCID: PMC6544848 DOI: 10.1074/jbc.ra118.007006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/21/2019] [Indexed: 01/19/2023] Open
Abstract
Histone deacetylase 5 (HDAC5) and HDAC9 are class IIa HDACs that function as signal-responsive repressors of the epigenetic program for pathological cardiomyocyte hypertrophy. The conserved deacetylase domains of HDAC5 and HDAC9 are not required for inhibition of cardiac hypertrophy. Thus, the biological function of class IIa HDAC catalytic activity in the heart remains unknown. Here we demonstrate that catalytic activity of HDAC5, but not HDAC9, suppresses mitochondrial reactive oxygen species generation and subsequent induction of NF-E2-related factor 2 (NRF2)-dependent antioxidant gene expression in cardiomyocytes. Treatment of cardiomyocytes with TMP195 or TMP269, which are selective class IIa HDAC inhibitors, or shRNA-mediated knockdown of HDAC5 but not HDAC9 leads to stimulation of NRF2-mediated transcription in a reactive oxygen species-dependent manner. Conversely, ectopic expression of catalytically active HDAC5 decreases cardiomyocyte oxidative stress and represses NRF2 activation. These findings establish a role of the catalytic domain of HDAC5 in the control of cardiomyocyte redox homeostasis and define TMP195 and TMP269 as a novel class of NRF2 activators that function by suppressing the enzymatic activity of an epigenetic regulator.
Collapse
Affiliation(s)
- Tianjing Hu
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Friederike C Schreiter
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany; German Centre for Cardiovascular Research, Heidelberg/Mannheim, Germany
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Philip D Tatman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark Hannink
- Bond Life Sciences Center and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
| |
Collapse
|
27
|
Wang H, Cui W, Meng C, Zhang J, Li Y, Qian Y, Xing G, Zhao D, Cao S. MC1568 Enhances Histone Acetylation During Oocyte Meiosis and Improves Development of Somatic Cell Nuclear Transfer Embryos in Pig. Cell Reprogram 2019; 20:55-65. [PMID: 29412739 DOI: 10.1089/cell.2017.0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have revealed that histone deacetylase (HDAC) mediated histone deacetylation is important for mammalian oocyte development. However, nonselective HDAC inhibitors (HDACi) were applied in most studies; the precise functions of specific HDAC classes during meiosis are poorly defined. In this study, the class IIa-specific HDACi MC1568 was used to reveal a crucial role of class IIa HDACs in the regulation of histone deacetylation during porcine oocyte meiosis. Besides, the functions of HDACs and histone acetyltransferases in regulating the balance of histone acetylation/deacetylation were also confirmed during oocyte maturation. After the validation of nontoxicity of MC1568 in maturation rate, spindle morphology, and chromosome alignment, effects of MC1568 on developmental competence of porcine somatic cell nuclear transfer (SCNT) embryos were evaluated, and data indicated that treatment with 10 μM MC1568 for 12 hours following electrical activation significantly enhanced the blastocyst rate and cell numbers. Moreover, results showed that optimal MC1568 treatment increased the H4K12 acetylation level in SCNT one cells and two cells. In addition, MC1568 treatment stimulated expression of the development-related genes OCT4, CDX2, SOX2, and NANOG in SCNT blastocysts. Collectively, our investigation uncovered a critical role of class IIa HDACs in the regulation of histone deacetylation during oocyte meiosis. Furthermore, for the first time, we showed that MC1568 can improve the in vitro development of porcine SCNT embryos. These findings provide an alternative HDACi for improving animal cloning efficiency and may shed more light on nuclear reprogramming.
Collapse
Affiliation(s)
- Huili Wang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Wei Cui
- 2 Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Chunhua Meng
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Jun Zhang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yinxia Li
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yong Qian
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Guangdong Xing
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Dongmin Zhao
- 3 Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Shaoxian Cao
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| |
Collapse
|
28
|
Zagni C, Citarella A, Oussama M, Rescifina A, Maugeri A, Navarra M, Scala A, Piperno A, Micale N. Hydroxamic Acid-Based Histone Deacetylase (HDAC) Inhibitors Bearing a Pyrazole Scaffold and a Cinnamoyl Linker. Int J Mol Sci 2019; 20:ijms20040945. [PMID: 30795625 PMCID: PMC6412695 DOI: 10.3390/ijms20040945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Genetic abnormalities have been conventionally considered as hallmarks of cancer. However, recent studies have demonstrated that epigenetic mechanisms are also implicated in the insurgence and development of cancer. Patterns of the epigenetic component include DNA methylation and histone modifications. Acetylation of histones is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Imbalance of these two enzymatic systems is known to be a key factor in tumor progression. Because HDACs have been found to function incorrectly in cancer, various HDAC inhibitors (HDACIs) are being investigated to act as cancer chemotherapeutics. Herein, we report the synthesis, docking studies and biological activity of a series of hydroxamic acid-based HDACIs bearing an N1-aryl or N1-H pyrazole nucleus as surface recognition motif and a cinnamoyl group as a linker to the hydroxamic acid zinc-binding group (ZBG). Some of the tested compounds exhibited inhibitory properties towards HDACs and antiproliferative activity against neuroblastoma SH-SY5Y tumor cell line both at micromolar concentrations.
Collapse
Affiliation(s)
- Chiara Zagni
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Andrea Citarella
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Mahjoub Oussama
- Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Sidi Massa-oud, Hiboun 5100 Mahdia Tunisian, Tunisia.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy.
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
29
|
Schang G, Toufaily C, Bernard DJ. HDAC inhibitors impair Fshb subunit expression in murine gonadotrope cells. J Mol Endocrinol 2019; 62:67-78. [PMID: 30481159 DOI: 10.1530/jme-18-0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Fertility is dependent on follicle-stimulating hormone (FSH), a product of gonadotrope cells of the anterior pituitary gland. Hypothalamic gonadotropin-releasing hormone (GnRH) and intra-pituitary activins are regarded as the primary drivers of FSH synthesis and secretion. Both stimulate expression of the FSH beta subunit gene (Fshb), although the underlying mechanisms of GnRH action are poorly described relative to those of the activins. There is currently no consensus on how GnRH regulates Fshb transcription, as results vary across species and between in vivo and in vitro approaches. One of the more fully developed models suggests that the murine Fshb promoter is tonically repressed by histone deacetylases (HDACs) and that GnRH relieves this repression, at least in immortalized murine gonadotrope-like cells (LβT2 and αT3-1). In contrast, we observed that the class I/II HDAC inhibitor trichostatin A (TSA) robustly inhibited basal, activin A-, and GnRH-induced Fshb mRNA expression in LβT2 cells and in primary murine pituitary cultures. Similar results were obtained with the class I specific HDAC inhibitor, entinostat, whereas two class II-specific inhibitors, MC1568 and TMP269, had no effects on Fshb expression. Collectively, these data suggest that class I HDACs are positive, not negative, regulators of Fshb expression in vitro and that, contrary to earlier reports, GnRH may not stimulate Fshb by inhibiting HDAC-mediated repression of the gene.
Collapse
Affiliation(s)
- Gauthier Schang
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Bouchut A, Rotili D, Pierrot C, Valente S, Lafitte S, Schultz J, Hoglund U, Mazzone R, Lucidi A, Fabrizi G, Pechalrieu D, Arimondo PB, Skinner-Adams TS, Chua MJ, Andrews KT, Mai A, Khalife J. Identification of novel quinazoline derivatives as potent antiplasmodial agents. Eur J Med Chem 2019; 161:277-291. [DOI: 10.1016/j.ejmech.2018.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
|
31
|
Resistance to Histone Deacetylase Inhibitors in the Treatment of Lymphoma. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2019. [DOI: 10.1007/978-3-030-24424-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Alam MA. Methods for Hydroxamic Acid Synthesis. CURR ORG CHEM 2019; 23:978-993. [PMID: 32565717 PMCID: PMC7304568 DOI: 10.2174/1385272823666190424142821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022]
Abstract
Substituted hydroxamic acid is one of the most extensively studied pharmacophores because of their ability to chelate biologically important metal ions to modulate various enzymes, such as HDACs, urease, metallopeptidase, and carbonic anhydrase. Syntheses and biological studies of various classes of hydroxamic acid derivatives have been reported in numerous research articles in recent years but this is the first review article dedicated to their synthetic methods and their application for the synthesis of these novel molecules. In this review article, commercially available reagents and preparation of hydroxylamine donating reagents have also been described.
Collapse
Affiliation(s)
- Mohammad A. Alam
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
33
|
Liao W, Sun J, Liu W, Li W, Jia J, Ou F, Su K, Zheng Y, Zhang Z, Sun Y. HDAC10 upregulation contributes to interleukin 1β‐mediated inflammatory activation of synovium‐derived mesenchymal stem cells in temporomandibular joint. J Cell Physiol 2018; 234:12646-12662. [PMID: 30515817 DOI: 10.1002/jcp.27873] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Wenting Liao
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Jiadong Sun
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Wenjing Liu
- Department of Prosthodontics Stomatological Hospital, Southern Medical University Guangzhou People's Republic of China
| | - Wenyu Li
- Department of Oncology The First Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Jiaxin Jia
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Farong Ou
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Kai Su
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Youhua Zheng
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Zhiguang Zhang
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Yangpeng Sun
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
34
|
Nejire/dCBP-mediated histone H3 acetylation during spermatogenesis is essential for male fertility in Drosophila melanogaster. PLoS One 2018; 13:e0203622. [PMID: 30192860 PMCID: PMC6128621 DOI: 10.1371/journal.pone.0203622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Spermatogenesis in many species including Drosophila melanogaster is accompanied by major reorganisation of chromatin in post-meiotic stages, involving a nearly genome-wide displacement of histones by protamines, Mst77F and Protamine-like 99C. A proposed prerequisite for the histone-to-protamine transition is massive histone H4 hyper-acetylation prior to the switch. Here, we investigated the pattern of histone H3 lysine acetylation and general lysine crotonylation in D. melanogaster spermiogenesis to elucidate a possible role of these marks in chromatin reorganisation. Lysine crotonylation was strongest prior to remodelling and the deposition of this mark depended on the acetylation status of the spermatid chromatin. In contrast to H4 acetylation, individual H3 acetylation marks displayed surprisingly distinct patterns during the histone-to-protamine transition. We observed that Nejire, a histone acetyl transferase, is expressed during the time of histone-to-protamine transition. Nejire knock down led to strongly reduced fertility, which correlated with misshaped spermatid nuclei and a lack of mature sperm. protA and prtl99C transcript levels were reduced after knocking down Nejire. ProtB-eGFP, Mst77F-eGFP and Prtl99C-eGFP were synthesized at the late canoe stage, while histones were often not detectable. However, in some cysts histones persist in parallel to protamines. Therefore, we hypothesize that complete histone removal requires multiple histone modifications besides H3K18ac and H3K27ac. In summary, H3K18 and H3K27 acetylation during Drosophila spermatogenesis is dependent on Nejire or a yet uncharacterized acetyl transferase. We show that Nejire is required for male fertility since Nejire contributes to efficient transcription of protA and prtl99C, but not Mst77F, in spermatocytes, and to maturation of sperm.
Collapse
|
35
|
Urbano FJ, Bisagno V, Mahaffey S, Lee SH, Garcia-Rill E. Class II histone deacetylases require P/Q-type Ca 2+ channels and CaMKII to maintain gamma oscillations in the pedunculopontine nucleus. Sci Rep 2018; 8:13156. [PMID: 30177751 PMCID: PMC6120910 DOI: 10.1038/s41598-018-31584-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms (i.e., histone post-translational modification and DNA methylation) play a role in regulation of gene expression. The pedunculopontine nucleus (PPN), part of the reticular activating system, manifests intrinsic gamma oscillations generated by voltage-dependent, high threshold N- and P/Q-type Ca2+ channels. We studied whether PPN intrinsic gamma oscillations are affected by inhibition of histone deacetylation. We showed that, a) acute in vitro exposure to the histone deacetylation Class I and II inhibitor trichostatin A (TSA, 1 μM) eliminated oscillations in the gamma range, but not lower frequencies, b) pre-incubation with TSA (1 μM, 90-120 min) also decreased gamma oscillations, c) Ca2+ currents (ICa) were reduced by TSA, especially on cells with P/Q-type channels, d) a HDAC Class I inhibitor MS275 (500 nM), and a Class IIb inhibitor Tubastatin A (150-500 nM), failed to affect gamma oscillations, e) MC1568, a HDAC Class IIa inhibitor (1 μM), blocked gamma oscillations, and f) the effects of both TSA and MC1568 were blunted by blockade of CaMKII with KN-93 (1 μM). These results suggest a cell type specific effect on gamma oscillations when histone deacetylation is blocked, suggesting that gamma oscillations through P/Q-type channels modulated by CaMKII may be linked to processes related to gene transcription.
Collapse
Affiliation(s)
- Francisco J Urbano
- Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, USA.,IFIBYNE, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Bisagno
- ININFA, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Susan Mahaffey
- Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sang-Hun Lee
- Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
36
|
Schiedel M, Conway SJ. Small molecules as tools to study the chemical epigenetics of lysine acetylation. Curr Opin Chem Biol 2018; 45:166-178. [DOI: 10.1016/j.cbpa.2018.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
|
37
|
Rossi L, Battistelli C, de Turris V, Noce V, Zwergel C, Valente S, Moioli A, Manzione A, Palladino M, Bordoni V, Domenici A, Menè P, Mai A, Tripodi M, Strippoli R. HDAC1 inhibition by MS-275 in mesothelial cells limits cellular invasion and promotes MMT reversal. Sci Rep 2018; 8:8492. [PMID: 29855565 PMCID: PMC5981641 DOI: 10.1038/s41598-018-26319-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Peritoneal fibrosis is a pathological alteration of the peritoneal membrane occurring in a variety of conditions including peritoneal dialysis (PD), post-surgery adhesions and peritoneal metastases. The acquisition of invasive and pro-fibrotic abilities by mesothelial cells (MCs) through induction of MMT, a cell-specific form of EMT, plays a main role in this process. Aim of this study was to evaluate possible effects of histone deacetylase (HDAC) inhibitors, key components of the epigenetic machinery, in counteracting MMT observed in MCs isolated from effluent of PD patients. HDAC inhibitors with different class/isoform selectivity have been used for pharmacological inhibition. While the effect of other inhibitors was limited to a partial E-cadherin re-expression, MS-275, a HDAC1-3 inhibitor, promoted: (i) downregulation of mesenchymal markers (MMP2, Col1A1, PAI-1, TGFβ1, TGFβRI) (ii) upregulation of epithelial markers (E-cadherin, Occludin), (iii) reacquisition of an epithelial-like morphology and (iv) marked reduction of cellular invasiveness. Results were confirmed by HDAC1 genetic silencing. Mechanistically, MS-275 causes: (i) increase of nuclear histone H3 acetylation (ii) rescue of the acetylation profile on E-cadherin promoter, (iii) Snail functional impairment. Overall, our study, pinpointing a role for HDAC1, revealed a new player in the regulation of peritoneal fibrosis, providing the rationale for future therapeutic opportunities.
Collapse
Affiliation(s)
- Lucia Rossi
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy
| | - Cecilia Battistelli
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Valeria Noce
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Alessandra Moioli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Andrea Manzione
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Marco Palladino
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Veronica Bordoni
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Alessandro Domenici
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Paolo Menè
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Nephrology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Marco Tripodi
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy. .,Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy.
| | - Raffaele Strippoli
- Department of Cellular Biotechnologies and Hematology, Section of Molecular Genetics, Sapienza University of Rome, Rome, Italy. .,Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy.
| |
Collapse
|
38
|
Buonvicino D, Felici R, Ranieri G, Caramelli R, Lapucci A, Cavone L, Muzzi M, Di Pietro L, Bernardini C, Zwergel C, Valente S, Mai A, Chiarugi A. Effects of Class II-Selective Histone Deacetylase Inhibitor on Neuromuscular Function and Disease Progression in SOD1-ALS Mice. Neuroscience 2018; 379:228-238. [PMID: 29588251 DOI: 10.1016/j.neuroscience.2018.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that transcriptome alterations due to epigenetic deregulation concur to ALS pathogenesis. Accordingly, pan-histone deacetylase (HDAC) inhibitors delay ALS development in mice, but these compounds failed when tested in ALS patients. Possibly, lack of selectivity toward specific classes of HDACs weakens the therapeutic effects of pan-HDAC inhibitors. Here, we tested the effects of the HDAC Class II selective inhibitor MC1568 on disease evolution, motor neuron survival as well as skeletal muscle function in SOD1G93A mice. We report that HDACs did not undergo expression changes during disease evolution in isolated motor neurons of adult mice. Conversely, increase in specific Class II HDACs (-4, -5 and -6) occurs in skeletal muscle of mice with severe neuromuscular impairment. Importantly, treatment with MC1568 causes early improvement of motor performances that vanishes at later stages of disease. Notably, motor improvement is not paralleled by reduced motor neuron degeneration but by increased skeletal muscle electrical potentials, reduced activation of mir206/FGFBP1-dependent muscle reinnervation signaling, and increased muscle expression of myogenic genes.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| | - Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Riccardo Caramelli
- Neurophysiology Unit, Department of Neurology and Psychiatry, Azienda Ospedaliera Careggi, Florence, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Leonardo Cavone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, University Cattolica del Sacro Cuore, Rome, Italy
| | - Camilla Bernardini
- Institute of Anatomy and Cell Biology, University Cattolica del Sacro Cuore, Rome, Italy
| | - Clemens Zwergel
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Sergio Valente
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| |
Collapse
|
39
|
Choi SY, Kee HJ, Jin L, Ryu Y, Sun S, Kim GR, Jeong MH. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat. Biomed Pharmacother 2018; 101:145-154. [DOI: 10.1016/j.biopha.2018.02.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
|
40
|
Ueda M, Matsui A, Nakamura T, Abe T, Sunaoshi Y, Shimada H, Seki M. Versatility of HDA19-deficiency in increasing the tolerance of Arabidopsis to different environmental stresses. PLANT SIGNALING & BEHAVIOR 2018; 13:e1475808. [PMID: 30047814 PMCID: PMC6149488 DOI: 10.1080/15592324.2018.1475808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 05/21/2023]
Abstract
UNLABELLED Histone acetylation is controlled by HATs and HDACs, which are essential epigenetic elements that regulate plant response to environmental stresses. A previous study revealed that a deficiency in an HDAC isoform (HDA19) increases tolerance to high salinity stress in the Arabidopsis wild-type Col-0 background. Here, the increased tolerance of hda19 to drought and heat stresses is demonstrated. Results indicate that hda19 plants have greater tolerance than wild-type plants to stress conditions. The data indicate that the stress response pathway coordinated by HDA19 plays a pivotal role in increasing tolerance to a variety of different abiotic stresses in Arabidopsis, including salinity, drought, and heat. The greater level of tolerance of hda19 plants to several different environmental stresses suggests that HDA19 represents a promising target for pharmacological manipulation in order to enhance abiotic stress tolerance in plants. ABBREVIATIONS HAT, histone acetyltransferase; HDAC, histone deacetylase; HSF, heat shock transcription factor; RPD3, reduced potassium dependency 3; SIRT, Silent Information Regulator 2.
Collapse
Affiliation(s)
- M. Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Japan
- Core Research for Evolutional Science and Technology, (CREST) Japan Science and Technology Agency (JST), Kawaguchi, Saitama Japan
| | - A. Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Saitama Japan
| | - T. Nakamura
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Japan
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - T. Abe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa Japan
| | - Y. Sunaoshi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa Japan
| | - H. Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - M. Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa Japan
- Core Research for Evolutional Science and Technology, (CREST) Japan Science and Technology Agency (JST), Kawaguchi, Saitama Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Saitama Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa Japan
- CONTACT Motoaki Seki
| |
Collapse
|
41
|
Lapucci A, Cavone L, Buonvicino D, Felici R, Gerace E, Zwergel C, Valente S, Mai A, Chiarugi A. Effect of Class II HDAC inhibition on glutamate transporter expression and survival in SOD1-ALS mice. Neurosci Lett 2017; 656:120-125. [PMID: 28732762 DOI: 10.1016/j.neulet.2017.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Transcriptional deregulation emerges as a key pathogenetic mechanism in ALS pathogenesis, and non-class-specific histone deacetylase (HDACs) inhibitors proved of therapeutic efficacy in preclinical models of ALS. When tested in patients, however, these drugs failed, probably because of a lack of selectivity toward pathogenetic HDACs. Here, we studied the effects of MC1568, an inhibitor of Class-II HDACs which have been reported to contribute to ALS pathogenesis. We focused on transcriptional regulation of glutamate transporter EAAT2, whose reduced expression may contribute to motor neuron degeneration in ALS. We report that MC1568 highly increased EAAT2 transcripts in primary cultures of mouse glia, but these increases did not correlate with increased glutamate uptake capacity. Accordingly, we found that MC1568 augmented protein expression of EAAT2 together with its sumoylation, a post-translational modification typically altering protein function and localization. When tested in SOD1G93A mice, however, MC1568 fully restored the reduced spinal cord expression of EAAT2 and glutamate uptake up to control levels. A prolonged treatment with MC1568 (from onset to end stage) was unable to prolong survival of mice. Data reveal a key role of Class-II HDACs in expression and function of glutamate transporter, further corroborating preclinical and clinical evidence that the sole restoration of glutamate uptake is not of therapeutic relevance to ALS therapy.
Collapse
Affiliation(s)
- Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Leonardo Cavone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| | - Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Elisabetta Gerace
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| |
Collapse
|
42
|
Abstract
Cancer cell hallmarks are underpinned by transcriptional programmes operating in the context of a dynamic and complicit epigenomic environment. Somatic alterations of chromatin modifiers are among the most prevalent cancer perturbations. There is a pressing need for targeted chemical probes to dissect these complex, interconnected gene regulatory circuits. Validated chemical probes empower mechanistic research while providing the pharmacological proof of concept that is required to translate drug-like derivatives into therapy for cancer patients. In this Review, we describe chemical probe development for epigenomic effector proteins that are linked to cancer pathogenesis. By annotating these reagents, we aim to share our perspectives on an informative 'epigenomic toolbox' of broad utility to the research community.
Collapse
Affiliation(s)
- Jake Shortt
- Gene Regulation Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3052, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3052, Australia
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
43
|
Bagnall NH, Hines BM, Lucke AJ, Gupta PK, Reid RC, Fairlie DP, Kotze AC. Insecticidal activities of histone deacetylase inhibitors against a dipteran parasite of sheep, Lucilia cuprina. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:51-60. [PMID: 28110187 PMCID: PMC5247571 DOI: 10.1016/j.ijpddr.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are being investigated for the control of various human parasites. Here we investigate their potential as insecticides for the control of a major ecto-parasite of sheep, the Australian sheep blowfly, Lucilia cuprina. We assessed the ability of HDACi from various chemical classes to inhibit the development of blowfly larvae in vitro, and to inhibit HDAC activity in nuclear protein extracts prepared from blowfly eggs. The HDACi prodrug romidepsin, a cyclic depsipeptide that forms a thiolate, was the most potent inhibitor of larval growth, with equivalent or greater potency than three commercial blowfly insecticides. Other HDACi with potent activity were hydroxamic acids (trichostatin, CUDC-907, AR-42), a thioester (KD5170), a disulphide (Psammaplin A), and a cyclic tetrapeptide bearing a ketone (apicidin). On the other hand, no insecticidal activity was observed for certain other hydroxamic acids, fatty acids, and the sesquiterpene lactone parthenolide. The structural diversity of the 31 hydroxamic acids examined here revealed some structural requirements for insecticidal activity; for example, among compounds with flexible linear zinc-binding extensions, greater potency was observed in the presence of branched capping groups that likely make multiple interactions with the blowfly HDAC enzymes. The insecticidal activity correlated with inhibition of HDAC activity in blowfly nuclear protein extracts, indicating that the toxicity was most likely due to inhibition of HDAC enzymes in the blowfly larvae. The inhibitor potencies against blowfly larvae are different from inhibition of human HDACs, suggesting some selectivity for human over blowfly HDACs, and a potential for developing compounds with the inverse selectivity. In summary, these novel findings support blowfly HDAC enzymes as new targets for blowfly control, and point to development of HDAC inhibitors as a promising new class of insecticides. We measured the insecticidal effects of histone deacetylase inhibitors against the sheep blowfly. Insecticidal activity correlated with inhibition of HDAC enzyme activity in nuclear extracts. Romidepsin showed equivalent or greater potency than commercial blowfly insecticides. Some insights gained into structural requirements for insecticidal HDAC inhibitors. Potential for HDAC inhibitors as insecticides.
Collapse
Affiliation(s)
- Neil H Bagnall
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia
| | - Barney M Hines
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Praveer K Gupta
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia.
| |
Collapse
|
44
|
Ferreira RC, Popova EY, James J, Briones MRS, Zhang SS, Barnstable CJ. Histone Deacetylase 1 Is Essential for Rod Photoreceptor Differentiation by Regulating Acetylation at Histone H3 Lysine 9 and Histone H4 Lysine 12 in the Mouse Retina. J Biol Chem 2016; 292:2422-2440. [PMID: 28028172 DOI: 10.1074/jbc.m116.756643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/22/2016] [Indexed: 01/19/2023] Open
Abstract
Histone acetylation has a regulatory role in gene expression and is necessary for proper tissue development. To investigate the specific roles of histone deacetylases (HDACs) in rod differentiation in neonatal mouse retinas, we used a pharmacological approach that showed that inhibition of class I but not class IIa HDACs caused the same phenotypic changes seen with broad spectrum HDAC inhibitors, most notably a block in the differentiation of rod photoreceptors. Inhibition of HDAC1 resulted in increase of acetylation of lysine 9 of histone 3 (H3K9) and lysine 12 of histone 4 (H4K12) but not lysine 27 of histone 3 (H3K27) and led to maintained expression of progenitor-specific genes such as Vsx2 and Hes1 with concomitant block of expression of rod-specific genes. ChiP experiments confirmed these changes in the promoters of a group of progenitor genes. Based on our results, we suggest that HDAC1-specific inhibition prevents progenitor cells of the retina from exiting the cell cycle and differentiating. HDAC1 may be an essential epigenetic regulator of the transition from progenitor cells to terminally differentiated photoreceptors.
Collapse
Affiliation(s)
- Renata C Ferreira
- From the Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033.,Laboratory of Evolutionary Genomics and Biocomplexity, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Evgenya Y Popova
- From the Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033.,Penn State Hershey Eye Center, Hershey, Pennsylvania 17033, and
| | - Jessica James
- From the Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Marcelo R S Briones
- Laboratory of Evolutionary Genomics and Biocomplexity, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Samuel S Zhang
- From the Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033.,Penn State Hershey Eye Center, Hershey, Pennsylvania 17033, and
| | - Colin J Barnstable
- From the Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033, .,Penn State Hershey Eye Center, Hershey, Pennsylvania 17033, and
| |
Collapse
|
45
|
MC1568 inhibits HDAC6/8 activity and influenza A virus replication in lung epithelial cells: role of Hsp90 acetylation. Future Med Chem 2016; 8:2017-2031. [PMID: 27739328 DOI: 10.4155/fmc-2016-0073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM Histone deacetylases (HDACs) regulate the life cycle of several viruses. We investigated the ability of different HDAC inhibitors, to interfere with influenza virus A/Puerto Rico/8/34/H1N1 (PR8 virus) replication in Madin-Darby canine kidney and NCI cells. RESULTS 3-(5-(3-Fluorophenyl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-pyrrol-2-yl)-N-hydroxyacrylamide (MC1568) inhibited HDAC6/8 activity and PR8 virus replication, with decreased expression of viral proteins and their mRNAs. Such an effect may be related to a decrease in intranuclear content of viral polymerases and, in turn, to an early acetylation of Hsp90, a major player in their nuclear import. Later, the virus itself induced Hsp90 acetylation, suggesting a differential and time-dependent role of acetylated proteins in virus replication. CONCLUSION The inhibition of HDAC6/8 activity during early steps of PR8 virus replication could lead to novel anti-influenza strategy.
Collapse
|
46
|
Li Y, Seto E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026831. [PMID: 27599530 DOI: 10.1101/cshperspect.a026831] [Citation(s) in RCA: 848] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last several decades, it has become clear that epigenetic abnormalities may be one of the hallmarks of cancer. Posttranslational modifications of histones, for example, may play a crucial role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear architecture. Histone acetylation, a well-studied posttranslational histone modification, is controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). By removing acetyl groups, HDACs reverse chromatin acetylation and alter transcription of oncogenes and tumor suppressor genes. In addition, HDACs deacetylate numerous nonhistone cellular substrates that govern a wide array of biological processes including cancer initiation and progression. This review will discuss the role of HDACs in cancer and the therapeutic potential of HDAC inhibitors (HDACi) as emerging drugs in cancer treatment.
Collapse
Affiliation(s)
- Yixuan Li
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| | - Edward Seto
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| |
Collapse
|
47
|
Ahmad K, Scholz B, Capelo R, Schweighöfer I, Kahnt AS, Marschalek R, Steinhilber D. AF4 and AF4-MLL mediate transcriptional elongation of 5-lipoxygenase mRNA by 1, 25-dihydroxyvitamin D3. Oncotarget 2016; 6:25784-800. [PMID: 26329759 PMCID: PMC4694866 DOI: 10.18632/oncotarget.4703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022] Open
Abstract
The human 5-lipoxygenase (5-LO), encoded by the ALOX5 gene, is the key enzyme in the formation of pro-inflammatory leukotrienes. ALOX5 gene transcription is strongly stimulated by calcitriol (1α, 25-dihydroxyvitamin D3) and TGFβ (transforming growth factor-β). Here, we investigated the influence of MLL (activator of transcript initiation), AF4 (activator of transcriptional elongation) as well as of the leukemogenic fusion proteins MLL-AF4 (ectopic activator of transcript initiation) and AF4-MLL (ectopic activator of transcriptional elongation) on calcitriol/TGFβ-dependent 5-LO transcript elongation. We present evidence that the AF4 complex directly interacts with the vitamin D receptor (VDR) and promotes calcitriol-dependent ALOX5 transcript elongation. Activation of transcript elongation was strongly enhanced by the AF4-MLL fusion protein but was sensitive to Flavopiridol. By contrast, MLL-AF4 displayed no effect on transcriptional elongation. Furthermore, HDAC class I inhibitors inhibited the ectopic effects caused by AF4-MLL on transcriptional elongation, suggesting that HDAC class I inhibitors are potential therapeutics for the treatment of t(4;11)(q21;q23) leukemia.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Pharmaceutical Chemistry / ZAFES, Goethe University Frankfurt, Frankfurt, Germany
| | - Bastian Scholz
- Institute of Pharmaceutical Biology / ZAFES, Goethe University Frankfurt, Frankfurt, Germany
| | - Ricardo Capelo
- Institute of Pharmaceutical Chemistry / ZAFES, Goethe University Frankfurt, Frankfurt, Germany
| | - Ilona Schweighöfer
- Institute of Pharmaceutical Chemistry / ZAFES, Goethe University Frankfurt, Frankfurt, Germany
| | - Astrid Stefanie Kahnt
- Institute of Pharmaceutical Chemistry / ZAFES, Goethe University Frankfurt, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology / ZAFES, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry / ZAFES, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
48
|
Kassis H, Shehadah A, Li C, Zhang Y, Cui Y, Roberts C, Sadry N, Liu X, Chopp M, Zhang ZG. Class IIa histone deacetylases affect neuronal remodeling and functional outcome after stroke. Neurochem Int 2016; 96:24-31. [PMID: 27103167 DOI: 10.1016/j.neuint.2016.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/11/2016] [Accepted: 04/16/2016] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that stroke induces nuclear shuttling of class IIa histone deacetylase 4 (HDAC4). Stroke-induced nuclear shuttling of HDAC4 is positively and significantly correlated with improved indices of neuronal remodeling in the peri-infarct cortex. In this study, using a rat model for middle cerebral artery occlusion (MCAO), we tested the effects of selective inhibition of class IIa HDACs on functional recovery and neuronal remodeling when administered 24hr after stroke. Adult male Wistar rats (n = 15-17/group) were subjected to 2 h MCAO and orally gavaged with MC1568 (a selective class IIa HDAC inhibitor), SAHA (a non-selective HDAC inhibitor), or vehicle-control for 7 days starting 24 h after MCAO. A battery of behavioral tests was performed. Lesion volume measurement and immunohistochemistry were performed 28 days after MCAO. We found that stroke increased total HDAC activity in the ipsilateral hemisphere compared to the contralateral hemisphere. Stroke-increased HDAC activity was significantly decreased by the administration of SAHA as well as by MC1568. However, SAHA significantly improved functional outcome compared to vehicle control, whereas selective class IIa inhibition with MC1568 increased mortality and lesion volume and did not improve functional outcome. In addition, MC1568 decreased microtubule associated protein 2 (MAP2, dendrites), phosphorylated neurofilament heavy chain (pNFH, axons) and myelin basic protein (MBP, myelination) immunoreactivity in the peri-infarct cortex. Quantitative RT-PCR of cortical neurons isolated by laser capture microdissection revealed that MC1568, but not SAHA, downregulated CREB and c-fos expression. Additionally, MC1568 decreased the expression of phosphorylated CREB (active) in neurons. Taken together, these findings demonstrate that selective inhibition of class IIa HDACs impairs neuronal remodeling and neurological outcome. Inactivation of CREB and c-fos by MC1568 likely contributes to this detrimental effect.
Collapse
Affiliation(s)
- Haifa Kassis
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Amjad Shehadah
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Chao Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yisheng Cui
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Cynthia Roberts
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Neema Sadry
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Xianshuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
49
|
Gholap SS. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 2015; 110:13-31. [PMID: 26807541 DOI: 10.1016/j.ejmech.2015.12.017] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/05/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Pyrrole derivatives comprise a class of biologically active heterocyclic compounds which can serve as promising scaffolds for antimicrobial, antiviral, antimalarial, antitubercular, anti-inflammatory and enzyme inhibiting drugs. Due to their inimitable anticancer and anti-tubercular properties, researchers were inspired to develop novel pyrrole derivatives for the treatment of MDR pathogens. In the present review the main target is to focus on the development of pyrrole mimics, with emphasis based on their structure activity relationship (SAR). The present review is being obliging for the future development of pyrrole therapeutics.
Collapse
Affiliation(s)
- Somnath S Gholap
- Department of Chemistry, Padmashri Vikhe Patil College, Pravaranagar (Loni kd.), Rahata, Ahmednagar, 413713, Maharashtra, India.
| |
Collapse
|
50
|
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer. J Cancer Res Clin Oncol 2015; 142:1659-71. [PMID: 26560874 PMCID: PMC4954831 DOI: 10.1007/s00432-015-2064-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022]
Abstract
Introduction In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the non-specific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies.
Collapse
|