1
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2025; 39:789-874. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
3
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B 2023; 13:4025-4059. [PMID: 37799390 PMCID: PMC10547921 DOI: 10.1016/j.apsb.2023.06.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody‒drug conjugates (ADCs), which combine the advantages of monoclonal antibodies with precise targeting and payloads with efficient killing, show great clinical therapeutic value. The ADCs' payloads play a key role in determining the efficacy of ADC drugs and thus have attracted great attention in the field. An ideal ADC payload should possess sufficient toxicity, low immunogenicity, high stability, and modifiable functional groups. Common ADC payloads include tubulin inhibitors and DNA damaging agents, with tubulin inhibitors accounting for more than half of the ADC drugs in clinical development. However, due to clinical limitations of traditional ADC payloads, such as inadequate efficacy and the development of acquired drug resistance, novel highly efficient payloads with diverse targets and reduced side effects are being developed. This perspective summarizes the recent research advances of traditional and novel ADC payloads with main focuses on the structure-activity relationship studies, co-crystal structures, and designing strategies, and further discusses the future research directions of ADC payloads. This review also aims to provide valuable references and future directions for the development of novel ADC payloads that will have high efficacy, low toxicity, adequate stability, and abilities to overcome drug resistance.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lantu Gou
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
5
|
Tiberghien AC, Vijayakrishnan B, Esfandiari A, Ahmed M, Pardo R, Bingham J, Adams L, Santos K, Kang GD, Pugh KM, Afif-Rider S, Vashisht K, Haque K, Tammali R, Rosfjord E, Savoca A, Hartley JA, Howard PW. Comparison of Pyrrolobenzodiazepine Dimer Bis-imine versus Mono-imine: DNA Interstrand Cross-linking, Cytotoxicity, Antibody-Drug Conjugate Efficacy and Toxicity. Mol Cancer Ther 2023; 22:254-263. [PMID: 36722141 DOI: 10.1158/1535-7163.mct-21-0693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADC) delivering pyrrolobenzodiazepine (PBD) DNA cross-linkers are currently being evaluated in clinical trials, with encouraging results in Hodgkin and non-Hodgkin lymphomas. The first example of an ADC delivering a PBD DNA cross-linker (loncastuximab tesirine) has been recently approved by the FDA for the treatment of relapsed and refractory diffuse large B-cell lymphoma. There has also been considerable interest in mono-alkylating PBD analogs. We conducted a head-to-head comparison of a conventional PBD bis-imine and a novel PBD mono-imine. Key Mitsunobu chemistry allowed clean and convenient access to the mono-imine class. Extensive DNA-binding studies revealed that the mono-imine mediated a type of DNA interaction that is described as "pseudo cross-linking," as well as alkylation. The PBD mono-imine ADC demonstrated robust antitumor activity in mice bearing human tumor xenografts at doses 3-fold higher than those that were efficacious for the PBD bis-imine ADC. A single-dose toxicology study in rats demonstrated that the MTD of the PBD mono-alkylator ADC was approximately 3-fold higher than that of the ADC bearing a bis-imine payload, suggesting a comparable therapeutic index for this molecule. However, although both ADCs caused myelosuppression, renal toxicity was observed only for the bis-imine, indicating possible differences in toxicologic profiles that could influence tolerability and therapeutic index. These data show that mono-amine PBDs have physicochemical and pharmacotoxicologic properties distinct from their cross-linking analogs and support their potential utility as a novel class of ADC payload.
Collapse
Affiliation(s)
| | | | - Arman Esfandiari
- Cancer Research UK, Drug DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Mahammad Ahmed
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Raul Pardo
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - John Bingham
- Cancer Research UK, Drug DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Lauren Adams
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Kathleen Santos
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Gyoung-Dong Kang
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Kathryn M Pugh
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| | - Shameen Afif-Rider
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Kapil Vashisht
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Kemal Haque
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Ravinder Tammali
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Edward Rosfjord
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Adriana Savoca
- Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
- Drug Metabolism and Pharmacokinetics, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - John A Hartley
- Cancer Research UK, Drug DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Philip W Howard
- Tumor Targeted Delivery, Oncology R&D, AstraZeneca, London, United Kingdom
| |
Collapse
|
6
|
Synthesis and anticancer activity of 1,2,4-Benzothiadiazine-1,1-dioxides. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
7
|
Joseph AM, Nahar K, Daw S, Hasan MM, Lo R, Le TBK, Rahman KM, Badrinarayanan A. Mechanistic insight into the repair of C8-linked pyrrolobenzodiazepine monomer-mediated DNA damage. RSC Med Chem 2022; 13:1621-1633. [PMID: 36561066 PMCID: PMC9749960 DOI: 10.1039/d2md00194b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Pyrrolobenzodiazepines (PBDs) are naturally occurring DNA binding compounds that possess anti-tumor and anti-bacterial activity. Chemical modifications of PBDs can result in improved DNA binding, sequence specificity and enhanced efficacy. More recently, synthetic PBD monomers have shown promise as payloads for antibody drug conjugates and anti-bacterial agents. The precise mechanism of action of these PBD monomers and their role in causing DNA damage remains to be elucidated. Here we characterized the damage-inducing potential of two C8-linked PBD bi-aryl monomers in Caulobacter crescentus and investigated the strategies employed by cells to repair the same. We show that these compounds cause DNA damage and efficiently kill bacteria, in a manner comparable to the extensively used DNA cross-linking agent mitomycin-C (MMC). However, in stark contrast to MMC which employs a mutagenic lesion tolerance pathway, we implicate essential functions for error-free mechanisms in repairing PBD monomer-mediated damage. We find that survival is severely compromised in cells lacking nucleotide excision repair and to a lesser extent, in cells with impaired recombination-based repair. Loss of nucleotide excision repair leads to significant increase in double-strand breaks, underscoring the critical role of this pathway in mediating repair of PBD-induced DNA lesions. Together, our study provides comprehensive insights into how mono-alkylating DNA-targeting therapeutic compounds like PBD monomers challenge cell growth, and identifies the specific mechanisms employed by the cell to counter the same.
Collapse
Affiliation(s)
- Asha Mary Joseph
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| | - Kazi Nahar
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Saheli Daw
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| | - Md Mahbub Hasan
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Rebecca Lo
- John Innes Centre, Department of Molecular Microbiology Colney Lane Norwich NR4 7UH UK
| | - Tung B K Le
- John Innes Centre, Department of Molecular Microbiology Colney Lane Norwich NR4 7UH UK
| | - Khondaker Miraz Rahman
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| |
Collapse
|
8
|
Lai W, Zhao S, Lai Q, Zhou W, Wu M, Jiang X, Wang X, Peng Y, Wei X, Ouyang L, Gou L, Chen H, Wang Y, Yang J. Design, Synthesis, and Bioevaluation of a Novel Hybrid Molecular Pyrrolobenzodiazepine-Anthracenecarboxyimide as a Payload for Antibody-Drug Conjugate. J Med Chem 2022; 65:11679-11702. [PMID: 35982539 DOI: 10.1021/acs.jmedchem.2c00471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of hybrid molecules combining pyrrolobenzodiazepine (PBD) and anthracenecarboxyimide pharmacophores were designed, synthesized, and tested for in vitro cytotoxicity against various cancer cell lines. The most potent compound from this series, 37b3, exhibited a subnanomolar level of cytotoxicity with an IC50 of 0.17-0.94 nM. 37b3 induced DNA damage and led to tumor cell cycle arrest and apoptosis. We employed 37b3 as a payload to conjugate with trastuzumab to obtain the antibody-drug conjugate (ADC) T-PBA. T-PBA maintained its mode of target and internalization ability of trastuzumab. We demonstrated that T-PBA could be degraded through the lysosomal pathway to release the payload 37b3 after internalization. T-PBA showed a powerful killing effect on Her2-positive cancer cells in vitro. Furthermore, T-PBA significantly inhibited tumor growth in gastric and ovarian cancer xenograft mouse models without overt toxicity. Collectively, these studies suggest that T-PBA represents a promising new ADC that deserves further investigation.
Collapse
Affiliation(s)
- Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Shengyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wei Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xin Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xian Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
9
|
Discovery of Novel Polyamide-Pyrrolobenzodiazepine Hybrids for Antibody-Drug Conjugates. Bioorg Med Chem Lett 2022; 72:128876. [PMID: 35788036 DOI: 10.1016/j.bmcl.2022.128876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
Pyrrolobenzodiazepine (PBD) dimers are well-known highly potent antibody drug conjugate (ADC) payloads. The corresponding PBD monomers, in contrast, have received much less attention from the ADC community. We prepared several novel polyamide-linked PBD monomers and evaluated their utility as ADC payloads. The unconjugated polyamide-PBD hybrids exhibited potent antiproliferative activity (IC50 range: 10-11-10-8 M) against a variety of HER2-expressing cancer cell lines. Several peptide-linked variants of the lead compound were prepared and conjugated to trastuzumab to afford ADCs with drug-to-antibody (DAR) ratios ranging from 3-5. The ADCs exhibited antigen-dependent cytotoxicity in vitro and potently suppressed tumor xenograft growth in vivo in a target-dependent manner. Moreover, the ADCs were well-tolerated in both mouse and rat. This work demonstrates for the first time that PBD polyamide hybrids can serve as effective ADC payloads.
Collapse
|
10
|
Chowdari NS, Zhang Y, McDonald I, Johnson W, Langley DR, Sivaprakasam P, Mate R, Huynh T, Kotapati S, Deshpande M, Pan C, Menezes D, Wang Y, Rao C, Sarma G, Warrack BM, Rangan VS, Mei-Chen S, Cardarelli P, Deshpande S, Passmore D, Rampulla R, Mathur A, Borzilleri R, Rajpal A, Vite G, Gangwar S. Design, Synthesis, and Structure-Activity Relationships of Novel Tetrahydroisoquinolino Benzodiazepine Dimer Antitumor Agents and Their Application in Antibody-Drug Conjugates. J Med Chem 2020; 63:13913-13950. [PMID: 33155811 DOI: 10.1021/acs.jmedchem.0c01385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of tetrahydroisoquinoline-based benzodiazepine dimers were synthesized and tested for in vitro cytotoxicity against a panel of cancer cell lines. Structure-activity relationship investigation of various spacers guided by molecular modeling studies helped to identify compounds with picomolar activity. Payload 17 was conjugated to anti-mesothelin and anti-fucosylated monosialotetrahexosylganglioside (FucGM1) antibodies using lysosome-cleavable valine-citrulline dipeptide linkers via heterogeneous lysine conjugation and bacterial transglutaminase-mediated site-specific conjugation. In vitro, these antibody drug conjugates (ADCs) exhibited significant cytotoxic and target-mediated selectivity on human cancer cell lines. The pharmacokinetics and efficacy of these ADCs were further evaluated in gastric and lung cancer xenograft models in mice. Consistent pharmacokinetic profiles, high target specificity, and robust antitumor activity were observed in these models after a single dose of the ADC-46 (0.02 μmol/kg).
Collapse
Affiliation(s)
- Naidu S Chowdari
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Yong Zhang
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ivar McDonald
- Bristol Myers Squibb Research & Early Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Walter Johnson
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - David R Langley
- Bristol Myers Squibb Research & Early Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Prasanna Sivaprakasam
- Bristol Myers Squibb Research & Early Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Robert Mate
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Tram Huynh
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Srikanth Kotapati
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Madhura Deshpande
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Chin Pan
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Daniel Menezes
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Yichong Wang
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Chetana Rao
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Ganapathy Sarma
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Bethanne M Warrack
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Vangipuram S Rangan
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Sung Mei-Chen
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Pina Cardarelli
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Shrikant Deshpande
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - David Passmore
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Richard Rampulla
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Robert Borzilleri
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Arvind Rajpal
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Gregory Vite
- Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Sanjeev Gangwar
- Bristol Myers Squibb Research & Early Development, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
11
|
Alexander EM, Kreitler DF, Guidolin V, Hurben AK, Drake E, Villalta PW, Balbo S, Gulick AM, Aldrich CC. Biosynthesis, Mechanism of Action, and Inhibition of the Enterotoxin Tilimycin Produced by the Opportunistic Pathogen Klebsiella oxytoca. ACS Infect Dis 2020; 6:1976-1997. [PMID: 32485104 PMCID: PMC7354218 DOI: 10.1021/acsinfecdis.0c00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tilimycin is an enterotoxin produced by the opportunistic pathogen Klebsiella oxytoca that causes antibiotic-associated hemorrhagic colitis (AAHC). This pyrrolobenzodiazepine (PBD) natural product is synthesized by a bimodular nonribosomal peptide synthetase (NRPS) pathway composed of three proteins: NpsA, ThdA, and NpsB. We describe the functional and structural characterization of the fully reconstituted NRPS system and report the steady-state kinetic analysis of all natural substrates and cofactors as well as the structural characterization of both NpsA and ThdA. The mechanism of action of tilimycin was confirmed using DNA adductomics techniques through the detection of putative N-2 guanine alkylation after tilimycin exposure to eukaryotic cells, providing the first structural characterization of a PBD-DNA adduct formed in cells. Finally, we report the rational design of small-molecule inhibitors that block tilimycin biosynthesis in whole cell K. oxytoca (IC50 = 29 ± 4 μM) through the inhibition of NpsA (KD = 29 ± 4 nM).
Collapse
Affiliation(s)
- Evan M. Alexander
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dale F. Kreitler
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eric Drake
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Peter W. Villalta
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
12
|
Picconi P, Hind CK, Nahar KS, Jamshidi S, Di Maggio L, Saeed N, Evans B, Solomons J, Wand ME, Sutton JM, Rahman KM. New Broad-Spectrum Antibiotics Containing a Pyrrolobenzodiazepine Ring with Activity against Multidrug-Resistant Gram-Negative Bacteria. J Med Chem 2020; 63:6941-6958. [PMID: 32515951 DOI: 10.1021/acs.jmedchem.0c00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to find new antibiotic classes with activity against multidrug-resistant (MDR) Gram-negative pathogens as the pipeline of antibiotics is essentially empty. Modified pyrrolobenzodiazepines with a C8-linked aliphatic heterocycle provide a new class of broad-spectrum antibacterial agents with activity against MDR Gram-negative bacteria, including WHO priority pathogens. The structure-activity relationship established that the third ring was particularly important for Gram-negative activity. Minimum inhibitory concentrations for the lead compounds ranged from 0.125 to 2 mg/L for MDR Gram-negative, excluding Pseudomonas aeruginosa, and between 0.03 and 1 mg/L for MDR Gram-positive species. The lead compounds were rapidly bactericidal with >5 log reduction in viable count within 4 h for Acinetobacter baumannii and Klebsiella pneumoniae. The lead compound inhibited DNA gyrase in gel-based assays, with an IC50 of 3.16 ± 1.36 mg/L. This study provides a new chemical scaffold for developing novel broad-spectrum antibiotics which can help replenish the pipeline of antibiotics.
Collapse
Affiliation(s)
- Pietro Picconi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Charlotte K Hind
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Kazi S Nahar
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Shirin Jamshidi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Lucia Di Maggio
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Naima Saeed
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Bonnie Evans
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Jessica Solomons
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Matthew E Wand
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - J Mark Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | | |
Collapse
|
13
|
Ferguson L, Bhakta S, Fox KR, Wells G, Brucoli F. Synthesis and Biological Evaluation of a Novel C8-Pyrrolobenzodiazepine (PBD) Adenosine Conjugate. A Study on the Role of the PBD Ring in the Biological Activity of PBD-Conjugates. Molecules 2020; 25:E1243. [PMID: 32164166 PMCID: PMC7179398 DOI: 10.3390/molecules25051243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
Here we sought to evaluate the contribution of the PBD unit to the biological activity of PBD-conjugates and, to this end, an adenosine nucleoside was attached to the PBD A-ring C8 position. A convergent approach was successfully adopted for the synthesis of a novel C8-linked pyrrolo(2,1-c)(1,4)benzodiazepine(PBD)-adenosine(ADN) hybrid. The PBD and adenosine (ADN) moieties were synthesized separately and then linked through a pentynyl linker. To our knowledge, this is the first report of a PBD connected to a nucleoside. Surprisingly, the compound showed no cytotoxicity against murine cells and was inactive against Mycobacterium aurum and M. bovis strains and did not bind to guanine-containing DNA sequences, as shown by DNase I footprinting experiments. Molecular dynamics simulations revealed that the PBD-ADN conjugate was poorly accommodated in the DNA minor groove of two DNA sequences containing the AGA-PBD binding motif, with the adenosine moiety of the ligand preventing the covalent binding of the PBD unit to the guanine amino group of the DNA duplex. These interesting findings shed further light on the ability of the substituents attached at the C8 position of PBDs to affect and modulate the biological and biophysical properties of PBD hybrids.
Collapse
Affiliation(s)
- Lindsay Ferguson
- School of Science, University of the West of Scotland, Paisley, Scotland PA1 2BE, UK
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Keith R. Fox
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Geoff Wells
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
14
|
Steiningerova L, Kamenik Z, Gazak R, Kadlcik S, Bashiri G, Man P, Kuzma M, Pavlikova M, Janata J. Different Reaction Specificities of F 420H 2-Dependent Reductases Facilitate Pyrrolobenzodiazepines and Lincomycin To Fit Their Biological Targets. J Am Chem Soc 2020; 142:3440-3448. [PMID: 31944685 DOI: 10.1021/jacs.9b11234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antitumor pyrrolobenzodiazepines (PBDs), lincosamide antibiotics, quorum-sensing molecule hormaomycin, and antimicrobial griselimycin are structurally and functionally diverse groups of actinobacterial metabolites. The common feature of these compounds is the incorporation of l-tyrosine- or l-leucine-derived 4-alkyl-l-proline derivatives (APDs) in their structures. Here, we report that the last reaction in the biosynthetic pathway of APDs, catalyzed by F420H2-dependent Apd6 reductases, contributes to the structural diversity of APD precursors. Specifically, the heterologous overproduction of six Apd6 enzymes demonstrated that Apd6 from the biosynthesis of PBDs and hormaomycin can reduce only an endocyclic imine double bond, whereas Apd6 LmbY and partially GriH from the biosyntheses of lincomycin and griselimycin, respectively, also reduce the more inert exocyclic double bond of the same 4-substituted Δ1-pyrroline-2-carboxylic acid substrate, making LmbY and GriH unusual, if not unique, among reductases. Furthermore, the differences in the reaction specificity of the Apd6 reductases determine the formation of the fully saturated APD moiety of lincomycin versus the unsaturated APD moiety of PBDs, providing molecules with optimal shapes to bind their distinct biological targets. Moreover, the Apd6 reductases establish the first F420H2-dependent enzymes from the luciferase-like hydride transferase protein superfamily in the biosynthesis of bioactive molecules. Finally, our bioinformatics analysis demonstrates that Apd6 and their homologues, widely distributed within several bacterial phyla, play a role in the formation of novel yet unknown natural products with incorporated l-proline-like precursors and likely in the microbial central metabolism.
Collapse
Affiliation(s)
- Lucie Steiningerova
- Institute of Microbiology, v.v.i., Czech Academy of Sciences , Videnska 1083 , 142 20 Praha 4 , Czech Republic.,Department of Genetics and Microbiology, Faculty of Science , Charles University in Prague , Vinicna 5 , 128 00 Praha 2 , Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, v.v.i., Czech Academy of Sciences , Videnska 1083 , 142 20 Praha 4 , Czech Republic.,Institute of Microbiology, v.v.i., BIOCEV, Czech Academy of Sciences , 252 50 Vestec , Czech Republic
| | - Radek Gazak
- Institute of Microbiology, v.v.i., Czech Academy of Sciences , Videnska 1083 , 142 20 Praha 4 , Czech Republic
| | - Stanislav Kadlcik
- Institute of Microbiology, v.v.i., Czech Academy of Sciences , Videnska 1083 , 142 20 Praha 4 , Czech Republic
| | - Ghader Bashiri
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences , University of Auckland , Auckland 1010 , New Zealand
| | - Petr Man
- Institute of Microbiology, v.v.i., BIOCEV, Czech Academy of Sciences , 252 50 Vestec , Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, v.v.i., Czech Academy of Sciences , Videnska 1083 , 142 20 Praha 4 , Czech Republic
| | - Magdalena Pavlikova
- Institute of Microbiology, v.v.i., Czech Academy of Sciences , Videnska 1083 , 142 20 Praha 4 , Czech Republic
| | - Jiri Janata
- Institute of Microbiology, v.v.i., Czech Academy of Sciences , Videnska 1083 , 142 20 Praha 4 , Czech Republic
| |
Collapse
|
15
|
Picconi P, Jeeves R, Moon CW, Jamshidi S, Nahar KS, Laws M, Bacon J, Rahman KM. Noncytotoxic Pyrrolobenzodiazepine-Ciprofloxacin Conjugate with Activity against Mycobacterium tuberculosis. ACS OMEGA 2019; 4:20873-20881. [PMID: 31867477 PMCID: PMC6921268 DOI: 10.1021/acsomega.9b00834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/21/2019] [Indexed: 05/16/2023]
Abstract
The development of new antitubercular agents for the treatment of infections caused by multidrug-resistant (MDR) Mycobacterium tuberculosis is an urgent priority. Pyrrolobenzodiazepines (PBDs) are a promising class of antibacterial agents that were initially discovered and isolated from a range of Streptomyces species. Recently, C8-linked PBD monomers have been shown to work by inhibiting DNA gyrase and have demonstrated activity against M. tuberculosis. However, both PBD monomers and dimers are toxic to eukaryotic cells, limiting their development as antibacterial agents. To eliminate the toxicity associated with PBDs and explore the effect of C8-modification with a known antibacterial agent with the same mechanism of action (i.e., ciprofloxacin, a gyrase inhibitor), we synthesized a C8-linked PBD-ciprofloxacin (PBD-CIP, 3) hybrid. The hybrid compound displayed minimum inhibitory concentration values of 0.4 or 2.1 μg/mL against drug-sensitive and drug-resistant M. tuberculosis strains, respectively. A molecular modeling study showed good interaction of compound 3 with wild-type M. tuberculosis DNA gyrase, suggesting gyrase inhibition as a possible mechanism of action. Compound 3 is a nontoxic combination hybrid that can be utilized as a new scaffold and further optimized to develop new antitubercular agents.
Collapse
Affiliation(s)
- Pietro Picconi
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, U.K.
| | - Rose Jeeves
- TB
Research Group, National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K.
| | - Christopher William Moon
- TB
Research Group, National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K.
| | - Shirin Jamshidi
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, U.K.
| | - Kazi S. Nahar
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, U.K.
| | - Mark Laws
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, U.K.
| | - Joanna Bacon
- TB
Research Group, National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K.
- E-mail: . Tel: +44 (0) 1980 612100 (J.B.)
| | - Khondaker Miraz Rahman
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, U.K.
- E-mail: . Tel: +44 (0) 207 848 1891 (K.M.R.)
| |
Collapse
|
16
|
Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri N, Abdollahpour-Alitappeh M. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol 2019; 235:31-64. [PMID: 31215038 DOI: 10.1002/jcp.28967] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023]
Abstract
Cytotoxic small-molecule drugs have a major influence on the fate of antibody-drug conjugates (ADCs). An ideal cytotoxic agent should be highly potent, remain stable while linked to ADCs, kill the targeted tumor cell upon internalization and release from the ADCs, and maintain its activity in multidrug-resistant tumor cells. Lessons learned from successful and failed experiences in ADC development resulted in remarkable progress in the discovery and development of novel highly potent small molecules. A better understanding of such small-molecule drugs is important for development of effective ADCs. The present review discusses requirements making a payload appropriate for antitumor ADCs and focuses on the main characteristics of commonly-used cytotoxic payloads that showed acceptable results in clinical trials. In addition, the present study represents emerging trends and recent advances of payloads used in ADCs currently under clinical trials.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Majid Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Motahare Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Esmaeil Kavi
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Fahimeh Hosseini
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
17
|
White JB, Fleming R, Masterson L, Ruddle BT, Zhong H, Fazenbaker C, Strout P, Rosenthal K, Reed M, Muniz-Medina V, Howard P, Dixit R, Wu H, Hinrichs MJ, Gao C, Dimasi N. Design and characterization of homogenous antibody-drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. MAbs 2019; 11:500-515. [PMID: 30835621 DOI: 10.1080/19420862.2019.1578611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.
Collapse
Affiliation(s)
- Jason B White
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Ben T Ruddle
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Haihong Zhong
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | | | - Patrick Strout
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | - Kim Rosenthal
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Molly Reed
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | | | - Philip Howard
- b Spirogen Ltd , QMB Innovation Center , London , UK
| | - Rakesh Dixit
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Changshou Gao
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
18
|
Corcoran DB, Lewis T, Nahar KS, Jamshidi S, Fegan C, Pepper C, Thurston DE, Rahman KM. Effects of Systematic Shortening of Noncovalent C8 Side Chain on the Cytotoxicity and NF-κB Inhibitory Capacity of Pyrrolobenzodiazepines (PBDs). J Med Chem 2019; 62:2127-2139. [PMID: 30688457 DOI: 10.1021/acs.jmedchem.8b01849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The systematic shortening of the noncovalent element of a C8-linked pyrrolobenzodiazepine (PBD) conjugate (13) led to the synthesis of a 19-member library of C8-PBD monomers. The critical elements of 13, which were required to render the molecule cytotoxic, were elucidated by an annexin V assay. The effects of shortening the noncovalent element of the molecule on transcription factor inhibitory capacity were also explored through an enzyme-linked immunosorbent assay-based measurement of nuclear NF-κB upon exposure of JJN-3 cells to the synthesized molecules. Although shortening the noncovalent interactive element of 13 had a less than expected effect upon compound cytotoxicity due to reduced DNA interaction, the transcription factor inhibitory capacity of the molecule was notably altered. This study suggests that a relatively short noncovalent side chain at the C8 position of PBD is sufficient to confer cytotoxicity. The shortened PBD monomers provide a new ADC payload scaffold because of their potent cytotoxicity and drug-like properties.
Collapse
Affiliation(s)
- David B Corcoran
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences , King's College London , London SE1 9NH , U.K
| | - Thomas Lewis
- School of Medicine , Cardiff University , Cardiff CF14 4XN , U.K
| | - Kazi S Nahar
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences , King's College London , London SE1 9NH , U.K
| | - Shirin Jamshidi
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences , King's College London , London SE1 9NH , U.K
| | | | - Chris Pepper
- School of Medicine , Cardiff University , Cardiff CF14 4XN , U.K.,Brighton and Sussex Medical School , University of Sussex , Brighton BN1 9PX , U.K
| | - David E Thurston
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences , King's College London , London SE1 9NH , U.K
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences , King's College London , London SE1 9NH , U.K
| |
Collapse
|
19
|
Klebsiella oxytoca enterotoxins tilimycin and tilivalline have distinct host DNA-damaging and microtubule-stabilizing activities. Proc Natl Acad Sci U S A 2019; 116:3774-3783. [PMID: 30808763 PMCID: PMC6397511 DOI: 10.1073/pnas.1819154116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human gut microbes form a complex community with vast biosynthetic potential. Microbial products and metabolites released in the gut impact human health and disease. However, defining causative relationships between specific bacterial products and disease initiation and progression remains an immense challenge. This study advances understanding of the functional capacity of the gut microbiota by determining the presence, concentration, and spatial and temporal variability of two enterotoxic metabolites produced by the gut-resident Klebsiella oxytoca. We present a detailed mode of action for the cytotoxins and recapitulate their functionalities in disease models in vivo. The findings provide distinct molecular mechanisms for the enterotoxicity of the metabolites allowing them to act in tandem to damage the intestinal epithelium and cause colitis. Establishing causal links between bacterial metabolites and human intestinal disease is a significant challenge. This study reveals the molecular basis of antibiotic-associated hemorrhagic colitis (AAHC) caused by intestinal resident Klebsiella oxytoca. Colitogenic strains produce the nonribosomal peptides tilivalline and tilimycin. Here, we verify that these enterotoxins are present in the human intestine during active colitis and determine their concentrations in a murine disease model. Although both toxins share a pyrrolobenzodiazepine structure, they have distinct molecular targets. Tilimycin acts as a genotoxin. Its interaction with DNA activates damage repair mechanisms in cultured cells and causes DNA strand breakage and an increased lesion burden in cecal enterocytes of colonized mice. In contrast, tilivalline binds tubulin and stabilizes microtubules leading to mitotic arrest. To our knowledge, this activity is unique for microbiota-derived metabolites of the human intestine. The capacity of both toxins to induce apoptosis in intestinal epithelial cells—a hallmark feature of AAHC—by independent modes of action, strengthens our proposal that these metabolites act collectively in the pathogenicity of colitis.
Collapse
|
20
|
Nemoto T, Qin R, Takayanagi S, Kondo Y, Li J, Shiga N, Nakajima M, Shinohara KI, Yoda N, Suzuki T, Kaneda A. Synthesis of LSD1 Inhibitor-Pyrrole-Imidazole Polyamide Conjugates for Region-Specific Alterations of Histone Modification. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Smith SW, Jammalamadaka V, Borkin D, Zhu J, Degrado SJ, Lu J, Huang J, Jiang YP, Jain N, Junutula JR. Design and Synthesis of Isoquinolidinobenzodiazepine Dimers, a Novel Class of Antibody-Drug Conjugate Payload. ACS Med Chem Lett 2018; 9:56-60. [PMID: 29348812 DOI: 10.1021/acsmedchemlett.7b00436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
Antibody-drug conjugates (ADCs) represent an important class of emerging cancer therapeutics. Recent ADC development efforts highlighted the use of pyrrolobenzodiazepine (PBD) dimer payload for the treatment of several cancers. We identified the isoquinolidinobenzodiazepine (IQB) payload (D211), a new class of PBD dimer family of DNA damaging payloads. We have successfully synthesized all three IQB stereoisomers, experimentally showed that the purified (S,S)-D211 isomer is functionally more active than (R,R)-D221 and (S,R)-D231 isomers by >50,000-fold and ∼200-fold, respectively. We also synthesized a linker-payload (D212) that uses (S,S)-D211 payload with a cathepsin cleavable linker, a hydrophilic PEG8 spacer, and a thiol reactive maleimide. In addition, homogeneous ADCs generated using D212 linker-payload exhibited ideal physicochemical properties, and anti-CD33 ADC displayed a robust target-specific potency on AML cell lines. These results demonstrate that D212 linker-payload described here can be utilized for developing novel ADC therapeutics for targeted cancer therapy.
Collapse
Affiliation(s)
- Sean W. Smith
- The Chemistry Research Solution, d/b/a Abzena, 360 George Patterson Blvd, Bristol, Pennsylvania 19007, United States
| | - Vasu Jammalamadaka
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Dmitry Borkin
- The Chemistry Research Solution, d/b/a Abzena, 360 George Patterson Blvd, Bristol, Pennsylvania 19007, United States
| | - Jianyu Zhu
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Sylvia J. Degrado
- The Chemistry Research Solution, d/b/a Abzena, 360 George Patterson Blvd, Bristol, Pennsylvania 19007, United States
| | - Jennifer Lu
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Jianqing Huang
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Ying-Ping Jiang
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Nareshkumar Jain
- The Chemistry Research Solution, d/b/a Abzena, 360 George Patterson Blvd, Bristol, Pennsylvania 19007, United States
| | - Jagath R. Junutula
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| |
Collapse
|
22
|
Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat Prod Rep 2018. [DOI: 10.1039/c7np00047b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review covers the biosynthetic and evolutionary aspects of lincosamide antibiotics, antitumour pyrrolobenzodiazepines (PBDs) and the quorum-sensing molecule hormaomycin.
Collapse
Affiliation(s)
- J. Janata
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - Z. Kamenik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - R. Gazak
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - S. Kadlcik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - L. Najmanova
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| |
Collapse
|
23
|
Bhosale VA, Waghmode SB. Enantioselective total synthesis of pyrrolo-[2,1-c][1,4]-benzodiazepine monomers (S)-(−)-barmumycin and (S)-(+)-boseongazepine B. Org Chem Front 2018. [DOI: 10.1039/c8qo00446c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient enantioselective total synthesis of pyrrolo-[2,1-c][1,4]benzodiazepine (PBD) monomers (S)-(−)-barmumycin and (S)-(+)-boseongazepine B was achieved through a stereocontrolled strategy, which relies on a proline catalysed asymmetric α-amination and ester α-ethylenation.
Collapse
Affiliation(s)
- Viraj A. Bhosale
- Department of Chemistry
- Savitribai Phule Pune University (Formerly University of Pune)
- Pune 411007
- India
| | - Suresh B. Waghmode
- Department of Chemistry
- Savitribai Phule Pune University (Formerly University of Pune)
- Pune 411007
- India
| |
Collapse
|
24
|
Donnell AF, Zhang Y, Stang EM, Wei DD, Tebben AJ, Perez HL, Schroeder GM, Pan C, Rao C, Borzilleri RM, Vite GD, Gangwar S. Macrocyclic pyrrolobenzodiazepine dimers as antibody-drug conjugate payloads. Bioorg Med Chem Lett 2017; 27:5267-5271. [DOI: 10.1016/j.bmcl.2017.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/21/2023]
|
25
|
Gregson SJ, Masterson LA, Wei B, Pillow TH, Spencer SD, Kang GD, Yu SF, Raab H, Lau J, Li G, Lewis Phillips GD, Gunzner-Toste J, Safina BS, Ohri R, Darwish M, Kozak KR, Dela Cruz-Chuh J, Polson A, Flygare JA, Howard PW. Pyrrolobenzodiazepine Dimer Antibody-Drug Conjugates: Synthesis and Evaluation of Noncleavable Drug-Linkers. J Med Chem 2017; 60:9490-9507. [PMID: 29112410 DOI: 10.1021/acs.jmedchem.7b00736] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three rationally designed pyrrolobenzodiazepine (PBD) drug-linkers have been synthesized via intermediate 19 for use in antibody-drug conjugates (ADCs). They lack a cleavable trigger in the linker and consist of a maleimide for cysteine antibody conjugation, a hydrophilic spacer, and either an alkyne (6), triazole (7), or piperazine (8) link to the PBD. In vitro IC50 values were 11-48 ng/mL in HER2 3+ SK-BR-3 and KPL-4 (7 inactive) for the anti-HER2 ADCs (HER2 0 MCF7, all inactive) and 0.10-1.73 μg/mL (7 inactive) in CD22 3+ BJAB and WSU-DLCL2 for anti-CD22 ADCs (CD22 0 Jurkat, all inactive at low doses). In vivo antitumor efficacy for the anti-HER2 ADCs in Founder 5 was observed with tumor stasis at 0.5-1 mg/kg, 1 mg/kg, and 3-6 mg/kg for 6, 8, and 7, respectively. Tumor stasis at 2 mg/kg was observed for anti-CD22 6 in WSU-DLCL2. In summary, noncleavable PBD-ADCs exhibit potent activity, particularly in HER2 models.
Collapse
Affiliation(s)
- Stephen J Gregson
- Spirogen , QMB Innovation Centre, 42 New Road, London E1 2AX, United Kingdom
| | - Luke A Masterson
- Spirogen , QMB Innovation Centre, 42 New Road, London E1 2AX, United Kingdom
| | - Binqing Wei
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Susan D Spencer
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Gyoung-Dong Kang
- Spirogen , QMB Innovation Centre, 42 New Road, London E1 2AX, United Kingdom
| | - Shang-Fan Yu
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Helga Raab
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey Lau
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Janet Gunzner-Toste
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian S Safina
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Martine Darwish
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Andrew Polson
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - John A Flygare
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Philip W Howard
- Spirogen , QMB Innovation Centre, 42 New Road, London E1 2AX, United Kingdom
| |
Collapse
|
26
|
Basher MA, Rahman KM, Jackson PJM, Thurston DE, Fox KR. Sequence-selective binding of C8-conjugated pyrrolobenzodiazepines (PBDs) to DNA. Biophys Chem 2017; 230:53-61. [PMID: 28941814 DOI: 10.1016/j.bpc.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022]
Abstract
DNA footprinting and melting experiments have been used to examine the sequence-specific binding of C8-conjugates of pyrrolobenzodiazepines (PBDs) and benzofused rings including benzothiophene and benzofuran, which are attached using pyrrole- or imidazole-containing linkers. The conjugates modulate the covalent attachment points of the PBDs, so that they bind best to guanines flanked by A/T-rich sequences on either the 5'- or 3'-side. The linker affects the binding, and pyrrole produces larger changes than imidazole. Melting studies with 14-mer oligonucleotide duplexes confirm covalent attachment of the conjugates, which show a different selectivity to anthramycin and reveal that more than one ligand molecule can bind to each duplex.
Collapse
Affiliation(s)
- Mohammad A Basher
- Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Paul J M Jackson
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - David E Thurston
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Keith R Fox
- Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
27
|
Pett L, Kiakos K, Satam V, Patil P, Laughlin-Toth S, Gregory M, Bowerman M, Olson K, Savagian M, Lee M, Lee M, Wilson WD, Hochhauser D, Hartley JA. Modulation of topoisomerase IIα expression and chemosensitivity through targeted inhibition of NF-Y:DNA binding by a diamino p-anisyl-benzimidazole (Hx) polyamide. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:617-629. [PMID: 27750031 PMCID: PMC5757371 DOI: 10.1016/j.bbagrm.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sequence specific polyamide HxIP 1, targeted to the inverted CCAAT Box 2 (ICB2) on the topoisomerase IIα (topo IIα) promoter can inhibit NF-Y binding, re-induce gene expression and increase sensitivity to etoposide. To enhance biological activity, diamino-containing derivatives (HxI*P 2 and HxIP* 3) were synthesised incorporating an alkyl amino group at the N1-heterocyclic position of the imidazole/pyrrole. METHODS DNase I footprinting was used to evaluate DNA binding of the diamino Hx-polyamides, and their ability to disrupt the NF-Y:ICB2 interaction assessed using EMSAs. Topo IIα mRNA (RT-PCR) and protein (Immunoblotting) levels were measured following 18h polyamide treatment of confluent A549 cells. γH2AX was used as a marker for etoposide-induced DNA damage after pre-treatment with HxIP* 3 and cell viability was measured using Cell-Titer Glo®. RESULTS Introduction of the N1-alkyl amino group reduced selectivity for the target sequence 5'-TACGAT-3' on the topo IIα promoter, but increased DNA binding affinity. Confocal microscopy revealed both fluorescent diamino polyamides localised in the nucleus, yet HxI*P 2 was unable to disrupt the NF-Y:ICB2 interaction and showed no effect against the downregulation of topo IIα. In contrast, inhibition of NF-Y binding by HxIP* 3 stimulated dose-dependent (0.1-2μM) re-induction of topo IIα and potentiated cytotoxicity of topo II poisons by enhancing DNA damage. CONCLUSIONS Polyamide functionalisation at the N1-position offers a design strategy to improve drug-like properties. Dicationic HxIP* 3 increased topo IIα expression and chemosensitivity to topo II-targeting agents. GENERAL SIGNIFICANCE Pharmacological modulation of topo IIα expression has the potential to enhance cellular sensitivity to clinically-used anticancer therapeutics. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Luke Pett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, WC1E 6BT, UK
| | - Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, WC1E 6BT, UK
| | - Vijay Satam
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Sarah Laughlin-Toth
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Matthew Gregory
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Michael Bowerman
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Kevin Olson
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Mia Savagian
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Megan Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States; Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, WC1E 6BT, UK
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, WC1E 6BT, UK.
| |
Collapse
|
28
|
Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From Anthramycin to Pyrrolobenzodiazepine (PBD)-Containing Antibody-Drug Conjugates (ADCs). Angew Chem Int Ed Engl 2017; 56:462-488. [PMID: 27862776 PMCID: PMC5215561 DOI: 10.1002/anie.201510610] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/11/2016] [Indexed: 12/15/2022]
Abstract
The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a family of sequence-selective DNA minor-groove binding agents that form a covalent aminal bond between their C11-position and the C2-NH2 groups of guanine bases. The first example of a PBD monomer, the natural product anthramycin, was discovered in the 1960s, and the best known PBD dimer, SJG-136 (also known as SG2000, NSC 694501 or BN2629), was synthesized in the 1990s and has recently completed Phase II clinical trials in patients with leukaemia and ovarian cancer. More recently, PBD dimer analogues are being attached to tumor-targeting antibodies to create antibody-drug conjugates (ADCs), a number of which are now in clinical trials, with many others in pre-clinical development. This Review maps the development from anthramycin to the first PBD dimers, and then to PBD-containing ADCs, and explores both structure-activity relationships (SARs) and the biology of PBDs, and the strategies for their use as payloads for ADCs.
Collapse
Affiliation(s)
- Julia Mantaj
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - Paul J. M. Jackson
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - Khondaker M. Rahman
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - David E. Thurston
- Professor of Drug Discovery, King's College London, Faculty of Life Sciences & MedicineInstitute of Pharmaceutical ScienceBritannia House, 7 Trinity StreetLondonSE1 1DBUK
- Femtogenix LtdBritannia House, 7 Trinity StreetLondonSE1 1DBUK
| |
Collapse
|
29
|
Mantaj J, Jackson PJM, Rahman KM, Thurston DE. Entwicklung Pyrrolobenzodiazepin(PBD)-haltiger Antikörper-Wirkstoff-Konjugate (ADCs) ausgehend von Anthramycin. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Mantaj
- Institute of Pharmaceutical Science; King's College London
- Femtogenix Ltd; London Großbritannien
| | - Paul J. M. Jackson
- Institute of Pharmaceutical Science; King's College London
- Femtogenix Ltd; London Großbritannien
| | - Khondaker M. Rahman
- Institute of Pharmaceutical Science; King's College London
- Femtogenix Ltd; London Großbritannien
| | - David E. Thurston
- Institute of Pharmaceutical Science; Faculty of Life Sciences & Medicine; King's College London; Britannia House, 7 Trinity Street London SE1 1DB Großbritannien
- Femtogenix Ltd; Britannia House; London 7 Trinity Street SE1 1DB Großbritannien
| |
Collapse
|
30
|
Tiberghien AC, Levy JN, Masterson LA, Patel NV, Adams LR, Corbett S, Williams DG, Hartley JA, Howard PW. Design and Synthesis of Tesirine, a Clinical Antibody-Drug Conjugate Pyrrolobenzodiazepine Dimer Payload. ACS Med Chem Lett 2016; 7:983-987. [PMID: 27882195 PMCID: PMC5108040 DOI: 10.1021/acsmedchemlett.6b00062] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/24/2016] [Indexed: 11/28/2022] Open
Abstract
Pyrrolobenzodiazepine dimers are an emerging class of warhead in the field of antibody-drug conjugates (ADCs). Tesirine (SG3249) was designed to combine potent antitumor activity with desirable physicochemical properties such as favorable hydrophobicity and improved conjugation characteristics. One of the reactive imines was capped with a cathepsin B-cleavable valine-alanine linker. A robust synthetic route was developed to allow the production of tesirine on clinical scale, employing a flexible, convergent strategy. Tesirine was evaluated in vitro both in stochastic and engineered ADC constructs and was confirmed as a potent and versatile payload. The conjugation of tesirine to anti-DLL3 rovalpituzumab has resulted in rovalpituzumab-tesirine (Rova-T), currently under evaluation for the treatment of small cell lung cancer.
Collapse
Affiliation(s)
| | | | | | - Neki V. Patel
- QMB Innovation
Centre, Spirogen, 42 New Road, E1 2AX London, U.K.
| | - Lauren R. Adams
- QMB Innovation
Centre, Spirogen, 42 New Road, E1 2AX London, U.K.
| | - Simon Corbett
- QMB Innovation
Centre, Spirogen, 42 New Road, E1 2AX London, U.K.
| | | | - John A. Hartley
- QMB Innovation
Centre, Spirogen, 42 New Road, E1 2AX London, U.K.
| | - Philip W. Howard
- QMB Innovation
Centre, Spirogen, 42 New Road, E1 2AX London, U.K.
| |
Collapse
|
31
|
Brucoli F, Guzman JD, Basher MA, Evangelopoulos D, McMahon E, Munshi T, McHugh TD, Fox KR, Bhakta S. DNA sequence-selective C8-linked pyrrolobenzodiazepine–heterocyclic polyamide conjugates show anti-tubercular-specific activities. J Antibiot (Tokyo) 2016; 69:843-849. [DOI: 10.1038/ja.2016.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
|
32
|
Mantaj J, Jackson PJM, Karu K, Rahman KM, Thurston DE. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments. PLoS One 2016; 11:e0152303. [PMID: 27055050 PMCID: PMC4824457 DOI: 10.1371/journal.pone.0152303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/11/2016] [Indexed: 01/02/2023] Open
Abstract
Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks.
Collapse
Affiliation(s)
- Julia Mantaj
- Institute of Pharmaceutical Science, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Paul J. M. Jackson
- Femtogenix Limited, Britannia House, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, Christopher Ingold Building, Chemistry Department, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Khondaker M. Rahman
- Institute of Pharmaceutical Science, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
- Femtogenix Limited, Britannia House, 7 Trinity Street, London, SE1 1DB, United Kingdom
- * E-mail: (DET); (KMR)
| | - David E. Thurston
- Institute of Pharmaceutical Science, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
- Femtogenix Limited, Britannia House, 7 Trinity Street, London, SE1 1DB, United Kingdom
- * E-mail: (DET); (KMR)
| |
Collapse
|
33
|
Varvounis G. An Update on the Synthesis of Pyrrolo[1,4]benzodiazepines. Molecules 2016; 21:154. [PMID: 26828475 PMCID: PMC6273195 DOI: 10.3390/molecules21020154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 01/12/2023] Open
Abstract
Pyrrolo[1,4]benzodiazepines are tricyclic compounds that are considered “privileged structures” since they possess a wide range of biological activities. The first encounter with these molecules was the isolation of anthramycin from cultures of Streptomyces, followed by determination of the X-ray crystal structure of the molecule and a study of its interaction with DNA. This opened up an intensive synthetic and biological study of the pyrrolo[2,1-c][1,4]benzodiazepines that has culminated in the development of the dimer SJG-136, at present in Phase II clinical trials. The synthetic efforts have brought to light some new synthetic methodology, while the contemporary work is focused on building trimeric pyrrolo[2,1-c][1,4]benzodiazepines linked together by various heterocyclic and aliphatic chains. It is the broad spectrum of biological activities of pyrrolo[1,2-a][1,4]benzodiazepines that has maintained the interest of researchers to date whereas several derivatives of the even less studied pyrrolo[1,2-d][1,4]benzodiazepines were found to be potent non-nucleoside HIV-1 reverse transcriptase inhibitors. The present review is an update on the synthesis of pyrrolo[2,1-c][1,4]benzodiazepines since the last major review of 2011, while the overview of the synthesis of the other two tricyclic isomers is comprehensive.
Collapse
Affiliation(s)
- George Varvounis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 451 10 Ioannina, Greece.
| |
Collapse
|
34
|
Kiakos K, Pett L, Satam V, Patil P, Hochhauser D, Lee M, Hartley JA. Nuclear Localization and Gene Expression Modulation by a Fluorescent Sequence-Selective p-Anisyl-benzimidazolecarboxamido Imidazole-Pyrrole Polyamide. CHEMISTRY & BIOLOGY 2015; 22:862-75. [PMID: 26119998 DOI: 10.1016/j.chembiol.2015.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/20/2015] [Accepted: 06/02/2015] [Indexed: 01/03/2023]
Abstract
Synthetic pyrrole (P)-imidazole (I) containing polyamides can target predetermined DNA sequences and modulate gene expression by interfering with transcription factor binding. We have previously shown that rationally designed polyamides targeting the inverted CCAAT box 2 (ICB2) of the topoisomerase IIα (topo IIα) promoter can inhibit binding of transcription factor NF-Y, re-inducing expression of the enzyme in confluent cells. Here, the A/T recognizing fluorophore, p-anisylbenzimidazolecarboxamido (Hx) was incorporated into the hybrid polyamide HxIP, which fluoresces upon binding to DNA, providing an intrinsic probe to monitor cellular uptake. HxIP targets the 5'-TACGAT-3' sequence of the 5' flank of ICB2 with high affinity and sequence specificity, eliciting an ICB2-selective inhibition/displacement of NF-Y. HxIP is readily taken up by NIH3T3 and A549 cells, and detected in the nucleus within minutes. Exposure to the polyamide at confluence resulted in a dose-dependent upregulation of topo IIα expression and enhanced formation of etoposide-induced DNA strand breaks.
Collapse
Affiliation(s)
- Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Luke Pett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Vijay Satam
- Division of Natural & Applied Sciences and Department of Chemistry, Hope College, 35 East, 12(th) Street, Holland, MI 49423, USA
| | - Pravin Patil
- Division of Natural & Applied Sciences and Department of Chemistry, Hope College, 35 East, 12(th) Street, Holland, MI 49423, USA
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Moses Lee
- Division of Natural & Applied Sciences and Department of Chemistry, Hope College, 35 East, 12(th) Street, Holland, MI 49423, USA
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
35
|
|
36
|
Thurston DE, Vassoler H, Jackson PJM, James CH, Rahman KM. Effect of hairpin loop structure on reactivity, sequence preference and adduct orientation of a DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepine (PBD) antitumour agent. Org Biomol Chem 2015; 13:4031-40. [DOI: 10.1039/c4ob02405b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pyrrolobenzodiazepine (PBD) monomer GWL-78 reacts faster with DNA hairpins containing a hexaethylene glycol (HEG) loop compared to hairpins containing a TTT loop due to the greater structural flexibility of the HEG.
Collapse
Affiliation(s)
| | - Higia Vassoler
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | | | - Colin H. James
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | | |
Collapse
|
37
|
Jackson PJM, James CH, Jenkins TC, Rahman KM, Thurston DE. Computational studies support the role of the C7-sibirosamine sugar of the pyrrolobenzodiazepine (PBD) sibiromycin in transcription factor inhibition. ACS Chem Biol 2014; 9:2432-40. [PMID: 25111266 DOI: 10.1021/cb5002203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a group of sequence-selective, DNA minor-groove binding agents that covalently attach to guanine residues. Originally derived from Streptomyces species, a number of naturally occurring PBD monomers exist with varying A-Ring and C2-substituents. One such agent, sibiromycin, is unusual in having a glycosyl residue (sibirosamine) at its A-Ring C7-position. It is the most cytotoxic member of the naturally occurring PBD family and has the highest DNA-binding affinity. Recently, the analogue 9-deoxysibiromyin was produced biosynthetically by Yonemoto and co-workers.1 Differing only in the loss of the A-Ring C9-hydroxyl group, it was reported to have a significantly higher DNA-binding affinity than sibiromycin based on DNA thermal denaturation studies, although these data have since been retracted.2 As deletion of the C9-OH moiety, which points toward the DNA minor groove floor, might intuitively be expected to reduce DNA-binding affinity through the loss of hydrogen bonding, we carried out molecular dynamics simulations on the interaction of both molecules with DNA over a 10 ns time-course in explicit solvent. Our results suggest that the two molecules may differ in their sequence-selectivity and that 9-deoxysibiromycin should have a lower binding affinity for certain sequences of DNA compared to sibiromycin. Our molecular dynamics results indicate that the C7-sibirosamine sugar does not form hydrogen bonding interactions with groups in the DNA minor-groove wall as previously reported, but instead points orthogonally out from the minor groove where it may inhibit the approach of DNA control proteins such as transcription factors. This was confirmed through a docking study involving sibiromycin and the GAL4 transcription factor, and these results could explain the significantly enhanced cytotoxicity of sibiromycin compared to other PBD family members without bulky C7-substituents.
Collapse
Affiliation(s)
- Paul J. M. Jackson
- Institute of Pharmaceutical Science, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Colin H. James
- The
School of Pharmacy, University College London, 29−39 Brunswick Square, London WC1N 1AX, United Kindgom
| | - Terence C. Jenkins
- School
of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Khondaker M. Rahman
- Institute of Pharmaceutical Science, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - David E. Thurston
- Institute of Pharmaceutical Science, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
38
|
Rahman KM, Corcoran DB, Bui TTT, Jackson PJM, Thurston DE. Pyrrolobenzodiazepines (PBDs) do not bind to DNA G-quadruplexes. PLoS One 2014; 9:e105021. [PMID: 25133504 PMCID: PMC4136862 DOI: 10.1371/journal.pone.0105021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
The pyrrolo[2,1-c][1,4] benzodiazepines (PBDs) are a family of sequence-selective, minor-groove binding DNA-interactive agents that covalently attach to guanine residues. A recent publication in this journal (Raju et al, PloS One, 2012, 7, 4, e35920) reported that two PBD molecules were observed to bind with high affinity to the telomeric quadruplex of Tetrahymena glaucoma based on Electrospray Ionisation Mass Spectrometry (ESI-MS), Circular Dichroism, UV-Visible and Fluorescence spectroscopy data. This was a surprising result given the close 3-dimensional shape match between the structure of all PBD molecules and the minor groove of duplex DNA, and the completely different 3-dimensional structure of quadruplex DNA. Therefore, we evaluated the interaction of eight PBD molecules of diverse structure with a range of parallel, antiparallel and mixed DNA quadruplexes using DNA Thermal Denaturation, Circular Dichroism and Molecular Dynamics Simulations. Those PBD molecules without large C8-substitutents had an insignificant affinity for the eight quadruplex types, although those with large π-system-containing C8-substituents (as with the compounds evaluated by Raju and co-workers) were found to interact to some extent. Our molecular dynamics simulations support the likelihood that molecules of this type, including those examined by Raju and co-workers, interact with quadruplex DNA through their C8-substituents rather than the PBD moiety itself. It is important for the literature to be clear on this matter, as the mechanism of action of these agents will be under close scrutiny in the near future due to the growing number of PBD-based agents entering the clinic as both single-agents and as components of antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Khondaker M. Rahman
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
- * E-mail: (KMR); (DET)
| | - David B. Corcoran
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Tam T. T. Bui
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Paul J. M. Jackson
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - David E. Thurston
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
- * E-mail: (KMR); (DET)
| |
Collapse
|
39
|
Brucoli F, Hawkins RM, James CH, Jackson PJM, Wells G, Jenkins TC, Ellis T, Kotecha M, Hochhauser D, Hartley JA, Howard PW, Thurston DE. An extended pyrrolobenzodiazepine-polyamide conjugate with selectivity for a DNA sequence containing the ICB2 transcription factor binding site. J Med Chem 2013; 56:6339-51. [PMID: 23889553 DOI: 10.1021/jm4001852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The binding of nuclear factor Y (NF-Y) to inverted CCAAT boxes (ICBs) within the promoter region of DNA topoisomerase IIα results in control of cell differentiation and cell cycle progression. Thus, NF-Y inhibitory small molecules could be employed to inhibit the replication of cancer cells. A library of pyrrolobenzodiazepine (PBD) C8-conjugates consisting of one PBD unit attached to tri-heterocyclic polyamide fragments was designed and synthesized. The DNA-binding affinity and sequence selectivity of each compound were evaluated in DNA thermal denaturation and DNase I footprinting assays, and the ability to inhibit binding of NF-Y to ICB1 and ICB2 was studied using an electrophoretic mobility shift assay (EMSA). 3a was found to be a potent inhibitor of NF-Y binding, exhibiting a 10-fold selectivity for an ICB2 site compared to an ICB1-containing sequence, and showing low nanomolar cytotoxicity toward human tumor cell lines. Molecular modeling and computational studies have provided details of the covalent attachment process that leads to formation of the PBD-DNA adduct, and have allowed the preference of 3a for ICB2 to be rationalized.
Collapse
Affiliation(s)
- Federico Brucoli
- School of Science, University of the West of Scotland, Paisley, Scotland, U.K
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rahman KM, Jackson PJM, James CH, Basu BP, Hartley JA, de la Fuente M, Schatzlein A, Robson M, Pedley RB, Pepper C, Fox KR, Howard PW, Thurston DE. GC-targeted C8-linked pyrrolobenzodiazepine-biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models. J Med Chem 2013; 56:2911-35. [PMID: 23514599 DOI: 10.1021/jm301882a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA binding 4-(1-methyl-1H-pyrrol-3-yl)benzenamine (MPB) building blocks have been developed that span two DNA base pairs with a strong preference for GC-rich DNA. They have been conjugated to a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) molecule to produce C8-linked PBD-MPB hybrids that can stabilize GC-rich DNA by up to 13-fold compared to AT-rich DNA. Some have subpicomolar IC50 values in human tumor cell lines and in primary chronic lymphocytic leukemia cells, while being up to 6 orders less cytotoxic in the non-tumor cell line WI38, suggesting that key DNA sequences may be relevant targets in these ultrasensitive cancer cell lines. One conjugate, 7h (KMR-28-39), which has femtomolar activity in the breast cancer cell line MDA-MB-231, has significant dose-dependent antitumor activity in MDA-MB-231 (breast) and MIA PaCa-2 (pancreatic) human tumor xenograft mouse models with insignificant toxicity at therapeutic doses. Preliminary studies suggest that 7h may sterically inhibit interaction of the transcription factor NF-κB with its cognate DNA binding sequence.
Collapse
Affiliation(s)
- Khondaker M Rahman
- Department of Pharmacy, Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Leung CH, Chan DSH, Ma VPY, Ma DL. DNA-Binding Small Molecules as Inhibitors of Transcription Factors. Med Res Rev 2012; 33:823-46. [DOI: 10.1002/med.21266] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Victor Pui-Yan Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| |
Collapse
|
42
|
Rahman KM, Rosado H, Moreira JB, Feuerbaum EA, Fox KR, Stecher E, Howard PW, Gregson SJ, James CH, de la Fuente M, Waldron DE, Thurston DE, Taylor PW. Antistaphylococcal activity of DNA-interactive pyrrolobenzodiazepine (PBD) dimers and PBD-biaryl conjugates. J Antimicrob Chemother 2012; 67:1683-96. [PMID: 22547662 PMCID: PMC3370821 DOI: 10.1093/jac/dks127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives Pyrrolobenzodiazepine (PBD) dimers, tethered through inert propyldioxy or pentyldioxy linkers, possess potent bactericidal activity against a range of Gram-positive bacteria by virtue of their capacity to cross-link duplex DNA in sequence-selective fashion. Here we attempt to improve the antibacterial activity and cytotoxicity profile of PBD-containing conjugates by extension of dimer linkers and replacement of one PBD unit with phenyl-substituted or benzo-fused heterocycles that facilitate non-covalent interactions with duplex DNA. Methods DNase I footprinting was used to identify high-affinity DNA binding sites. A staphylococcal gene microarray was used to assess epidemic methicillin-resistant Staphylococcus aureus 16 phenotypes induced by PBD conjugates. Molecular dynamics simulations were employed to investigate the accommodation of compounds within the DNA helix. Results Increasing the length of the linker in PBD dimers led to a progressive reduction in antibacterial activity, but not in their cytotoxic capacity. Complex patterns of DNA binding were noted for extended PBD dimers. Modelling of DNA strand cross-linking by PBD dimers indicated distortion of the helix. A majority (26 of 43) of PBD-biaryl conjugates possessed potent antibacterial activity with little or no helical distortion and a more favourable cytotoxicity profile. Bactericidal activity of PBD-biaryl conjugates was determined by inability to excise covalently bound drug molecules from bacterial duplex DNA. Conclusions PBD-biaryl conjugates have a superior antibacterial profile compared with PBD dimers such as ELB-21. We have identified six PBD-biaryl conjugates as potential drug development candidates.
Collapse
|
43
|
Rahman KM, James CH, Bui TTT, Drake AF, Thurston DE. Observation of a Single-Stranded DNA/Pyrrolobenzodiazepine Adduct. J Am Chem Soc 2011; 133:19376-85. [DOI: 10.1021/ja205395r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Khondaker M. Rahman
- Gene Targeted Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - Colin H. James
- Gene Targeted Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - Tam T. T. Bui
- Biomolecular Spectroscopy Centre, Kings College London, Guy’s Campus, London SE1 1UL, U.K
| | - Alex F. Drake
- Biomolecular Spectroscopy Centre, Kings College London, Guy’s Campus, London SE1 1UL, U.K
| | - David E. Thurston
- Gene Targeted Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K
- Spirogen Ltd., The School of Pharmacy, University of London, London WC1N 1AX, U.K
| |
Collapse
|
44
|
Novel C8-linked pyrrolobenzodiazepine (PBD)–heterocycle conjugates that recognize DNA sequences containing an inverted CCAAT box. Bioorg Med Chem Lett 2011; 21:3780-3. [DOI: 10.1016/j.bmcl.2011.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 12/29/2022]
|
45
|
Rosado H, Rahman KM, Feuerbaum EA, Hinds J, Thurston DE, Taylor PW. The minor groove-binding agent ELB-21 forms multiple interstrand and intrastrand covalent cross-links with duplex DNA and displays potent bactericidal activity against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2011; 66:985-96. [PMID: 21393142 PMCID: PMC3073633 DOI: 10.1093/jac/dkr044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/13/2011] [Accepted: 01/26/2011] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The antistaphylococcal pyrrolobenzodiazepine dimer ELB-21 forms multiple adducts with duplex DNA through covalent interactions with appropriately spaced guanine residues; it is now known to form interstrand and intrastrand adducts with oligonucleotide sequences of variable length. We determined the DNA sequence preferences of ELB-21 in relation to its capacity to exert a bactericidal effect by damaging DNA. METHODS Formation of adducts by ELB-21 and 12- to 14-mer DNA duplexes was investigated using ion-pair reversed phase liquid chromatography and mass spectrometry. Drug-induced changes in gene expression were measured in prophage-free Staphylococcus aureus RN4220 by microarray analysis. RESULTS ELB-21 preferentially formed intrastrand adducts with guanines separated by three nucleotide base pairs. Interstrand and intrastrand adducts were formed with duplexes both longer and shorter than the preferred target sequences. ELB-21 elicited rapid bactericidal effects against prophage-carrying and prophage-free S. aureus strains; cell lysis occurred following activation and release of resident prophages. Killing appeared to be due to irreparable damage to bacterial DNA and susceptibility to ELB-21 was governed by the capacity of staphylococci to repair DNA lesions through induction of the SOS DNA damage response mediated by the RecA-LexA pathway. CONCLUSIONS The data support the contention that ELB-21 arrests DNA replication, eliciting formation of ssDNA-RecA filaments that inactivate LexA, the SOS repressor, and phage repressors such as Cl, resulting in activation of the DNA damage response and de-repression of resident prophages. Above the MIC threshold, DNA repair is ineffective.
Collapse
Affiliation(s)
- Helena Rosado
- School of Pharmacy, University of London, London WC1N 1AX, UK
| | | | | | - Jason Hinds
- Division of Cellular and Molecular Medicine, St George's, University of London, London SW17 0RE, UK
| | | | - Peter W. Taylor
- School of Pharmacy, University of London, London WC1N 1AX, UK
| |
Collapse
|
46
|
Hopton SR, Thompson AS. Manipulative Interplay of Two Adozelesin Molecules with d(ATTAAT)2 Achieving Ligand-Stacked Watson–Crick and Hoogsteen Base-Paired Duplex Adducts. Biochemistry 2011; 50:4143-54. [DOI: 10.1021/bi101945a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suzanne R. Hopton
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Andrew S. Thompson
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
47
|
Abstract
INTRODUCTION DNA interacting agents play a major role in cancer chemotherapy, either as single agents, in combination drug regimens, or as components of novel targeted therapies. The search for more selective and efficacious drugs that can deliver critical DNA damage with minimal side effects continues. AREAS COVERED The development of the pyrrolobenzodiazepines (PBDs) from their discovery as natural products in the 1960s, through synthetic PBD monomers, PBD hybrids and conjugates, and PBD dimers is described. The latter molecules are capable of forming sequence selective, non-distorting and potently cytotoxic DNA interstrand cross-links in the minor groove of DNA. In particular, the development of PBD dimer SJG-136 (SG2000), currently in Phase II clinical trials, is presented. Potential future cancer therapeutic applications of PBDs, including their use as components of targeting strategies, are also discussed. EXPERT OPINION The culmination of over four decades of study on structure-activity relationships of PBDs has led to a detailed understanding of how to introduce structural modification to enhance biological activity and potency. The challenge for the next phase in the development of the PBDs is to harness this activity and potency in a new generation of cancer therapeutics.
Collapse
Affiliation(s)
- John A Hartley
- UCL Cancer Institute, 72 Huntley St, London, WC1E 6BT, UK.
| |
Collapse
|
48
|
Rahman KM, James CH, Thurston DE. Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers. Nucleic Acids Res 2011; 39:5800-12. [PMID: 21427082 PMCID: PMC3141243 DOI: 10.1093/nar/gkr122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH(2) functionalities. The PBD dimer SJG-136, which has a C8-O-(CH(2))(3)-O-C8'' central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8-O-(CH(2))(5)-O-C8'), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8'-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA-interaction behaviour of a PBD dimer of particular C8-C8' linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences.
Collapse
Affiliation(s)
- Khondaker M Rahman
- Gene Targeting Drug Design Research Group and Spirogen Ltd, The School of Pharmacy, University of London, 29/39 Brunswick Square, WC1N 1AX, UK
| | | | | |
Collapse
|
49
|
Rahman KM, James CH, Thurston DE. Observation of the reversibility of a covalent pyrrolobenzodiazepine (PBD) DNA adduct by HPLC/MS and CD spectroscopy. Org Biomol Chem 2011; 9:1632-41. [PMID: 21253653 DOI: 10.1039/c0ob00762e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pyrrolobenzodiazepines (PBDs) are sequence-selective DNA minor-groove binding agents that covalently bond to guanine with a reported preference for Pu-G-Pu sequences (Pu = Purine). Using HPLC/MS and Circular Dichroism (CD) methodologies, we have established for the first time that the aminal bond formed between PBD molecules and DNA is reversible. Furthermore, we have shown that while the rate of aminal bond cleavage does not depend on the sequence preference of a PBD molecule for a particular binding site, the rate of re-formation of the PBD-DNA adduct does. We have also shown that the PBD anthramycin (2) appears to be an exception to this rule in that, during cleavage from the DNA, its C-ring aromatizes and it cannot then re-attach due to a loss of electrophilicity at the C11-position. Although the C-ring aromatization of anthramycin has been previously reported to occur in the absence of DNA and after treatment with trifluoroacetic acid (TFA), in this case no pH lowering was required, with the DNA itself appearing to catalyse the process.
Collapse
Affiliation(s)
- Khondaker M Rahman
- Gene Targeting Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | | | | |
Collapse
|
50
|
Antonow D, Thurston DE. Synthesis of DNA-Interactive Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs). Chem Rev 2010; 111:2815-64. [DOI: 10.1021/cr100120f] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dyeison Antonow
- Gene Targeting Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - David E. Thurston
- Gene Targeting Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K
- Spirogen Ltd., 29/39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|