1
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
2
|
Correia C, Leite AC, Fraga AG, Proença MF, Pedrosa J, Carvalho MA. Discovery of 2,9-diaryl-6-carbamoylpurines as a novel class of antitubercular agents. Eur J Med Chem 2024; 268:116297. [PMID: 38458108 DOI: 10.1016/j.ejmech.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
A series of novel 9-alkyl/aryl-2-aryl-6-carbamoylpurines were synthesized, and their activity against Mycobacterium tuberculosis strain H37Rv was assessed. The SAR analysis on the first set of derivatives, with an alkyl or aryl unit at N-9 and a phenolic unit at C-2, showed that the activity depends on the purine ring substituents at N-9 and C-2. A phenyl group at N-9 combined with a 3-hydroxyphenyl or 4-hydroxyphenyl at C-2 improve the activity. The most active compound of this set has a phenyl group at N-9 and a 4-hydroxyphenyl group at C-2, displaying an IC90 = 1.2 μg/mL and a selectivity index higher than 25.5. This compound served as a Hit to design the second set of derivatives. A phenyl group at N-9 was maintained, and the group at C-2 was diversified. The SAR analysis showed that the aryl unit at C-2 must have an oxygen or nitrogen atom bonded in the para position. A proton, a small alkyl or a substituted aryl group may also be bonded to the oxygen. The compound with the 4-methoxyphenyl group at C-2, 1Bd, exhibits the highest activity with an IC90 < 0.19 μg/mL. This compound is highly potent against M. tuberculosis strain H37Rv and non-toxic for VERO mammalian cells with an SI > 153.8. Compound 1Bd was also non-cytotoxic against primary macrophage cultures at IC90, 2xIC90, and 10xIC90 and significantly reduced the bacterial load in M. tuberculosis-infected macrophages at the same concentrations. Compound 1Bd showed a favorable pharmacokinetic profile when administered orally, with major lung and liver accumulation. In vivo antimycobacterial efficacy of 1Bd was tested at 25 mg/kg. At the tested regimen, a decrease in bacterial burden was observed in the liver. Optimization of the treatment regimen should be performed to fully potentiate the in vivo efficacy of our lead molecule, particularly in the lung, the main target organ of M. tuberculosis.
Collapse
Affiliation(s)
- Carla Correia
- CQUM - Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Claúdia Leite
- CQUM - Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; PT Government Associate Laboratory ICVS/3B's, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; PT Government Associate Laboratory ICVS/3B's, Portugal
| | - M Fernanda Proença
- CQUM - Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; PT Government Associate Laboratory ICVS/3B's, Portugal
| | - M Alice Carvalho
- CQUM - Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
3
|
Zhang T, Jiang S, Li T, Liu Y, Zhang Y. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. ACS OMEGA 2023; 8:25165-25184. [PMID: 37483233 PMCID: PMC10357434 DOI: 10.1021/acsomega.3c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023]
Abstract
Biologically equivalent replacements of key moieties in molecules rationalize scaffold hopping, patent busting, or R-group enumeration. Yet, this information may depend upon the expert-defined space, and might be subjective and biased toward the chemistries they get used to. Most importantly, these practices are often informatively incomplete since they are often compromised by a try-and-error cycle, and although they depict what kind of substructures are suitable for the replacement occurrence, they fail to explain the driving forces to support such interchanges. The protein data bank (PDB) encodes a receptor-ligand interaction pattern and could be an optional source to mine structural surrogates. However, manual decoding of PDB has become almost impossible and redundant to excavate the bioisosteric know-how. Therefore, a text parsing workflow has been developed to automatically extract the local structural replacement of a specific structure from PDB by finding spatial and steric interaction overlaps between the fragments in endogenous ligands and particular ligand fragments. Taking the glycosyl domain for instance, a total of 49 520 replacements that overlap on nucleotide ribose were identified and categorized based on their SMILE codes. A predominately ring system, such as aliphatic and aromatic rings, was observed; yet, amide and sulfonamide replacements also occur. We believe these findings may enlighten medicinal chemists on the structure design and optimization of ligands using the bioisosteric replacement strategy.
Collapse
Affiliation(s)
- Tinghao Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Shenghao Jiang
- School of
Computer Science, Northwestern Polytechnical
University, 127 West
Youyi Road, Xi’an 710072, China
| | - Ting Li
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yan Liu
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
| | - Yuezhou Zhang
- Xi’an
Institute of Flexible Electronics (IFE) and Xi’an Institute
of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical
University, 127 West Youyi Road, Xi’an 710072, China
- Ningbo
Institute of Northwestern Polytechnical University, Frontiers Science
Center for Flexible Electronics (FSCFE), Key laboratory of Flexible
Electronics of Zhejiang Province, Ningbo Institute of Northwestern
Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| |
Collapse
|
4
|
Hegde P, Orimoloye MO, Sharma S, Engelhart CA, Schnappinger D, Aldrich CC. Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis. Tuberculosis (Edinb) 2023; 140:102346. [PMID: 37119793 PMCID: PMC10247463 DOI: 10.1016/j.tube.2023.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a leading cause of infectious disease mortality. The salicylic acid derived small molecule siderophores known as mycobactins are essential in vivo for iron acquisition of Mtb where iron is restricted in the host. Herein, we synthesize and explore the mechanism of action of polyfluorinated salicylic acid derivates, which were previously reported to possess potent antimycobacterial activity. We hypothesized fluorinated salicylic acid derivates may inhibit mycobactin biosynthesis through initial bioactivation and conversion to downstream metabolites that block late steps in assembly of the mycobactins. Enzymatic studies demonstrated that some of the fluorinated salicylic acid derivatives compounds were readily activated by the bifunctional adenylating enzyme MbtA, responsible for incorporation of salicylic acid into the mycobactin biosynthetic pathway; however, they did not inhibit mycobactin biosynthesis as confirmed by LS-MS/MS using an authentic synthetic mycobactin standard. Further mechanistic analysis of the most active derivative (Sal-4) using an MbtA-overexpressing Mtb strain as well as complementation studies with iron and salicylic acid revealed Sal-4 cannot be antagonized by overexpression of MbtA or through supplementation with iron or salicylic acid. Taken together, our results indicate the observed antimycobacterial activity of polyfluorinated salicylic acid derivative is independent of mycobactin biosynthesis.
Collapse
Affiliation(s)
- Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Parameterization and Application of the General Amber Force Field to Model Fluoro Substituted Furanose Moieties and Nucleosides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092616. [PMID: 35565967 PMCID: PMC9101125 DOI: 10.3390/molecules27092616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Molecular mechanics force field calculations have historically shown significant limitations in modeling the energetic and conformational interconversions of highly substituted furanose rings. This is primarily due to the gauche effect that is not easily captured using pairwise energy potentials. In this study, we present a refinement to the set of torsional parameters in the General Amber Force Field (gaff) used to calculate the potential energy of mono, di-, and gem-fluorinated nucleosides. The parameters were optimized to reproduce the pseudorotation phase angle and relative energies of a diverse set of mono- and difluoro substituted furanose ring systems using quantum mechanics umbrella sampling techniques available in the IpolQ engine in the Amber suite of programs. The parameters were developed to be internally consistent with the gaff force field and the TIP3P water model. The new set of angle and dihedral parameters and partial charges were validated by comparing the calculated phase angle probability to those obtained from experimental nuclear magnetic resonance experiments.
Collapse
|
6
|
Shelton CL, Meneely KM, Ronnebaum TA, Chilton AS, Riley AP, Prisinzano TE, Lamb AL. Rational inhibitor design for Pseudomonas aeruginosa salicylate adenylation enzyme PchD. J Biol Inorg Chem 2022; 27:541-551. [PMID: 35513576 PMCID: PMC9470617 DOI: 10.1007/s00775-022-01941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022]
Abstract
Pseudomonas aeruginosa is an increasingly antibiotic-resistant pathogen that causes severe lung infections, burn wound infections, and diabetic foot infections. P. aeruginosa produces the siderophore pyochelin through the use of a non-ribosomal peptide synthetase (NRPS) biosynthetic pathway. Targeting members of siderophore NRPS proteins is one avenue currently under investigation for the development of new antibiotics against antibiotic-resistant organisms. Here, the crystal structure of the pyochelin adenylation domain PchD is reported. The structure was solved to 2.11 Å when co-crystallized with the adenylation inhibitor 5'-O-(N-salicylsulfamoyl)adenosine (salicyl-AMS) and to 1.69 Å with a modified version of salicyl-AMS designed to target an active site cysteine (4-cyano-salicyl-AMS). In the structures, PchD adopts the adenylation conformation, similar to that reported for AB3403 from Acinetobacter baumannii.
Collapse
Affiliation(s)
- Catherine L. Shelton
- grid.266515.30000 0001 2106 0692Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA ,grid.261132.50000 0001 2180 142XPresent Address: Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky 41099 USA
| | - Kathleen M. Meneely
- grid.266515.30000 0001 2106 0692Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA ,grid.215352.20000000121845633Present Address: Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78249 USA
| | - Trey A. Ronnebaum
- grid.266515.30000 0001 2106 0692Department of Chemistry, University of Kansas, Lawrence, KS 66045 USA ,grid.25879.310000 0004 1936 8972Present Address: Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 USA
| | - Annemarie S. Chilton
- grid.266515.30000 0001 2106 0692Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA
| | - Andrew P. Riley
- grid.185648.60000 0001 2175 0319Present Address: Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.266515.30000 0001 2106 0692Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045 USA
| | - Thomas E. Prisinzano
- grid.266515.30000 0001 2106 0692Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045 USA ,grid.266539.d0000 0004 1936 8438Present Address: Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA
| | - Audrey L. Lamb
- grid.266515.30000 0001 2106 0692Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA ,grid.215352.20000000121845633Present Address: Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78249 USA
| |
Collapse
|
7
|
Shyam M, Shilkar D, Verma H, Dev A, Sinha BN, Brucoli F, Bhakta S, Jayaprakash V. The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against Tuberculosis. J Med Chem 2020; 64:71-100. [PMID: 33372516 DOI: 10.1021/acs.jmedchem.0c01176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The alarming rise in drug-resistant clinical cases of tuberculosis (TB) has necessitated the rapid development of newer chemotherapeutic agents with novel mechanisms of action. The mycobactin biosynthesis pathway, conserved only among the mycolata family of actinobacteria, a group of intracellularly surviving bacterial pathogens that includes Mycobacterium tuberculosis, generates a salicyl-capped peptide mycobactin under iron-stress conditions in host macrophages to support the iron demands of the pathogen. This in vivo essentiality makes this less explored mycobactin biosynthesis pathway a promising endogenous target for novel lead-compounds discovery. In this Perspective, we have provided an up-to-date account of drug discovery efforts targeting selected enzymes (MbtI, MbtA, MbtM, and PPTase) from the mbt gene cluster (mbtA-mbtN). Furthermore, a succinct discussion on non-specific mycobactin biosynthesis inhibitors and the Trojan horse approach adopted to impair iron metabolism in mycobacteria has also been included in this Perspective.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harshita Verma
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
8
|
Gram-scale preparation of the antibiotic lead compound salicyl-AMS, a potent inhibitor of bacterial salicylate adenylation enzymes. Methods Enzymol 2020. [PMID: 32416922 DOI: 10.1016/bs.mie.2020.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Salicyl-AMS (1) is a potent inhibitor of salicylate adenylation enzymes used in bacterial siderophore biosynthesis and a promising lead compound for the treatment of tuberculosis. An optimized, multigram synthesis is presented, which provides salicyl-AMS as its sodium salt (1·Na) in three synthetic steps followed by a two-step salt formation process. The synthesis proceeds in 11.6% overall yield from commercially available adenosine 2',3'-acetonide and provides highly purified material.
Collapse
|
9
|
Rapp PB, Murai K, Ichiishi N, Leahy DK, Miller SJ. Catalytic Sulfamoylation of Alcohols with Activated Aryl Sulfamates. Org Lett 2020; 22:168-174. [PMID: 31833780 DOI: 10.1021/acs.orglett.9b04119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a new catalytic method for alcohol sulfamoylation that deploys electron-deficient aryl sulfamates as activated group transfer reagents. The reaction utilizes the simple organic base N-methylimidazole, proceeds under mild conditions, and provides intrinsic selectivity for 1° over 2° alcohols (up to >40:1 for certain nucleosides). The requisite aryl sulfamate donors are stable crystalline solids that can be readily prepared on a large scale. Mechanistic considerations support the intermediacy of HNSO2 "aza-sulfene" in the transfer reaction.
Collapse
Affiliation(s)
- Peter B Rapp
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| | - Koichi Murai
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Naoko Ichiishi
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - David K Leahy
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Scott J Miller
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
10
|
Song WY, Kim HJ. Current biochemical understanding regarding the metabolism of acinetobactin, the major siderophore of the human pathogen Acinetobacter baumannii, and outlook for discovery of novel anti-infectious agents based thereon. Nat Prod Rep 2019; 37:477-487. [PMID: 31661538 DOI: 10.1039/c9np00046a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covering: 1994 to 2019Owing to the rapid increase in nosocomial infections by antibiotic-resistant Acinetobacter baumannii and the paucity of effective treatment options for such infections, interest in the virulence factors involved in its successful dissemination and propagation in the human host have escalated in recent years. Acinetobacin, a siderophore of A. baumannii, is responsible for iron acquisition under nutritional depravation and has been shown to be one of the key virulence factors for this bacterium. In this Highlight, recent findings regarding various chemical and biological aspects of acinetobactin metabolism closely related to the fitness of A. baumannii at the infection sites have been described. In addition, several notable efforts for identifying novel anti-infectious agents based thereon have been discussed.
Collapse
Affiliation(s)
- Woon Young Song
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | |
Collapse
|
11
|
Ferguson L, Wells G, Bhakta S, Johnson J, Guzman J, Parish T, Prentice RA, Brucoli F. Integrated Target-Based and Phenotypic Screening Approaches for the Identification of Anti-Tubercular Agents That Bind to the Mycobacterial Adenylating Enzyme MbtA. ChemMedChem 2019; 14:1735-1741. [PMID: 31454170 PMCID: PMC6800809 DOI: 10.1002/cmdc.201900217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Indexed: 12/27/2022]
Abstract
Iron is essential for the pathogenicity and virulence of Mycobacterium tuberculosis, which synthesises salicyl-capped siderophores (mycobactins) to acquire this element from the host. MbtA is the adenylating enzyme that catalyses the initial reaction of mycobactin biosynthesis and is solely expressed by mycobacteria. A 3200-member library comprised of lead-like, structurally diverse compounds was screened against M. tuberculosis for whole-cell inhibitory activity. A set of 846 compounds that inhibited the tubercle bacilli growth were then tested for their ability to bind to MbtA using a fluorescence-based thermal shift assay and NMR-based Water-LOGSY and saturation transfer difference (STD) experiments. We identified an attractive hit molecule, 5-hydroxyindol-3-ethylamino-(2-nitro-4-trifluoromethyl)benzene (5), that bound with high affinity to MbtA and produced a MIC90 value of 13 μm. The ligand was docked into the MbtA crystal structure and displayed an excellent fit within the MbtA active pocket, adopting a binding mode different from that of the established MbtA inhibitor Sal-AMS.
Collapse
Affiliation(s)
- Lindsay Ferguson
- School of Science, University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Geoff Wells
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, WC1E 7HX, UK
| | - James Johnson
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Junitta Guzman
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Robin A. Prentice
- Seattle Structural Genomics Center for Infectious Disease, Seattle WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
12
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
13
|
Bythrow GV, Mohandas P, Guney T, Standke LC, Germain GA, Lu X, Ji C, Levendosky K, Chavadi SS, Tan DS, Quadri LEN. Kinetic Analyses of the Siderophore Biosynthesis Inhibitor Salicyl-AMS and Analogues as MbtA Inhibitors and Antimycobacterial Agents. Biochemistry 2019; 58:833-847. [PMID: 30582694 DOI: 10.1021/acs.biochem.8b01153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a paramount need for expanding the drug armamentarium to counter the growing problem of drug-resistant tuberculosis. Salicyl-AMS, an inhibitor of salicylic acid adenylation enzymes, is a first-in-class antibacterial lead compound for the development of tuberculosis drugs targeting the biosynthesis of salicylic-acid-derived siderophores. In this study, we determined the Ki of salicyl-AMS for inhibition of the salicylic acid adenylation enzyme MbtA from Mycobacterium tuberculosis (MbtAtb), designed and synthesized two new salicyl-AMS analogues to probe structure-activity relationships (SAR), and characterized these two analogues alongside salicyl-AMS and six previously reported analogues in biochemical and cell-based studies. The biochemical studies included determination of kinetic parameters ( Kiapp, konapp, koff, and tR) and analysis of the mechanism of inhibition. For these studies, we optimized production and purification of recombinant MbtAtb, for which Km and kcat values were determined, and used the enzyme in conjunction with an MbtAtb-optimized, continuous, spectrophotometric assay for MbtA activity and inhibition. The cell-based studies provided an assessment of the antimycobacterial activity and postantibiotic effect of the nine MbtAtb inhibitors. The antimycobacterial properties were evaluated using a strain of nonpathogenic, fast-growing Mycobacterium smegmatis that was genetically engineered for MbtAtb-dependent susceptibility to MbtA inhibitors. This convenient model system greatly facilitated the cell-based studies by bypassing the methodological complexities associated with the use of pathogenic, slow-growing M. tuberculosis. Collectively, these studies provide new information on the mechanism of inhibition of MbtAtb by salicyl-AMS and eight analogues, afford new SAR insights for these inhibitors, and highlight several suitable candidates for future preclinical evaluation.
Collapse
Affiliation(s)
- Glennon V Bythrow
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Poornima Mohandas
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Tezcan Guney
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Lisa C Standke
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Gabrielle A Germain
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Xuequan Lu
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Cheng Ji
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Keith Levendosky
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Sivagami Sundaram Chavadi
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States.,Pharmacology Program, Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States.,Tri-Institutional Research Program , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Luis E N Quadri
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States.,Biochemistry Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|
14
|
Patel K, Butala S, Khan T, Suvarna V, Sherje A, Dravyakar B. Mycobacterial siderophore: A review on chemistry and biology of siderophore and its potential as a target for tuberculosis. Eur J Med Chem 2018; 157:783-790. [PMID: 30142615 DOI: 10.1016/j.ejmech.2018.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis is known to secrete low molecular mass compounds called siderophores especially under low iron conditions to chelate iron from host environment. Iron is essential for growth and other essential processes to sustain life of the bacterium in the host. Hence targeting siderophore is considered to be an alternative approach to prevent further virulence of bacterium into the host. This review article presents classification of siderophores, their role in transporting iron into the tubercular cell, biosynthesis of mycobactins, viability of siderophore as a therapeutic target and also focuses on overview on various approaches to target siderophore. The approaches encompass mutation effect on genes involved in siderophore recycling, synthetic as well as natural compounds that can inhibit further spread of bacterium by targeting siderophore.
Collapse
Affiliation(s)
- Kavitkumar Patel
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India.
| | - Sahil Butala
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Atul Sherje
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Bhushan Dravyakar
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| |
Collapse
|
15
|
Gruzdev DA, Musiyak VV, Levit GL, Krasnov VP, Charushin VN. Purine derivatives with antituberculosis activity. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review summarizes the data published over the last 10 – 15 years concerning the key groups of purine derivatives with antituberculosis activity. The structures of purines containing heteroatoms (S, O, N), fragments of heterocycles, amino acids and peptides, in the 6-position, as well as of purine nucleosides are presented. The possible targets for the action of such compounds and structure – activity relationship are discussed. Particular attention is paid to the most active compounds, which are of considerable interest as a basis for the development of efficient antituberculosis drugs.
The bibliography includes 99 references.
Collapse
|
16
|
Kolbe K, Veleti SK, Johnson EE, Cho YW, Oh S, Barry CE. Role of Chemical Biology in Tuberculosis Drug Discovery and Diagnosis. ACS Infect Dis 2018; 4:458-466. [PMID: 29364647 DOI: 10.1021/acsinfecdis.7b00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of chemical techniques to study biological systems (often referred to currently as chemical biology) has become a powerful tool for both drug discovery and the development of novel diagnostic strategies. In tuberculosis, such tools have been applied to identifying drug targets from hit compounds, matching high-throughput screening hits against large numbers of isolated protein targets and identifying classes of enzymes with important functions. Metabolites unique to mycobacteria have provided important starting points for the development of innovative tools. For example, the unique biology of trehalose has provided both novel diagnostic strategies as well as probes of in vivo biological processes that are difficult to study any other way. Other mycobacterial metabolites are potentially valuable starting points and have the potential to illuminate new aspects of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Katharina Kolbe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sri Kumar Veleti
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Emma E. Johnson
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Young-Woo Cho
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20892, United States
| |
Collapse
|
17
|
Dawadi S, Boshoff HIM, Park SW, Schnappinger D, Aldrich CC. Conformationally Constrained Cinnolinone Nucleoside Analogues as Siderophore Biosynthesis Inhibitors for Tuberculosis. ACS Med Chem Lett 2018; 9:386-391. [PMID: 29670706 DOI: 10.1021/acsmedchemlett.8b00090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS, 1) is a nucleoside antibiotic that inhibits incorporation of salicylate into siderophores required for bacterial iron acquisition and has potent activity against Mycobacterium tuberculosis (Mtb). Cinnolone analogues exemplified by 5 were designed to replace the acidic acyl-sulfamate functional group of 1 (pKa = 3) by a more stable sulfonamide linkage (pKa = 6.0) in an attempt to address potential metabolic liabilities and improve membrane permeability. We showed 5 potently inhibited the mycobacterial salicylate ligase MbtA (apparent Ki = 12 nM), blocked production of the salicylate-capped siderophores in whole-cell Mtb, and exhibited excellent antimycobacterial activity under iron-deficient conditions (minimum inhibitor concentration, MIC = 2.3 μM). To provide additional confirmation of the mechanism of action, we demonstrated the whole-cell activity of 5 could be fully antagonized by the addition of exogenous salicylate to the growth medium. Although the total polar surface area (tPSA) of 5 still exceeds the nominal threshold value (140 Å) typically required for oral bioavailability, we were pleasantly surprised to observe introduction of the less acidic and conformationally constrained cinnolone moiety conferred improved drug disposition properties as evidenced by the 7-fold increase in volume of distribution in Sprague-Dawley rats.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Skiba MA, Maloney FP, Dan Q, Fraley AE, Aldrich CC, Smith JL, Brown WC. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods Enzymol 2018; 604:45-88. [PMID: 29779664 PMCID: PMC5992914 DOI: 10.1016/bs.mie.2018.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural diversity and complexity of marine natural products have made them a rich and productive source of new bioactive molecules for drug development. The identification of these new compounds has led to extensive study of the protein constituents of the biosynthetic pathways from the producing microbes. Essential processes in the dissection of biosynthesis have been the elucidation of catalytic functions and the determination of 3D structures for enzymes of the polyketide synthases and nonribosomal peptide synthetases that carry out individual reactions. The size and complexity of these proteins present numerous difficulties in the process of going from gene to structure. Here, we review the problems that may be encountered at the various steps of this process and discuss some of the solutions devised in our and other labs for the cloning, production, purification, and structure solution of complex proteins using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
| | | | - Qingyun Dan
- University of Michigan, Ann Arbor, MI, United States
| | - Amy E Fraley
- University of Michigan, Ann Arbor, MI, United States
| | | | - Janet L Smith
- University of Michigan, Ann Arbor, MI, United States.
| | - W Clay Brown
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Wang X, Dowd CS. The Methylerythritol Phosphate Pathway: Promising Drug Targets in the Fight against Tuberculosis. ACS Infect Dis 2018; 4:278-290. [PMID: 29390176 DOI: 10.1021/acsinfecdis.7b00176] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe infectious disease in need of new chemotherapies especially for drug-resistant cases. To meet the urgent requirement of new TB drugs with novel modes of action, the TB research community has been validating numerous targets from several biosynthetic pathways. The methylerythritol phosphate (MEP) pathway is utilized by Mtb for the biosynthesis of isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), the universal five-carbon building blocks of isoprenoids. While being a common biosynthetic pathway in pathogens, the MEP pathway is completely absent in humans. Due to its unique presence in pathogens as well as the essentiality of the MEP pathway in Mtb, the enzymes in this pathway are promising targets for the development of new drugs against tuberculosis. In this Review, we discuss three enzymes in the MEP pathway: 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (IspC/DXR), and 2 C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), which appear to be the most promising antitubercular drug targets. Structural and mechanistic features of these enzymes are reviewed, as well as selected inhibitors that show promise as antitubercular agents.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| |
Collapse
|
20
|
Krajczyk A, Zeidler J, Januszczyk P, Dawadi S, Boshoff HI, Barry CE, Ostrowski T, Aldrich CC. 2-Aryl-8-aza-3-deazaadenosine analogues of 5'-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis. Bioorg Med Chem 2016; 24:3133-43. [PMID: 27265685 DOI: 10.1016/j.bmc.2016.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/16/2022]
Abstract
A series of 5'-O-[N-(salicyl)sulfamoyl]-2-aryl-8-aza-3-deazaadenosines were designed to block mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) through inhibition of the essential adenylating enzyme MbtA. The synthesis of the 2-aryl-8-aza-3-deazaadenosine nucleosides featured sequential copper-free palladium-catalyzed Sonogashira coupling of a precursor 4-cyano-5-iodo-1,2,3-triazolonucleoside with terminal alkynes and a Minakawa-Matsuda annulation reaction. These modified nucleosides were shown to inhibit MbtA with apparent Ki values ranging from 6.1 to 25nM and to inhibit Mtb growth under iron-deficient conditions with minimum inhibitory concentrations ranging from 12.5 to >50μM.
Collapse
Affiliation(s)
- Anna Krajczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Joanna Zeidler
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Piotr Januszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Helena I Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Clifton E Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Tomasz Ostrowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Dawadi S, Kawamura S, Rubenstein A, Remmel R, Aldrich CC. Synthesis and pharmacological evaluation of nucleoside prodrugs designed to target siderophore biosynthesis in Mycobacterium tuberculosis. Bioorg Med Chem 2016; 24:1314-21. [PMID: 26875934 PMCID: PMC4769951 DOI: 10.1016/j.bmc.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 11/22/2022]
Abstract
The nucleoside antibiotic, 5'-O-[N-(salicyl)sulfamoyl]adenosine (1), possesses potent whole-cell activity against Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB). This compound is also active in vivo, but suffers from poor drug disposition properties that result in poor bioavailability and rapid clearance. The synthesis and evaluation of a systematic series of lipophilic ester prodrugs containing linear and α-branched alkanoyl groups from two to twelve carbons at the 3'-position of a 2'-fluorinated analog of 1 is reported with the goal to improve oral bioavailability. The prodrugs were stable in simulated gastric fluid (pH 1.2) and under physiological conditions (pH 7.4). The prodrugs were also remarkably stable in mouse, rat, and human serum (relative serum stability: human∼rat≫mouse) displaying a parabolic trend in the SAR with hydrolysis rates increasing with chain length up to eight carbons (t1/2=1.6 h for octanoyl prodrug 7 in mouse serum) and then decreasing again with higher chain lengths. The permeability of the prodrugs was also assessed in a Caco-2 cell transwell model. All of the prodrugs were found to have reduced permeation in the apical-to-basolateral direction and enhanced permeation in the basolateral-to-apical direction relative to the parent compound 2, resulting in efflux ratios 5-28 times greater than 2. Additionally, Caco-2 cells were found to hydrolyze the prodrugs with SAR mirroring the serum stability results and a preference for hydrolysis on the apical side. Taken together, these results suggest that the described prodrug strategy will lead to lower than expected oral bioavailability of 2 and highlight the contribution of intestinal esterases for prodrug hydrolysis.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Shuhei Kawamura
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Anja Rubenstein
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Rory Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
22
|
Abstract
Purine and pyrimidine nucleoside and nucleotide analogs have been extensively studied as anticancer and antiviral agents. In addition to this, they have recently shown great potential against Mycobacterium Tuberculosis, the causative agent of TB. TB ranks as the tenth most common cause of death in the world. The current treatment for TB infection is limited by side effects and cost of the drugs and most importantly by the development of resistance to the therapy. Therefore the development of novel drugs, capable of overcoming the drawbacks of the existing treatments, has become the focus of many research programs. In parallel to that, a tremendous effort has been made to elucidate the unique metabolism of this pathogen with the aim to identify new possible targets. This review presents the state of the art in nucleoside and nucleotide analogs in the treatment of TB. In particular, we report on the inhibitory activity of this class of compounds, both in enzymatic and whole-cell assays, providing a brief insight to which reported target these novel compounds are hitting.
Collapse
|
23
|
Bockman MR, Kalinda AS, Petrelli R, De la Mora-Rey T, Tiwari D, Liu F, Dawadi S, Nandakumar M, Rhee KY, Schnappinger D, Finzel BC, Aldrich CC. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. J Med Chem 2015; 58:7349-7369. [PMID: 26299766 PMCID: PMC4667793 DOI: 10.1021/acs.jmedchem.5b00719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), responsible for both latent and symptomatic tuberculosis (TB), remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with K(D)s ≤ 2 nM. Additionally, we obtained high-resolution cocrystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 μM. Cellular accumulation studies showed a nearly 10-fold enhancement in accumulation of a C-2'-α analogue over the corresponding C-2'-β analogue, consistent with their differential whole-cell activity.
Collapse
Affiliation(s)
- Matthew R. Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alvin S. Kalinda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA,Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA
| | - Riccardo Petrelli
- Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA
| | - Teresa De la Mora-Rey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Feng Liu
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Surrendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Madhumitha Nandakumar
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kyu Y. Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Barry C. Finzel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA,Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA,Corresponding Author Footnote: To whom correspondence should be addressed. Phone 612-625-7956. Fax 612-626-3114.
| |
Collapse
|
24
|
Nelson KM, Viswanathan K, Dawadi S, Duckworth BP, Boshoff HI, Barry CE, Aldrich CC. Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for Mycobacterium tuberculosis. J Med Chem 2015; 58:5459-75. [PMID: 26110337 DOI: 10.1021/acs.jmedchem.5b00391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MbtA catalyzes the first committed biosynthetic step of the mycobactins, which are important virulence factors associated with iron acquisition in Mycobacterium tuberculosis. MbtA is a validated therapeutic target for antitubercular drug development. 5'-O-[N-(Salicyl)sulfamoyl]adenosine (1) is a bisubstrate inhibitor of MbtA and exhibits exceptionally potent biochemical and antitubercular activity. However, 1 suffers from suboptimal drug disposition properties resulting in a short half-life (t(1/2)), low exposure (AUC), and low bioavailability (F). Four strategies were pursued to address these liabilities including the synthesis of prodrugs, increasing the pK(a) of the acyl-sulfonyl moiety, modulation of the lipophilicity, and strategic introduction of fluorine into 1. Complete pharmacokinetic (PK) analysis of all compounds was performed. The most successful modifications involved fluorination of the nucleoside that provided substantial improvements in t(1/2) and AUC. Increasing the pK(a) of the acyl-sulfonyl linker yielded incremental enhancements, while modulation of the lipophilicity and prodrug approaches led to substantially poorer PK parameters.
Collapse
Affiliation(s)
- Kathryn M Nelson
- †Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kishore Viswanathan
- ‡Department of Medicinal Chemistry, University of Minnesota, 8-174 WDH, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Surendra Dawadi
- ‡Department of Medicinal Chemistry, University of Minnesota, 8-174 WDH, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin P Duckworth
- †Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Helena I Boshoff
- §Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Clifton E Barry
- §Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Courtney C Aldrich
- †Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,‡Department of Medicinal Chemistry, University of Minnesota, 8-174 WDH, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Diez-Martinez A, Kim EK, Krishnamurthy R. Hydrogen-Bonding Complexes of 5-Azauracil and Uracil Derivatives in Organic Medium. J Org Chem 2015; 80:7066-75. [DOI: 10.1021/acs.joc.5b00911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alba Diez-Martinez
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Eun-Kyong Kim
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Lamb AL. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1054-70. [PMID: 25970810 DOI: 10.1016/j.bbapap.2015.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/29/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistance is a growing public health crisis. Novel antimicrobials are sought, preferably developing nontraditional chemical scaffolds that do not inhibit standard targets such as cell wall synthesis or the ribosome. Iron scavenging has been proposed as a viable target, because bacterial and fungal pathogens must overcome the nutritional immunity of the host to be virulent. This review highlights the recent work toward exploiting the biosynthetic enzymes of siderophore production for the design of next generation antimicrobials.
Collapse
Affiliation(s)
- Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
27
|
Aoki S, Fukumoto T, Itoh T, Kurihara M, Saito S, Komabiki SY. Synthesis of Disaccharide Nucleosides by theO-Glycosylation of Natural Nucleosides with Thioglycoside Donors. Chem Asian J 2015; 10:740-51. [DOI: 10.1002/asia.201403319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/21/2014] [Indexed: 11/06/2022]
|
28
|
Larin EA, Kochubei VS, Atroshchenko YM. Regio- and stereoselective synthesis of new diaminocyclopentanols. Beilstein J Org Chem 2014; 10:2513-20. [PMID: 25383122 PMCID: PMC4222406 DOI: 10.3762/bjoc.10.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 10/16/2014] [Indexed: 12/18/2022] Open
Abstract
The optimal conditions for regio- and stereoselective epoxide ring opening of N,N-disubstituted 1,2-epoxy-3-aminocyclopentanes by different nucleophilic reagents have been developed. The substituents on the nitrogen atom in the epoxide precursor and the orientation of the oxirane ring are crucial for the reaction outcome. Thus, treatment of (1RS,2SR,3SR)-1,2-epoxy-3-(N,N-dibenzylamino)cyclopentane (3b) with amines gave a mixture of C1 and C2 regioadducts, while the use of (1RS,2SR,3SR)-1,2-epoxy-3-(N-benzyl-N-methylamino)cyclopentane (3a) led ultimately to C1 adducts. Base-catalyzed aminolysis of epoxides 6a,b afforded mainly C1 adducts 13a,b arising from trans-diaxal opening of the epoxide ring. Using a Lewis acid catalyst, epoxides 6a,b were transformed into diaminocyclopentanols 14a,b via an alternative pathway involving the formation of aziridinium intermediate 17.
Collapse
Affiliation(s)
- Evgeni A Larin
- Organic Synthesis Department, Asinex Corporation, 101 North Chestnut, Winston-Salem 27101, NC, USA
| | - Valeri S Kochubei
- Organic Synthesis Department, Asinex Corporation, 101 North Chestnut, Winston-Salem 27101, NC, USA
| | - Yuri M Atroshchenko
- Organic Chemistry and Biochemistry Department, Tolstoi State Pedagogical University, 126 Lenin, Tula 300026, Russian Federation
| |
Collapse
|
29
|
Xu Z, Yin W, Martinelli LK, Evans J, Chen J, Yu Y, Wilson DJ, Mizrahi V, Qiao C, Aldrich CC. Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase. Bioorg Med Chem 2014; 22:1726-35. [PMID: 24507827 PMCID: PMC4667779 DOI: 10.1016/j.bmc.2014.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/25/2013] [Accepted: 01/14/2014] [Indexed: 11/16/2022]
Abstract
The biosynthesis of pantothenate, the core of coenzyme A (CoA), has been considered an attractive target for the development of antimicrobial agents since this pathway is essential in prokaryotes, but absent in mammals. Pantothenate synthetase, encoded by the gene panC, catalyzes the final condensation of pantoic acid with β-alanine to afford pantothenate via an intermediate pantoyl adenylate. We describe the synthesis and biochemical characterization of five PanC inhibitors that mimic the intermediate pantoyl adenylate. These inhibitors are competitive inhibitors with respect to pantoic acid and possess submicromolar to micromolar inhibition constants. The observed SAR is rationalized through molecular docking studies based on the reported co-crystal structure of 1a with PanC. Finally, whole cell activity is assessed against wild-type Mtb as well as a PanC knockdown strain where PanC is depleted to less than 5% of wild-type levels.
Collapse
Affiliation(s)
- Zhixiang Xu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Wei Yin
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | | | - Joanna Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Jinglei Chen
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Yang Yu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Daniel J Wilson
- Center for Drug Design, University of Minnesota, MN 55455, USA
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Chunhua Qiao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | | |
Collapse
|
30
|
Maganti L, Ghoshal N. 3D-QSAR studies and shape based virtual screening for identification of novel hits to inhibit MbtA inMycobacterium tuberculosis. J Biomol Struct Dyn 2014; 33:344-64. [DOI: 10.1080/07391102.2013.872052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Spillane W, Malaubier JB. Sulfamic Acid and Its N- and O-Substituted Derivatives. Chem Rev 2013; 114:2507-86. [DOI: 10.1021/cr400230c] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- William Spillane
- School
of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Jean-Baptiste Malaubier
- Manufacturing Science
and
Technology, Roche Ireland Limited, Clarecastle, Co. Clare, Ireland
| |
Collapse
|
32
|
Bugdahn N, Oberthür M. Syntheses and Iron Binding Affinities of theBacillus anthracisSiderophore Petrobactin and Sidechain-Modified Analogues. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Pharmacokinetic and in vivo efficacy studies of the mycobactin biosynthesis inhibitor salicyl-AMS in mice. Antimicrob Agents Chemother 2013; 57:5138-40. [PMID: 23856770 DOI: 10.1128/aac.00918-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mycobactin biosynthesis in Mycobacterium tuberculosis facilitates iron acquisition, which is required for growth and virulence. The mycobactin biosynthesis inhibitor salicyl-AMS [5'-O-(N-salicylsulfamoyl)adenosine] inhibits M. tuberculosis growth in vitro under iron-limited conditions. Here, we conducted a single-dose pharmacokinetic study and a monotherapy study of salicyl-AMS with mice. Intraperitoneal injection yielded much better pharmacokinetic parameter values than oral administration did. Monotherapy of salicyl-AMS at 5.6 or 16.7 mg/kg significantly inhibited M. tuberculosis growth in the mouse lung, providing the first in vivo proof of concept for this novel antibacterial strategy.
Collapse
|
34
|
Engelhart CA, Aldrich CC. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. J Org Chem 2013; 78:7470-81. [PMID: 23805993 DOI: 10.1021/jo400976f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group on the basis of computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common β-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a β-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a β-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors.
Collapse
Affiliation(s)
- Curtis A Engelhart
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
35
|
Neres J, Engelhart CA, Drake EJ, Wilson DJ, Fu P, Boshoff HI, Barry CE, Gulick AM, Aldrich CC. Non-nucleoside inhibitors of BasE, an adenylating enzyme in the siderophore biosynthetic pathway of the opportunistic pathogen Acinetobacter baumannii. J Med Chem 2013; 56:2385-405. [PMID: 23437866 DOI: 10.1021/jm301709s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Siderophores are small-molecule iron chelators produced by bacteria and other microorganisms for survival under iron limiting conditions such as found in a mammalian host. Siderophore biosynthesis is essential for the virulence of many important Gram-negative pathogens including Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. We performed high-throughput screening against BasE, which is involved in siderophore biosynthesis in A. baumannii, and identified 6-phenyl-1-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid 15. Herein we report the synthesis, biochemical, and microbiological evaluation of a systematic series of analogues of the HTS hit 15. Analogue 67 is the most potent analogue with a KD of 2 nM against BasE. Structural characterization of the inhibitors with BasE reveals that they bind in a unique orientation in the active site, occupying all three substrate binding sites, and thus can be considered as multisubstrate inhibitors. These results provide a foundation for future studies aimed at increasing both enzyme potency and antibacterial activity.
Collapse
Affiliation(s)
- João Neres
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Duckworth BP, Wilson DJ, Nelson KM, Boshoff HI, Barry CE, Aldrich CC. Development of a selective activity-based probe for adenylating enzymes: profiling MbtA Involved in siderophore biosynthesis from Mycobacterium tuberculosis. ACS Chem Biol 2012; 7:1653-8. [PMID: 22796950 DOI: 10.1021/cb300112x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MbtA is an adenylating enzyme from Mycobacterium tuberculosis that catalyzes the first step in the biosynthesis of the mycobactins. A bisubstrate inhibitor of MbtA (Sal-AMS) was previously described that displays potent antitubercular activity under iron-replete as well as iron-deficient growth conditions. This finding is surprising since mycobactin biosynthesis is not required under iron-replete conditions and suggests off-target inhibition of additional biochemical pathways. As a first step toward a complete understanding of the mechanism of action of Sal-AMS, we have designed and validated an activity-based probe (ABP) for studying Sal-AMS inhibition in M. tuberculosis. This probe labels pure MbtA as well as MbtA in mycobacterial lysate, and labeling can be completely inhibited by preincubation with Sal-AMS. Furthermore, this probe provides a prototypical core scaffold for the creation of ABPs to profile any of the other 66 adenylating enzymes in Mtb or the multitude of adenylating enzymes in other pathogenic bacteria.
Collapse
Affiliation(s)
| | | | | | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | | |
Collapse
|
37
|
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012; 12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including highthroughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNAsynthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl- AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases.
Collapse
|
38
|
Chi G, Manos-Turvey A, O’Connor PD, Johnston JM, Evans GL, Baker EN, Payne RJ, Lott JS, Bulloch EMM. Implications of Binding Mode and Active Site Flexibility for Inhibitor Potency against the Salicylate Synthase from Mycobacterium tuberculosis. Biochemistry 2012; 51:4868-79. [DOI: 10.1021/bi3002067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gamma Chi
- School of Biological Sciences
and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Private
Bag 92019, Auckland 1142, New Zealand
| | | | - Patrick D. O’Connor
- Auckland Cancer Society Research
Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jodie M. Johnston
- School of Biological Sciences
and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Private
Bag 92019, Auckland 1142, New Zealand
| | - Genevieve L. Evans
- School of Biological Sciences
and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Private
Bag 92019, Auckland 1142, New Zealand
| | - Edward N. Baker
- School of Biological Sciences
and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Private
Bag 92019, Auckland 1142, New Zealand
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - J. Shaun Lott
- School of Biological Sciences
and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Private
Bag 92019, Auckland 1142, New Zealand
| | - Esther M. M. Bulloch
- School of Biological Sciences
and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Private
Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
39
|
Maganti L, Das SK, Mascarenhas NM, Ghoshal N. Deciphering the Structural Requirements of Nucleoside Bisubstrate Analogues for Inhibition of MbtA in Mycobacterium tuberculosis: A FB-QSAR Study and Combinatorial Library Generation for Identifying Potential Hits. Mol Inform 2011; 30:863-72. [DOI: 10.1002/minf.201100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/05/2011] [Indexed: 11/06/2022]
|
40
|
|
41
|
Drake EJ, Duckworth BP, Neres J, Aldrich CC, Gulick AM. Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. Biochemistry 2010; 49:9292-305. [PMID: 20853905 PMCID: PMC2964879 DOI: 10.1021/bi101226n] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human pathogen Acinetobacter baumannii produces a siderophore called acinetobactin that is derived from one molecule each of threonine, histidine, and 2,3-dihydroxybenzoic acid (DHB). The activity of several nonribosomal peptide synthetase (NRPS) enzymes is used to combine the building blocks into the final molecule. The acinetobactin synthesis pathway initiates with a self-standing adenylation enzyme, BasE, that activates the DHB molecule and covalently transfers it to the pantetheine cofactor of an aryl-carrier protein of BasF, a strategy that is shared with many siderophore-producing NRPS clusters. In this reaction, DHB reacts with ATP to form the aryl adenylate and pyrophosphate. In a second partial reaction, the DHB is transferred to the carrier protein. Inhibitors of BasE and related enzymes have been identified that prevent growth of bacteria on iron-limiting media. Recently, a new inhibitor of BasE has been identified via high-throughput screening using a fluorescence polarization displacement assay. We present here biochemical and structural studies to examine the binding mode of this inhibitor. The kinetics of the wild-type BasE enzyme is shown, and inhibition studies demonstrate that the new compound exhibits competitive inhibition against both ATP and 2,3-dihydroxybenzoate. Structural examination of BasE bound to this inhibitor illustrates a novel binding mode in which the phenyl moiety partially fills the enzyme pantetheine binding tunnel. Structures of rationally designed bisubstrate inhibitors are also presented.
Collapse
Affiliation(s)
- Eric J. Drake
- Hauptman-Woodward Institute and Department of Structural Biology, University at Buffalo
| | | | - João Neres
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455
| | - Courtney C. Aldrich
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455
| | - Andrew M. Gulick
- Hauptman-Woodward Institute and Department of Structural Biology, University at Buffalo
| |
Collapse
|
42
|
Goyal RK, Dureja H, Singh G, Madan AK. Models for antitubercular activity of 5â-O-[(N-Acyl)sulfamoyl]adenosines. Sci Pharm 2010; 78:791-820. [PMID: 21179317 PMCID: PMC3007618 DOI: 10.3797/scipharm.1006-03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/12/2010] [Indexed: 11/26/2022] Open
Abstract
The relationship between topological indices and antitubercular activity of 5â-O-[(N-Acyl)sulfamoyl]adenosines has been investigated. A data set consisting of 31 analogues of 5â-O-[(N-Acyl)sulfamoyl]adenosines was selected for the present study. The values of numerous topostructural and topochemical indices for each of 31 differently substituted analogues of the data set were computed using an in-house computer program. Resulting data was analyzed and suitable models were developed through decision tree, random forest and moving average analysis (MAA). The goodness of the models was assessed by calculating overall accuracy of prediction, sensitivity, specificity and Mathews correlation coefficient. Pendentic eccentricity index â a novel highly discriminating, non-correlating pendenticity based topochemical descriptor â was also conceptualized and successfully utilized for the development of a model for antitubercular activity of 5â-O-[(N-Acyl)sulfamoyl]adenosines. The proposed index exhibited not only high sensitivity towards both the presence as well as relative position(s) of pendent/heteroatom(s) but also led to significant reduction in degeneracy. Random forest correctly classified the analogues into active and inactive with an accuracy of 67.74%. A decision tree was also employed for determining the importance of molecular descriptors. The decision tree learned the information from the input data with an accuracy of 100% and correctly predicted the cross-validated (10 fold) data with accuracy up to 77.4%. Statistical significance of proposed models was also investigated using intercorrelation analysis. Accuracy of prediction of proposed MAA models ranged from 90.4 to 91.6%.
Collapse
Affiliation(s)
- Rakesh K Goyal
- Faculty of Pharmaceutical Sciences, Pt. B.D. Sharma University of Health Sciences, Rohtak,124 001, India.
| | | | | | | |
Collapse
|
43
|
Wilson DJ, Aldrich CC. A continuous kinetic assay for adenylation enzyme activity and inhibition. Anal Biochem 2010; 404:56-63. [PMID: 20450872 PMCID: PMC2900519 DOI: 10.1016/j.ab.2010.04.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Adenylation/adenylate-forming enzymes catalyze the activation of a carboxylic acid at the expense of ATP to form an acyl-adenylate intermediate and pyrophosphate (PP(i)). In a second half-reaction, adenylation enzymes catalyze the transfer of the acyl moiety of the acyl-adenylate onto an acceptor molecule, which can be either a protein or a small molecule. We describe the design, development, and validation of a coupled continuous spectrophotometric assay for adenylation enzymes that employs hydroxylamine as a surrogate acceptor molecule, leading to the formation of a hydroxamate. The released pyrophosphate from the first half-reaction is measured using the pyrophosphatase-purine nucleoside phosphorylase coupling system with the chromogenic substrate 7-methylthioguanosine (MesG). The coupled hydroxamate-MesG assay is especially useful for characterizing the activity and inhibition of adenylation enzymes that acylate a protein substrate and/or fail to undergo rapid ATP-PP(i) exchange.
Collapse
Affiliation(s)
- Daniel J. Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Courtney C. Aldrich
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
44
|
Le Calvez PB, Scott CJ, Migaud ME. Multisubstrate adduct inhibitors: drug design and biological tools. J Enzyme Inhib Med Chem 2010; 24:1291-318. [PMID: 19912064 DOI: 10.3109/14756360902843809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.
Collapse
|
45
|
Tawari NR, Degani MS. Predictive models for nucleoside bisubstrate analogs as inhibitors of siderophore biosynthesis in Mycobacterium tuberculosis: pharmacophore mapping and chemometric QSAR study. Mol Divers 2010; 15:435-44. [DOI: 10.1007/s11030-010-9243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/02/2010] [Indexed: 11/24/2022]
|
46
|
Seio K, Shiraishi M, Utagawa E, Ohkubo A, Sekine M. Synthesis of oligodeoxynucleotides using the oxidatively cleavable 4-methoxytritylthio (MMTrS) group for protection of the 5′-hydroxyl group. NEW J CHEM 2010. [DOI: 10.1039/b9nj00678h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Correia C, Carvalho MA, Proença MF. Synthesis and in vitro activity of 6-amino-2,9-diarylpurines for Mycobacterium tuberculosis. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.06.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Frederick RE, Mayfield JA, DuBois JL. Iron trafficking as an antimicrobial target. Biometals 2009; 22:583-93. [PMID: 19350396 PMCID: PMC3742301 DOI: 10.1007/s10534-009-9236-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Iron is essential for the survival of most organisms. Microbial iron acquisition depends on multiple, sometimes complex steps, many of which are not shared by higher eukaryotes. Depriving pathogenic microbes of iron is therefore a potential antimicrobial strategy. The following minireview briefly describes general elements in microbial iron uptake pathways and summarizes some of the current work aiming at their medicinal inhibition.
Collapse
Affiliation(s)
- Rosanne E Frederick
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
49
|
Grimes KD, Lu YJ, Zhang YM, Luna VA, Hurdle JG, Carson EI, Qi J, Kudrimoti S, Rock CO, Lee RE. Novel acyl phosphate mimics that target PlsY, an essential acyltransferase in gram-positive bacteria. ChemMedChem 2009. [PMID: 19016283 DOI: 10.1002/cmdc.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PlsY is a recently discovered acyltransferase that executes an essential step in membrane phospholipid biosynthesis in Gram- positive bacteria. By using a bioisosteric replacement approach to generate substrate-based inhibitors of PlsY as potential novel antibacterial agents, a series of stabilized acyl phosphate mimetics, including acyl phosphonates, acyl alpha,alpha-difluoromethyl phosphonates, acyl phosphoramides, reverse amide phosphonates, acyl sulfamates, and acyl sulfamides were designed and synthesized. Several acyl phosphonates, phosphoramides, and sulfamates were identified as inhibitors of PlsY from Streptococcus pneumoniae and Bacillus anthracis. As anticipated, these inhibitors were competitive inhibitors with respect to the acyl phosphate substrate. Antimicrobial testing showed the inhibitors to have generally weak activity against Gram-positive bacteria with the exception of some acyl phosphonates, reverse amide phosphonates, and acyl sulfamates, which had potent activity against multiple strains of B. anthracis.
Collapse
Affiliation(s)
- Kimberly D Grimes
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 847 Monroe Ave, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Miller MJ, Zhu H, Xu Y, Wu C, Walz AJ, Vergne A, Roosenberg JM, Moraski G, Minnick AA, McKee-Dolence J, Hu J, Fennell K, Kurt Dolence E, Dong L, Franzblau S, Malouin F, Möllmann U. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. Biometals 2009; 22:61-75. [PMID: 19130268 PMCID: PMC4066965 DOI: 10.1007/s10534-008-9185-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/07/2008] [Indexed: 11/28/2022]
Abstract
Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the "microbial war", extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.
Collapse
Affiliation(s)
- Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|