1
|
Liang H, Li S, Peng X, Xiao H. Overview of the epigenetic/cytotoxic dual-target inhibitors for cancer therapy. Eur J Med Chem 2025; 285:117235. [PMID: 39788061 DOI: 10.1016/j.ejmech.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance. To overcome these challenges, innovative therapeutic approaches are required, including the combination of epigenetic inhibitors with cytotoxic agents or the design of dual-acting inhibitors that target both epigenetic and cytotoxic pathways. In this review, we provide a comprehensive overview of the structures, biological functions and inhibitors of epigenetic regulators (such as HDAC, LSD1, PARP, and BET) and cytotoxic targets (including tubulin and topoisomerase). Furthermore, we discuss recent advancement of combination therapies and dual-target inhibitors that target both epigenetic and cytotoxic pathways, with a particular focus on recent advances, including rational drug design, pharmacodynamics, pharmacokinetics, and clinical applications.
Collapse
Affiliation(s)
- Hailiu Liang
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| | - Hao Xiao
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
2
|
Kavya Teja P, Ly BQ, Upadhyay V, Das S, Behera SK, Mandoli A, Shah DK, Chauthe SK. Semisynthesis of Glycosmis pentaphylla Alkaloid Derivatives: Pyranoacridone-Hydroxamic Acid Cytotoxic Conjugates with HDAC and Topoisomerase II α Dual Inhibitory Activity. JOURNAL OF NATURAL PRODUCTS 2025; 88:282-293. [PMID: 39772592 DOI: 10.1021/acs.jnatprod.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Inspired by our previous efforts in the semisynthetic modification of naturally occurring pyranoacridones, we report the targeted design and semisynthesis of dual inhibitors of HDAC and topoisomerase II α (Topo II α) derived from Glycosmis pentaphylla des-N-methylacronycine (1) and noracronycine (8) pyranoacridone alkaloids. Designed from the clinically approved SAHA, the cytotoxic pyranoacridone nuclei from the alkaloids served as the capping group, while a hydroxamic acid moiety functioned as the zinc-binding group. Out of 16 compounds evaluated in an in vitro cytotoxicity assay, KT32 (10c) with noracronycine (8) as the capping group and five-carbon linker hydroxamic acid side chains showed good cytotoxic activity with IC50 values of 1.0, 1.5, and 0.3 μM on MCF-7, CALU-3, and SCC-25 cell lines, respectively. KT32 (10c) showed potent HDAC inhibitory activity and partial Topo II α inhibitory activity in both enzyme assays. The SAR results strongly aligned with the predicted binding affinities from the molecular docking study. KT32 (10c) was further explored for a preliminary mechanistic understanding of SCC-25 cell lines. Flow cytometry analysis suggests that KT32 (10c) induces cell death through apoptosis, as evidenced by the substantial increase in the population of late apoptotic cells.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bao Q Ly
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York 14214-8033, United States
| | - Vinal Upadhyay
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sourav Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York 14214-8033, United States
| | - Siddheshwar K Chauthe
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
3
|
Joshi G, Yadav UP, Rafiq Z, Grewal P, Kumar M, Singh T, Jha V, Sharma P, Eriksson LA, Srinivas L, Dahibhate NL, Srivastava P, Bhutani P, Mishra UK, Sharon A, Banerjee UC, Sharma N, Chatterjee J, Tikoo K, Singh S, Kumar R. Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents. J Med Chem 2025; 68:2849-2868. [PMID: 39808731 DOI: 10.1021/acs.jmedchem.4c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential. Our findings revealed that the compound 5c significantly produced anticancer effects in vitro and in vivo by reducing the tumor growth and its size in the A549 cell-induced lung cancer xenograft model through multiple mechanisms, primarily by multi-inhibition of hTopoI/II and HDACs, especially HDAC1 via atypical binding. The present paper discusses detailed mechanistic biological investigations, structure-activity effects supported by computational docking studies, and DMPK studies and provides future scope for lead optimization and modification.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Umesh Prasad Yadav
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Zahid Rafiq
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Preeti Grewal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Tashvinder Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Vibhu Jha
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| | | | | | | | | | - Uttam Kumar Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| |
Collapse
|
4
|
Wang B, Shi T, Jia S, Wang E, Ruan X, Sheng C, Wu S, Zhou Q. Indolo[3,2- c]isoquinoline Hydroxamic Acid Derivatives as Novel Orally Topoisomerase-Histone Deacetylase Dual Inhibitors for NSCLC Therapy. J Med Chem 2025; 68:1300-1315. [PMID: 39442082 DOI: 10.1021/acs.jmedchem.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Based on the synergistic effects of topoisomerase (Top) inhibitors and histone deacetylase (HDAC) inhibitors in cancer therapy, a series of novel Top/HDAC dual inhibitors were designed and synthesized herein. The optimal compound 31 was identified to simultaneously inhibit both Tops and HDACs with potent antiproliferative activity against nonsmall cell lung cancer (NSCLC). Mechanistic studies indicated that compound 31 with increasing reactive oxygen species levels damages DNA, inhibiting cancer cell colony formation and migration and inducing both cancer cell apoptosis and cycle arrest. Noteworthily, compound 31 was orally active in the NSCLC xenograft model, and its antitumor efficacy (TGI = 77.5%, 100 mg/kg) was superior to that of HDAC inhibitor SAHA and SAHA in combination with the Top inhibitor irinotecan. Consequently, this work highlights the therapeutic potential of compound 31 as the Top/HDAC dual inhibitor in NSCLC therapy and provides valuable lead compounds for the further development of antitumor agents in solid tumor therapy.
Collapse
Affiliation(s)
- Bichuan Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Shi
- The Department of Urology Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shuolei Jia
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Enyuan Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shanchao Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Chen D, Lin S, Zeng Z, An J, Yan W, Gu Z, Chen L, He B. Serendipitous discovery of Class I HDAC inhibitors from rational design of molecular glue degraders targeting HDAC. Eur J Med Chem 2024; 263:115926. [PMID: 37995564 DOI: 10.1016/j.ejmech.2023.115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Zinc-dependent histone deacetylases (HDACs) play an essential role as epigenetic regulators and are becoming increasingly important drug targets for the treatment of cancer. Although five HDAC inhibitors have been approved for treating several cancers, only one of them is a Class I HDAC inhibitor, which may have advantages over pan-HDAC inhibitors due to the various side effects associated with the latter. On the other hand, the emerging strategy of molecular glue degraders offers a unique advantage for targeting therapeutic proteins. In this study, we synthesized a series of candidate compounds based on the molecule glue, pomalidomide, using a "merger principle", initially aiming to obtain molecular glue degraders that can target HDAC degradation. However, we serendipitously discovered that compounds 2f and 3f may be potent Class I HDAC selective inhibitors. After further evaluation, we found that compounds 2f and 3f exhibit selective inhibitory effects on Class I HDAC in cancer cells. Moreover, they showed the robust antiproliferative activities against various hematological tumor cells, comparable to that of the approved Class I HDAC inhibitor, Chidamide. These results suggest that pomalidomide-derivatized compounds have promising potential as Class I HDAC inhibitors with therapeutic applications in cancer treatment.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ziwei Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Jianxiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Wanli Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
6
|
König B, Watson PR, Reßing N, Cragin AD, Schäker-Hübner L, Christianson DW, Hansen FK. Difluoromethyl-1,3,4-oxadiazoles Are Selective, Mechanism-Based, and Essentially Irreversible Inhibitors of Histone Deacetylase 6. J Med Chem 2023; 66:13821-13837. [PMID: 37782298 PMCID: PMC10591924 DOI: 10.1021/acs.jmedchem.3c01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Histone deacetylase 6 (HDAC6) is an important drug target in oncological and non-oncological diseases. Most available HDAC6 inhibitors (HDAC6i) utilize hydroxamic acids as a zinc-binding group, which limits therapeutic opportunities due to its genotoxic potential. Recently, difluoromethyl-1,3,4-oxadiazoles (DFMOs) were reported as potent and selective HDAC6i but their mode of inhibition remained enigmatic. Herein, we report that DFMOs act as mechanism-based and essentially irreversible HDAC6i. Biochemical data confirm that DFMO 6 is a tight-binding HDAC6i capable of inhibiting HDAC6 via a two-step slow-binding mechanism. Crystallographic and mechanistic experiments suggest that the attack of 6 by the zinc-bound water at the sp2 carbon closest to the difluoromethyl moiety followed by a subsequent ring opening of the oxadiazole yields deprotonated difluoroacetylhydrazide 13 as active species. The strong anionic zinc coordination of 13 and the binding of the difluoromethyl moiety in the P571 pocket finally result in an essentially irreversible inhibition of HDAC6.
Collapse
Affiliation(s)
- Beate König
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Abigail D Cragin
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| |
Collapse
|
7
|
Ahmed S, Mahony CB, Torres A, Murillo-Saich J, Kemble S, Cedeno M, John P, Bhatti A, Croft AP, Guma M. Dual inhibition of glycolysis and glutaminolysis for synergistic therapy of rheumatoid arthritis. Arthritis Res Ther 2023; 25:176. [PMID: 37730663 PMCID: PMC10510293 DOI: 10.1186/s13075-023-03161-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Synovial fibroblasts in rheumatoid arthritis (RAFLS) exhibit a pathological aberration of glycolysis and glutaminolysis. Henceforth, we aimed to investigate if dual inhibition of these pathways by phytobiological compound c28MS has the potential of synergistic therapy for arthritis by targeting both glucose and glutamine metabolism. METHODS The presence of HK2 and GLS across various cell types and associated gene expression in human synovial cells and a murine model of arthritis was evaluated by scRNA-seq. The metabolic profiling of RAFLS cells was done using H1-nuclear magnetic resonance spectroscopy under glycolytic and glutaminolytic inhibitory conditions by incubating with 3-bromopyruvate, CB839, or dual inhibitor c28MS. FLS functional analysis was conducted under similar conditions. ELISA was employed for the quantification of IL-6, CCL2, and MMP3. K/BxN sera was administered to mice to induce arthritis for in vivo arthritis experiments. RESULTS scRNA-seq analysis revealed that many fibroblasts expressed Hk2 along with Gls with several genes including Ptgs2, Hif1a, Timp1, Cxcl5, and Plod2 only associated with double-positive fibroblasts, suggesting that dual inhibition can be an attractive target for fibroblasts. Metabolomic and functional analysis revealed that c28MS decreased the aggressive behavior of RAFLS by targeting both upregulated glycolysis and glutaminolysis. c28MS administered in vivo significantly decreased the severity of arthritis in the K/BxN model. CONCLUSION Our findings imply that dual inhibition of glycolysis and glutaminolysis could be an effective approach for the treatment of RA. It also suggests that targeting more than one metabolic pathway can be a novel treatment approach in non-cancer diseases.
Collapse
Affiliation(s)
- Shanzay Ahmed
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Christopher B Mahony
- Rheumatology Research Group, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Alyssa Torres
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Jessica Murillo-Saich
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Martha Cedeno
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Peter John
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Attya Bhatti
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Adam P Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Monica Guma
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
8
|
El-Kalyoubi S, Elbaramawi SS, Eissa AG, Al-Ageeli E, Hobani YH, El-Sharkawy AA, Mohamed HT, Al-Karmalawy AA, Abulkhair HS. Design and synthesis of novel uracil-linked Schiff bases as dual histone deacetylase type II/topoisomerase type I inhibitors with apoptotic potential. Future Med Chem 2023; 15:937-958. [PMID: 37381751 DOI: 10.4155/fmc-2023-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Aim: The previously reported dual histone deacetylase type II (HDAC II) / topoisomerase type I (Topo I) inhibitors suffer pharmacokinetic limitations because of their huge molecular weights. Materials & methods: We report the design and synthesis of a smarter novel set of uracil-linked Schiff bases (19-30) as dual HDAC II/Topo I inhibitors keeping the essential pharmacophoric features. Cytotoxicity of all compounds was assessed against three cancer cell lines. Studies of their effects on the apoptotic BAX and antiapoptotic BCL2 genes, molecular docking studies, and absorption, distribution, metabolism and excretion studies were conducted. Results: Compounds 22, 25 and 30 exhibited significant activities. The bromophenyl derivative 22 displayed the best selectivity index, with IC50 values against HDAC II and Topo I of 1.12 and 13.44 μM, respectively. Conclusion: Compound 22 could be considered a lead HDAC II/Topo I inhibitor.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Samar S Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed G Eissa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Essam Al-Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, 82621, Saudi Arabia
| | - Yahya Hasan Hobani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 82621, Saudi Arabia
| | - Aya Ali El-Sharkawy
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
- Faculty of Biotechnology, October University for Modern Sciences & Arts, Giza, 12451, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| |
Collapse
|
9
|
Roy R, Ria T, RoyMahaPatra D, Sk UH. Single Inhibitors versus Dual Inhibitors: Role of HDAC in Cancer. ACS OMEGA 2023; 8:16532-16544. [PMID: 37214715 PMCID: PMC10193415 DOI: 10.1021/acsomega.3c00222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Due to the multimodal character of cancer, inhibition of two targets simultaneously by a single molecule is a beneficial and effective approach against cancer. Histone deacetylase (HDAC) was widely investigated as a novel category of anticancer drug targets due to its crucial role in various biological processes like cell-proliferation, metastasis, and apoptosis. Numerous HDAC inhibitors such as vorinostat and panobinostat are clinically approved but have limited usage due to their low efficacy, nonselectivity, drug resistance, and toxicity. Therefore, HDACs with a dual targeting ability have attracted great attention. The strategy of combining a HDAC inhibitor with other antitumor agents has been proved advantageous for combating the nonselectivity and drug resistivity problems associated with single-target drugs. Henceforth, we have highlighted dual-targeting inhibitors to target HDAC along with topoisomerase, receptor tyrosine kinase inhibitors, and the zeste homolog 2 enzyme. Our Review mainly focuses on the impact of the substituent effect along with the linker variation of well-known HDAC-inhibitor-conjugated anticancer drugs.
Collapse
|
10
|
Yang Y, Liu Q, Wang X, Gou S. Design, synthesis, and biological evaluation of novel HDAC inhibitors with a 3-(benzazol-2-yl)quinoxaline framework. Bioorg Med Chem Lett 2023; 88:129305. [PMID: 37116762 DOI: 10.1016/j.bmcl.2023.129305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
A series of novel histone deacetylase (HDAC) inhibitors derived from 3-(benzazol-2-yl)quinoxaline derivatives were designed and synthesized by a pharmacophore fusion strategy. In vitro results showed that most of the synthesized compounds exhibited good anti-proliferative activity. Among them, compound 10c showed the most potent cytotoxicity, especially in HCT-116 cells with an IC50 value of 0.91 μM much superior to Vorinostat (5.66 μM). 10c was also found to induce cell apoptosis, arrest the cell cycle at G2/M phase, induce the generation of reactive oxygen species and inhibit cell invasion and migration in HCT-116 cells. Further studies revealed that 10c could up-regulate the acetylation levels of H3 and α-tubulin, exhibit significant Topo I inhibition and induce the release of related apoptotic biomarkers. These results highlight the great potential of 10c to become a promising anti-cancer HDAC inhibitor.
Collapse
Affiliation(s)
- Yawen Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Qingqing Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
11
|
Zhao M, Yang K, Zhu X, Gao T, Yu W, Liu H, You Z, Liu Z, Qiao X, Song Y. Design, synthesis and biological evaluation of dual Topo II/HDAC inhibitors bearing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs. Eur J Med Chem 2023; 252:115303. [PMID: 36996717 DOI: 10.1016/j.ejmech.2023.115303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Both topoisomerase II (Topo II) and histone deacetylase (HDAC) are important therapeutic targets for cancer. In this study, two series of novel compounds containing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs were designed and synthesized as dual Topo II/HDAC inhibitors. MTT assay indicated that all the compounds displayed potential antiproliferative activity against three cancer cell lines (MGC-803, MCF-7 and U937) and low cytotoxicity on normal cell line (3T3). In the enzyme activity inhibition experiments, compounds 7d and 8d exhibited excellent dual inhibitory activities against Topo II and HDAC. Cleavage reaction assay showed that 7d was a Topo II poison, which was consistent with the docking results. Further experimental results revealed that compounds 7d and 8d could promote apoptosis and significantly inhibit the migration in MCF-7 cells. Molecular docking showed that compounds 7d and 8d bind Topo II and HDAC at the active sites. Molecular dynamics simulation showed that 7d can stably bind to Topo II and HDAC.
Collapse
Affiliation(s)
- Mengmiao Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xinyue Zhu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Tian Gao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Wei Yu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Han Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhihao You
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
12
|
Phenotypic Discovery of Thiocarbohydrazone with Anticancer Properties and Catalytic Inhibition of Human DNA Topoisomerase IIα. Pharmaceuticals (Basel) 2023; 16:ph16030341. [PMID: 36986441 PMCID: PMC10054454 DOI: 10.3390/ph16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Phenotypic screening of α-substituted thiocarbohydrazones revealed promising activity of 1,5-bis(salicylidene)thiocarbohydrazide against leukemia and breast cancer cells. Supplementary cell-based studies indicated an impairment of DNA replication via the ROS-independent pathway. The structural similarity of α-substituted thiocarbohydrazone to previously published thiosemicarbazone catalytic inhibitors targeting the ATP-binding site of human DNA topoisomerase IIα prompted us to investigate the inhibition activity on this target. Thiocarbohydrazone acted as a catalytic inhibitor and did not intercalate the DNA molecule, which validated their engagement with this cancer target. A comprehensive computational assessment of molecular recognition for a selected thiosemicarbazone and thiocarbohydrazone provided useful information for further optimization of this discovered lead compound for chemotherapeutic anticancer drug discovery.
Collapse
|
13
|
Sarkar N, Singh A, Kumar P, Kaushik M. Protein kinases: Role of their dysregulation in carcinogenesis, identification and inhibition. Drug Res (Stuttg) 2023; 73:189-199. [PMID: 36822216 DOI: 10.1055/a-1989-1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Protein kinases belong to the phosphor-transferases superfamily of enzymes, which "activate" enzymes via phosphorylation. The kinome of an organism is the total set of genes in the genome, which encode for all the protein kinases. Certain mutations in the kinome have been linked to dysregulation of protein kinases, which in turn can lead to several diseases and disorders including cancer. In this review, we have briefly discussed the role of protein kinases in various biochemical processes by categorizing cancer associated phenotypes and giving their protein kinase examples. Various techniques have also been discussed, which are being used to analyze the structure of protein kinases, and associate their roles in the oncogenesis. We have also discussed protein kinase inhibitors and United States Federal Drug Administration (USFDA) approved drugs, which target protein kinases and can serve as a counter to protein kinase dysregulation and mitigate the effects of oncogenesis. Overall, this review briefs about the importance of protein kinases, their roles in oncogenesis on dysregulation and how their inhibition via various drugs can be used to mitigate their effects.
Collapse
Affiliation(s)
- Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Environmental Studies, University of Delhi, Delhi, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
14
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
15
|
Karaj E, Sindi SH, Kuganesan N, Koranne RA, Knoff JR, James AW, Fu Y, Kotsull LN, Pflum MK, Shah Z, Taylor WR, Tillekeratne LMV. First-in-Class Dual Mechanism Ferroptosis-HDAC Inhibitor Hybrids. J Med Chem 2022; 65:14764-14791. [PMID: 36306372 PMCID: PMC10257520 DOI: 10.1021/acs.jmedchem.2c01276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HDAC inhibitors are an attractive class of cytotoxic agents for the design of hybrid molecules. Several HDAC hybrids have emerged over the years, but none combines HDAC inhibition with ferroptosis, a combination which is being extensively studied because it leads to enhanced cytotoxicity and attenuated neuronal toxicity. We combined the pharmacophores of SAHA and CETZOLE molecules to design the first-in-class dual mechanism hybrid molecules, which induce ferroptosis and inhibit HDAC proteins. The involvement of both mechanisms in cytotoxicity was confirmed by a series of biological assays. The cytotoxic effects were evaluated in a series of cancer and neuronal cell lines. Analogue HY-1 demonstrated the best cytotoxic profile with GI50 values as low as 20 nM. Although the increase in activity of the hybrids over the combinations is modest in cellular systems, they have the potential advantage of homogeneous spatiotemporal distribution in in vivo systems.
Collapse
Affiliation(s)
- Endri Karaj
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Shaimaa H Sindi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Nishanth Kuganesan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Radhika A Koranne
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Joseph R Knoff
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Yu Fu
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Lauren N Kotsull
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mary Kay Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zahoor Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
16
|
Wu S, Huang Y, Wang T, Li K, Lu J, Huang M, Dong G, Sheng C. Evodiamine-Inspired Topoisomerase-Histone Deacetylase Dual Inhibitors: Novel Orally Active Antitumor Agents for Leukemia Therapy. J Med Chem 2022; 65:4818-4831. [PMID: 35238576 DOI: 10.1021/acs.jmedchem.1c02026] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
On the basis of the synergism of topoisomerase (Top) and histone deacetylase (HDAC) inhibitors in antitumor therapy, a series of novel Top/HDAC dual inhibitors were designed and synthesized by the pharmacophore fusion strategy. After systematic structure-activity relationship studies, lead compound 16j was identified to simultaneously inhibit both Top and HDAC with good potency, which showed potent antiproliferative activities with a broad spectrum. Mechanistic studies indicated that compound 16j efficiently induced apoptosis with S cell-cycle arrest in HEL cancer cells. It was orally active in HEL xenograft models and exhibited excellent in vivo antitumor efficacy (TGI = 68.5%; 10 mg/kg). Altogether, this work highlights the therapeutic potential of evodiamine-inspired Top/HDAC dual inhibitors and provides a valuable lead compound for the development of novel antitumor agents for leukemia therapy.
Collapse
Affiliation(s)
- Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yahui Huang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Keliang Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Junjie Lu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Min Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
17
|
Yılmaz ZK, Özdemir Ö, Aslim B, Suludere Z, Şahin E. A new bio-active asymmetric-Schiff base: synthesis and evaluation of calf thymus DNA interaction, topoisomerase IIα inhibition, in vitro antiproliferative activity, SEM analysis and molecular docking studies. J Biomol Struct Dyn 2022; 41:2804-2822. [PMID: 35179080 DOI: 10.1080/07391102.2022.2039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper, the asymmetric-Schiff base 2-(4-(2-hydroxybenzylideneamino)benzylideneamino)benzoic acid (SB-2) was newly synthesized and characterized by various spectroscopic methods. The interaction of SB-2 with calf thymus DNA was investigated by UV-vis, fluorescence spectroscopy and molecular docking methods. It was determined that SB-2 effectively binds to DNA via the intercalation mode. DNA electrophoretic mobility experiments displayed that topoisomerase IIα could not cleave pBR322 plasmid DNA in the presence of SB-2, confirming that the Schiff base acts as a topo II suppressor. In the molecular docking studies, SB-2 was found to show an affinity for both the DNA-topoisomerase IIα complex and the DNA. In vitro antiproliferative activity of SB-2 was screened against HT-29 (colorectal) and HeLa (cervical) human tumor cell lines by MTT assay. SB-2 diminished the cell viability in a concentration- and incubation time-dependent manner. The ability of SB-2 to measure DNA damage in tumor cells was evaluated with cytokinesis-block micronucleus assay after incubation 24 h and 48 h. Light and scanning electron microscopy experiments of tumor cells demonstrated an incubation time-dependent increase in the proportion of apoptotic cells (nuclear condensation and apoptotic bodies) suggesting that autophagy and apoptosis play a role in the death of cells. Based on the obtained results, it may be considered that SB-2 is a candidate for DNA-targeting antitumor drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zehra Kübra Yılmaz
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Özlem Özdemir
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Egemen Şahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Mehndiratta S, Qian B, Chuang JY, Liou JP, Shih JC. N-Methylpropargylamine-Conjugated Hydroxamic Acids as Dual Inhibitors of Monoamine Oxidase A and Histone Deacetylase for Glioma Treatment. J Med Chem 2022; 65:2208-2224. [PMID: 35005974 DOI: 10.1021/acs.jmedchem.1c01726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioma treatment remains a challenge with a low survival rate due to the lack of effective therapeutics. Monoamine oxidase A (MAO A) plays a role in glioma development, and MAO A inhibitors reduce glioma growth. Histone deacetylase (HDAC) inhibition has emerged as a promising therapy for various malignancies including gliomas. We have synthesized and evaluated N-methylpropargylamine-conjugated hydroxamic acids as dual inhibitors of MAO A and HDAC. Compounds display potent MAO A inhibition with IC50 from 0.03 to <0.0001 μM and inhibit HDAC isoforms and cell growth in the micromolar to nanomolar IC50 range. These selective MAO A inhibitors increase histone H3 and α-tubulin acetylation and induce cell death via nonapoptotic mechanisms. Treatment with 15 reduced tumor size, reduced MAO A activity in brain and tumor tissues, and prolonged the survival. This first report on dual inhibitors of MAO A and HDAC establishes the basis of translational research for an improved treatment of glioma.
Collapse
Affiliation(s)
- Samir Mehndiratta
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Bin Qian
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States.,USC-Taiwan Center for Translational Research, Los Angeles, California 90089, United States.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
19
|
Qiu X, Zhu L, Wang H, Tan Y, Yang Z, Yang L, Wan L. From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorg Med Chem 2021; 52:116510. [PMID: 34826681 DOI: 10.1016/j.bmc.2021.116510] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) play a key role in the homeostasis of protein acetylation in histones and have recently emerged as a therapeutic target for numerous diseases. The inhibition of HDACs may block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumour cells. Thus, HDAC inhibitors (HDACi) have received increasing attention and many of which are developed from natural sources. In the past few decades, naturally occurring HDACi have been identified to have potent anticancer activities, some of which have demonstrated promising therapeutic effects on haematological malignancies. In this review, we summarized the discovery and modification of HDAC inhibitors from natural sources, novel drug design that uses natural products as parent nuclei, and dual target design strategies that combine HDAC with non-HDAC targets.
Collapse
Affiliation(s)
- Xiang Qiu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lv Zhu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
20
|
Wang J, Cao Z, Wang F, Wang P, An J, Fu X, Liu T, Li Y, Li Y, Zhao Y, Lin H, He B. Cysteine derivatives as acetyl lysine mimics to inhibit zinc-dependent histone deacetylases for treating cancer. Eur J Med Chem 2021; 225:113799. [PMID: 34500130 DOI: 10.1016/j.ejmech.2021.113799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022]
Abstract
Zinc-dependent histone deacetylases (HDACs) are important epigenetic regulators that have become important drug targets for treating cancer. Although five HDAC inhibitors have been approved for treating several cancers, there is still a huge demand on discovering new HDAC inhibitors to explore the therapeutic potentials for treating solid tumor cancers. Substrate mimics are a powerful rational design approach for the development of potent inhibitors. Here we describe the rational design, synthesis, biological evaluation, molecular docking and in vivo efficacy study of a class of HDAC inhibitors using Nε-acetyl lysine mimics that are derived from cysteine. As a result, compounds 7a, 9b and 13d demonstrated pan-HDAC inhibition and broad cytotoxicity against several cancer cell lines, comparable to the approved HDAC inhibitor SAHA. Furthermore, 13d significantly inhibited tumor growth in a A549 xenograft mice model without any obvious weight loss, supporting that the cysteine-derived acetyl lysine mimics are promising HDAC inhibitors with therapeutic potentials for treating cancer.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Fang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jianxiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
21
|
Klausz K, Kellner C, Gehlert CL, Krohn S, Wilcken H, Floerkemeier I, Günther A, Bauerschlag DO, Clement B, Gramatzki M, Peipp M. The Novel Dual Topoisomerase Inhibitor P8-D6 Shows Anti-myeloma Activity In Vitro and In Vivo. Mol Cancer Ther 2021; 21:70-78. [PMID: 34725192 DOI: 10.1158/1535-7163.mct-21-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
P8-D6 is a novel dual inhibitor of human topoisomerase I (TOP1) and II (TOP2) with broad pro-apoptotic antitumor activity. NCI-60 screening revealed markedly improved cytotoxicity of P8-D6 against solid and leukemia cell lines compared with other single and dual topoisomerase inhibitors, for example, irinotecan, doxorubicin, or pyrazoloacridine. In this study, we investigated the capacity of P8-D6 to inhibit myeloma cell growth in vitro and in vivo Growth inhibition assays demonstrated significant anti-myeloma effects against different myeloma cell lines with IC50 values in the low nanomolar range. Freshly isolated plasma cells of patients with multiple myeloma were killed by P8-D6 with similar doses. P8-D6 activated caspase 3/7 and induced significant apoptosis of myeloma cells. Supportive effects of bone marrow stromal cells on IL6-dependent INA-6 myeloma cells were abrogated by P8-D6 and apoptosis occurred in a time- and dose-dependent manner. Of note, healthy donor peripheral blood mononuclear cells and human umbilical vein endothelial cells were not affected at concentrations toxic for malignant plasma cells. Treatment of myeloma xenografts in immunodeficient SCID/beige mice by intravenous and, notably, also oral application of P8-D6 markedly inhibited tumor growths, and significantly prolonged survival of tumor-bearing mice.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany.
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Carina Lynn Gehlert
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Hauke Wilcken
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Inken Floerkemeier
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andreas Günther
- Helios Clinics Schwerin, Hematology/Oncology/Stem Cell Transplantation, Schwerin, Germany
| | - Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
22
|
Russjan E, Zając D, Sulejczak D, Kleczkowska P, Kaczyńska K. Contribution of opioid and neurotensin receptors in the anti-inflammatory activity of PK20 hybrid compound in murine airways. Clin Exp Pharmacol Physiol 2021; 48:1162-1170. [PMID: 33851456 DOI: 10.1111/1440-1681.13505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
PK20 is an anti-inflammatory hybrid compound, composed of an endomorphin-2-like and neurotensin-like fragments. The aim of the present study is to assess the contribution of particular pharmacophores to the activity of the hybrid tested. For this purpose, airway hyperresponsiveness, accumulation of inflammatory cells in bronchoalveolar lavage fluid (BALF), concentration of mouse mast cell protease, malondialdehyde and secretory phospholipase 2 activity in lung tissue, as well as production of pro-inflammatory cytokines in BALF and lung were determined by using murine model of non-atopic asthma. Blocking either neurotensin receptors or mu opioid receptors did not alter the potential of PK20 in reducing airway hyperresponsiveness. In studies of inflammatory cells, the beneficial effect of the entire peptide occurs to be mediated by the stimulation of neurotensin receptors. However, regarding cytokine and biochemical assays, pretreatment with both receptor antagonists resulted in a different effect on its activity depending on the parameter studied. To conclude, the activation of both the opioid and neurotensin receptors seems to be necessary to induce the full anti-inflammatory activity of the hybrid compound.
Collapse
Affiliation(s)
- Ewelina Russjan
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Kleczkowska
- Department of Pharmacodynamics, Centre for Preclinical Research (CBP), Medical University of Warsaw, Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Lee SY, Namasivayam V, Boshta NM, Perotti A, Mirza S, Bua S, Supuran CT, Müller CE. Discovery of potent nucleotide pyrophosphatase/phosphodiesterase3 (NPP3) inhibitors with ancillary carbonic anhydrase inhibition for cancer (immuno)therapy. RSC Med Chem 2021; 12:1187-1206. [PMID: 34355184 PMCID: PMC8292979 DOI: 10.1039/d1md00117e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
Nucleotide pyrophosphatase/phosphodiesterase3 (NPP3) catalyzes the hydrolysis of extracellular nucleotides. It is expressed by immune cells and some carcinomas, e.g. of kidney and colon. Together with ecto-5'-nucleotidase (CD73), NPP3 produces immunosuppressive, cancer-promoting adenosine, and has therefore been proposed as a target for cancer therapy. Here we report on the discovery of 4-[(4-methylphthalazin-1-yl)amino]benzenesulfonamide (1) as an inhibitor of human NPP3 identified by compound library screening. Subsequent structure-activity relationship (SAR) studies led to the potent competitive NPP3 inhibitor 2-methyl-5-{4-[(4-sulfamoylphenyl)amino]phthalazin-1-yl}benzenesulfonamide (23, K i 53.7 nM versus the natural substrate ATP). Docking studies predicted its binding pose and interactions. While 23 displayed high selectivity versus other ecto-nucleotidases, it showed ancillary inhibition of two proposed anti-cancer targets, the carbonic anhydrases CA-II (Ki 74.7 nM) and CA-IX (Ki 20.3 nM). Thus, 23 may act as multi-target anti-cancer drug. SARs for NPP3 were steeper than for CAs leading to the identification of potent dual CA-II/CA-IX (e.g. 34) as well as selective CA-IX inhibitors (e.g. 31).
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| | - Nader M Boshta
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
- Chemistry Department, Faculty of Science, Menoufia University Gamal Abdel-Nasser Street Shebin El-Kom 32511 Egypt
| | - Arianna Perotti
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze Via Ugo Schiff 7,50019 Sesto Fiorentino Florence Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze Via Ugo Schiff 7,50019 Sesto Fiorentino Florence Italy
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 D-53121 Bonn Germany +49 228 73 2567 +49 228 73 2301
| |
Collapse
|
24
|
Kashyap K, Kakkar R. In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Combination therapies that include treatment of cancerous cells with histone deacetylase (HDACs) inhibitors prior to treatment with topoisomerase inhibitors have shown synergistic anti-tumor effects. The promising results of such combination therapies have led to the development of a novel class of multitarget hybrid inhibitors that are designed by merging the scaffolds of topoisomerase and HDAC inhibitors, which consequently inhibit both classes of cancer-inducing targets simultaneously. These multitarget hybrids also have pharmacokinetic advantages over the traditional combinatorial approach, which struggles with disadvantages like maintaining optimum concentrations of multiple toxic drugs, which in turn leads to enhanced toxicity and other side-effects associated with the multiple drugs administered. Binding modes of some Top-HDAC hybrids have been predicted with the help of molecular docking in order to understand the binding of such hybrids with their target receptors and to identify the structural determinants responsible for their synergistic anti-tumor effect. Extra precision docking of Top1-HDAC and Top2-HDAC hybrid inhibitors has been carried out with Top1-DNA, Top2-DNA, HDAC1 and HDAC6 receptor structures. A detailed analysis of the molecular interactions of the hybrids with the target receptor binding sites has been undertaken and their predicted binding modes have been compared with the crystal binding modes of their component drugs. An explanation for the apparent selectivity of the hybrids towards HDAC6 has also been provided.
Collapse
Affiliation(s)
- Kriti Kashyap
- Computational Chemistry Laboratory, Department of Chemistry , University of Delhi , New Delhi , 110007 , Delhi , India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry , University of Delhi , New Delhi , 110007 , Delhi , India
| |
Collapse
|
25
|
8a, a New Acridine Antiproliferative and Pro-Apoptotic Agent Targeting HDAC1/DNMT1. Int J Mol Sci 2021; 22:ijms22115516. [PMID: 34073721 PMCID: PMC8197214 DOI: 10.3390/ijms22115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.
Collapse
|
26
|
Chrabąszcz K, Błauż A, Gruchała M, Wachulec M, Rychlik B, Plażuk D. Synthesis and Biological Activity of Ferrocenyl and Ruthenocenyl Analogues of Etoposide: Discovery of a Novel Dual Inhibitor of Topoisomerase II Activity and Tubulin Polymerization. Chemistry 2021; 27:6254-6262. [PMID: 33465263 DOI: 10.1002/chem.202005133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Two series of the ferrocenyl and ruthenocenyl analogues of etoposide bearing 1,2,3-triazolyl or aminoalkyl linker were synthesized and evaluated for their cytotoxic properties, influence on the cell cycle, ability to induce tubulin polymerization, and inhibition of topoisomerase II activity. We found that the replacement of the etoposide carbohydrate moiety with a metallocenyl group led to organometallic conjugates exhibiting differentiated antiproliferative activity. Biological studies demonstrated that two ferrocenylalkylamino conjugates were notably more active than etoposide, with submicromolar or low-micromolar IC50 values towards SW620, etoposide-resistant SW620E, and methotrexate-resistant SW620M cancer cell lines. Moreover, the simplest ferrocenylmethylamino conjugate exerted dual inhibitory action against tubulin polymerization and topoisomerase II activity while other studied compounds affected only topoisomerase II activity.
Collapse
Affiliation(s)
- Karolina Chrabąszcz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403, Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Martyna Gruchała
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Marcin Wachulec
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403, Łódź, Poland
| |
Collapse
|
27
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
28
|
Kumar M, Joshi G, Chatterjee J, Kumar R. Epidermal Growth Factor Receptor and its Trafficking Regulation by Acetylation: Implication in Resistance and Exploring the Newer Therapeutic Avenues in Cancer. Curr Top Med Chem 2021; 20:1105-1123. [PMID: 32031073 DOI: 10.2174/1568026620666200207100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The EGFR is overexpressed in numerous cancers. So, it becomes one of the most favorable drug targets. Single-acting EGFR inhibitors on prolong use induce resistance and side effects. Inhibition of EGFR and/or its interacting proteins by dual/combined/multitargeted therapies can deliver more efficacious drugs with less or no resistance. OBJECTIVE The review delves deeper to cover the aspects of EGFR mediated endocytosis, leading to its trafficking, internalization, and crosstalk(s) with HDACs. METHODS AND RESULTS This review is put forth to congregate relevant literature evidenced on EGFR, its impact on cancer prognosis, inhibitors, and its trafficking regulation by acetylation along with the current strategies involved in targeting these proteins (EGFR and HDACs) successfully by involving dual/hybrid/combination chemotherapy. CONCLUSION The current information on cross-talk of EGFR and HDACs would likely assist researchers in designing and developing dual or multitargeted inhibitors through combining the required pharmacophores.
Collapse
Affiliation(s)
- Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
29
|
Tapadar S, Fathi S, Wu B, Sun CQ, Raji I, Moore SG, Arnold RS, Gaul DA, Petros JA, Oyelere AK. Liver-Targeting Class I Selective Histone Deacetylase Inhibitors Potently Suppress Hepatocellular Tumor Growth as Standalone Agents. Cancers (Basel) 2020; 12:E3095. [PMID: 33114147 PMCID: PMC7690782 DOI: 10.3390/cancers12113095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023] Open
Abstract
Dysfunctions in epigenetic regulation play critical roles in tumor development and progression. Histone deacetylases (HDACs) and histone acetyl transferase (HAT) are functionally opposing epigenetic regulators, which control the expression status of tumor suppressor genes. Upregulation of HDAC activities, which results in silencing of tumor suppressor genes and uncontrolled proliferation, predominates in malignant tumors. Inhibition of the deacetylase activity of HDACs is a clinically validated cancer therapy strategy. However, current HDAC inhibitors (HDACi) have elicited limited therapeutic benefit against solid tumors. Here, we disclosed a class of HDACi that are selective for sub-class I HDACs and preferentially accumulate within the normal liver tissue and orthotopically implanted liver tumors. We observed that these compounds possess exquisite on-target effects evidenced by their induction of dose-dependent histone H4 hyperacetylation without perturbation of tubulin acetylation status and G0/G1 cell cycle arrest. Representative compounds 2 and 3a are relatively non-toxic to mice and robustly suppressed tumor growths in an orthotopic model of HCC as standalone agents. Collectively, our results suggest that these compounds may have therapeutic advantage against HCC relative to the current systemic HDACi. This prospect merits further comprehensive preclinical investigations.
Collapse
Affiliation(s)
- Subhasish Tapadar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
- Sophia Bioscience, Inc. 311 Ferst Drive NW, Ste. L1325A, Atlanta, GA 30332, USA;
| | - Shaghayegh Fathi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
| | - Bocheng Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
| | - Carrie Q. Sun
- Department of Urology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA 30322, USA; (C.Q.S.); (R.S.A.)
| | - Idris Raji
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
| | - Rebecca S. Arnold
- Department of Urology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA 30322, USA; (C.Q.S.); (R.S.A.)
| | - David A. Gaul
- Sophia Bioscience, Inc. 311 Ferst Drive NW, Ste. L1325A, Atlanta, GA 30332, USA;
| | - John A. Petros
- Department of Urology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA 30322, USA; (C.Q.S.); (R.S.A.)
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
30
|
Bass AKA, El-Zoghbi MS, Nageeb ESM, Mohamed MFA, Badr M, Abuo-Rahma GEDA. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur J Med Chem 2020; 209:112904. [PMID: 33077264 DOI: 10.1016/j.ejmech.2020.112904] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
Despite the encouraging clinical progress of chemotherapeutic agents in cancer treatment, innovation and development of new effective anticancer candidates still represents a challenging endeavor. With 15 million death every year in 2030 according to the estimates, cancer has increased rising of an alarm as a real crisis for public health and health systems worldwide. Therefore, scientist began to introduce innovative solutions to control the cancer global health problem. One of the promising strategies in this issue is the multitarget or smart hybrids having two or more pharmacophores targeting cancer. These rationalized hybrid molecules have gained great interests in cancer treatment as they are capable to simultaneously inhibit more than cancer pathway or target without drug-drug interactions and with less side effects. A prime important example of these hybrids, the HDAC hybrid inhibitors or referred as multitargeting HDAC inhibitors. The ability of HDAC inhibitors to synergistically improve the efficacy of other anti-cancer drugs and moreover, the ease of HDAC inhibitors cap group modification prompt many medicinal chemists to innovate and develop new generation of HDAC hybrid inhibitors. Notably, and during this short period, there are four HDAC inhibitor hybrids have entered different phases of clinical trials for treatment of different types of blood and solid tumors, namely; CUDC-101, CUDC-907, Tinostamustine, and Domatinostat. This review shed light on the most recent hybrids of HDACIs with one or more other cancer target pharmacophore. The designed multitarget hybrids include topoisomerase inhibitors, kinase inhibitors, nitric oxide releasers, antiandrogens, FLT3 and JAC-2 inhibitors, PDE5-inhibitors, NAMPT-inhibitors, Protease inhibitors, BRD4-inhibitors and other targets. This review may help researchers in development and discovery of new horizons in cancer treatment.
Collapse
Affiliation(s)
- Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mona S El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - El-Shimaa M Nageeb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt.
| |
Collapse
|
31
|
Smalley JP, Cowley SM, Hodgkinson JT. Bifunctional HDAC Therapeutics: One Drug to Rule Them All? Molecules 2020; 25:E4394. [PMID: 32987782 PMCID: PMC7583022 DOI: 10.3390/molecules25194394] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety. This review summarises the recent advancements in novel types of dual-targeting HDAC modulators, including proteolysis-targeting chimeras (PROTACs), with a focus on HDAC isoform and complex selectivity, and the future potential of such bifunctional molecules in achieving enhanced drug efficacy and therapeutic benefits in treating disease.
Collapse
Affiliation(s)
- Joshua P. Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| | - Shaun M. Cowley
- Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK;
| | - James T. Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
32
|
Vaidya GN, Rana P, Venkatesh A, Chatterjee DR, Contractor D, Satpute DP, Nagpure M, Jain A, Kumar D. Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions. Eur J Med Chem 2020; 209:112844. [PMID: 33143937 DOI: 10.1016/j.ejmech.2020.112844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
'Epigenetic' regulation of genes via post-translational modulation of proteins is the current mainstay approach for the disease therapies, particularly explored in the Histone Deacetylase (HDAC) class of enzymes. Mainly sight saw in cancer chemotherapeutics, HDAC inhibitors have also found a promising role in other diseases (neurodegenerative disorders, cardiovascular diseases, and viral infections) and successfully entered in various combination therapies (pre-clinical/clinical stages). The prevalent flexibility in the structural design of HDAC inhibitors makes them easily tuneable to merge with other pharmacophore modules for generating multi-targeted single hybrids as a novel tactic to overcome drawbacks of polypharmacy. Herein, we reviewed the putative role of prevalent HDAC hybrids inhibitors in the current and prospective stage as a translational approach to overcome the limitations of the existing conventional drug candidates (parent molecule) when used either alone (drug resistance, solubility issues, adverse side effects, selectivity profile) or in combination (pharmacokinetic interactions, patient compliance) for treating various diseases.
Collapse
Affiliation(s)
- Gargi Nikhil Vaidya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Pooja Rana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ashwini Venkatesh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Darshan Contractor
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Dinesh Parshuram Satpute
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Mithilesh Nagpure
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India; Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
33
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
34
|
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2020; 83:452-471. [PMID: 32814115 DOI: 10.1016/j.semcancer.2020.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation.,Laboratory of Cellular Pathology, Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
35
|
de Lera AR, Ganesan A. Two-hit wonders: The expanding universe of multitargeting epigenetic agents. Curr Opin Chem Biol 2020; 57:135-154. [DOI: 10.1016/j.cbpa.2020.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
|
36
|
Zou Y, Cao Z, Wang J, Chen X, Chen YQ, Li Y, Liu J, Zhao Y, Wang A, He B. A Series of Novel HDAC Inhibitors with Anthraquinone as a Cap Group. Chem Pharm Bull (Tokyo) 2020; 68:613-617. [PMID: 32611998 DOI: 10.1248/cpb.c20-00206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although anthraquinone derivatives possess significant antitumor activity, most of them also displayed those side effects like cardiotoxicity, mainly owing to their inhibition of topoisomerase II of DNA repair mechanisms. Our raised design strategy by switching therapeutic target from topoisomerase II to histone deacetylase (HDAC) has been applied to the design of anthraquinone derivatives in current study. Consequently, a series of novel HDAC inhibitors with a tricylic diketone of anthraquinone as a cap group have been synthesized. After screening and evaluation, compounds 4b, 4d, 7b and 7d have displayed the comparable inhibition in enzymatic activity and cell proliferation than that of Vorinostat (SAHA). Notably, compound 4b showed certain selectivity of antiproliferative effects on cancer cell lines over non-cancer cell lines.
Collapse
Affiliation(s)
- Yefang Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Xiaoxue Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Yan-Qin Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Basic Medicine, Guizhou Medical University
| | - Jingzi Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Aimin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| |
Collapse
|
37
|
Morgen M, Steimbach RR, Géraldy M, Hellweg L, Sehr P, Ridinger J, Witt O, Oehme I, Herbst‐Gervasoni CJ, Osko JD, Porter NJ, Christianson DW, Gunkel N, Miller AK. Design and Synthesis of Dihydroxamic Acids as HDAC6/8/10 Inhibitors. ChemMedChem 2020; 15:1163-1174. [PMID: 32348628 PMCID: PMC7335359 DOI: 10.1002/cmdc.202000149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Indexed: 12/22/2022]
Abstract
We report the synthesis and evaluation of a class of selective multitarget agents for the inhibition of HDAC6, HDAC8, and HDAC10. The concept for this study grew out of a structural analysis of the two selective inhibitors Tubastatin A (HDAC6/10) and PCI-34051 (HDAC8), which we recognized share the same N-benzylindole core. Hybridization of the two inhibitor structures resulted in dihydroxamic acids with benzyl-indole and -indazole core motifs. These substances exhibit potent activity against HDAC6, HDAC8, and HDAC10, while retaining selectivity over HDAC1, HDAC2, and HDAC3. The best substance inhibited the viability of the SK-N-BE(2)C neuroblastoma cell line with an IC50 value similar to a combination treatment with Tubastatin A and PCI-34051. This compound class establishes a proof of concept for such hybrid molecules and could serve as a starting point for the further development of enhanced HDAC6/8/10 inhibitors.
Collapse
Affiliation(s)
- Michael Morgen
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Raphael R. Steimbach
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Faculty of BiosciencesUniversity of Heidelberg69120HeidelbergGermany
| | - Magalie Géraldy
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Lars Hellweg
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Peter Sehr
- Chemical Biology Core FacilityEuropean Molecular Biology Laboratory (EMBL)69117HeidelbergGermany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Corey J. Herbst‐Gervasoni
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Jeremy D. Osko
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Nicholas J. Porter
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - David W. Christianson
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Nikolas Gunkel
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Aubry K. Miller
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| |
Collapse
|
38
|
Corpas-López V, Tabraue-Chávez M, Sixto-López Y, Panadero-Fajardo S, Alves de Lima Franco F, Domínguez-Seglar JF, Morillas-Márquez F, Franco-Montalbán F, Díaz-Gavilán M, Correa-Basurto J, López-Viota J, López-Viota M, Pérez del Palacio J, de la Cruz M, de Pedro N, Martín-Sánchez J, Gómez-Vidal JA. O-Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. J Med Chem 2020; 63:5734-5751. [DOI: 10.1021/acs.jmedchem.9b02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Victoriano Corpas-López
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mavys Tabraue-Chávez
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Sonia Panadero-Fajardo
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Fernando Alves de Lima Franco
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José F. Domínguez-Seglar
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Morillas-Márquez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Franco-Montalbán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mónica Díaz-Gavilán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Julián López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Margarita López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | | | | | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de la Salud, 18016 Granada, Spain
| | - Joaquina Martín-Sánchez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José A. Gómez-Vidal
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| |
Collapse
|
39
|
Liu T, Wan Y, Xiao Y, Xia C, Duan G. Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem 2020; 63:8977-9002. [PMID: 32320239 DOI: 10.1021/acs.jmedchem.0c00491] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating target gene expression. They have been highlighted as a novel category of anticancer targets, and their inhibition can induce apoptosis, differentiation, and growth arrest in cancer cells. In view of the fact that HDAC inhibitors and other antitumor agents, such as BET inhibitors, topoisomerase inhibitors, and RTK pathway inhibitors, exert a synergistic effect on cellular processes in cancer cells, the combined inhibition of two targets is regarded as a rational strategy to improve the effectiveness of these single-target drugs for cancer treatment. In this review, we discuss the theoretical basis for designing HDAC-involved dual-target drugs and provide insight into the structure-activity relationships of these dual-target agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Guiyun Duan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| |
Collapse
|
40
|
Liu J, Zhou J, He F, Gao L, Wen Y, Gao L, Wang P, Kang D, Hu L. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur J Med Chem 2020; 192:112189. [DOI: 10.1016/j.ejmech.2020.112189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/31/2022]
|
41
|
Multitarget Anticancer Agents Based on Histone Deacetylase and Protein Kinase CK2 inhibitors. Molecules 2020; 25:molecules25071497. [PMID: 32218358 PMCID: PMC7180456 DOI: 10.3390/molecules25071497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The design of multitarget drugs (MTDs) has become an innovative approach for the search of effective treatments in complex diseases such as cancer. In this work, we communicate our efforts in the design of multi-targeting histone deacetylase (HDAC) and protein kinase CK2 inhibitors as a novel therapeutic strategy against cancer. Using tetrabromobenzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole (DMAT) as scaffolds for CK2 inhibition, and a hydroxamate to coordinate the zinc atom present in the active site of HDAC (zinc binding group, ZBG), new multitarget inhibitors have been designed and synthesized. According to the in vitro assays, N-Hydroxy-6-(4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)hexanamide (11b) is the most interesting compound, with IC50 values of 0.66; 1.46 and 3.67 µM. for HDAC6; HDAC1 and CK2; respectively. Cellular assays on different cancer cell lines rendered promising results for N-Hydroxy-8-(4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)octanamide (11d). This inhibitor presented the highest cytotoxic activity, proapoptotic capability, and the best mitochondria-targeting and multidrug-circumventing properties, thus being the most promising drug candidate for further in vivo studies.
Collapse
|
42
|
Synthesis and biological evaluation of thiophene-based hydroxamate derivatives as HDACis with antitumor activities. Future Med Chem 2020; 12:655-672. [PMID: 32202140 DOI: 10.4155/fmc-2019-0343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: Histone deacetylases (HDACs) are one of the validated targets for cancer treatments. In our previous work, we designed a series of bis-substituted aromatic amide HDAC inhibitors (HDACis), among which compounds 7 and 8 showed promising anticancer effects. However, the low solubilities prevented their subsequent developments. We developed additional thiophene-based hydroxamate HDACis in order to improve their physicochemical properties. Materials & methods: In vitro biological evaluations of these analogs revealed potent antiproliferative and antimigrated activities. More importantly, compound 10h exhibited excellent in vivo antitumor activities in MDA-MB-231 xenograft model mice. Furthermore, 10h showed better anticancer activities and drug-like properties than 7. Results & conclusion: Our results proved that thiophene-based hydroxamate HDACis can serve as a promising framework for developing potential anticancer agents.
Collapse
|
43
|
Singh H, Kinarivala N, Sharma S. Multi-Targeting Anticancer Agents: Rational Approaches, Synthetic Routes and Structure Activity Relationship. Anticancer Agents Med Chem 2020; 19:842-874. [PMID: 30657048 DOI: 10.2174/1871520619666190118120708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
We live in a world with complex diseases such as cancer which cannot be cured with one-compound one-target based therapeutic paradigm. This could be due to the involvement of multiple pathogenic mechanisms. One-compound-various-targets stratagem has become a prevailing research topic in anti-cancer drug discovery. The simultaneous interruption of two or more targets has improved the therapeutic efficacy as compared to the specific targeted based therapy. In this review, six types of dual targeting agents along with some interesting strategies used for their design and synthesis are discussed. Their pharmacology with various types of the molecular interactions within their specific targets has also been described. This assemblage will reveal the recent trends and insights in front of the scientific community working in dual inhibitors and help them in designing the next generation of multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India.,Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| |
Collapse
|
44
|
N-alkyl-hydroxybenzoyl anilide hydroxamates as dual inhibitors of HDAC and HSP90, downregulating IFN-γ induced PD-L1 expression. Eur J Med Chem 2020; 185:111725. [DOI: 10.1016/j.ejmech.2019.111725] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/05/2019] [Accepted: 09/20/2019] [Indexed: 11/19/2022]
|
45
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
46
|
Huang M, Xie X, Gong P, Wei Y, Du H, Xu Y, Xu Q, Jing Y, Zhao L. A 18β-glycyrrhetinic acid conjugate with Vorinostat degrades HDAC3 and HDAC6 with improved antitumor effects. Eur J Med Chem 2019; 188:111991. [PMID: 31883490 DOI: 10.1016/j.ejmech.2019.111991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Semisynthetic 18β-glycyrrhetinic acid (GA) analogues bearing 1-en-2-cyano-3-oxo substitution on ring A have enhanced antitumor effects with reduced levels of HDAC3 and HDAC6 proteins. Aiming to inhibit both HDAC protein and activity, we developed a hybrid molecule by tethering active GA analogue methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) and Vorinostat (SAHA). We tested the proper hybrid approaches of GA with hydroxamic acid and turned out that GA conjugated with SAHA by a piperazine linker was the best. The conjugate (15) of CDODA-Me and SAHA linked through a piperazine group was a potent cytotoxic agent against cancer cells with apoptosis induction. Compound 15 was more effective than the simple combination of CDODA-Me and SAHA to induce apoptosis. Mechanistic studies revealed that 15 was less effective than SAHA to inhibit HDAC activity, but was more effective than CDODA-Me to decrease the levels of HDAC3 and HDAC6 proteins with upregulated levels of acetylated H3 and acetylated α-tubulin. Compound 15 represents a new HDAC3 and HDAC6 inhibitor by reducing protein levels.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaorui Xie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ping Gong
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yunfei Wei
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Heliang Du
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanbo Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qihao Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongkui Jing
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
47
|
Chen X, Gong G, Chen X, Song R, Duan M, Qiao R, Jiao Y, Qi J, Chen Y, Zhu Y. Design, Synthesis and Biological Evaluation of Novel Benzoylimidazole Derivatives as Raf and Histone Deacetylases Dual Inhibitors. Chem Pharm Bull (Tokyo) 2019; 67:1116-1122. [PMID: 31582631 DOI: 10.1248/cpb.c19-00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent studies, combinations of histone deacetylases (HDACs) inhibitor with kinase inhibitor showed additive and synergistic effects. BRafV600E as an attractive target in many diseases treatments has been studied extensively. Herein, we present a novel design approach though incorporating the pharmacophores of BRafV600E inhibitor and HDACs inhibitor in one molecule. Several synthesized compounds exhibited distinct BRafV600E and HDAC1 inhibitory activities. The representative dual Raf/HDAC inhibitor, 7a, showed better antiproliferative activities against A549 and SK-Mel-2 in cellular assay than SAHA and sorafenib, with IC50 values of 9.11 µM and 5.40 µM, respectively. This work may lay the foundation for the further development of dual Raf/HDAC inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Guoliang Gong
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Xinyang Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Ruihu Song
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Mei Duan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Ruizhi Qiao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Yu Jiao
- School of Science, China Pharmaceutical University
| | - Jianzhao Qi
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University
| | - Yadong Chen
- School of Science, China Pharmaceutical University
| | - Yong Zhu
- School of Science, China Pharmaceutical University
| |
Collapse
|
48
|
Skok Ž, Zidar N, Kikelj D, Ilaš J. Dual Inhibitors of Human DNA Topoisomerase II and Other Cancer-Related Targets. J Med Chem 2019; 63:884-904. [DOI: 10.1021/acs.jmedchem.9b00726] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
49
|
Brel VK, Artyushin OI, Moiseeva AA, Sharova EV, Buyanovskaya AG, Nelyubina YV. Functionalization of bioactive substrates with a F5SCH = CH moiety. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1662906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valery K. Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oleg I. Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Aleksandra A. Moiseeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena V. Sharova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasiya G. Buyanovskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
50
|
Wang B, Chen X, Gao J, Su L, Zhang L, Xu H, Luan Y. Anti-tumor activity evaluation of novel tubulin and HDAC dual-targeting inhibitors. Bioorg Med Chem Lett 2019; 29:2638-2645. [DOI: 10.1016/j.bmcl.2019.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
|