1
|
Chen G, Bai J, Wu X, Huo X, Li Y, Lei P, Ma Z. Amphiphilic amidines as potential plasmic membrane-targeting antifungal agents: synthesis, bio-activities and QSAR. PEST MANAGEMENT SCIENCE 2024; 80:5266-5276. [PMID: 38877543 DOI: 10.1002/ps.8253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Cationic antimicrobial peptides (AMPs) possess broad-spectrum biological activities with less inclination to inducing antibiotic resistance. Herein a battery of amphiphilic amidines were designed by mimicking the characteristics of AMPs. The antifungal activities and the effects to the hyphal morphology and membrane permeability were investigated. RESULTS The results indicated the inhibitory rates of ten compounds were over 80% to Botrytis cinerea and ten compounds over 90% to Valsa mali Miyabe et Yamada at 50 mg L-1. The half maximal effective concentration (EC50) values of compound 5g and 6g to V. mali were 1.21 and 1.90 mg L-1 respectively. The protective rate against apple canker of compound 5g reached 93.4% at 100 mg L-1 on twigs, superior to carbendazim (53.3%). When treated with 5g, the cell membrane permeability and leakage of content of V. mali increased, accompanied with the decrease of superoxide dismutase (SOD) and catalase (CAT) level. Concurrently, the mycelial hyphae contracted, wrinkled, and collapsed, providing evidence of membrane perturbation. A three-dimensional quantitative structure-activity relationship (3D-QSAR) between the topic compounds and the EC50 to V. mali was established showing good predictability (r2 = 0.971). CONCLUSION Amphiphilic amidines can acquire antifungal activities by acting on the plasmic membrane. Compound 5g could be a promising lead in discovering novel fungicidal candidates. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangyou Chen
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jing Bai
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyan Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyi Huo
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yongqiang Li
- College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Sheikh SY, Hassan F, Shukla D, Bala S, Faruqui T, Akhter Y, Khan AR, Nasibullah M. A review on potential therapeutic targets for the treatment of leishmaniasis. Parasitol Int 2024; 100:102863. [PMID: 38272301 DOI: 10.1016/j.parint.2024.102863] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Leishmania, a protozoan parasite, is responsible for the occurrence of leishmaniasis, a disease that is prevalent in tropical regions. Visceral Leishmaniasis (VL), also known as kala-azar in Asian countries, is one of the most significant forms of VL, along with Cutaneous Leishmaniasis (CL) and Mucocutaneous Leishmaniasis (ML). Management of this condition typically entails the use of chemotherapy as the sole therapeutic option. The current treatments for leishmaniasis present several drawbacks, including a multitude of side effects, prolonged treatment duration, disparate efficacy across different regions, and the emergence of resistance. To address this urgent need, it is imperative to identify alternative treatments that are both safer and more effective. The identification of appropriate pharmacological targets in conjunction with biological pathways constitutes the initial stage of drug discovery. In this review, we have addressed the key metabolic pathways that represent potential pharmacological targets as well as prominent treatment options for leishmaniasis.
Collapse
Affiliation(s)
- Sabahat Yasmeen Sheikh
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Firoj Hassan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Deepanjali Shukla
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Shashi Bala
- Department of Chemistry, Lucknow University, Lucknow 226026, India
| | - Tabrez Faruqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India.
| |
Collapse
|
3
|
Basu D, Ghosh B, Srivastava D, Patra N, Nayek HP. Mononuclear organogermanium(IV) catalysts for a [3 + 2] cycloaddition reaction. Dalton Trans 2024; 53:5648-5657. [PMID: 38441230 DOI: 10.1039/d4dt00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Three mononuclear Ge(IV) compounds, [(C6H5)2Ge(C13H8N2O4)] (1), [(C6H5)2Ge(C14H10N2O5)] (2), and [(C6H5)2Ge(C14H11NO3)] (3), have been synthesized by the reaction of pro-ligands H2L1 (C13H10N2O4), H2L2 (C14H12N2O5), and H2L3 (C14H13NO3) with (C6H5)2GeCl2 in the presence of triethylamine. All compounds were characterized by FT-IR spectroscopy and NMR spectroscopy. Single crystal X-ray diffraction analysis shows that the germanium(IV) atom exhibits a five-coordinated geometry in compounds 1 and 2. All compounds were screened as Lewis acid catalysts in the [3 + 2] cycloaddition reaction between sodium azide and various nitriles. The reactions resulted in the formation of 5-substituted 1H-tetrazoles with yields of up to 96%. Based on the experimental findings and DFT calculations, a plausible mechanism is proposed for the [3 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Debayan Basu
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Barshali Ghosh
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Diship Srivastava
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Niladri Patra
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Hari Pada Nayek
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| |
Collapse
|
4
|
Farahat AA, Kumar A, Wenzler T, Brun R, Paul A, Guo P, Wilson WD, Boykin DW. Investigation of the effect of structure modification of furamidine on the DNA minor groove binding and antiprotozoal activity. Eur J Med Chem 2023; 252:115287. [PMID: 36958267 PMCID: PMC10127280 DOI: 10.1016/j.ejmech.2023.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
New analogs of the antiprotozoal agent Furamidine were prepared utilizing Stille coupling reactions and amidation of the bisnitrile intermediate using lithium bis-trimethylsilylamide. Both the phenyl groups and the furan moiety of furamidine were replaced by heterocycles including thiophene, selenophene, indole or benzimidazole. Based upon the ΔTm and the CD results, the new compounds showed strong binding to the DNA minor groove. The new analogues are also more active both in vitro and in vivo than furamidine. Compounds 7a, 7b, and 7f showed the highest activity in vivo by curing 75% of animals, and this merits further evaluation.
Collapse
Affiliation(s)
- Abdelbasset A Farahat
- Masters of Pharmaceutical Sciences Program, California Northstate University, Elk Grove, CA, 95757, USA; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Tanja Wenzler
- Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland; University of Basel, Basel, 4003, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland; University of Basel, Basel, 4003, Switzerland
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Pu Guo
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
5
|
Figueiredo KA, Magalhães Costa RK, Rocha JA, Chavez Gutierrez SJ, Ramos RM, Muálem de Moraes Alves M, Aécio de Amorim Carvalho F, Menezes Carvalho AL, Lima FDCA. Antileishmanial activity of Riparin structural analogs of Aniba riparia: Biological evaluation, in silico Adme-Tox, and molecular docking. Exp Parasitol 2022; 236-237:108257. [DOI: 10.1016/j.exppara.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
|
6
|
Wesseling CMJ, Slingerland CJ, Veraar S, Lok S, Martin NI. Structure-Activity Studies with Bis-Amidines That Potentiate Gram-Positive Specific Antibiotics against Gram-Negative Pathogens. ACS Infect Dis 2021; 7:3314-3335. [PMID: 34766746 PMCID: PMC8669655 DOI: 10.1021/acsinfecdis.1c00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Pentamidine, an FDA-approved
antiparasitic drug, was recently identified
as an outer membrane disrupting synergist that potentiates erythromycin,
rifampicin, and novobiocin against Gram-negative bacteria. The same
study also described a preliminary structure–activity relationship
using commercially available pentamidine analogues. We here report
the design, synthesis, and evaluation of a broader panel of bis-amidines
inspired by pentamidine. The present study both validates the previously
observed synergistic activity reported for pentamidine, while further
assessing the capacity for structurally similar bis-amidines to also
potentiate Gram-positive specific antibiotics against Gram-negative
pathogens. Among the bis-amidines prepared, a number of them were
found to exhibit synergistic activity greater than pentamidine. These
synergists were shown to effectively potentiate the activity of Gram-positive
specific antibiotics against multiple Gram-negative pathogens such
as Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas
aeruginosa, and Escherichia coli, including polymyxin- and carbapenem-resistant strains.
Collapse
Affiliation(s)
- Charlotte M. J. Wesseling
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Shanice Veraar
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Samantha Lok
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
7
|
Targeting the transmembrane domain 5 of latent membrane protein 1 using small molecule modulators. Eur J Med Chem 2021; 214:113210. [PMID: 33550183 DOI: 10.1016/j.ejmech.2021.113210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions (PPIs) play a critical role in living cells and represent promising targets for the drug discovery and life sciences communities. However, lateral transmembrane PPIs are difficult targets for small-molecule inhibitor development given less structural information is known and fewer ligand discovery methods have been explored compared to soluble proteins. In this study, the interactions of the transmembrane domain 5 (TMD-5) of latent membrane protein 1 (LMP-1) of Epstein-Barr virus (EBV) were disrupted by pentamidine derivatives to curb the committed step of EBV infection. A pentamidine derivative 2 with a 7-atom di-amide linker had the best activity whilst switching the amide regiochemistry in the linker influenced membrane permeability and abolished anti TMD-5 activity. Molecular dynamics simulations were performed to understand the interaction between pentamidine derivatives and TMD-5, and to rationalise the observed structure-activity relationships. This study explicitly demonstrated that the interaction of small molecule with lipid should be considered alongside interaction with the protein target when designing small molecules targeting the PPIs of TMDs. In all, this study provides proof of concept for the rational design of small molecules targeting transmembrane PPIs.
Collapse
|
8
|
Could chroman-4-one derivative be a better inhibitor of PTR1? - Reason for the identified disparity in its inhibitory potency in Trypanosoma brucei and Leishmania major. Comput Biol Chem 2020; 90:107412. [PMID: 33199197 DOI: 10.1016/j.compbiolchem.2020.107412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023]
Abstract
Most notable Kinetoplastids are of the genus Trypanosoma and Leishmania, affecting several millions of humans in Africa and Latin America. Current therapeutic options are limited by several drawbacks, hence the need to develop more efficacious inhibitors. An investigation to decipher the mechanism behind greater inhibitory potency of a chroman-4-one derivative (compound 1) in Trypanosoma brucei pteridine reductase 1 (TbPTR1) and Leishmania major pteridine reductase 1 (LmPTR1) was performed. Estimation of ΔGbind revealed that compound 1 had a greater binding affinity in TbPTR1 with a ΔGbind value of -49.0507 Kcal/mol than -29.2292 Kcal/mol in LmPTR1. The ΔGbind in TbPTR1 were predominantly contributed by "strong" electrostatic energy compared to the "weak" van der Waals in LmPTR1. In addition to this, the NADPH cofactor contributed significantly to the total energy of TbPTR1. A characteristic weak aromatic π interaction common in PTR1 was more prominent in TbPTR1 than LmPTR1. The consistent occurrence of high-affinity conventional hydrogen bond interactions as well as a steady interaction of crucial active site residues like Arg14/Arg17, Ser95/Ser111, Phe97/Phe113 in TbPTR1/LmPTR1 with chroman-4-one moiety equally revealed the important role the moiety played in the activity of compound 1. Overall, the structural and conformational analysis of the active site residues in TbPTR1 revealed them to be more rigid than LmPTR1. This could be the mechanism of interaction TbPTR1 employs in exerting a greater potency than LmPTR1. These findings will further give insight that will be assistive in modifying compound 1 for better potency and the design of novel inhibitors of PTR1.
Collapse
|
9
|
Sanson C, Schombert B, Filoche-Rommé B, Partiseti M, Bohme GA. Electrophysiological and Pharmacological Characterization of Human Inwardly Rectifying K ir2.1 Channels on an Automated Patch-Clamp Platform. Assay Drug Dev Technol 2019; 17:89-99. [PMID: 30835490 PMCID: PMC6479253 DOI: 10.1089/adt.2018.882] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inwardly rectifying IK1 potassium currents of the heart control the resting membrane potential of ventricular cardiomyocytes during diastole and contribute to their repolarization after each action potential. Mutations in the gene encoding Kir2.1 channels, which primarily conduct ventricular IK1, are associated with inheritable forms of arrhythmias and sudden cardiac death. Therefore, potential iatrogenic inhibition of Kir2.1-mediated IK1 currents is a cardiosafety concern during new drug discovery and development. Kir2.1 channels are part of the panel of cardiac ion channels currently considered for refined early compound risk assessment within the Comprehensive in vitro Proarrhythmia Assay initiative. In this study, we have validated a cell-based assay allowing functional quantification of Kir2.1 inhibitors using whole-cell recordings of Chinese hamster ovary cells stably expressing human Kir2.1 channels. We reproduced key electrophysiological and pharmacological features known for native IK1, including current enhancement by external potassium and voltage- and concentration-dependent blockade by external barium. Furthermore, the Kir inhibitors ML133, PA-6, and chloroquine, as well as the multichannel inhibitors chloroethylclonidine, chlorpromazine, SKF-96365, and the class III antiarrhythmic agent terikalant demonstrated slowly developing inhibitory activity in the low micromolar range. The robustness of this assay authorizes medium throughput screening for cardiosafety purposes and could help to enrich the currently limited Kir2.1 pharmacology.
Collapse
Affiliation(s)
- Camille Sanson
- 1 Integrated Drug Discovery, High-Content Biology, Sanofi Research and Development, Vitry-sur-Seine, France
| | - Brigitte Schombert
- 1 Integrated Drug Discovery, High-Content Biology, Sanofi Research and Development, Vitry-sur-Seine, France
| | - Bruno Filoche-Rommé
- 2 Integrated Drug Discovery, Medicinal Chemistry, Sanofi Research and Development, Vitry-sur-Seine, France
| | - Michel Partiseti
- 1 Integrated Drug Discovery, High-Content Biology, Sanofi Research and Development, Vitry-sur-Seine, France
| | - G Andrees Bohme
- 1 Integrated Drug Discovery, High-Content Biology, Sanofi Research and Development, Vitry-sur-Seine, France
| |
Collapse
|
10
|
Liu Y, Hu X, Wu Y, Zhang W, Chen X, You X, Hu L. Synthesis and structure-activity relationship of novel bisindole amidines active against MDR Gram-positive and Gram-negative bacteria. Eur J Med Chem 2018; 150:771-782. [PMID: 29604581 DOI: 10.1016/j.ejmech.2018.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022]
Abstract
A series of novel diamidines with N-substituents on an amidine N-atom were synthesized and evaluated for their cytotoxicity and in vitro antibacterial activity against a range of Gram-positive and Gram-negative bacterial strains. Based on structure-activity relationship, N-substituents with a branched chain and a shorter carbon chain on the amidine N-atom exhibited more promising activity against Gram-negative and MDR-Gram-positive bacteria; compounds 5c and 5i were the most powerful candidate compounds. Compound 5c showed greater efficacy than levofloxacin against most drug-resistant Gram-positive bacteria and exhibited broad-spectrum antibacterial activity against Gram-negative bacteria, with MIC values in the range of 2-16 μg/mL. Slightly more potent antibacterial activity against Klebsiella pneumoniae, Acinetobacter calcoaceticus, Enterobacter cloacae, and Proteus mirabilis was observed for 5i in comparison with 5c. Compound 5i also showed remarkable antibacterial activity against NDM-1-producing Gram-negative bacteria, with MIC values in the range of 2-4 μg/mL, and was superior to the reference drugs meropenem and levofloxacin. Effective antibacterial activity of 5i was also shown in vivo in a mouse model of Staphylococcus aureus MRSA strain, with an ED50values of 2.62 mg/kg.
Collapse
Affiliation(s)
- Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Yanbin Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Weixing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Xiaofang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li 1#, Beijing, 100050, China.
| |
Collapse
|
11
|
Martínez-García M, Bart JM, Campos-Salinas J, Valdivia E, Martínez-Bueno M, González-Rey E, Navarro M, Maqueda M, Cebrián R, Pérez-Victoria JM. Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:203-212. [PMID: 29649664 PMCID: PMC6039360 DOI: 10.1016/j.ijpddr.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022]
Abstract
The parasitic protozoan Trypanosoma brucei is the causative agent of human African trypanosomiasis (sleeping sickness) and nagana. Current drug therapies have limited efficacy, high toxicity and/or are continually hampered by the appearance of resistance. Antimicrobial peptides have recently attracted attention as potential parasiticidal compounds. Here, we explore circular bacteriocin AS-48's ability to kill clinically relevant bloodstream forms of T. brucei gambiense, T. brucei rhodesiense and T. brucei brucei. AS-48 exhibited excellent anti-trypanosomal activity in vitro (EC50 = 1–3 nM) against the three T. brucei subspecies, but it was innocuous to human cells at 104-fold higher concentrations. In contrast to its antibacterial action, AS-48 does not kill the parasite through plasma membrane permeabilization but by targeting intracellular compartments. This was evidenced by the fact that vital dye internalization-prohibiting concentrations of AS-48 could kill the parasite at 37 °C but not at 4 °C. Furthermore, AS-48 interacted with the surface of the parasite, at least in part via VSG, its uptake was temperature-dependent and clathrin-depleted cells were less permissive to the action of AS-48. The bacteriocin also caused the appearance of myelin-like structures and double-membrane autophagic vacuoles. These changes in the parasite's ultrastructure were confirmed by fluorescence microscopy as AS-48 induced the production of EGFP-ATG8.2-labeled autophagosomes. Collectively, these results indicate AS-48 kills the parasite through a mechanism involving clathrin-mediated endocytosis of VSG-bound AS-48 and the induction of autophagic-like cell death. As AS-48 has greater in vitro activity than the drugs currently used to treat T. brucei infection and does not present any signs of toxicity in mammalian cells, it could be an attractive lead compound for the treatment of sleeping sickness and nagana. AS-48 kills Trypanosoma brucei efficiently and is innocuous in mammalian cells. It has greater in vitro activity than drugs currently in use. AS-48 must be internalized by the parasite in order to exert its trypanocidal effect. AS-48 uptake involves VSG binding and clathrin-mediated endocytosis. AS-48 induces an autophagic-related cell death.
Collapse
Affiliation(s)
- Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Jean-Mathieu Bart
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain; UMR INTERTRYP, Institut de Recherche pour le Développement, Montpellier, France
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | | | - Elena González-Rey
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | - Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain.
| |
Collapse
|
12
|
Dendrimer-encapsulated Cu(Π) nanoparticles immobilized on superparamagnetic Fe3
O4
@SiO2
nanoparticles as a novel recyclable catalyst for N
-arylation of nitrogen heterocycles and green synthesis of 5-substituted 1H
-tetrazoles. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4300] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Zhang D, Liu R, Zhou X. Intramolecular alkene hydroamination and degradation of amidines: divergent behavior of rare earth metal amidinate intermediates. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01481g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The methods for catalytic intramolecular alkene hydroamination and degradation of amidines have been established. Furthermore, a tandem reconstruction/cyclization of amidines has also been developed.
Collapse
Affiliation(s)
- Dexing Zhang
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| | - Ruiting Liu
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| | - Xigeng Zhou
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
14
|
Indole and Benzimidazole Bichalcophenes: Synthesis, DNA Binding and Antiparasitic Activity. Eur J Med Chem 2017; 143:1590-1596. [PMID: 29126729 PMCID: PMC5744864 DOI: 10.1016/j.ejmech.2017.10.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022]
Abstract
A novel series of indole and benzimidazole bichalcophene diamidine derivatives were prepared to study their antimicrobial activity against the tropical parasites causing African sleeping sickness and malaria. The dicyanoindoles needed to synthesize the target diamidines were obtained through Stille coupling reactions while the bis-cyanobenzimidazoles intermediates were made via condensation/cyclization reactions of different aldehydes with 4-cyano-1,2-diaminobenzene. Different amidine synthesis methodologies namely, lithium bis-trimethylsilylamide (LiN[Si(CH3)3]2) and Pinner methods were used to prepare the diamidines. Both types (indole and benzimidazole) derivatives of the new diamidines bind strongly with the DNA minor groove and generally show excellent in vitro antitrypanosomal activity. The diamidino-indole derivatives also showed excellent in vitro antimalarial activity while their benzimidazole counterparts were generally less active. Compound 7c was highly active in vivo and cured all mice infected with Trypanosoma brucei rhodesiense, a model that mimics the acute stage of African sleeping sickness, at a low dose of 4 × 5 mg/kg i.p. and hence 7c is more potent in vivo than pentamidine.
Collapse
|
15
|
Korosh T, Bujans E, Morada M, Karaalioglu C, Vanden Eynde JJ, Mayence A, Huang TL, Yarlett N. Potential of bisbenzimidazole-analogs toward metronidazole-resistant Trichomonas vaginalis
isolates. Chem Biol Drug Des 2017; 90:489-495. [DOI: 10.1111/cbdd.12972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Travis Korosh
- Department of Chemistry and Physical Sciences; Pace University; New York NY USA
- Haskins Laboratories; Pace University; New York NY USA
| | - Emmanuel Bujans
- Department of Chemistry and Physical Sciences; Pace University; New York NY USA
- Haskins Laboratories; Pace University; New York NY USA
| | - Mary Morada
- Haskins Laboratories; Pace University; New York NY USA
| | - Canan Karaalioglu
- Department of Chemistry and Physical Sciences; Pace University; New York NY USA
| | - Jean Jacques Vanden Eynde
- Division of Basic Pharmaceutical Sciences; College of Pharmacy; Xavier University of Louisiana; New Orleans LA USA
| | - Annie Mayence
- Division of Basic Pharmaceutical Sciences; College of Pharmacy; Xavier University of Louisiana; New Orleans LA USA
| | - Tien L. Huang
- Division of Basic Pharmaceutical Sciences; College of Pharmacy; Xavier University of Louisiana; New Orleans LA USA
| | - Nigel Yarlett
- Department of Chemistry and Physical Sciences; Pace University; New York NY USA
- Haskins Laboratories; Pace University; New York NY USA
| |
Collapse
|
16
|
Patrick DA, Wenzler T, Yang S, Weiser PT, Wang MZ, Brun R, Tidwell RR. Synthesis of novel amide and urea derivatives of thiazol-2-ethylamines and their activity against Trypanosoma brucei rhodesiense. Bioorg Med Chem 2016; 24:2451-2465. [PMID: 27102161 PMCID: PMC4862372 DOI: 10.1016/j.bmc.2016.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022]
Abstract
2-(2-Benzamido)ethyl-4-phenylthiazole (1) was one of 1035 molecules (grouped into 115 distinct scaffolds) found to be inhibitory to Trypanosoma brucei, the pathogen causing human African trypanosomiasis, at concentrations below 3.6μM and non-toxic to mammalian (Huh7) cells in a phenotypic high-throughput screen of a 700,000 compound library performed by the Genomics Institute of the Novartis Research Foundation (GNF). Compound 1 and 72 analogues were synthesized in this lab by one of two general pathways. These plus 10 commercially available analogues were tested against T. brucei rhodesiense STIB900 and L6 rat myoblast cells (for cytotoxicity) in vitro. Forty-four derivatives were more potent than 1, including eight with IC50 values below 100nM. The most potent and most selective for the parasite was the urea analogue 2-(2-piperidin-1-ylamido)ethyl-4-(3-fluorophenyl)thiazole (70, IC50=9nM, SI>18,000). None of 33 compounds tested were able to cure mice infected with the parasite; however, seven compounds caused temporary reductions of parasitemia (⩾97%) but with subsequent relapses. The lack of in vivo efficacy was at least partially due to their poor metabolic stability, as demonstrated by the short half-lives of 15 analogues against mouse and human liver microsomes.
Collapse
Affiliation(s)
- Donald A Patrick
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA
| | - Tanja Wenzler
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Sihyung Yang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Patrick T Weiser
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Richard R Tidwell
- University of North Carolina, Pathology & Laboratory Medicine, 805 Brinkhous-Bullitt Bldg, CB7525, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
17
|
Penas C, Sánchez MI, Guerra-Varela J, Sanchez L, Vázquez ME, Mascareñas JL. Light-Controlled Cellular Internalization and Cytotoxicity of Nucleic Acid-Binding Agents: Studies in Vitro and in Zebrafish Embryos. Chembiochem 2016; 17:37-41. [PMID: 26534774 PMCID: PMC4766732 DOI: 10.1002/cbic.201500455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Indexed: 01/19/2023]
Abstract
We synthesized octa-arginine conjugates of DNA-binding agents (bisbenzamidine, acridine and Thiazole Orange) and demonstrated that their DNA binding and cell internalization can be inhibited by appending a (negatively charged) oligoglutamic tail through a photolabile linker. UV irradiation released the parent conjugates, thus restoring cell internalization and biological activity. Assays with zebrafish embryos demonstrates the potential of this prodrug strategy for controlling in vivo cytotoxicity.
Collapse
Affiliation(s)
- Cristina Penas
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Campus Vida, 15782, Santiago de Compostela, Spain
| | - Mateo I Sánchez
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Campus Vida, 15782, Santiago de Compostela, Spain
| | - Jorge Guerra-Varela
- Departmento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Av. Carballo Calero s/n, 27002, Lugo, Spain
| | - Laura Sanchez
- Departmento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Av. Carballo Calero s/n, 27002, Lugo, Spain
| | - M Eugenio Vázquez
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Campus Vida, 15782, Santiago de Compostela, Spain.
| | - José L Mascareñas
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Campus Vida, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Discovery of a selective, safe and novel anti-malarial compound with activity against chloroquine resistant strain of Plasmodium falciparum. Sci Rep 2015; 5:13838. [PMID: 26346444 PMCID: PMC4561909 DOI: 10.1038/srep13838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022] Open
Abstract
In recent years the DNA minor groove has attracted much attention for the development of anti-malarial agents. In view of this we have attempted to discover novel DNA minor groove binders through in-silico and in-vitro workflow. A rigorously validated pharmacophore model comprising of two positive ionizable (PI), one hydrophobic (HY) and one ring aromatic (RA) features was used to mine NCI chemical compound database. This led to retrieval of many hits which were screened on the basis of estimated activity, fit value and Lipinski's violation. Finally two compounds NSC639017 and NSC371488 were evaluated for their in-vitro anti-malarial activities against Plasmodium falciparum 3D7 (CQ sensitive) and K1 (CQ resistant) strains by SYBR green-I based fluorescence assay. The results revealed that out of two, NSC639017 posses excellent anti-malarial activity particularly against chloroquine resistant strain and moreover NSC639017 also appeared to be safe (CC50 126.04 μg/ml) and selective during cytotoxicity evaluation.
Collapse
|
19
|
Siboni RB, Bodner MJ, Khalifa MM, Docter AG, Choi JY, Nakamori M, Haley MM, Berglund JA. Biological Efficacy and Toxicity of Diamidines in Myotonic Dystrophy Type 1 Models. J Med Chem 2015; 58:5770-80. [PMID: 26103061 PMCID: PMC4972181 DOI: 10.1021/acs.jmedchem.5b00356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a disease characterized by errors in alternative splicing, or "mis-splicing". The causative agent of mis-splicing in DM1 is an inherited CTG repeat expansion located in the 3' untranslated region of the DM protein kinase gene. When transcribed, CUG repeat expansion RNA sequesters muscleblind-like (MBNL) proteins, which constitute an important family of alternative splicing regulators. Sequestration of MBNL proteins results in the mis-splicing of its regulated transcripts. Previous work has demonstrated that pentamidine, a diamidine which is currently FDA-approved as an antiparasitic agent, was able to partially reverse mis-splicing in multiple DM1 models, albeit at toxic concentrations. In this study, we characterized a series of pentamidine analogues to determine their ability to reverse mis-splicing and their toxicity in vivo. Experiments in cell and mouse models demonstrated that compound 13, also known as furamidine, effectively reversed mis-splicing with equal efficacy and reduced toxicity compared to pentamidine.
Collapse
Affiliation(s)
| | | | | | | | | | - Masayuki Nakamori
- §Department of Neurology, University of Osaka Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | |
Collapse
|
20
|
Khalifa MM, Bodner MJ, Berglund JA, Haley MM. Synthesis of N-substituted aryl amidines by strong base activation of amines. Tetrahedron Lett 2015; 56:4109-4111. [PMID: 26097266 PMCID: PMC4470429 DOI: 10.1016/j.tetlet.2015.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe an efficient method for the direct preparation of N-substituted aryl amidines from nitriles and primary amines. The protocol employs activation of amines by a strong base and provides greater access to a pharmaceutically relevant functional group. This synthetic approach tolerates deactivated nitriles, nitriles with competing substitution sites, and aryl amines.
Collapse
Affiliation(s)
- Muhammad M. Khalifa
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403-1253, USA
| | - Micah J. Bodner
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403-1253, USA
| | - J. Andrew Berglund
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403-1253, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Michael M. Haley
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403-1253, USA
| |
Collapse
|
21
|
Wang X, Dong Y, Cal M, Kaiser M, Wittlin S, Vennerstrom JL. Antiprotozoal Selectivity of Diimidazoline N-Phenylbenzamides. ACS Infect Dis 2015; 1:135-9. [PMID: 27622464 DOI: 10.1021/id500034v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We discovered three diimidazolines with high antiplasmodial selectivity that had IC50 values of 1.9-28 nM against cultured Plasmodium falciparum. We also identified a gem-dimethyl diimidazoline with high antitrypanosomal selectivity that had an IC50 value of 26 nM against cultured Trypanosoma brucei rhodesiense. Two 2-imidazoline heterocycles in a para orientation on a N-phenylbenzamide or similar core structure were required for high antiprotozoal activity. Ring expansion of the imidazoline as well as heterocyclic variants with pKa values of <7 all decreased activity significantly.
Collapse
Affiliation(s)
- Xiaofang Wang
- College
of Pharmacy, 986025 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Yuxiang Dong
- College
of Pharmacy, 986025 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Monica Cal
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Jonathan L. Vennerstrom
- College
of Pharmacy, 986025 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
22
|
Esirden İ, Başar E, Kaya M. facile, highly efficient and novel method for synthesis of 5-substituted 1H-tetrazoles catalysed by copper(I) chloride. CHEMICAL PAPERS 2015. [DOI: 10.1515/chempap-2015-0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe present study on tetrazole compounds, which have a wide area of application, proposes a new, simple and highly effective method. A series of 5-substituted 1H-tetrazoles were synthesised in DMF via the [3 + 2] cycloaddition reaction, in which different aryl nitriles with sodium azide were used and copper(I) chloride served as a catalyst. Short reaction times, high yields and simple procedures rendered this method attractive and useful for the organic synthesis of 5-substituted 1H-tetrazoles. A further advantage was the use of an environmentally friendly catalyst.
Collapse
|
23
|
Paul A, Chai Y, Boykin DW, Wilson WD. Understanding mixed sequence DNA recognition by novel designed compounds: the kinetic and thermodynamic behavior of azabenzimidazole diamidines. Biochemistry 2014; 54:577-87. [PMID: 25495885 PMCID: PMC4303320 DOI: 10.1021/bi500989r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sequence-specific recognition of DNA by small organic molecules offers a potentially effective approach for the external regulation of gene expression and is an important goal in cell biochemistry. Rational design of compounds from established modules can potentially yield compounds that bind strongly and selectively with specific DNA sequences. An initial approach is to start with common A·T bp recognition molecules and build in G·C recognition units. Here we report on the DNA interaction of a synthetic compound that specifically binds to a G·C bp in the minor groove of DNA by using an azabenzimidazole moiety. The detailed interactions were evaluated with biosensor-surface plasmon resonance (SPR), isothermal calorimetric (ITC), and mass spectrometry (ESI-MS) methods. The compound, DB2277, binds with single G·C bp containing sequences with sub-nanomolar potency and displays slow dissociation kinetics and high selectivity. A detailed thermodynamic and kinetic study at different experimental salt concentrations and temperatures shows that the binding free energy is salt concentration dependent but essentially temperature independent under our experimental conditions, and binding enthalpy is temperature dependent but salt concentration independent. The results show that in the proper compound structural context novel heterocyclic cations can be designed to strongly recognize complex DNA sequences.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303-3083, United States
| | | | | | | |
Collapse
|
24
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
25
|
Varkevisser R, Houtman MJC, Linder T, de Git KCG, Beekman HDM, Tidwell RR, Ijzerman AP, Stary-Weinzinger A, Vos MA, van der Heyden MAG. Structure-activity relationships of pentamidine-affected ion channel trafficking and dofetilide mediated rescue. Br J Pharmacol 2014; 169:1322-34. [PMID: 23586323 DOI: 10.1111/bph.12208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/13/2013] [Accepted: 04/04/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Drug interference with normal hERG protein trafficking substantially reduces the channel density in the plasma membrane and thereby poses an arrhythmic threat. The chemical substructures important for hERG trafficking inhibition were investigated using pentamidine as a model drug. Furthermore, the relationship between acute ion channel block and correction of trafficking by dofetilide was studied. EXPERIMENTAL APPROACH hERG and K(IR)2.1 trafficking in HEK293 cells was evaluated by Western blot and immunofluorescence microscopy after treatment with pentamidine and six pentamidine analogues, and correction with dofetilide and four dofetilide analogues that displayed different abilities to inhibit IKr . Molecular dynamics simulations were used to address mode, number and type of interactions between hERG and dofetilide analogues. KEY RESULTS Structural modifications of pentamidine differentially affected plasma membrane levels of hERG and K(IR)2.1. Modification of the phenyl ring or substituents directly attached to it had the largest effect, affirming the importance of these chemical residues in ion channel binding. PA-4 had the mildest effects on both ion channels. Dofetilide corrected pentamidine-induced hERG, but not K(IR)2.1 trafficking defects. Dofetilide analogues that displayed high channel affinity, mediated by pi-pi stacks and hydrophobic interactions, also restored hERG protein levels, whereas analogues with low affinity were ineffective. CONCLUSIONS AND IMPLICATIONS Drug-induced trafficking defects can be minimized if certain chemical features are avoided or 'synthesized out'; this could influence the design and development of future drugs. Further analysis of such features in hERG trafficking correctors may facilitate the design of a non-blocking corrector for trafficking defective hERG proteins in both congenital and acquired LQTS.
Collapse
Affiliation(s)
- R Varkevisser
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu ZY, Wenzler T, Brun R, Zhu X, Boykin DW. Synthesis and antiparasitic activity of new bis-arylimidamides: DB766 analogs modified in the terminal groups. Eur J Med Chem 2014; 83:167-73. [DOI: 10.1016/j.ejmech.2014.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 01/12/2023]
|
27
|
Dong Y, Wang X, Cal M, Kaiser M, Vennerstrom JL. Activity of diimidazoline amides against African trypanosomiasis. Bioorg Med Chem Lett 2014; 24:944-8. [PMID: 24398295 DOI: 10.1016/j.bmcl.2013.12.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 11/28/2022]
Abstract
We identified several diimidazoline mono- and diamides that were as potent as pentamidine against Trypanosoma brucei rhodesiense in vitro. All of these were also less cytotoxic than pentamidine, but none was as effective as the latter in a T. brucei rhodesiense-infected mouse model. A single imidazoline may be sufficient for high antitrypanosomal activity provided that a second weak base functional group is present.
Collapse
Affiliation(s)
- Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, USA
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, USA
| | - Monica Cal
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, CH-4003 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, CH-4003 Basel, Switzerland
| | - Jonathan L Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Antiprotozoal activity of dicationic 3,5-diphenylisoxazoles, their prodrugs and aza-analogues. Bioorg Med Chem 2013; 22:559-76. [PMID: 24268543 DOI: 10.1016/j.bmc.2013.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 11/23/2022]
Abstract
Fifty novel prodrugs and aza-analogues of 3,5-bis(4-amidinophenyl)isoxazole and its derivatives were prepared. Eighteen of the 24 aza-analogues exhibited IC₅₀ values below 25 nM against Trypanosoma brucei rhodesiense or Plasmodium falciparum. Six compounds had antitrypanosomal IC₅₀ values below 10 nM. Twelve analogues showed similar antiplasmodial activities, including three with sub-nanomolar potencies. Forty-four diamidines (including 16 aza-analogues) and the 26 prodrugs were evaluated for efficacy in mice infected with T. b. rhodesiense STIB900. Six diamidines cured 4/4 mice at daily 5 mg/kg intraperitoneal doses for 4 days, giving results far superior to pentamidine and furamidine. One prodrug attained 3/4 cures at daily 25 mg/kg oral doses for 4 days.
Collapse
|
29
|
Patrick DA, Bakunov SA, Bakunova SM, Jones SK, Wenzler T, Barszcz T, Kumar A, Boykin DW, Werbovetz KA, Brun R, Tidwell RR. Synthesis and antiprotozoal activities of benzyl phenyl ether diamidine derivatives. Eur J Med Chem 2013; 67:310-24. [DOI: 10.1016/j.ejmech.2013.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/27/2022]
|
30
|
Hu L, Patel A, Bondada L, Yang S, Wang MZ, Munde M, Wilson WD, Wenzler T, Brun R, Boykin DW. Synthesis and antiprotozoal activity of dicationic 2,6-diphenylpyrazines and aza-analogues. Bioorg Med Chem 2013; 21:6732-41. [PMID: 24012380 DOI: 10.1016/j.bmc.2013.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/28/2013] [Accepted: 08/04/2013] [Indexed: 02/05/2023]
Abstract
Dicationic 2,6-diphenylpyrazines, aza-analogues and prodrugs were synthesized; evaluated for DNA affinity, activity against Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.) in vitro, efficacy in T. b. r. STIB900 acute and T. b. brucei GVR35 CNS mouse models. Most diamidines gave poly(dA-dT)2 ΔTm values greater than pentamidine, IC50 values: T. b. r. (4.8-37nM) and P. f. (10-52nM). Most diamidines and prodrugs gave cures for STIB900 model (11, 19a and 24b 4/4 cures); 12 3/4 cures for GVR35 model. Metabolic stability half-life values for O-methylamidoxime prodrugs did not correlate with STIB900 results.
Collapse
Affiliation(s)
- Laixing Hu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Patrick DA, Ismail MA, Arafa RK, Wenzler T, Zhu X, Pandharkar T, Jones SK, Werbovetz KA, Brun R, Boykin DW, Tidwell RR. Synthesis and antiprotozoal activity of dicationic m-terphenyl and 1,3-dipyridylbenzene derivatives. J Med Chem 2013; 56:5473-94. [PMID: 23795673 DOI: 10.1021/jm400508e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
4,4″-Diamidino-m-terphenyl (1) and 36 analogues were prepared and assayed in vitro against T rypanosoma brucei rhodesiense , Trypanosoma cruzi , Plasmodium falciparum , and Leishmania amazonensis . Twenty-three compounds were highly active against T. b. rhodesiense or P. falciparum. Most noteworthy were amidines 1, 10, and 11 with IC50 of 4 nM against T. b. rhodesiense, and dimethyltetrahydropyrimidinyl analogues 4 and 9 with IC50 values of ≤ 3 nM against P. falciparum. Bis-pyridylimidamide derivative 31 was 25 times more potent than benznidazole against T. cruzi and slightly more potent than amphotericin B against L. amazonensis. Terphenyldiamidine 1 and dipyridylbenzene analogues 23 and 25 each cured 4/4 mice infected with T. b. rhodesiense STIB900 with four daily 5 mg/kg intraperitoneal doses, as well as with single doses of ≤ 10 mg/kg. Derivatives 5 and 28 (prodrugs of 1 and 25) each cured 3/4 mice with four daily 25 mg/kg oral doses.
Collapse
Affiliation(s)
- Donald A Patrick
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina , Chapel Hill, North Carolina 27599-7525, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Takanari H, Nalos L, Stary-Weinzinger A, de Git KCG, Varkevisser R, Linder T, Houtman MJC, Peschar M, de Boer TP, Tidwell RR, Rook MB, Vos MA, van der Heyden MAG. Efficient and specific cardiac IK1 inhibition by a new pentamidine analogue. Cardiovasc Res 2013; 99:203-14. [DOI: 10.1093/cvr/cvt103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Patil UB, Kumthekar KR, Nagarkar JM. A novel method for the synthesis of 5-substituted 1H-tetrazole from oxime and sodium azide. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.093] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
In vitro and in vivo antimalarial activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 2012; 56:2191-3. [PMID: 22252809 DOI: 10.1128/aac.05856-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-2307, a novel arylamidine, has been shown to exhibit broad-spectrum antifungal activities against clinically significant pathogens. Here, we evaluated the in vitro and in vivo antimalarial activity of T-2307. The 50% inhibitory concentrations (IC₅₀s) of T-2307 against Plasmodium falciparum FCR-3 and K-1 strains were 0.47 and 0.17 μM, respectively. T-2307 at 2.5 to 10 mg/kg of body weight/day exhibited activity against blood stage and liver stage parasites in rodent malaria models. In conclusion, T-2307 exhibited in vitro and in vivo antimalarial activity.
Collapse
|
35
|
Diamine and aminoalcohol derivatives active against Trypanosoma brucei. Bioorg Med Chem Lett 2012; 22:440-3. [DOI: 10.1016/j.bmcl.2011.10.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 12/18/2022]
|
36
|
Paliwal SK, Verma AN, Paliwal S. Neglected disease - african sleeping sickness: recent synthetic and modeling advances. Sci Pharm 2011; 79:389-428. [PMID: 21886894 PMCID: PMC3163371 DOI: 10.3797/scipharm.1012-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/10/2011] [Indexed: 01/21/2023] Open
Abstract
Human African Trypanosomiasis (HAT) also called sleeping sickness is caused by subspecies of the parasitic hemoflagellate Trypanosoma brucei that mostly occurs in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which have been developed more than 30 years ago, have undesirable toxic side effects and most of them show drug-resistance. Though development of new anti-trypanosomal drugs seems to be a priority area research in this area has lagged far behind. The given review mainly focus upon the recent synthetic and computer based approaches made by various research groups for the development of newer anti-trypanosomal analogues which may have improved efficacy and oral bioavailability than the present ones. The given paper also attempts to investigate the relationship between the various physiochemical parameters and anti-trypanosomal activity that may be helpful in development of potent anti-trypanosomal agents against sleeping sickness.
Collapse
|
37
|
Jarak I, Marjanović M, Piantanida I, Kralj M, Karminski-Zamola G. Novel pentamidine derivatives: synthesis, anti-tumor properties and polynucleotide-binding activities. Eur J Med Chem 2011; 46:2807-15. [PMID: 21546133 DOI: 10.1016/j.ejmech.2011.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/18/2022]
Abstract
Novel amidino-substituted conformationally restricted derivatives of pentamidine were synthesized and their antiproliferative activity against several human cancer cell lines determined. It was found that introduction of furandicarboxamide core moiety (9, 10) increases antiproliferative activity as well as selectivity against certain tumor cell lines in comparison with amidino-substituted furan-mono-carboxamide (5, 6). Unlike the furan series where iso-propyl substituted amidine (10) exhibits more potent overall antiproliferative activity and selectivity toward certain cell lines, the same was found for unsubstituted amidines in pyridine series. Amongst all tested compounds the compound 10 is the only one that possesses antiproliferative activity against SW 620 cell line (4 μM). Spectroscopic studies of the interactions of prepared diamidines with double-stranded DNA and RNA polynucleotides show that all compounds preferentially bind into the minor groove of DNA, while most of them intercalate into RNA. The structure-dependant biological activity and the lack of DNA/RNA selective binding suggest that the mechanism of action of the here-presented compounds is controlled not only by the interactions with cellular nucleic acids, but also with other more specific protein targets.
Collapse
Affiliation(s)
- Ivana Jarak
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
38
|
Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem 2011; 11:1255-74. [PMID: 21401507 PMCID: PMC3101707 DOI: 10.2174/156802611795429167] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT.
Collapse
Affiliation(s)
- Robert T. Jacobs
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Bakela Nare
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| |
Collapse
|
39
|
Burrows JN, Waterson D. Discovering New Medicines to Control and Eradicate Malaria. TOPICS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1007/7355_2011_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Ismail MA, Bialy SAE, Brun R, Wenzler T, Nanjunda R, Wilson WD, Boykin DW. Dicationic phenyl-2,2'-bichalcophenes and analogues as antiprotozoal agents. Bioorg Med Chem 2010; 19:978-84. [PMID: 21194955 DOI: 10.1016/j.bmc.2010.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/16/2010] [Accepted: 11/22/2010] [Indexed: 11/29/2022]
Abstract
A series of phenyl-2,2'-bichalcophene diamidines 1a-h were synthesized from the corresponding dinitriles either via a direct reaction with LiN(TMS)₂, followed by deprotection with ethanolic HCl or through the bis-O-acetoxyamidoxime followed by hydrogenation in acetic acid and EtOH over Pd-C. These diamidines show a wide range of DNA affinities as judged from their ΔT(m) values which are remarkably sensitive to replacement of a furan unit with a thiophene one. These differences are explained in terms of the effect of subtle changes in geometry of the diamidines on binding efficacy. Five of the eight compounds were highly active (below 6 nM IC₅₀) in vitro against Trypanosoma brucei rhodesiense (T. b. r.) and four gave IC₅₀values less than 7 nM against Plasmodium falciparum (P. f.). Only one of the compounds was as effective as reference compounds in the T. b. r. mouse model for the acute phase of African trypanosomiasis.
Collapse
|
41
|
Athri P, Wenzler T, Tidwell R, Bakunova SM, Wilson WD. Pharmacophore model for pentamidine analogs active against Plasmodium falciparum. Eur J Med Chem 2010; 45:6147-51. [PMID: 20884090 DOI: 10.1016/j.ejmech.2010.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/04/2010] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
Abstract
Pentamidine and its analogs constitute a class of compounds that are known to be active against Plasmodium falciparum, which causes the most dangerous malarial infection. Malaria is a widespread disease known to affect hundreds of millions of people and presents a perceivable threat of spreading. Hence, there is a need for well-defined scaffolds that lead to new, effective treatment. Here we present a pentamidine-based pharmacophore constructed using GALAHAD that would aid targeted synthesis of leads with enhanced properties, as well as the development of lead scaffolds. The study was supported by high-quality biological in vitro data of 22 compounds against the P. falciparum strains NF54 and K1. The model established reveals the importance of hydrophobic phenyl rings with polar oxygen and amidine substituents and the hydrophobic linking chain for the activity against malaria.
Collapse
Affiliation(s)
- Prashanth Athri
- Department of Chemistry, Georgia State University, 50 Decatur Street, Atlanta, GA 30303, USA.
| | | | | | | | | |
Collapse
|
42
|
Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl Trop Dis 2010; 4:e675. [PMID: 20454559 PMCID: PMC2864270 DOI: 10.1371/journal.pntd.0000675] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 03/19/2010] [Indexed: 11/19/2022] Open
Abstract
Drugs currently available for leishmaniasis treatment often show parasite resistance, highly toxic side effects and prohibitive costs commonly incompatible with patients from the tropical endemic countries. In this sense, there is an urgent need for new drugs as a treatment solution for this neglected disease. Here we show the development and implementation of an automated high-throughput viability screening assay for the discovery of new drugs against Leishmania. Assay validation was done with Leishmania promastigote forms, including the screening of 4,000 compounds with known pharmacological properties. In an attempt to find new compounds with leishmanicidal properties, 26,500 structurally diverse chemical compounds were screened. A cut-off of 70% growth inhibition in the primary screening led to the identification of 567 active compounds. Cellular toxicity and selectivity were responsible for the exclusion of 78% of the pre-selected compounds. The activity of the remaining 124 compounds was confirmed against the intramacrophagic amastigote form of the parasite. In vitro microsomal stability and cytochrome P450 (CYP) inhibition of the two most active compounds from this screening effort were assessed to obtain preliminary information on their metabolism in the host. The HTS approach employed here resulted in the discovery of two new antileishmanial compounds, bringing promising candidates to the leishmaniasis drug discovery pipeline. Every year, more than 2 million people worldwide suffer from leishmaniasis, a neglected tropical disease present in 88 countries. The disease is caused by the single-celled protozoan parasite species of the genus Leishmania, which is transmitted to humans by the bite of the sandfly. The disease manifests itself in a broad range of symptoms, and its most virulent form, named visceral leishmaniasis, is lethal if not treated. Most of the few available treatments for leishmaniasis were developed decades ago and are often toxic, sometimes even leading to the patient's death. Furthermore, the parasite is developing resistance to available drugs, making the discovery and development of new antileishmanials an urgent need. To tackle this problem, the authors of this study employed the use of high-throughput technologies to screen a large library of small, synthetic molecules for their ability to interfere with the viability of Leishmania parasites. This study resulted in the discovery of two novel compounds with leishmanicidal properties and promising drug-like properties, bringing new candidates to the leishmaniasis drug discovery pipeline.
Collapse
|
43
|
Watts KR, Ratnam J, Ang KH, Tenney K, Compton JE, McKerrow J, Crews P. Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorg Med Chem 2010; 18:2566-74. [PMID: 20303767 PMCID: PMC2893881 DOI: 10.1016/j.bmc.2010.02.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/21/2022]
Abstract
Human African trypanosomiasis (HAT, commonly known as African sleeping sickness) is categorized as a neglected disease, as it afflicts >50,000 people annually in sub-saharan Africa, and there are few formal programs in the world focused on drug discovery approaches for this disease. In this study, we examined the crude extracts of two fungal strains (Aspergillus fumigatus and Nectria inventa) isolated from deep water sediment which provided >99% growth inhibition at 1microg/mL of Trypanosoma brucei, the causative parasite of HAT. A collection of fifteen natural products was supplemented with six semi-synthetic derivatives and one commercially available compound. Twelve of the compounds, each containing a diketopiperazine core, showed excellent activity against T. brucei (IC(50)=0.002-40microM), with selectivity over mammalian cells as great as 20-fold. The trypanocidal diketopiperazines were also tested against two cysteine protease targets Rhodesain and TbCatB, where five compounds showed inhibition activity at concentrations less than 20microM. A preliminary activity pattern is described and analyzed.
Collapse
Affiliation(s)
- Katharine R. Watts
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Joseline Ratnam
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Kean-Hooi Ang
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Jennifer E. Compton
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - James McKerrow
- Sandler Center for Basic Research in Parasitic Disease, University of California San Francisco, San Francisco,CA 94143, and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA 94158
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
44
|
Abstract
BACKGROUND The guanidine group defines chemical and physicochemical properties of many compounds of medical interest and guanidine-containing derivatives constitute a very important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. OBJECTIVE To review the most important pharmacological properties, mechanisms of action and therapeutic uses of simple guanidine derivatives, cyclic analogues of guanidines as well as peptides, peptidomimetics and peptoids incorporating arginine. METHODS The review presents both the recent patent literature and original papers dealing with guanidine derivatives that show interesting biological activity and emphasizes the newest developing drugs. CONCLUSION Recent achievements in the synthesis of guanidine-containing molecules with diverse chemical, biochemical and pharmacological properties make them of great importance to the design and development of novel drugs acting at CNS, anti-inflammatory agents, inhibitors of Na(+)/H(+) exchanger, inhibitors of NO synthase, antithrombotic, antidiabetic and chemotherapeutic agents as well as guanidinium-based transporters and vectors.
Collapse
Affiliation(s)
- Franciszek Saczewski
- Department of Chemical Technology of Drugs, Medical University of Gdansk, Al. Gen. Hallera 107, Gdansk, Poland.
| | | |
Collapse
|
45
|
Ortial S, Denoyelle SÃ, Wein S, Berger O, Durand T, Escale R, Pellet A, Vial H, Vo-Hoang Y. Synthesis and Evaluation of Hybrid Bis-cationic Salts as Antimalarial Drugs. ChemMedChem 2010; 5:52-5. [DOI: 10.1002/cmdc.200900427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Hu L, Arafa RK, Ismail MA, Patel A, Munde M, Wilson WD, Wenzler T, Brun R, Boykin DW. Synthesis and activity of azaterphenyl diamidines against Trypanosoma brucei rhodesiense and Plasmodium falciparum. Bioorg Med Chem 2009; 17:6651-8. [PMID: 19699098 PMCID: PMC3813006 DOI: 10.1016/j.bmc.2009.07.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/24/2009] [Accepted: 07/26/2009] [Indexed: 11/24/2022]
Abstract
A series of azaterphenyl diamidines has been synthesized and evaluated for in vitro antiprotozoal activity against both Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.) and in vivo efficacy in the STIB900 acute mouse model for T. b. r. Six of the 13 compounds showed IC(50) values less than 7 nM against T. b. r. Twelve of those exhibited IC(50) values less than 6 nM against P. f. and six of those showed IC(50) values 0.6 nM, which are more than 25-fold as potent as furamidine. Moreover, two of them showed more than 40-fold selectivity for P. f. versus T. b. r. Three compounds 15b, 19d and 19e exhibited in vivo efficacy against T. b. r. much superior to furamidine, and equivalent to or better than azafuramidine. The antiparasitic activity of these diamidines depends on the ring nitrogen atom(s) location relative to the amidine groups and generally correlates with DNA binding affinity.
Collapse
Affiliation(s)
- Laixing Hu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Reem K. Arafa
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Mohamed A. Ismail
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Alpa Patel
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Manoj Munde
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Tanja Wenzler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | - Reto Brun
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA
| |
Collapse
|
47
|
Huang TL, Vanden Eynde JJ, Mayence A, Collins MS, Cushion MT, Rattendi D, Londono I, Mazumder L, Bacchi CJ, Yarlett N. Synthesis and SAR of alkanediamide-linked bisbenzamidines with anti-trypanosomal and anti-pneumocystis activity. Bioorg Med Chem Lett 2009; 19:5884-6. [PMID: 19736009 DOI: 10.1016/j.bmcl.2009.08.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 11/30/2022]
Abstract
A series of alkanediamide-linked bisbenzamidines was synthesized and tested in vitro against a drug-sensitive strain of Trypanosoma brucei brucei, a drug-resistant strain of Trypanosoma brucei rhodesiense and Pneumocystiscarinii. Bisbenzamidines linked with longer alkanediamide chains were potent inhibitors of both strains of T. brucei. However, bisbenzamidines linked with shorter alkanediamide chains were the most potent compounds against P. carinii. N,N'-Bis[4-(aminoiminomethyl)phenyl] hexanediamide, 4 displayed potent inhibition (IC50=2-3 nM) against T. brucei and P. carinii, and was non-cytotoxic in the A549 human lung carcinoma cell line. The inhibitory bioactivity was significantly reduced when the amidine groups in 4 were moved from the para to the meta positions or replaced with amides.
Collapse
Affiliation(s)
- Tien L Huang
- Xavier University of Louisiana, College of Pharmacy, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Daliry A, Da Silva PB, Da Silva CF, Batista MM, De Castro SL, Tidwell RR, Soeiro MDNC. In vitro analyses of the effect of aromatic diamidines upon Trypanosoma cruzi. J Antimicrob Chemother 2009; 64:747-50. [PMID: 19671588 DOI: 10.1093/jac/dkp290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Aromatic diamidines (ADs) have been recognized as promising antiparasitic agents. Therefore, in the present work, the in vitro trypanocidal effect of 11 ADs upon the relevant clinical forms of Trypanosoma cruzi was evaluated, as well as determining their toxicity to mammalian cells and their subcellular localization. METHODS The trypanocidal effect upon trypomastigotes and amastigotes was evaluated by light microscopy through the determination of the IC(50) values. The cytotoxicity was determined by the MTT colorimetric assay against mouse cardiomyocytes. For the subcellular localization, transmission electron microscopy and fluorescence approaches were used. The fluorescence intensity within the kinetoplast DNA (kDNA) and nuclear DNA (nDNA) of treated parasites was determined using the Image J program. RESULTS Compounds 2, 5 and 7 showed the lowest IC(50) values (micromolar range) against intracellular amastigotes and trypomastigotes. In the presence of blood, all the tested ADs exhibited a reduction of their activity. The compounds did not exhibit toxicity to cardiac cells and the highest selectivity index (SI) was achieved by compound 5 with an SI of >137 for trypomastigotes and compound 7 with an SI of >107 for intracellular parasites. The subcellular effects upon bloodstream forms treated with compounds 5 and 7 were mainly on kDNA, leading to its disorganization. The higher accumulation in the kDNA observed for all tested ADs was not directly related to their efficacy. CONCLUSIONS Our results show the high activity of this new series of ADs against both trypomastigote and amastigote forms, with excellent SIs, especially compound 7, which merits further in vivo evaluation.
Collapse
Affiliation(s)
- Anissa Daliry
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Bakunova SM, Bakunov SA, Wenzler T, Barszcz T, Werbovetz KA, Brun R, Tidwell RR. Synthesis and Antiprotozoal Activity of Pyridyl Analogues of Pentamidine. J Med Chem 2009; 52:4657-67. [DOI: 10.1021/jm900805v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Svetlana M. Bakunova
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599−7525
| | - Stanislav A. Bakunov
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599−7525
| | - Tanja Wenzler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | - Todd Barszcz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210
| | - Reto Brun
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | - Richard R. Tidwell
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599−7525
| |
Collapse
|