1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Chandra J, Nasir N, Wahab S, Sahebkar A, Kesharwani P. Harnessing the power of targeted metal nanocarriers mediated photodynamic and photothermal therapy. Nanomedicine (Lond) 2024:1-19. [PMID: 39545609 DOI: 10.1080/17435889.2024.2419820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
The treatment of cancer has become a profoundly intricate procedure. Traditional treatment methods, including chemotherapy, surgery and radiotherapy, have been utilized, while notable progress has been achieved in recent years. Among targeted therapies for cancer, folic acid (FA) conjugated metal-based nanoparticles (NP) have emerged as an innovative strategy, namely for photodynamic therapy (PDT) and photothermal therapy (PTT). These NP exploit the strong attraction between FA and folate receptors, which are excessively produced in several cancer cells, in order to enable precise administration and improved effectiveness of treatment. During PDT, metal-based NP functionalized with FA are used as photosensitizers which are activated by light, and produce reactive oxygen species that cause cancer cells to undergo apoptosis. Within the framework of PTT, these NP effectively transform light energy into concentrated heat, specifically targeting and destroying tumor cells. This review examines the fundamental mechanisms by which these NP improve the effectiveness of PDT and PTT while simultaneously presenting important findings that demonstrate the effectiveness of FA-functionalized MNP in laboratory and animal models. In addition, the paper also discusses the problems and potential directions for their clinical translation.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Liu Y, Ding YX, Mi L, Qiu Y, Yan YJ, Jin H, Chen ZL. Synthesis and Evaluation of New 5,15-Diarylporphyrin Derivatives for Photodynamic Therapy. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Wu Q, Li Y, Wang L, Wang D, Tang BZ. Aggregation-induced emission: An emerging concept in brain science. Biomaterials 2022; 286:121581. [PMID: 35633591 DOI: 10.1016/j.biomaterials.2022.121581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
As an emerging concept in brain science, aggregation-induced emission (AIE) has captivated much interest by virtue of the unique superiority of AIE fluorophores in terms of emission intensity, imaging resolution, biocompatibility and photosensitivity. This review mainly overviews the current state-of-art advances of AIE fluorophores achieving the superb performance in brain imaging and therapy, which facilitate deep tissue penetration, high contrast to autofluorescence and efficient blood-brain barrier (BBB) crossing by rational molecular design and functionalized strategies. We expect this review serve as a modest spur to push forward the blooming growth of research in this fertile field.
Collapse
Affiliation(s)
- Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518061, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Youmei Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518061, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518061, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
6
|
Otvagin VF, Kuzmina NS, Kudriashova ES, Nyuchev AV, Gavryushin AE, Fedorov AY. Conjugates of Porphyrinoid-Based Photosensitizers with Cytotoxic Drugs: Current Progress and Future Directions toward Selective Photodynamic Therapy. J Med Chem 2022; 65:1695-1734. [DOI: 10.1021/acs.jmedchem.1c01953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vasilii F. Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Natalia S. Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S. Kudriashova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Alexander V. Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | | | - Alexey Yu. Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
7
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 783] [Impact Index Per Article: 195.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
8
|
Preface — Special Issue dedicated to Professor Jonathan S. Lindsey on the occasion of his 65th birthday. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zheng B, Zhong D, Xie T, Zhou J, Li W, Ilyas A, Lu Y, Zhou M, Deng R. Near-infrared photosensitization via direct triplet energy transfer from lanthanide nanoparticles. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Le NA, Babu V, Kalt M, Schneider L, Schumer F, Spingler B. Photostable Platinated Bacteriochlorins as Potent Photodynamic Agents. J Med Chem 2021; 64:6792-6801. [PMID: 33988998 DOI: 10.1021/acs.jmedchem.1c00052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Photodynamic therapy (PDT) is used to treat various cancerous diseases. Recently, we have demonstrated that platinated pyridyl-substituted porphyrins are potent agents for PDT with very high phototoxicity (IC50 down to 17 nM) and excellent phototoxic indices of higher than 5800 (p.i. = IC50(dark)/IC50(light)) [Rubbiani, R. et al., Chem. Commun. 2020, 56, 14373]. However, the absorption of porphyrins is not ideal for the treatment of larger tumors because they essentially do not absorb light between 650 and 850 nm. Herein, we report stable conjugates of a novel bacteriochlorin with cisplatin and transplatin. They exhibit extremely high phototoxicity (IC50 values down to 6 nM, irradiated with a 750 nm LED at a fluence of 5 J/cm2), very low dark toxicity, and thereby extremely high phototoxic indices up to 8300. Based on these exciting results, we believe that platinated bacteriochlorins are promising candidates for further investigation as novel PDT anticancer agents.
Collapse
Affiliation(s)
- Ngoc An Le
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Vipin Babu
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Kalt
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Lukas Schneider
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Frank Schumer
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Wu M, Liu Z, Zhang W. An ultra-stable bio-inspired bacteriochlorin analogue for hypoxia-tolerant photodynamic therapy. Chem Sci 2020; 12:1295-1301. [PMID: 34163892 PMCID: PMC8179026 DOI: 10.1039/d0sc05525e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) greatly suffers from the weak NIR-absorption, oxygen dependence and poor stability of photosensitizers (PSs). Herein, inspired by natural bacteriochlorin, we develop a bacteriochlorin analogue, tetrafluorophenyl bacteriochlorin (FBC), by one-step reduction of tetrafluorophenyl porphyrin (TFPP). FBC can realize deep tissue penetration, benefitting from the strong NIR absorption. The reactive oxygen species (ROS) generation capacity of FBC can retain around 60% with a 1.0 cm-thick pork skin as the barrier. Besides, FBC could not only produce oxygen-dependent 1O2, but also generate less oxygen-dependent O2 -˙ and ˙OH to achieve excellent PDT even in hypoxic tumors. Moreover, FBC exhibits an ultra-high stability and it is almost unchanged even under visible light at room temperature for 15 months. Interestingly, the high reactivity of the fluorophenyl group makes it easy for FBC to produce FBC derivatives. A biocompatible FBC nanogel could be directly formed by blending FBC with SH-PEG-SH. The FBC nanogel displays excellent photodynamic efficacy in vitro and in vivo. Thus, FBC would be a promising PS for the clinical PDT of deep tumors.
Collapse
Affiliation(s)
- Mengsi Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
12
|
Pucelik B, Sułek A, Dąbrowski JM. Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213340] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Dai J, Li Y, Long Z, Jiang R, Zhuang Z, Wang Z, Zhao Z, Lou X, Xia F, Tang BZ. Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS NANO 2020; 14:854-866. [PMID: 31820925 DOI: 10.1021/acsnano.9b07972] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photodynamic therapy (PDT) strategy has been widely used in tumor treatment, and the reagents for reactive oxygen species (ROS) play a crucial role. Herein, we develop a fluorogen (TTB) containing an electron-accepting benzo[1,2-b:4,5-b']dithiophene 1,1,5,5-tetraoxide core and electron-donating 4,4'-(2,2-diphenylethene-1,1-diyl)bis(N,N-diphenylaniline) groups for image-guided targeting PDT application. TTB exhibits a prominent aggregation-induced emission (AIE) property with strong near-infrared (NIR) fluorescence in aggregates and is capable of efficiently generating ROS of O2•- and 1O2 under white light irradiation. The nanoparticles (RGD-4R-MPD/TTB NPs) with NIR emission (∼730 nm), high photostability, and low dark cytotoxicity are fabricated by encapsulating TTB within polymeric matrix and then modified with RGD-4R peptide. They show excellent performance in targeting PDT treatment of PC3, HeLa, and SKOV-3 cancer cells in vitro. The investigations on pharmacokinetics, biodistribution, and long-term tracing in vivo reveal that RGD-4R-MPD/TTB NPs can selectively accumulate in tumors for real-time, long-term image-guided PDT treatment. The RGD-4R-MPD/TTB NPs-mediated PDT in multiple xenograft tumor models disclose that the growth of cervical, prostate, and ovarian cancers in mice can be effectively inhibited. These results demonstrate that the reagents employing NIR fluorogen TTB as a photosensitizer could be promising candidates for in vivo image-guided PDT treatments of tumors.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yinghao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zi Long
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ruming Jiang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates , South China University of Technology , Guangzhou 510640 , China
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| |
Collapse
|
14
|
Pucelik B, Arnaut LG, Dąbrowski JM. Lipophilicity of Bacteriochlorin-Based Photosensitizers as a Determinant for PDT Optimization through the Modulation of the Inflammatory Mediators. J Clin Med 2019; 9:E8. [PMID: 31861531 PMCID: PMC7019385 DOI: 10.3390/jcm9010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
: Photodynamic therapy (PDT) augments the host antitumor immune response, but the role of the PDT effect on the tumor microenvironment in dependence on the type of photosensitizer and/or therapeutic protocols has not been clearly elucidated. We employed three bacteriochlorins (F2BOH, F2BMet and Cl2BHep) of different polarity that absorb near-infrared light (NIR) and generated a large amount of reactive oxygen species (ROS) to compare the PDT efficacy after various drug-to-light intervals: 15 min. (V-PDT), 3h (E-PDT) and 72h (C-PDT). We also performed the analysis of the molecular mechanisms of PDT crucial for the generation of the long-lasting antitumor immune response. PDT-induced damage affected the integrity of the host tissue and developed acute (protocol-dependent) local inflammation, which in turn led to the infiltration of neutrophils and macrophages. In order to further confirm this hypothesis, a number of proteins in the plasma of PDT-treated mice were identified. Among a wide range of cytokines (IL-6, IL-10, IL-13, IL-15, TNF-α, GM-CSF), chemokines (KC, MCP-1, MIP1α, MIP1β, MIP2) and growth factors (VEGF) released after PDT, an important role was assigned to IL-6. PDT protocols optimized for studied bacteriochlorins led to a significant increase in the survival rate of BALB/c mice bearing CT26 tumors, but each photosensitizer (PS) was more or less potent, depending on the applied DLI (15 min, 3 h or 72 h). Hydrophilic (F2BOH) and amphiphilic (F2BMet) PSs were equally effective in V-PDT (>80 cure rate). F2BMet was the most efficient in E-PDT (DLI = 3h), leading to a cure of 65 % of the animals. Finally, the most powerful PS in the C-PDT (DLI = 72 h) regimen turned out to be the most hydrophobic compound (Cl2BHep), allowing 100 % of treated animals to be cured at a light dose of only 45 J/cm2.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland;
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Luis G. Arnaut
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | | |
Collapse
|
15
|
Xiao YF, Chen JX, Li S, Tao WW, Tian S, Wang K, Cui X, Huang Z, Zhang XH, Lee CS. Manipulating exciton dynamics of thermally activated delayed fluorescence materials for tuning two-photon nanotheranostics. Chem Sci 2019; 11:888-895. [PMID: 34123067 PMCID: PMC8145712 DOI: 10.1039/c9sc05817f] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rational manipulation of energy utilization from excited-state radiation of theranostic agents with a donor–acceptor structure is relatively unexplored. Herein, we present an effective strategy to tune the exciton dynamics of radiative excited state decay for augmenting two-photon nanotheranostics. As a proof of concept, two thermally activated delayed fluorescence (TADF) molecules with different electron-donating segments are engineered, which possess donor–acceptor structures and strong emissions in the deep-red region with aggregation-induced emission characteristics. Molecular simulations demonstrate that change of the electron-donating sections could effectively regulate the singlet–triplet energy gap and oscillator strength, which promises efficient energy flow. A two-photon laser with great permeability is used to excite TADF NPs to perform as theranostic agents with singlet oxygen generation and fluorescence imaging. These unique performances enable the proposed TADF emitters to exhibit tailored balances between two-photon singlet oxygen generation and fluorescence emission. This result demonstrates that TADF emitters can be rationally designed as superior candidates for nanotheranostic agents by the custom controlling exciton dynamics. Exciton dynamics can be manipulated rationally in the design of TADF materials for nanotheranostics. Regulating the ΔEST and f promises efficient energy flow for tailoring balances between singlet oxygen generation and fluorescence emission.![]()
Collapse
Affiliation(s)
- Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Jia-Xiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China .,Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Wen-Wen Tao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao-Hong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
16
|
Pavlíčková V, Rimpelová S, Jurášek M, Záruba K, Fähnrich J, Křížová I, Bejček J, Rottnerová Z, Spiwok V, Drašar P, Ruml T. PEGylated Purpurin 18 with Improved Solubility: Potent Compounds for Photodynamic Therapy of Cancer. Molecules 2019; 24:E4477. [PMID: 31817655 PMCID: PMC6943672 DOI: 10.3390/molecules24244477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022] Open
Abstract
Purpurin 18 derivatives with a polyethylene glycol (PEG) linker were synthesized as novel photosensitizers (PSs) with the goal of using them in photodynamic therapy (PDT) for cancer. These compounds, derived from a second-generation PS, exhibit absorption at long wavelengths; considerable singlet oxygen generation and, in contrast to purpurin 18, have higher hydrophilicity due to decreased logP. Together, these properties make them potentially ideal PSs. To verify this, we screened the developed compounds for cell uptake, intracellular localization, antitumor activity and induced cell death type. All of the tested compounds were taken up into cancer cells of various origin and localized in organelles known to be important PDT targets, specifically, mitochondria and the endoplasmic reticulum. The incorporation of a zinc ion and PEGylation significantly enhanced the photosensitizing efficacy, decreasing IC50 (half maximal inhibitory compound concentration) in HeLa cells by up to 170 times compared with the parental purpurin 18. At effective PDT concentrations, the predominant type of induced cell death was apoptosis. Overall, our results show that the PEGylated derivatives presented have significant potential as novel PSs with substantially augmented phototoxicity for application in the PDT of cervical, prostate, pancreatic and breast cancer.
Collapse
Affiliation(s)
- Vladimíra Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Kamil Záruba
- Department of Analytical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic; (K.Z.); (J.F.)
| | - Jan Fähnrich
- Department of Analytical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic; (K.Z.); (J.F.)
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Jiří Bejček
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| | - Zdeňka Rottnerová
- Central laboratories, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| | - Pavel Drašar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28 Prague 6, Czech Republic; (V.P.); (J.B.); (V.S.)
| |
Collapse
|
17
|
Takahashi T, Ogasawara S, Shinozaki Y, Tamiaki H. Synthesis of Cationic Pyridinium-(Bacterio)Chlorophyll Conjugates Bearing a Bacteriochlorin, Chlorin, or Porphyrin π-Skeleton and their Photophysical and Electrochemical Properties. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tatsuya Takahashi
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| | - Yoshinao Shinozaki
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu Shiga 525-8577 Japan
| |
Collapse
|
18
|
Caruso E, Malacarne MC, Banfi S, Gariboldi MB, Orlandi VT. Cationic diarylporphyrins: In vitro versatile anticancer and antibacterial photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111548. [PMID: 31288120 DOI: 10.1016/j.jphotobiol.2019.111548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
The visible light combined with photosensitizers (PSs) is exploited in both antitumoral and antimicrobial fields inducing a photo-oxidative stress within the target cells. Among the different PSs, porphyrins belong to the family of the most promising compounds to be used in clinical photodynamic applications. Although in the last years many porphyrins have been synthesised and tested, only a few reports concern the in vitro effects of the 5,15-diarylporphyrins. In this work, the activity of four 5,15-diarylporphyrins (compounds 7-10), bearing alkoxy-linked pyridinium appendixes, have been tested on cancer cell lines and against bacterial cultures. Among the synthetized PSs, compounds 7 and 9 are not symmetrically substituted porphyrins showing one cationic charge tethered at the end of one 4C or 8C carbon chains, respectively. On the other hand, compounds 8 and 10 are symmetrically substituted and show two chains of C4 and C8 carbons featuring a cationic charge at the end of both chains. The dicationic 8 and 10 were more hydrophilic than monocationic 7 and 9, outlining that the presence of two pyridinium salts have a higher impact on the solubility in the aqueous phase than the lipophilic effect exerted by the length of the alkyl chains. Furthermore, these four PSs showed a similar rate of photobleaching, irrespective of the length and number of chains and the number of positive charges. Among the eukaryotic cell lines, the SKOV3 cells were particularly sensitive to the photodynamic activity of all the tested diarylporphyrins, while the HCT116 cells were found more sensitive to PSs bearing C4 chain (7 and 8), regardless the number of cationic charges. The photo-induced killing effect of these porphyrins was also tested against two different bacterial cultures. As expected, the Gram positive Bacillus subtilis was more sensitive than the Gram negative Escherichia coli, and the dicationic porphyrin 8, bearing two C4 chains, was the most efficient on both microorganisms. In conclusion, the new compound 8 seems to be an optimal candidate to deepen as versatile anticancer and antibacterial photosensitizer.
Collapse
Affiliation(s)
- Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy..
| | - Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Stefano Banfi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Viviana Teresa Orlandi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| |
Collapse
|
19
|
Ostroverkhov P, Semkina A, Naumenko V, Plotnikova E, Melnikov P, Abakumova T, Yakubovskaya R, Mironov A, Vodopyanov S, Abakumov A, Majouga A, Grin M, Chekhonin V, Abakumov M. Synthesis and characterization of bacteriochlorin loaded magnetic nanoparticles (MNP) for personalized MRI guided photosensitizers delivery to tumor. J Colloid Interface Sci 2019; 537:132-141. [DOI: 10.1016/j.jcis.2018.10.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/16/2018] [Accepted: 10/27/2018] [Indexed: 12/27/2022]
|
20
|
Longevial JF, Yamaji A, Aggad D, Kim G, Chia WX, Nishimura T, Miyake Y, Clément S, Oh J, Daurat M, Nguyen C, Kim D, Gary-Bobo M, Richeter S, Shinokubo H. Diazachlorin and diazabacteriochlorin for one- and two-photon photodynamic therapy. Chem Commun (Camb) 2018; 54:13829-13832. [PMID: 30462101 DOI: 10.1039/c8cc07489e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diazachlorin and diazabacteriochlorin have been prepared through reduction of diazaporphyrin and their in vitro and in vivo activity in photodynamic therapy has been investigated.
Collapse
Affiliation(s)
- Jean-François Longevial
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhu W, Gao YH, Liao PY, Chen DY, Sun NN, Nguyen Thi PA, Yan YJ, Wu XF, Chen ZL. Comparison between porphin, chlorin and bacteriochlorin derivatives for photodynamic therapy: Synthesis, photophysical properties, and biological activity. Eur J Med Chem 2018; 160:146-156. [DOI: 10.1016/j.ejmech.2018.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
|
22
|
Jiang J, Matula AJ, Swierk JR, Romano N, Wu Y, Batista VS, Crabtree RH, Lindsey JS, Wang H, Brudvig GW. Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO2 Conversion to CO. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianbing Jiang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Adam J. Matula
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - John R. Swierk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Neyen Romano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Robert H. Crabtree
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
23
|
Hamdan IM, Tekko IA, Matchett KB, Arnaut LG, Silva CS, McCarthy HO, Donnelly RF. Intradermal Delivery of a Near-Infrared Photosensitizer Using Dissolving Microneedle Arrays. J Pharm Sci 2018; 107:2439-2450. [DOI: 10.1016/j.xphs.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 12/01/2022]
|
24
|
Chen HJ, Zhou XB, Wang AL, Zheng BY, Yeh CK, Huang JD. Synthesis and biological characterization of novel rose bengal derivatives with improved amphiphilicity for sono-photodynamic therapy. Eur J Med Chem 2018; 145:86-95. [DOI: 10.1016/j.ejmech.2017.12.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
|
25
|
The role of photonics and natural curing agents of TGF-β1 in treatment of osteoarthritis. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Cepraga C, Marotte S, Ben Daoud E, Favier A, Lanoë PH, Monnereau C, Baldeck P, Andraud C, Marvel J, Charreyre MT, Leverrier Y. Two-Photon Photosensitizer–Polymer Conjugates for Combined Cancer Cell Death Induction and Two-Photon Fluorescence Imaging: Structure/Photodynamic Therapy Efficiency Relationship. Biomacromolecules 2017; 18:4022-4033. [DOI: 10.1021/acs.biomac.7b01090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Cepraga
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Sophie Marotte
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Edna Ben Daoud
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Arnaud Favier
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
| | - Pierre-Henri Lanoë
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Cyrille Monnereau
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Patrice Baldeck
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Chantal Andraud
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Jacqueline Marvel
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Marie-Thérèse Charreyre
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
| | - Yann Leverrier
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| |
Collapse
|
27
|
Jiang M, Kwok RTK, Li X, Gui C, Lam JWY, Qu J, Tang BZ. A simple mitochondrial targeting AIEgen for image-guided two-photon excited photodynamic therapy. J Mater Chem B 2017; 6:2557-2565. [PMID: 32254474 DOI: 10.1039/c7tb02609a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-photon excited photodynamic therapy (TP-PDT) is not only able to offer deeper penetration depth but also much more precise 3D treatment than traditional one-photon excited PDT. However, the achievement of TP-PDT requires photosensitizers with large two-photon absorption cross sections, efficient generation of reactive oxygen species, and bright two-photon fluorescence. In this work, we present a simple AIE luminogen (AIEgen), IQ-TPA, with mitochondrial targeting and susceptible two-photon excitation for image-guided photodynamic therapy in cancer cells. This feasibility of utilizing small molecular multifunctional AIEgens for TP-PDT was demonstrated together with the merits of tiny size, good cell permeability, low dark cytotoxicity and easy synthesis, showing great potential for the development of future theranostic systems.
Collapse
Affiliation(s)
- Meijuan Jiang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Gu B, Wu W, Xu G, Feng G, Yin F, Chong PHJ, Qu J, Yong KT, Liu B. Precise Two-Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation-Induced Emission Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28556297 DOI: 10.1002/adma.201701076] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/17/2017] [Indexed: 05/03/2023]
Abstract
Two-photon photodynamic therapy (PDT) is able to offer precise 3D manipulation of treatment volumes, providing a target level that is unattainable with current therapeutic techniques. The advancement of this technique is greatly hampered by the availability of photosensitizers with large two-photon absorption (TPA) cross section, high reactive-oxygen-species (ROS) generation efficiency, and bright two-photon fluorescence. Here, an effective photosensitizer with aggregation-induced emission (AIE) characteristics is synthesized, characterized, and encapsulated into an amphiphilic block copolymer to form organic dots for two-photon PDT applications. The AIE dots possess large TPA cross section, high ROS generation efficiency, and excellent photostability and biocompatibility, which overcomes the limitations of many conventional two-photon photosensitizers. Outstanding therapeutic performance of the AIE dots in two-photon PDT is demonstrated using in vitro cancer cell ablation and in vivo brain-blood-vessel closure as examples. This shows therapy precision up to 5 µm under two-photon excitation.
Collapse
Affiliation(s)
- Bobo Gu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Science Drive 4, Singapore, 117585, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Science Drive 4, Singapore, 117585, Singapore
| | - Feng Yin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Peter Han Joo Chong
- Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, 92006, New Zealand
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Science Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
30
|
Martinez De Pinillos Bayona A, Mroz P, Thunshelle C, Hamblin MR. Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers. Chem Biol Drug Des 2017; 89:192-206. [PMID: 28205400 DOI: 10.1111/cbdd.12792] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) uses non-toxic dyes called photosensitizers (PS) and harmless visible light that combine to form highly toxic reactive oxygen species that kill cells. Originally, a cancer therapy, PDT, now includes applications for infections. The most widely studied PS are tetrapyrrole macrocycles including porphyrins, chlorins, bacteriochlorins, and phthalocyanines. The present review covers the design features in PS that can work together to maximize the PDT activity for various disease targets. Photophysical and photochemical properties include the wavelength and size of the long-wavelength absorption peak (for good light penetration into tissue), the triplet quantum yield and lifetime, and the propensity to undergo type I (electron transfer) or type II (energy transfer) photochemical mechanisms. The central metal in the tetrapyrrole macrocycle has a strong influence on the PDT activity. Hydrophobicity and charge are important factors that govern interactions with various types of cells (cancer and microbial) in vitro and the pharmacokinetics and biodistribution in vivo. Hydrophobic structures tend to be water insoluble and require a drug delivery vehicle for maximal activity. Molecular asymmetry and amphiphilicity are also important for high activity. In vivo some structures possess the ability to selectively accumulate in tumors and to localize in the tumor microvasculature producing vascular shutdown after illumination.
Collapse
Affiliation(s)
- Alejandra Martinez De Pinillos Bayona
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Division of Surgery & Interventional Science, University College London, Royal Free Hospital, London, UK
| | - Pawel Mroz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Connor Thunshelle
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard College, Cambridge, MA, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
31
|
Isaac-Lam MF, Hammonds DM. Biotinylated Chlorin and Its Zinc and Indium Complexes: Synthesis and In Vitro Biological Evaluation for Photodynamic Therapy. Pharmaceuticals (Basel) 2017; 10:ph10020041. [PMID: 28420143 PMCID: PMC5490398 DOI: 10.3390/ph10020041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
The synthesis and characterization of biotinylated chlorin photosensitizer and the corresponding zinc and indium complexes are described for potential applications in photodynamic therapy (PDT) for cancer. Phototoxicity of the biotin-chlorin conjugate and the metallated complexes was determined in colon carcinoma CT26 cell lines known to overexpress biotin (Vit B7) receptors. Cell survival assay indicated that the biotinylated chlorin and indium complex showed increased cell growth inhibition than the zinc complex and the starting chlorin (methyl pheophorbide). Fluorescence microcopy studies revealed the generation of apoptotic cells upon light irradiation of colon cells treated with the indium complex. Targeting biotin receptors in cancer cells can improve specificity of photosensitizers for PDT applications.
Collapse
Affiliation(s)
- Meden F Isaac-Lam
- Department of Chemistry and Physics, Purdue University Northwest, 1401 S US Hwy 421, Westville, IN 46391, USA.
| | - Dewana M Hammonds
- Department of Chemistry and Physics, Purdue University Northwest, 1401 S US Hwy 421, Westville, IN 46391, USA.
| |
Collapse
|
32
|
Liao PY, Wang XR, Zhang XH, Hu TS, Zheng MZ, Gao YH, Yan YJ, Chen ZL. Synthesis of 2-morpholinetetraphenylporphyrins and their photodynamic activities. Bioorg Chem 2017; 71:299-304. [PMID: 28267982 DOI: 10.1016/j.bioorg.2017.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023]
Abstract
A series of 2-morpholinetetraphenylporphyrins functionalized with various substituents (Cl, Me, MeO group) at 4-phenyl position were prepared via nucleophilic substitution of 2-nitroporphyrin copper derivatives with morpholine by refluxing under a nitrogen atmosphere and then demetalization. Their basic photophysical properties, intracellular localization, cytotoxicities in vitro and in vivo were also investigated. All synthesized photosensitizers exhibited longer maxima absorption wavelengths than Hematoporphyrin monomethyl ether (HMME). They showed low dark cytotoxicity compared with that of HMME and were more phototoxic than HMME against Eca-109 cells in vitro. M3 also exhibited better photodynamic antitumor efficacy on BALB/c nude mice at a lower concentration. Therefore, M3 is a promising antitumor photosensitizer in photodynamic therapy application.
Collapse
Affiliation(s)
- Ping-Yong Liao
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, PR China
| | - Xin-Rong Wang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, PR China
| | - Xiang-Hua Zhang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Tai-Shan Hu
- Shanghai Xianhui Pharmaceutical Co. Ltd., Shanghai 200433, China
| | - Mei-Zhen Zheng
- Shanghai Xianhui Pharmaceutical Co. Ltd., Shanghai 200433, China
| | - Ying-Hua Gao
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, PR China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co. Ltd., Shanghai 200433, China
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
33
|
Dąbrowski JM. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of Their Generation and Potentiation. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Guberman-Pfeffer MJ, Greco JA, Samankumara LP, Zeller M, Birge RR, Gascón JA, Brückner C. Bacteriochlorins with a Twist: Discovery of a Unique Mechanism to Red-Shift the Optical Spectra of Bacteriochlorins. J Am Chem Soc 2016; 139:548-560. [DOI: 10.1021/jacs.6b12419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Jordan A. Greco
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Lalith P. Samankumara
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Matthias Zeller
- Department
of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555-3663, United States
| | - Robert R. Birge
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Department
of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, United States
| | - José A. Gascón
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Christian Brückner
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
35
|
Gu B, Pliss A, Kuzmin AN, Baev A, Ohulchanskyy TY, Damasco JA, Yong KT, Wen S, Prasad PN. In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space. Biomaterials 2016; 104:78-86. [PMID: 27442221 DOI: 10.1016/j.biomaterials.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
This paper introduces the concept of in-situ upconversion of deep penetrating near infrared light via second harmonic generation from ZnO nanocrystals delivered into cells to effect photo activated therapies, such as photodynamic therapy, which usually require activation by visible light with limited penetration through biological tissues. We demonstrated this concept by subcellular activation of a photodynamic therapy drug, Chlorin e6, excited within its strong absorption Soret band by the second harmonic (SH) light, generated at 409 nm by ZnO nanocrystals, which were targeted to cancer cells and internalized through the folate-receptor mediated endocytosis. By a combination of theoretical modeling and experimental measurements, we show that SH light, generated in-situ by ZnO nanocrystals significantly contributes to activation of photosensitizer, leading to cell death through both apoptotic and necrotic pathways initiated in the cytoplasm. This targeted photodynamic action was studied using label-free Coherent Anti-Stokes Raman Scattering imaging of the treated cells to monitor changes in the distribution of native cellular proteins and lipids. We found that initiation of photodynamic therapy with upconverted light led to global reduction in the intracellular concentration of macromolecules, likely due to suppression of proteins and lipids synthesis, which could be considered as a real-time indicator of cellular damage from photodynamic treatment. In prospective applications this in-situ photon upconversion could be further extended using ZnO nanocrystals surface functionalized with a specific organelle targeting group, provided a powerful approach to identify and consequently maximize a cellular response to phototherapy, selectively initiated in a specific cellular organelle.
Collapse
Affiliation(s)
- Bobo Gu
- Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China; Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Artem Pliss
- Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Andrey N Kuzmin
- Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Alexander Baev
- Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Tymish Y Ohulchanskyy
- Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jossana A Damasco
- Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Shuangchun Wen
- Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
36
|
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound.
Collapse
|
37
|
Meng Z, Yu B, Han G, Liu M, Shan B, Dong G, Miao Z, Jia N, Tan Z, Li B, Zhang W, Zhu H, Sheng C, Yao J. Chlorin p6-Based Water-Soluble Amino Acid Derivatives as Potent Photosensitizers for Photodynamic Therapy. J Med Chem 2016; 59:4999-5010. [PMID: 27136389 DOI: 10.1021/acs.jmedchem.6b00352] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of novel photosensitizer with high phototoxicity, low dark toxicity, and good water solubility is a challenging task for photodynamic therapy (PDT). A series of chlorin p6-based water-soluble amino acid conjugates were synthesized and investigated for antitumor activity. Among them, aspartylchlorin p6 dimethylester (7b) showed highest phototoxicity against melanoma cells with weakest dark toxicity, which was more phototoxic than verteporfin while with less dark toxicity. It also exhibited better in vivo PDT antitumor efficacy on mice bearing B16-F10 tumor than verteporfin. The biological assays revealed that 7b was localized in multiple subcellular organelles and could cause both cell necrosis and apoptosis after PDT in a dose-dependent manner, resulting in more effective cell destruction. As a result, 7b represents a promising photosensitizer for PDT applications because of its strong absorption in the phototherapeutic window, relatively high singlet oxygen quantum yield, highest dark toxicity/phototoxicity ratio, good water solubility, and excellent in vivo PDT antitumor efficacy.
Collapse
Affiliation(s)
- Zhi Meng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Bin Yu
- Department of Cell Biology, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China
| | - Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Minghui Liu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine , 1 Qiuyang Road, Fuzhou, 350122, China
| | - Bin Shan
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine , 1 Qiuyang Road, Fuzhou, 350122, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Ningyang Jia
- Department of Radiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University , 225 Changhai Road, Shanghai 200438, China
| | - Zou Tan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University , 32 Shangshan Road, Fujian 350007, China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University , 32 Shangshan Road, Fujian 350007, China
| | - Wannian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Haiying Zhu
- Department of Cell Biology, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| | - Jianzhong Yao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
38
|
Mazzone G, Alberto ME, De Simone BC, Marino T, Russo N. Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations. Molecules 2016; 21:288. [PMID: 26938516 PMCID: PMC6273748 DOI: 10.3390/molecules21030288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023] Open
Abstract
The main photophysical properties of a series of expanded bacteriochlorins, recently synthetized, have been investigated by means of DFT and TD-DFT methods. Absorption spectra computed with different exchange-correlation functionals, B3LYP, M06 and ωB97XD, have been compared with the experimental ones. In good agreement, all the considered systems show a maximum absorption wavelength that falls in the therapeutic window (600-800 nm). The obtained singlet-triplet energy gaps are large enough to ensure the production of cytotoxic singlet molecular oxygen. The computed spin-orbit matrix elements suggest a good probability of intersystem spin-crossing between singlet and triplet excited states, since they result to be higher than those computed for 5,10,15,20-tetrakis-(m-hydroxyphenyl)chlorin (Foscan©) already used in the photodynamic therapy (PDT) protocol. Because of the investigated properties, these expanded bacteriochlorins can be proposed as PDT agents.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Marta E Alberto
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris (IRCP), PSL Research University, F-75005 Paris, France.
| | - Bruna C De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| |
Collapse
|
39
|
de Assis FF, Ferreira MAB, Brocksom TJ, de Oliveira KT. NIR bacteriochlorin chromophores accessed by Heck and Sonogashira cross-coupling reactions on a tetrabromobacteriochlorin derivative. Org Biomol Chem 2016; 14:1402-12. [DOI: 10.1039/c5ob02228b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a new tetrabromobacteriochlorin BCBr4 is reported. Pd cross-coupling reactions yielded tetra-coupled products with a significant red shift in the UV-Vis bands.
Collapse
Affiliation(s)
- Francisco F. de Assis
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- 13565-905 São Carlos
- Brazil
| | - Marco A. B. Ferreira
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- 13565-905 São Carlos
- Brazil
| | - Timothy J. Brocksom
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- 13565-905 São Carlos
- Brazil
| | - Kleber T. de Oliveira
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- 13565-905 São Carlos
- Brazil
| |
Collapse
|
40
|
Buglak AA, Telegina TA, Kritsky MS. A quantitative structure–property relationship (QSPR) study of singlet oxygen generation by pteridines. Photochem Photobiol Sci 2016; 15:801-11. [DOI: 10.1039/c6pp00084c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Singlet oxygen production quantum yields of pteridine photosensitizers were analyzed with the QSPR method. The ability of pterins and flavins to generate1O2in D2O correlated withEHOMOand electronegativity, as well as with the dipole moment and some other parameters.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A.N. Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| | - Taisiya A. Telegina
- A.N. Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| | - Mikhail S. Kritsky
- A.N. Bach Institute of Biochemistry
- Research Center of Biotechnology of the Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
41
|
Hu J, Tang Y, Elmenoufy AH, Xu H, Cheng Z, Yang X. Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5860-87. [PMID: 26398119 DOI: 10.1002/smll.201501923] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/03/2015] [Indexed: 05/22/2023]
Abstract
Photodynamic therapy (PDT), as an emerging clinically approved modality, has been used for treatment of various cancer diseases. Conventional PDT strategies are mainly focused on superficial lesions because the wavelength of illumination light of most clinically approved photosensitizers (PSs) is located in the UV/VIS range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep-seated tumors. The combination of PDT and nanotechnology is becoming a promising approach to fight against deep tumors. Here, the rapid development of new PDT modalities based on various smartly designed nanocomposites integrating with conventionally used PSs for deep tumor treatments is introduced. Until now many types of multifunctional nanoparticles have been studied, and according to the source of excitation energy they can be classified into three major groups: near infrared (NIR) light excited nanomaterials, X-ray excited scintillating/afterglow nanoparticles, and internal light emission excited nanocarriers. The in vitro and in vivo applications of these newly developed PDT modalities are further summarized here, which highlights their potential use as promising nano-agents for deep tumor therapy.
Collapse
Affiliation(s)
- Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yong'an Tang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ahmed H Elmenoufy
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Pharmaceutical Chemistry, College of Pharmacy, Misr University for Science and Technology, Al-Motamayez District, 6th of October City, P.O. Box: 77, Egypt
| | - Huibi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University Stanford, California, USA
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
42
|
Zhang LJ, O'Shea D, Zhang CY, Yan YJ, Wang L, Chen ZL. Evaluation of a bacteriochlorin-based photosensitizer's anti-tumor effect in vitro and in vivo. J Cancer Res Clin Oncol 2015; 141:1921-30. [PMID: 25804838 DOI: 10.1007/s00432-015-1960-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/17/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE Bacteriochlorin derivatives are promising photosensitive agents for photodynamic therapy (PDT) of tumors. In the current study, the photodynamic activity of a novel bacteriochlorin derivative, cis-2, 3, 12, 13-tetracarboxymethyl-5, 10, 15, 20-tetraphenyl bacteriochlorin (TCTB), was evaluated both in vitro and in vivo. METHODS Physicochemical characteristics of the novel photosensitizer were measured. The efficiency of TCTB-PDT in vitro was analyzed by MTT assay, clonogenic assay and in situ trypan blue exclusion test. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The accumulation of TCTB in human malignant tumor cells was measured by fluorescence spectrometer, and the pathway of cell death was analyzed by flow cytometry. S180 tumor model was used to evaluate the anti-tumor effects of TCTB-PDT. And histopathological study was also used to confirm the anti-tumor effect. RESULTS TCTB shows a singlet oxygen quantum yield of 0.56 and displays a characteristic long wavelength absorption peak at 732 nm. The accumulation of TCTB increased in time-dependent manner, and it was found in cytoplasm and nuclear membranes. In vitro PDT using TCTB and Nd:YAG laser showed drug concentration-, laser dose-dependent cytotoxicity to human esophageal cancer Eca-109 cells. In mice bearing osteosarcoma S180 tumors, the combined use of 10 mg/kg TCTB and 120 J/cm(2) showed superior anti-tumor activity. Histology examination of tumor tissues revealed that PDT using TCTB and the Nd:YAG laser induced tumor cells shrunken and necrotic. CONCLUSION In in vitro and in vivo studies, we found that TCTB has excellent anti-tumor effect. It suggests that TCTB is a potential photosensitizer of PDT for cancer.
Collapse
Affiliation(s)
- Li-Jun Zhang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Donal O'Shea
- Center for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Chun-Ye Zhang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co. Ltd, Shanghai, 200433, People's Republic of China
| | - Li Wang
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
43
|
Dąbrowski JM, Pucelik B, Pereira MM, Arnaut LG, Stochel G. Towards tuning PDT relevant photosensitizer properties: comparative study for the free and Zn2+ coordinated meso-tetrakis[2,6-difluoro-5-(N-methylsulfamylo)phenyl]porphyrin. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1073723] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | - Luis G. Arnaut
- Chemistry Department, University of Coimbra, Coimbra, Portugal
- Luzitin SA, Coimbra, Portugal
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
44
|
Dąbrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00132c] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) requires a medical device, a photosensitizing drug and adequate use of both to trigger biological mechanisms that can rapidly destroy the primary tumour and provide long-lasting protection against metastasis.
Collapse
Affiliation(s)
| | - Luis G. Arnaut
- Chemistry Department
- University of Coimbra
- 3004-535 Coimbra
- Portugal
- Luzitin SA
| |
Collapse
|
45
|
Liu X, Cho B, Chan LY, Kwan WL, Ken Lee CL. Development of asymmetrical near infrared squaraines with large Stokes shift. RSC Adv 2015. [DOI: 10.1039/c5ra18998e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New asymmetrical squaraines with large Stokes shifts of up to 90 nm were synthesized. TDDFT calculations indicate that steric effects from N,N-dibutylaniline and squaraine contribute to the large geometric change, resulting in the large Stokes shift.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Centre for Biomedical and Life Sciences
- Department of Technology
- Innovation and Enterprise (TIE)
- Singapore Polytechnic
- Singapore
| | - Bokun Cho
- Energetics Research Institute (EnRI)
- Nanyang Technological University
- Singapore
| | - Li-Yan Chan
- Centre for Biomedical and Life Sciences
- Department of Technology
- Innovation and Enterprise (TIE)
- Singapore Polytechnic
- Singapore
| | - Wei Lek Kwan
- Engineering Product Development
- Singapore University of Technology and Design
- Singapore
| | - Chi-Lik Ken Lee
- Centre for Biomedical and Life Sciences
- Department of Technology
- Innovation and Enterprise (TIE)
- Singapore Polytechnic
- Singapore
| |
Collapse
|
46
|
Elmenoufy AH, Tang Y, Hu J, Xu H, Yang X. A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chem Commun (Camb) 2015; 51:12247-50. [DOI: 10.1039/c5cc04135j] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel theranostic nanosystem was establishedviaX-ray excited LaF3:Tb scintillating nanoparticles capable of deep-seated tumour photodynamic therapy.
Collapse
Affiliation(s)
- Ahmed H. Elmenoufy
- National Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Yong'an Tang
- National Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jun Hu
- National Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Huibi Xu
- National Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Xiangliang Yang
- National Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
47
|
Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract 2015; 24 Suppl 1:14-28. [PMID: 24820409 PMCID: PMC6489067 DOI: 10.1159/000362416] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used for the management of a variety of cancers and benign diseases. The destruction of unwanted cells and tissues in PDT is achieved by the use of visible or near-infrared radiation to activate a light-absorbing compound (a photosensitizer, PS), which, in the presence of molecular oxygen, leads to the production of singlet oxygen and other reactive oxygen species. These cytotoxic species damage and kill target cells. The development of new PSs with properties optimized for PDT applications is crucial for the improvement of the therapeutic outcome. This review outlines the principles of PDT and discusses the relationship between the structure and physicochemical properties of a PS, its cellular uptake and subcellular localization, and its effect on PDT outcome and efficacy.
Collapse
Affiliation(s)
- Ludmil Benov
- *Ludmil Benov, Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
48
|
Antoni PM, Naik A, Albert I, Rubbiani R, Gupta S, Ruiz-Sanchez P, Munikorn P, Mateos JM, Luginbuehl V, Thamyongkit P, Ziegler U, Gasser G, Jeschke G, Spingler B. (Metallo)porphyrins as Potent Phototoxic Anti-Cancer Agents after Irradiation with Red Light. Chemistry 2014; 21:1179-83. [DOI: 10.1002/chem.201405470] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 01/26/2023]
|
49
|
Huang L, Krayer M, Roubil JGS, Huang YY, Holten D, Lindsey JS, Hamblin MR. Stable synthetic mono-substituted cationic bacteriochlorins mediate selective broad-spectrum photoinactivation of drug-resistant pathogens at nanomolar concentrations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:119-27. [PMID: 25463659 DOI: 10.1016/j.jphotobiol.2014.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022]
Abstract
Three stable synthetic mono-substituted cationic bacteriochlorins (BC37, BC38 and BC39) were recently reported to show exceptional activity (low nanomolar) in mediating photodynamic killing of human cancer cells after a 24h incubation upon excitation with near-infrared light (730 nm). The presence of cationic quaternary ammonium groups in each compound suggested likely activity as antimicrobial photosensitizers. Herein this hypothesis was tested against a panel of pathogenic microorganisms that have all recently drawn attention due to increased drug-resistance (Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis; Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii; and fungal yeasts, Candida albicans and Cryptococcus neoformans). All three bacteriochlorins were highly effective against both Gram-positive species (>6 logs of eradication at ⩽ 200 nM and 10 J/cm(2)). The dicationic bacteriochlorin (BC38) was best against the Gram-negative species (>6 logs at 1-2 μM) whereas the lipophilic monocationic bacteriochlorin (BC39) was best against the fungi (>6 logs at 1 μM). The bacteriochlorins produced substantial singlet oxygen (and apparently less Type-1 reactive-oxygen species such as hydroxyl radical) as judged by activation of fluorescent probes and comparison with 1H-phenalen-1-one-2-sulfonic acid; the order of activity was BC37 > BC38 > BC39. A short incubation time (30 min) resulted in selectivity for microbial cells over HeLa human cells. The highly active photodynamic inactivation of microbial cells may stem from the amphiphilic and cationic features of the bacteriochlorins.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated College & Hospital, Guangxi Medical University, Nanning 530021, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Harvard Medical School, Boston, MA 02115, United States
| | - Michael Krayer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - John G S Roubil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Harvard Medical School, Boston, MA 02115, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Harvard Medical School, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
50
|
Lim SH, Yam ML, Lam ML, Kamarulzaman FA, Samat N, Kiew LV, Chung LY, Lee HB. Photodynamic Characterization of Amino Acid Conjugated 151-Hydroxypurpurin-7-lactone for Cancer Treatment. Mol Pharm 2014; 11:3164-73. [DOI: 10.1021/mp500351s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Siang Hui Lim
- Cancer
Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang
Jaya, Selangor, Malaysia
| | - Mun Li Yam
- Cancer
Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang
Jaya, Selangor, Malaysia
| | - May Lynn Lam
- Cancer
Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang
Jaya, Selangor, Malaysia
| | - Fadzly Azhar Kamarulzaman
- Cancer
Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang
Jaya, Selangor, Malaysia
| | - Norazwana Samat
- Cancer
Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang
Jaya, Selangor, Malaysia
| | | | | | - Hong Boon Lee
- Cancer
Research Initiatives Foundation (CARIF), Sime Darby Medical Centre, Subang
Jaya, Selangor, Malaysia
| |
Collapse
|