1
|
Chen X, Zhang H, Liu D, Ma J, Jin L, Ma Y, Li J, Song G, Wang J. Injection site-retained lipid nanoparticles for targeted intramuscular delivery of mRNA RSV prefusion-F vaccine. J Mater Chem B 2025. [PMID: 40123447 DOI: 10.1039/d5tb00117j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
mRNA therapeutics, particularly mRNA vaccines, hold significant promise for a wide range of medical applications. Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicles for mRNA, but issues such as off-target effects and liver accumulation hinder their broader clinical adoption. In this study, we designed and synthesized a library of 26 novel ionizable lipids to screen for better delivery efficiency and tissue specificity. After formulating into LNPs, these ionizable lipids exhibited favorable physicochemical properties. In vitro transfection and cytotoxicity assays revealed that LNPs formulated with YK-201, YK-202, and YK-209 showed superior transfection efficiency and low cytotoxicity. In a mouse model, intramuscular injection of Fluc mRNA-LNPs resulted in sustained and localized protein expression at the injection site. When applied to prepare RSV preF-mRNA vaccines, these novel LNPs elicited robust humoral immune responses and reduced lung damage, outperforming the clinically used SM-102. The safety of the LNP formulations was subsequently demonstrated in a mouse model. Collectively, these findings highlight the potential of these novel ionizable lipids as effective injection site-retained mRNA vaccine delivery vehicles.
Collapse
Affiliation(s)
- Xichao Chen
- Institute of Medical Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
| | - Honglei Zhang
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
| | - Dongyang Liu
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
| | - Jingxuan Ma
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
| | - Lijie Jin
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
| | - Yuqing Ma
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
| | - Jing Li
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
| | - Gengshen Song
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd, Beijing, China.
| | - Juxian Wang
- Institute of Medical Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
3
|
Tilstra G, Couture-Senécal J, Lau YMA, Manning AM, Wong DSM, Janaeska WW, Wuraola TA, Pang J, Khan OF. Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery. J Am Chem Soc 2023; 145:2294-2304. [PMID: 36652629 DOI: 10.1021/jacs.2c10670] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicles for RNA and have enabled the development of RNA-based drugs such as the mRNA COVID-19 vaccines. Functional delivery of mRNA by an LNP greatly depends on the inclusion of an ionizable lipid, and small changes to these lipid structures can significantly improve delivery. However, the structure-function relationships between ionizable lipids and mRNA delivery are poorly understood, especially for LNPs administered intramuscularly. Here, we show that the iterative design of a novel series of ionizable lipids generates key structure-activity relationships and enables the optimization of chemically distinct lipids with efficacy that is on-par with the current state of the art. We find that the combination of ionizable lipids comprising an ethanolamine core and LNPs with an apparent pKa between 6.6 and 6.9 maximizes intramuscular mRNA delivery. Furthermore, we report a nonlinear relationship between the lipid-to-mRNA mass ratio and protein expression, suggesting that a critical mass ratio exists for LNPs and may depend on ionizable lipid structure. Our findings add to the mechanistic understanding of ionizable lipids and demonstrate that hydrogen bonding, ionization behavior, and lipid-to-mRNA mass ratio are key design parameters affecting intramuscular mRNA delivery. We validate these insights by applying them to the rational design of new ionizable lipids. Overall, our iterative design strategy efficiently generates potent ionizable lipids. This hypothesis-driven method reveals structure-activity relationships that lay the foundation for the optimization of ionizable lipids in future LNP-RNA drugs. We foresee that this design strategy can be extended to other optimization parameters beyond intramuscular expression.
Collapse
Affiliation(s)
- Grayson Tilstra
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Julien Couture-Senécal
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yan Ming Anson Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Alanna M Manning
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Daniel S M Wong
- Electrical and Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Wanda W Janaeska
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Titobioluwa A Wuraola
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Janice Pang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Omar F Khan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
4
|
Wu S, Liu M, Hu X, He C, Zhao C, Xiang S, Zeng Y. Evaluation of pentaerythritol-based and trimethylolpropane-based cationic lipidic materials for gene delivery. Bioorg Med Chem Lett 2022; 62:128635. [PMID: 35202809 DOI: 10.1016/j.bmcl.2022.128635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The chemical and physical structure of cationic liposomes pays an important effect on their gene transfection efficiency. Investigation on the structure-function relationship of cationic liposomes will guide the design of novel cationic liposomes with high transfection efficiency and biosafety. In this paper, two novel series of lipids based on the backbone of pentaerythritol and trimethylolpropane were discovered, and their gene transfection efficiencies were assayed in vitro. The four lipids 8c, 9c, 14b, and 15b, exhibited much better transfection efficiency in the HEK293 cell lines compared with Lipo2000, lipid 9c also showed good transfection efficiency in the SW480 cell lines. And the structure-efficiency relationship revealed that a hydroxyethyl polar head group boosted transfer potency in trimethylolpropane-type lipids, but reduced in pentaerythritol-type lipids.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Meiyan Liu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Chengxi He
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Chunyan Zhao
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Youlin Zeng
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
5
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Lee MS, Lee JW, Kim SJ, Pham-Nguyen OV, Park J, Park JH, Jung YM, Lee JB, Yoo HS. Comparison Study of the Effects of Cationic Liposomes on Delivery across 3D Skin Tissue and Whitening Effects in Pigmented 3D Skin. Macromol Biosci 2021; 21:e2000413. [PMID: 33713560 DOI: 10.1002/mabi.202000413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/18/2021] [Indexed: 11/09/2022]
Abstract
Charged phospholipids are employed to formulate liposomes with different surface charges to enhance the permeation of active ingredients through epidermal layers. Although 3D skin tissue is widely employed as an alternative to permeation studies using animal skin, only a small number of studies have compared the difference between these skin models. Liposomal delivery strategies are investigated herein, through 3D skin tissue based on their surface charges. Cationic, anionic, and neutral liposomes are formulated and their size, zeta-potential, and morphology are characterized using dynamic light scattering and cryogenic-transmission electron microscopy (cryo-TEM). A Franz diffusion cell is employed to determine the delivery efficiency of various liposomes, where all liposomes do not exhibit any recognizable difference of permeation through the synthetic membrane. When the fluorescence liposomes are applied to 3D skin, considerable fluorescence intensity is observed at the stratum cornea and epithelium layers. Compared to other liposomes, cationic liposomes exhibit the highest fluorescence intensity, suggesting the enhanced permeation of liposomes through the 3D skin layers. Finally, the ability of niacinamide (NA)-incorporated liposomes to suppress melanin transfer in pigmented 3D skin is examined, where cationic liposomes exhibit the highest degree of whitening effects.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ju Won Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Su Ji Kim
- Innovation Lab., Cosmax R&I Center, Seongnam-si, 13486, Republic of Korea
| | - Oanh-Vu Pham-Nguyen
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam-si, 13486, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
7
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
8
|
Yadav MR, Kumar M, Murumkar PR, Hazari PP, Mishra AK. Gemini Amphiphile-Based Lipoplexes for Efficient Gene Delivery: Synthesis, Formulation Development, Characterization, Gene Transfection, and Biodistribution Studies. ACS OMEGA 2018; 3:11802-11816. [PMID: 30320274 PMCID: PMC6173565 DOI: 10.1021/acsomega.8b01014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Some quaternary gemini amphiphiles (GAs) were synthesized as nonviral gene delivery carriers. The critical miceller concentration values of these amphiphiles are indicative of their superior surface-active properties. All of the synthesized GAs, alone or along with lipids like cholesterol and/or dioleoylphosphatidyl ethanolamine (DOPE), were formulated as liposomes. Formulations of GAs with DOPE showed average particle diameters of 326-400 nm with positive ζ-potential (30.1-46.4 mV). The lipoplexes of theses formulations showed complete pDNA retention at the base at a N/P ratio higher than 1.0 in gel retardation study. The GAs were effective in condensing pDNA into a ψ-phase, as indicated by circular dichroism study, and provided complete protection of the pDNA against the enzyme DNase at a N/P ratio more than 1. In vitro cell line studies showed that GA liposomal formulations caused β-gal expression and offered a higher transfection efficiency than that of liposomes prepared with the help of N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP)/DOPE and dicyclocarbodiimide (DCC)/DOPE but comparable to those of Lipofectamine 2000 in A549 and HeLa cell lines. Modulation of head group polarity significantly affected the transfection efficacy of GAs. The cell viabilities of almost all of the formulations were comparable to those of the standards (DCC/DOPE and DOTAP/DOPE liposomes). Incorporation of cholesterol [GA/DOPE/cholesterol in the ratio of 1:1:1] further improved the serum compatibility of the formulations and improved the transfection efficacy when evaluated in A549 and HeLa cell lines. Fluorescence-assisted cell sorting studies showed comparable number of transfected cells to Lipofectamine 2000 in the HeLa cell line. Intracellular trafficking studies using confocal microscopy indicated transfection of the HeLa cells with the reporter gene within 30 min of lipoplex treatment. γ-Scintigraphy using 99mTc-labeled lipoplexes showed higher concentrations of the lipoplexes in vital tissues like liver, spleen, lungs, and kidneys.
Collapse
Affiliation(s)
- Mange R. Yadav
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja
Sayajirao University of Baroda, Vadodara, 390 001 Gujarat State, India
| | - Mukesh Kumar
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja
Sayajirao University of Baroda, Vadodara, 390 001 Gujarat State, India
| | - Prashant R. Murumkar
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja
Sayajirao University of Baroda, Vadodara, 390 001 Gujarat State, India
| | - Puja P. Hazari
- Division
of Radiopharmaceuticals, Institute of Nuclear
Medicine & Allied Sciences (INMAS), Lucknow Road, Timarpur, 110 054 Delhi, India
| | - Anil K. Mishra
- Division
of Radiopharmaceuticals, Institute of Nuclear
Medicine & Allied Sciences (INMAS), Lucknow Road, Timarpur, 110 054 Delhi, India
| |
Collapse
|
9
|
Cui S, Wang Y, Gong Y, Lin X, Zhao Y, Zhi D, Zhou Q, Zhang S. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb) 2018; 7:473-479. [PMID: 30090597 PMCID: PMC6062336 DOI: 10.1039/c8tx00005k] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
As effective non-viral vectors of gene therapy, cationic lipids still have the problem of toxicity, which has become one of the main bottlenecks for their applications. The toxicity of cationic lipids is strongly connected to the headgroup structures. In this article, we studied the cytotoxicity of two cationic lipids with a quaternary ammonium headgroup (CDA14) and a tri-peptide headgroup (CDO14), respectively, and with the same linker bond and hydrophobic domain. The IC50 values of CDA14 and CDO14 against NCI-H460 cells were 109.4 μg mL-1 and 340.5 μg mL-1, respectively. To determine the effects of headgroup structures of cationic lipids on cytotoxicity, apoptosis related pathways were investigated. As the lipids with a quaternary ammonium headgroup could induce more apoptotic cells than the ones with a peptide headgroup, the enzymatic activity of caspase-9 and caspase-3 increased obviously, whereas the mitochondrial membrane potential (MMP) decreased. At the same time, the reactive oxygen species (ROS) levels also increased and the cell cycle was arrested at the S phase. The results showed that the toxicity of the cationic lipid had a close relationship with its headgroup structures, and the cytotoxic mechanism was mainly via the caspase activation dependent signaling pathway and mitochondrial dysfunction. Through this study, we hope to provide the scientific basis for exploiting safer and more efficient cationic lipids for gene delivery.
Collapse
Affiliation(s)
- Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yan Gong
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Xiao Lin
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| |
Collapse
|
10
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
11
|
Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum Gene Ther 2016; 26:452-62. [PMID: 26176432 DOI: 10.1089/hum.2015.069] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CRISPR/Cas9 genome editing platforms are widely applied as powerful tools in basic research and potential therapeutics for genome regulation. The appropriate alternative of delivery system is critical if genome editing systems are to be effectively performed in the targeted cells or organisms. To date, the in vivo delivery of the Cas9 system remains challenging. Both physical methods and viral vectors are adopted in the delivery of the Cas9-based gene editing platform. However, physical methods are more applicable for in vitro delivery, while viral vectors are generally concerned with safety issues, limited packing capacities, and so on. With the robust development of nonviral drug delivery systems, lipid- or polymer-based nanocarriers might be potent vectors for the delivery of CRISPR/Cas9 systems. In this review, we look back at the delivery approaches that have been used for the delivery of the Cas9 system and outline the recent development of nonviral vectors that might be potential carriers for the genome editing platform in the future. The efforts in optimizing cationic nanocarriers with structural modification are described and promising nonviral vectors under clinical investigations are highlighted.
Collapse
Affiliation(s)
- Ling Li
- 1 Lab for Aging Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, PR China
| | - Zhi-Yao He
- 1 Lab for Aging Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, PR China
| | - Xia-Wei Wei
- 1 Lab for Aging Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, PR China
| | - Guang-Ping Gao
- 2 Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiology Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Yu-Quan Wei
- 1 Lab for Aging Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, PR China
| |
Collapse
|
12
|
Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation. Bioorg Med Chem 2015; 23:6364-78. [PMID: 26346671 DOI: 10.1016/j.bmc.2015.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/30/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those formulated with DOPE. A number of the lipid formulations with cholesterol as co-lipid performed as well as, or better than Lipofectamine 2000™ and EPC, the two positive controls employed in these studies. These results suggest that our novel cyclic and acyclic cationic lipid vectors are effective nonviral gene transfer agents that warrant further investigation.
Collapse
|
13
|
Gupta K, Mattingly SJ, Knipp RJ, Afonin KA, Viard M, Bergman JT, Stepler M, Nantz MH, Puri A, Shapiro BA. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts. Nanomedicine (Lond) 2015; 10:2805-18. [PMID: 26107486 PMCID: PMC4636123 DOI: 10.2217/nnm.15.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To evaluate the structure-activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). MATERIALS & METHODS Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. RESULTS & CONCLUSION Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system.
Collapse
Affiliation(s)
- Kshitij Gupta
- Gene Regulation & Chromosome Biology Lab, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | - Ralph J Knipp
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Kirill A Afonin
- Gene Regulation & Chromosome Biology Lab, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Mathias Viard
- Basic Research Lab, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
- Basic Science Program, Leidos Biomedical Research, Inc., National Cancer Institute, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Joseph T Bergman
- Gene Regulation & Chromosome Biology Lab, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Marissa Stepler
- Gene Regulation & Chromosome Biology Lab, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Anu Puri
- Gene Regulation & Chromosome Biology Lab, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Bruce A Shapiro
- Gene Regulation & Chromosome Biology Lab, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
14
|
Berchel M, Le Gall T, Haelters JP, Lehn P, Montier T, Jaffrès PA. Cationic Lipophosphoramidates Containing a Hydroxylated Polar Headgroup for Improving Gene Delivery. Mol Pharm 2015; 12:1902-10. [DOI: 10.1021/mp500807k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mathieu Berchel
- CEMCA, CNRS UMR
6521, SFR ScInBioS, Université Européenne de Bretagne,
Université de Brest, Brest, France
- Plateforme
IBiSASynNanoVect,
SFR ScInBioS, Université de Bretagne Occidentale, Université
Européenne de Bretagne, 29238 Brest, Cedex 3, France
| | - Tony Le Gall
- Unité INSERM
1078, SFR ScInBioS, Université de Bretagne Occidentale, Université
Européenne de Bretagne, Faculté de Médecine et
des Sciences de la Santé, 22
avenue Camille Desmoulins, 29218 Brest, France
- Plateforme
IBiSASynNanoVect,
SFR ScInBioS, Université de Bretagne Occidentale, Université
Européenne de Bretagne, 29238 Brest, Cedex 3, France
| | - Jean-Pierre Haelters
- CEMCA, CNRS UMR
6521, SFR ScInBioS, Université Européenne de Bretagne,
Université de Brest, Brest, France
| | - Pierre Lehn
- Unité INSERM
1078, SFR ScInBioS, Université de Bretagne Occidentale, Université
Européenne de Bretagne, Faculté de Médecine et
des Sciences de la Santé, 22
avenue Camille Desmoulins, 29218 Brest, France
| | - Tristan Montier
- Unité INSERM
1078, SFR ScInBioS, Université de Bretagne Occidentale, Université
Européenne de Bretagne, Faculté de Médecine et
des Sciences de la Santé, 22
avenue Camille Desmoulins, 29218 Brest, France
- CHRU de Brest, Service
de Génétique Moléculaire et d’Histocompatibilité, 5 avenue du maréchal Foch, 29609 Brest Cedex, France
- DUMG, Faculté
de Médecine et des Sciences de la Santé, 22 avenue Camille Desmoulins, 29238 Brest, France
- Plateforme
IBiSASynNanoVect,
SFR ScInBioS, Université de Bretagne Occidentale, Université
Européenne de Bretagne, 29238 Brest, Cedex 3, France
| | - Paul-Alain Jaffrès
- CEMCA, CNRS UMR
6521, SFR ScInBioS, Université Européenne de Bretagne,
Université de Brest, Brest, France
- Plateforme
IBiSASynNanoVect,
SFR ScInBioS, Université de Bretagne Occidentale, Université
Européenne de Bretagne, 29238 Brest, Cedex 3, France
| |
Collapse
|
15
|
Yazaki Y, Oyane A, Sogo Y, Ito A, Yamazaki A, Tsurushima H. Area-specific cell stimulation via surface-mediated gene transfer using apatite-based composite layers. Int J Mol Sci 2015; 16:8294-309. [PMID: 25874757 PMCID: PMC4425081 DOI: 10.3390/ijms16048294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022] Open
Abstract
Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP)-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap) layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications.
Collapse
Affiliation(s)
- Yushin Yazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | - Yu Sogo
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsuo Ito
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | - Hideo Tsurushima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
16
|
Physicochemical and biological characterization of 1,2-dialkoylamidopropane-based lipoplexes for gene delivery. Biophys Chem 2015; 199:9-16. [DOI: 10.1016/j.bpc.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 11/21/2022]
|
17
|
Ojeda E, Puras G, Agirre M, Zárate J, Grijalvo S, Pons R, Eritja R, Martinez-Navarrete G, Soto-Sanchez C, Fernández E, Pedraz JL. Niosomes based on synthetic cationic lipids for gene delivery: the influence of polar head-groups on the transfection efficiency in HEK-293, ARPE-19 and MSC-D1 cells. Org Biomol Chem 2014; 13:1068-81. [PMID: 25412820 DOI: 10.1039/c4ob02087a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We designed niosomes based on three lipids that differed only in the polar-head group to analyze their influence on the transfection efficiency. These lipids were characterized by small-angle X-ray scattering before being incorporated into the niosomes which were characterized in terms of pKa, size, zeta potential, morphology and physical stability. Nioplexes were obtained upon the addition of a plasmid. Different ratios (w/w) were selected to analyze the influence of this parameter on size, charge and the ability to condense, release and protect the DNA. In vitro transfection experiments were performed in HEK-293, ARPE-19 and MSC-D1 cells. Our results show that the chemical composition of the cationic head-group clearly affects the physicochemical parameters of the niosomes and especially the transfection efficiency. Only niosomes based on cationic lipids with a dimethyl amino head group (lipid 3) showed a transfection capacity when compared with their counterparts amino (lipid 1) and tripeptide head-groups (lipid 2). Regarding cell viability, we clearly observed that nioplexes based on the cationic lipid 3 had a more deleterious effect than their counterparts, especially in ARPE-19 cells at 20/1 and 30/1 ratios. Similar studies could be extended to other series of cationic lipids in order to progress in the research on safe and efficient non-viral vectors for gene delivery purposes.
Collapse
Affiliation(s)
- E Ojeda
- NanoBioCel Group, University of Basque Country, Vitoria, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Improved gene transfer efficiency of a DNA-lipid-apatite composite layer by controlling the layer molecular composition. Colloids Surf B Biointerfaces 2014; 122:465-471. [DOI: 10.1016/j.colsurfb.2014.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/30/2014] [Accepted: 07/01/2014] [Indexed: 11/21/2022]
|
19
|
Yazaki Y, Oyane A, Tsurushima H, Araki H, Sogo Y, Ito A, Yamazaki A. Coprecipitation of DNA-lipid complexes with apatite and comparison with superficial adsorption for gene transfer applications. J Biomater Appl 2014; 28:937-45. [PMID: 24381202 DOI: 10.1177/0885328213486706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apatite can mediate gene transfer into cells by serving as a safe and biocompatible immobilization matrix for DNA and transfection reagents. Recently, an apatite layer that immobilized DNA-lipid complexes was prepared by a coprecipitation process in a supersaturated calcium phosphate solution. This composite layer (DNA-lipid-apatite layer) showed a higher gene transfer capability than an apatite layer with superficially adsorbed DNA-lipid complexes (DNA-lipid-adsorbed apatite layer). In this study, the DNA-lipid-apatite layer and the DNA-lipid-adsorbed apatite layer were compared for their physicochemical properties and gene transfer capabilities. The higher gene transfer capability of the DNA-lipid-apatite layer compared with that of the DNA-lipid-adsorbed apatite layer was reconfirmed by a luciferase assay using epithelial-like CHO-K1 cells. Physicochemical structure analyses showed that the DNA-lipid-apatite layer possessed a larger capacity for DNA-lipid complexes than the DNA-lipid-adsorbed apatite layer. The DNA-lipid-apatite layer released DNA-lipid complexes in a slow and sustained manner, whereas the DNA-lipid-adsorbed apatite layer released them in short bursts. Consequently, the release of DNA-lipid complexes from the DNA-lipid-apatite layer was larger in amount and longer in duration than release from the DNA-lipid-adsorbed apatite layer. This difference in release profiles may be responsible for the higher gene transfer capability of the DNA-lipid-apatite layer compared with that of the DNA-lipid-adsorbed apatite layer. The coprecipitation process and the resulting DNA-lipid-apatite layer have many applications in tissue engineering.
Collapse
Affiliation(s)
- Yushin Yazaki
- 1Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Parvizi P, Jubeli E, Raju L, Khalique NA, Almeer A, Allam H, Manaa MA, Larsen H, Nicholson D, Pungente MD, Fyles TM. Aspects of nonviral gene therapy: correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids. Int J Pharm 2013; 461:145-56. [PMID: 24296044 DOI: 10.1016/j.ijpharm.2013.11.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 12/11/2022]
Abstract
This study seeks correlations between the molecular structures of cationic and neutral lipids, the lipid phase behavior of the mixed-lipid lipoplexes they form with plasmid DNA, and the transfection efficacy of the lipoplexes. Synthetic cationic pyridinium lipids were co-formulated (1:1) with the cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and these lipids were co-formulated (3:2) with the neutral lipids 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol. All lipoplex formulations exhibited plasmid DNA binding and a level of protection from DNase I degradation. Composition-dependent transfection (beta-galactosidase and GFP) and cytotoxicity was observed in Chinese hamster ovarian-K1 cells. The most active formulations containing the pyridinium lipids were less cytotoxic but of comparable activity to a Lipofectamine 2000™ control. Molecular structure parameters and partition coefficients were calculated for all lipids using fragment additive methods. The derived shape parameter values correctly correlated with observed hexagonal lipid phase behavior of lipoplexes as derived from small-angle X-ray scattering experiments. A transfection index applicable to hexagonal phase lipoplexes derived from calculated parameters of the lipid mixture (partition coefficient, shape parameter, lipoplex packing) produced a direct correlation with transfection efficiency.
Collapse
Key Words
- 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine
- 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine
- 3,5-bis((hexadec-15-en-1-yloxy)carbonyl)-1-methylpyridin-1-ium
- 3,5-bis((hexadecyloxy)carbonyl)-1-methylpyridin-1-ium
- AI
- CHO-K1
- CR
- Cationic lipids
- Chinese hamster ovarian (K1) cells
- Chol
- DNA transfer
- DOPE
- Di16:0
- Di16:1
- EPC
- GFP
- Gene therapy.
- HGS
- LDS
- LI
- Lipoplex formulation
- Pyridinium-based lipids
- QSAR
- Quantitative structure–activity relationship
- R
- S
- S(+), S(mix)
- SAXS
- Shape parameter
- TI
- V(C), V(lip), V(mix)
- a(0)
- amphipathic index
- charge ratio of cationic lipid N to anionic DNA P
- cholesterol
- critical chain length of the hydrocarbon portion of a lipid, overall length of the lipid including the head group
- f(lat), f(cyl)
- filling factors of the lattice and cylinder unit cell, see equation 6
- green fluorescent protein
- headgroup size
- l(c), l(lip)
- lipid head group area
- lipid shape parameter, see equation 2
- lipofection index, see equation 1
- lipophilic domain size
- logP(sub)
- molar amount of lipid in the experiment with respect to the unit cell
- mole weighted average value of S for cationic lipids or mixed lipids
- n(exp)
- n(lat), n(cyl)
- octanol-water partition coefficient, subscript indicates mole weighted average value of mixed lipids (mix), cationic lipids (+), or neutral lipids (0)
- optimum molar amount of a lipid to fill the unit cell of a hexagonal lattice or a cylinder outside of the volume occupied by DNA
- pDNA
- partial molar volume of the hydrocarbon portion of a lipid, the overall lipid molecule including a counterion if required, mole weighted average value of a mixture
- plasmid DNA
- ratio of cationic lipid to neutral lipid
- small-angle X-ray scattering
- transfection index computed according to equations 3 to 6
- β-gal
- β-galactosidase
Collapse
Affiliation(s)
- Paria Parvizi
- Department of Chemistry, University of Victoria, P.O. Box 3065, Stn CSC, Victoria, BC, V8W 3V6, Canada
| | - Emile Jubeli
- Research Division, Weill Cornell Medical College in Qatar, Education City, P.O. Box 24144, Doha, Qatar
| | - Liji Raju
- Research Division, Weill Cornell Medical College in Qatar, Education City, P.O. Box 24144, Doha, Qatar
| | - Nada Abdul Khalique
- Research Division, Weill Cornell Medical College in Qatar, Education City, P.O. Box 24144, Doha, Qatar
| | - Ahmed Almeer
- Research Division, Weill Cornell Medical College in Qatar, Education City, P.O. Box 24144, Doha, Qatar
| | - Hebatalla Allam
- Research Division, Weill Cornell Medical College in Qatar, Education City, P.O. Box 24144, Doha, Qatar
| | - Maryem Al Manaa
- Research Division, Weill Cornell Medical College in Qatar, Education City, P.O. Box 24144, Doha, Qatar
| | - Helge Larsen
- Department of Physics, University of Stavanger, 4036 Stavanger, Norway
| | - David Nicholson
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Michael D Pungente
- Premedical Unit, Weill Cornell Medical College in Qatar, Education City, P.O. Box 24144, Doha, Qatar.
| | - Thomas M Fyles
- Department of Chemistry, University of Victoria, P.O. Box 3065, Stn CSC, Victoria, BC, V8W 3V6, Canada
| |
Collapse
|
21
|
Jones CH, Chen CK, Ravikrishnan A, Rane S, Pfeifer BA. Overcoming nonviral gene delivery barriers: perspective and future. Mol Pharm 2013; 10:4082-98. [PMID: 24093932 DOI: 10.1021/mp400467x] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A key end goal of gene delivery research is to develop clinically relevant vectors that can be used to combat elusive diseases such as AIDS. Despite promising engineering strategies, efficiency and ultimately gene modulation efficacy of nonviral vectors have been hindered by numerous in vitro and in vivo barriers that have resulted in subviral performance. In this perspective, we concentrate on the gene delivery barriers associated with the two most common classes of nonviral vectors, cationic-based lipids and polymers. We present the existing delivery barriers and summarize current vector-specific strategies to overcome said barriers.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York , Buffalo, New York, 14260-4200, United States
| | | | | | | | | |
Collapse
|
22
|
Zhang XX, Lamanna CM, Kohman RE, McIntosh TJ, Han X, Grinstaff MW. Lipid-mediated DNA and siRNA Transfection Efficiency Depends on Peptide Headgroup. SOFT MATTER 2013; 9:10.1039/C3SM27633C. [PMID: 24391676 PMCID: PMC3878819 DOI: 10.1039/c3sm27633c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of amphiphiles with differing cationic tri- and di- peptide headgroups, designed and synthesized based on lysine (K), ornithine (O), arginine (R), and glycine (G), have been characterized and evaluated for DNA and siRNA delivery. DNA-lipoplexes formed from the tri- and di- lipopeptides possessed lipid:nucleic acid charge ratios of 7:1 to 10:1, diameters of ~200 nm to 375 nm, zeta potentials of 23 mV to 41 mV, melting temperatures of 12 °C to 46 °C, and lamellar repeat periods of 6 nm to 8 nm. These lipid-DNA complexes formed supramolecular structures in which DNA is entrapped at the surface between multilamellar liposomal vesicles. Compared to their DNA counterparts, siRNA-lipoplexes formed slightly larger complexes (348 nm to 424 nm) and required higher charge ratios to form stable structures. Additionally, it was observed that lipids with multivalent, tripeptide headgroups (i.e., KGG, OGG, and RGG) were successful at transfecting DNA in vitro, whereas DNA transfection with the dipeptide lipids proved ineffective. Cellular uptake of DNA was more effective with the KGG compared to the KG lipopeptide. In siRNA knockdown experiments, both tri- and di- peptide lipids (i.e., RGG, GGG, KG, OG, RG, GG) showed some efficacy, but total cellular uptake of siRNA complexes was not indicative of knockdown outcomes and suggested that the intracellular fate of lipoplexes may be a factor. Overall, this lipopeptide study expands the library of efficient DNA transfection vectors available for use, introduces new vectors for siRNA delivery, and begins to address the structure-activity relationships which influence delivery and transfection efficacy.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Caroline M Lamanna
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - Richie E Kohman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - Thomas J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215. ; Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
23
|
Zhi D, Zhang S, Cui S, Zhao Y, Wang Y, Zhao D. The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjug Chem 2013; 24:487-519. [DOI: 10.1021/bc300381s] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Defu Zhi
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shubiao Zhang
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shaohui Cui
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Yinan Zhao
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | | | - Defeng Zhao
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
24
|
Qiao W, Zhou M. Hydroxyl-modified cationic lipids with a carbamate linkage as gene delivery vehicles. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weihong Qiao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian; P. R.; China
| | - Min Zhou
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian; P. R.; China
| |
Collapse
|
25
|
Yazaki Y, Oyane A, Araki H, Sogo Y, Ito A, Yamazaki A, Tsurushima H. Fabrication of DNA-antibody-apatite composite layers for cell-targeted gene transfer. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064204. [PMID: 27877531 PMCID: PMC5099764 DOI: 10.1088/1468-6996/13/6/064204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/20/2012] [Indexed: 06/04/2023]
Abstract
Surface-mediated gene transfer systems using apatite (Ap)-based composite layers have received increased attention in tissue engineering applications owing to their safety, biocompatibility and relatively high efficiency. In this study, DNA-antibody-apatite composite layers (DA-Ap layers), in which DNA and antibody molecules are immobilized within a matrix of apatite nanocrystals, were fabricated using a biomimetic coating process. They were then assayed for their gene transfer capability for application in a specific cell-targeted gene transfer. A DA-Ap layer that was fabricated with an anti-CD49f antibody showed a higher gene transfer capability to the CD49f-positive CHO-K1 cells than a DNA-apatite composite layer (D-Ap layer). The antibody facilitated the gene transfer capability of the DA-Ap layer only to the specific cells that were expressing corresponding antigens. When the DA-Ap layer was fabricated with an anti-N-cadherin antibody, a higher gene transfer capability compared with the D-Ap layer was found in the N-cadherin-positive P19CL6 cells, but not in the N-cadherin-negative UV♀2 cells or in the P19CL6 cells that were pre-blocked with anti-N-cadherin. Therefore, the antigen-antibody binding that takes place at the cell-layer interface should be responsible for the higher gene transfer capability of the DA-Ap than D-Ap layer. These results suggest that the DA-Ap layer works as a mediator in a specific cell-targeted gene transfer system.
Collapse
Affiliation(s)
- Yushin Yazaki
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | - Ayako Oyane
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | - Hiroko Araki
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | - Yu Sogo
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Atsuo Ito
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Atsushi Yamazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Hideo Tsurushima
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8562, Japan
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
26
|
Loisel S, Floch V, Le Gall C, Férec C. Factors influencing the efficiency of lipoplexes mediated gene transfer in lung after intravenous administration 1 *. J Liposome Res 2012; 11:127-38. [PMID: 19530928 DOI: 10.1081/lpr-100108457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objectives of this study were to test the influence of different parameters on the in vivo cationic lipid mediated gene transfer in lung after intravenous administration. Luciferase activity was evaluated in lung tissue 24 hours after intravenous administration of different types of lipoplexes. These included lipoplexes prepared using cationic phosphonolipids or DOTAP and various amounts of plasmid DNA. Using two different plasmids we tested the influence of plasmid size on transfection efficiency in vivo. In a last series of experiments, lipoplexes were prepared using different excipients (water, NaCl or 5% glucose solution) and three injection volumes were tested. We demonstrate that chemical structure modifications such as cation substitution and increment of the aliphatic chain length significantly improve transfection efficiency. High luciferase levels are obtained by increasing lipid to DNA charge ratio and plasmid DNA dose and decreasing plasmid size. Lipoplexes prepared in physiological NaCl solution and injected using a volume of 800mul are significantly the most effective. Cationic lipid mediated gene transfer in lung tissue after intravenous administration is influenced by factors including cationic lipid chemical structure, lipid to DNA ratio and plasmid dose. Nevertheless, plasmid size, injection volume and the excipient, used for the lipoplexes preparation, are also important factors and must be considered for an optimization of in vivo gene delivery using intravenous administration.
Collapse
Affiliation(s)
- S Loisel
- Centre de Biogénétique, CHU, ETSBO, BP 454, 29275Brest Cedex, France
| | | | | | | |
Collapse
|
27
|
Synthesis and Characterization of Carbamate-Linked Cationic Lipids with Hydroxyethyl Group. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2115-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Oyane A, Yazaki Y, Araki H, Sogo Y, Ito A, Yamazaki A, Tsurushima H. Fabrication of a DNA-lipid-apatite composite layer for efficient and area-specific gene transfer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1011-1019. [PMID: 22367107 DOI: 10.1007/s10856-012-4581-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 05/31/2023]
Abstract
A surface-mediated gene transfer system using biocompatible apatite-based composite layers has great potential for tissue engineering. Among the apatite-based composite layers developed to date, we focused on a DNA-lipid-apatite composite layer (DLp-Ap layer), which has the advantage of relatively high efficiency as a non-viral system. In this study, various lipid transfection reagents, including a newly developed reagent, polyamidoamine dendron-bearing lipid (PD), were employed to prepare the DLp-Ap layer, and the preparation condition was optimized in terms of efficiency of gene transfer to epithelial-like CHO-K1 cells in the presence of serum. The optimized DLp-Ap layer derived from PD had the highest gene transfer efficiency among all the apatite-based composite layers prepared in this study. In addition, the optimized DLp-Ap layer demonstrated higher gene transfer efficiency in the presence of serum than the conventional particle-mediated systems using commercially available lipid transfection reagents. It was also shown that the optimized DLp-Ap layer mediated the area-specific gene transfer on its surface, i.e., DNA was preferentially transferred to the cells adhering to the surface of the layer. The present gene transfer system using the PD-derived DLp-Ap layer, with the advantages of high efficiency in the presence of serum and area-specificity, would be useful in tissue engineering.
Collapse
Affiliation(s)
- Ayako Oyane
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Giatrellis S, Nounesis G. Nucleic acid-lipid membrane interactions studied by DSC. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2011; 3:70-6. [PMID: 21430956 PMCID: PMC3053523 DOI: 10.4103/0975-7406.76470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 11/04/2022] Open
Abstract
The interactions of nucleic acids with lipid membranes are of great importance for biological mechanisms as well as for biotechnological applications in gene delivery and drug carriers. The optimization of liposomal vectors for clinical use is absolutely dependent upon the formation mechanisms, the morphology, and the molecular organization of the lipoplexes, that is, the complexes of lipid membranes with DNA. Differential scanning calorimetry (DSC) has emerged as an efficient and relatively easy-to-operate experimental technique that can straightforwardly provide data related to the thermodynamics and the kinetics of the DNA-lipid complexation and especially to the lipid organization and phase transitions within the membrane. In this review, we summarize DSC studies considering nucleic acid-membrane systems, accentuating DSC capabilities, and data analysis. Published work involving cationic, anionic, and zwitterionic lipids as well as lipid mixtures interacting with RNA and DNA of different sizes and conformations are included. It is shown that despite limitations, issues such as DNA- or RNA-induced phase separation and microdomain lipid segregation, liposomal aggregation and fusion, alterations of the lipid long-range molecular order, as well as membrane-induced structural changes of the nucleic acids can be efficiently treated by systematic high-sensitivity DSC studies.
Collapse
Affiliation(s)
- Sarantis Giatrellis
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
30
|
Yazaki Y, Oyane A, Sogo Y, Ito A, Yamazaki A, Tsurushima H. Control of gene transfer on a DNA-fibronectin-apatite composite layer by the incorporation of carbonate and fluoride ions. Biomaterials 2011; 32:4896-902. [PMID: 21458066 DOI: 10.1016/j.biomaterials.2011.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/07/2011] [Indexed: 11/26/2022]
Abstract
Gene transfer techniques are useful tools for controlling cell behavior, such as proliferation and differentiation. We have recently developed an efficient area-specific gene transfer system using a DNA-fibronectin-apatite composite layer (DF-Ap layer). In this system, partial dissolution of the composite layer is likely to be a crucial step for gene transfer. In the present study, layer solubility was adjusted by incorporating various contents of carbonate or fluoride ions into the DF-Ap layer via ionic substitution for the apatite crystals. Carbonate ion incorporation increased the solubility of the DF-Ap layer, thereby increasing the efficiency of gene transfer on the layer. In contrast, the incorporation of fluoride ions decreased the solubility of the DF-Ap layer, thereby decreasing the efficiency and delaying the timing of gene transfer on the layer dose-dependently. The present gene transfer system with controllable efficiency and timing would be useful in tissue engineering applications because cell differentiation can be induced effectively by regulating appropriate gene expression with suitable timing.
Collapse
Affiliation(s)
- Yushin Yazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Ghosh A, Mukherjee K, Jiang X, Zhou Y, McCarroll J, Qu J, Swain PM, Baigude H, Rana TM. Design and assembly of new nonviral RNAi delivery agents by microwave-assisted quaternization (MAQ) of tertiary amines. Bioconjug Chem 2010; 21:1581-7. [PMID: 20722369 DOI: 10.1021/bc900482r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi) is a gene-silencing phenomenon whereby double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNA. RNAi has been quickly and widely applied to discover gene functions and holds great potential to provide a new class of therapeutic agents. However, new chemistry and delivery approaches are greatly needed to silence disease-causing genes without toxic effects. We reasoned that conjugation of the cholesterol moiety to cationic lipids would enhance RNAi efficiencies and lower the toxic effects of lipid-mediated RNAi delivery. Here, we report the first design and synthesis of new cholesterol-conjugated cationic lipids for RNAi delivery using microwave-assisted quaternization (MAQ) of tertiary amines. This strategy can be employed to develop new classes of nonviral gene delivery agents under safe and fast reaction conditions.
Collapse
Affiliation(s)
- Animesh Ghosh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nantz MH, Dicus CW, Hilliard B, Yellayi S, Zou S, Hecker JG. The benefit of hydrophobic domain asymmetry on the efficacy of transfection as measured by in vivo imaging. Mol Pharm 2010; 7:786-94. [PMID: 20232902 DOI: 10.1021/mp900298f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We, and others, have observed that the structure of cationic lipids appears to have a significant effect on the transfection efficacy of optimized nucleic acid/cationic lipid complexes (lipoplexes) used for in vitro and in vivo gene delivery and expression. Although there are many in vitro comparisons of lipid reagents for gene delivery, few comparisons have been made in vivo. We previously reported the effects of changes in hydrophobic domain chain length and chain asymmetry, changes in headgroup composition, and counterion exchange. We have observed in our own work over many years the apparent superiority of asymmetric versus symmetric hydrocarbon domains for otherwise similar lipids. In this investigation we use in vivo whole animal brain imaging to evaluate the contribution of symmetric versus asymmetric hydrophobic domains on what we previously determined to be optimal chain lengths for in vitro transfections. We specifically investigated several glycerol-based lipids; however, the rare reports of asymmetric non-glycerol-based lipids also support our observations. We found that asymmetric, two-chain cationic lipids of 14 to 18 carbons perform significantly better in vivo, as analyzed by whole animal imaging, than the paired symmetric lipids.
Collapse
Affiliation(s)
- Michael H Nantz
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6112, USA
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Oyane A, Tsurushima H, Ito A. Highly efficient gene transfer system using a laminin-DNA-apatite composite layer. J Gene Med 2010; 12:194-206. [PMID: 20082421 DOI: 10.1002/jgm.1425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We have recently developed a safe and efficient gene transfer system using a laminin-DNA-apatite composite layer. The objectives of the present study were to fully characterize and optimize the laminin-DNA-apatite composite layer in relation to the efficiency of gene transfer and to demonstrate the feasibility of the composite layer in the induction of cell differentiation. METHODS The laminin-DNA-apatite composite layer was prepared under various conditions. The efficiency of gene transfer on the resulting composite layer was evaluated using luciferase and ss-galactosidase gene expression assay systems. A laminin-DNA-apatite composite layer, prepared under the optimized condition using a plasmid including cDNA of nerve growth factor (NGF), was then applied to the neuron-like differentiation of PC12 cells. RESULTS The laminin content of the laminin-DNA-apatite composite layer was found to be a dominant factor improving the efficiency of gene transfer rather than the DNA content. The cell adhesion property of laminin in the composite layer should be responsible for the improvement in efficiency of gene transfer because the immobilization of albumin without the cell adhesion property in a DNA-apatite composite layer had no effect on the efficiency of gene transfer. A laminin-DNA-apatite composite layer, prepared under the optimized condition using a plasmid including cDNA of NGF, successfully induced the neuron-like differentiation of PC12 cells. CONCLUSIONS The present gene transfer system, with the potential to control cell differentiation and having features of safety and relatively high and controllable efficiency, would be a useful tool for tissue engineering applications and the production of transfection microarrays.
Collapse
Affiliation(s)
- Ayako Oyane
- Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| | | | | |
Collapse
|
35
|
Oyane A, Murayama M, Yamazaki A, Sogo Y, Ito A, Tsurushima H. Fibronectin-DNA-apatite composite layer for highly efficient and area-specific gene transfer. J Biomed Mater Res A 2010; 92:1038-47. [PMID: 19296545 DOI: 10.1002/jbm.a.32449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In 2004, Shen et al. developed a safe and efficient gene transfer system using a DNA-apatite composite layer. We have recently succeeded in improving further the gene transfer efficiency by immobilizing a cell adhesion molecule laminin, in a DNA-apatite composite layer. In this study, we showed that not only laminin but fibronectin immobilized in a DNA-apatite composite layer enhances cell adhesion and cell spreading on the layer, thereby markedly improving the gene transfer efficiency. Therefore, the immobilization of a cell adhesion molecule in a DNA-apatite composite layer is crucial for improving the gene transfer efficiency. By using fibronectin instead of laminin and optimizing the condition to prepare the fibronectin-DNA-apatite composite layer, the amount (weight) of cell adhesion molecule required was reduced to approximately one-fourth while retaining the relatively high gene transfer efficiency. It was also shown that the resulting fibronectin-DNA-apatite composite layer prepared under the optimized condition mediated the area-specific gene transfer on its surface, that is, DNA was preferentially transferred to the cells adhering to the surface of the fibronectin-DNA-apatite composite layer. The present gene transfer system with potential for area-specific transfection and advantages of safety and relatively high efficiency would be useful in tissue engineering applications, gene therapy, and production of transfection microarrays.
Collapse
Affiliation(s)
- Ayako Oyane
- Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Zhi D, Zhang S, Wang B, Zhao Y, Yang B, Yu S. Transfection Efficiency of Cationic Lipids with Different Hydrophobic Domains in Gene Delivery. Bioconjug Chem 2010; 21:563-77. [DOI: 10.1021/bc900393r] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- DeFu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - ShuBiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - Bing Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - YiNan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - BaoLing Yang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - ShiJun Yu
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| |
Collapse
|
37
|
Abstract
Nucleophilic cationization reagents fitted with aminooxy groups are described. Practical syntheses of mono- and bis-aminooxy tetraalkylammonium iodides including N-hydroxyethyl-functionalized analogs are reported. An oximation example using one of the reagents is presented to illustrate their use in synthesis of cationic materials.
Collapse
Affiliation(s)
- Souvik Biswas
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Xuan Huang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Wesley R. Badger
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Michael H. Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
38
|
Giatrellis S, Nikolopoulos G, Sideratou Z, Nounesis G. Calorimetric study of the interaction of binary DMTAP/DOTAP cationic liposomes with plasmid DNA. J Liposome Res 2009; 19:220-30. [DOI: 10.1080/08982100902746596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Randazzo RAS, Bucki R, Janmey PA, Diamond SL. A series of cationic sterol lipids with gene transfer and bactericidal activity. Bioorg Med Chem 2009; 17:3257-65. [PMID: 19364656 DOI: 10.1016/j.bmc.2009.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 11/16/2022]
Abstract
A family of cationic lipids was synthesized via direct amide coupling of spermine to the C-24 position of cholic acid analogs. Four monosubstituted spermines and a bis-substituted spermine were evaluated as plasmid transfection reagents, as bacteriostatic agents, and as bactericidal agents. The incorporation of a double bond in the sterol moiety enhanced transfection efficiency significantly and produced two compounds with little cytotoxicity and transfection potency comparable to Lipofectamine2000. Inclusion of the double bond had no effect on the general trend of increasing bactericidal activity with increasing sterol hydrophobicity. Co-formulation of the most hydrophilic of the compounds with its bis-substituted analogue led to enhancement in transfection activity. The bis-substituted compound, when tested alone, emerged as the most bacteriostatic compound in the family with minimum inhibitory concentrations (MIC) of 4 microM against Bacillus subtilis and 16 microM against Escherichia coli and therapeutic indexes (minimum hemolytic concentration/minimum inhibitory concentration) of 61 and 15, respectively. Cationic lipids can be optimized for both gene delivery and antibacterial applications by similar modifications.
Collapse
Affiliation(s)
- R A S Randazzo
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, 1024 Vagelos Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
| | - Eric E. Simanek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
41
|
Chiaramoni NS, Baccarini LC, Taira MC, Alonso SDV. Liposome/DNA systems: correlation between hydrophobicity and DNA conformational changes. J Biol Phys 2008; 34:179-88. [PMID: 19669501 DOI: 10.1007/s10867-008-9103-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 06/27/2008] [Indexed: 10/21/2022] Open
Abstract
In a previous work, we found that liposome hydrophobicity could affect deoxyribonucleic acid (DNA) association efficiency. Now, we have focused on the possible correlation between liposome hydrophobicity and DNA conformation. DNA lyophilized with cationic vesicles with high hydrophobicity changes its conformation into a more condensed form, probably the C form. With noncharged vesicles, it changes its conformation from B to a partial A form. These results contribute to a better understanding of the interaction between DNA and lipids, suggesting there is direct relationship between hydrophobicity and DNA conformation changes: The higher the hydrophobicity factor, the more pronounced the changes in DNA form, to a more condensed form.
Collapse
Affiliation(s)
- N S Chiaramoni
- Laboratorio de Biomembranas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, B1876BXD, Quilmes, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
42
|
Bianco A, Napolitano R, Bonadies F, Celona D, Ortaggi G, Cametti C. Liposomes from a new chiral cationic lipid based on iridoidic template. Nat Prod Res 2007; 21:1221-7. [PMID: 18075883 DOI: 10.1080/14786410500162526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new cationic polyhydroxylated lipid, characterized by a chiral template, was synthesized. It comes from an iridoid glucoside, as polyhydroxylated moiety. This lipid affords liposomes using cholesterol-like co-lipid. The liposomes had a spheroidal shape with a small size distribution.
Collapse
Affiliation(s)
- Armandodoriano Bianco
- Dipartimento di Chimica, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Oyane A, Tsurushima H, Ito A. Novel gene-transferring scaffolds having a cell adhesion molecule-DNA-apatite nanocomposite surface. Gene Ther 2007; 14:1750-3. [PMID: 17943146 DOI: 10.1038/sj.gt.3303041] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A low efficiency has long been the most critical problem of conventional gene-transferring systems using calcium phosphates, and this was successfully improved on by using a laminin-DNA-apatite composite (LD-Ap) layer. The gene-transferring efficiency of the LD-Ap surface was 1-2 orders of magnitude higher than that of a DNA-calcium phosphate composite surface. This is because laminin enhances cell adhesion and spreading, and this provides regions of high DNA concentration between a cell and the LD-Ap surface. The efficiency of gene transfer of the LD-Ap surface was equivalent to, or even higher than that mediated using a commercial lipid-based transfection reagent applied using the manufacturer's recommended optimum conditions. In addition, the gene-transferring efficiency of our system could be controlled by changing the laminin and DNA content in the LD-Ap layer. Moreover, our system is composed of highly safe reagents: apatite, DNA and laminin, all of which are present in the human body. Hence, the LD-Ap surface, which enhances cell attachment on its surface, and mediates a safe, highly efficient and controllable gene transfer, is highly applicable to tissue engineering and gene therapy applications.
Collapse
Affiliation(s)
- A Oyane
- Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
44
|
Ma B, Zhang S, Jiang H, Zhao B, Lv H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 2007; 123:184-94. [PMID: 17913276 DOI: 10.1016/j.jconrel.2007.08.022] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 08/09/2007] [Indexed: 01/05/2023]
Abstract
Cationic lipid-mediated gene transfer is widely used for their advantages over viral gene transfer because it is non-immunogenic, easy to produce and not oncogenic. The main drawback of the application of cationic lipids is their low transfection efficiency. Many reports about transfection efficiency of cationic lipids have been published in recent years. In this review, the current status and prospects for transfection efficiency of different morphologies of lipoplexes are discussed. High transfection activity will be acquired for H(C)(II) structure when membrane fusion is dominant, but when serum is present L(C)(alpha) lipoplexes show great superiority for their inhibition dissociation by serum during lipoplexes transporting. Increasing DOPE often gains high activity for the H(C)(II) structure promoted by DOPE. High lipofection will be gained from large lipoplexes when endocytosis is dominant, because large particles facilitate membrane contact and fusion. We suggest morphologies of lipoplex should be characterized at two levels, lipoplex size and self-assemble structures of lipoplexes, and understanding these would be very important for scientists to prepare novel cationic lipids and design novel formulations with high transfection efficiency.
Collapse
Affiliation(s)
- Baichao Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | | | | | | | | |
Collapse
|
45
|
Highly efficient cationic hydroxyethylated cholesterol-based nanoparticle-mediated gene transfer in vivo and in vitro in prostate carcinoma PC-3 cells. J Control Release 2007; 120:122-30. [PMID: 17512626 DOI: 10.1016/j.jconrel.2007.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/20/2007] [Accepted: 04/16/2007] [Indexed: 11/26/2022]
Abstract
Optimal gene therapy for tumors must deliver DNA to tumor cells with high efficiency and minimal toxicity. It has been reported that in non-viral gene delivery, the hydroxyethyl group at the amino terminal in cationic lipid was important for high transfection efficiency. Therefore, in this study, we developed new cationic nanoparticles (NP-OH) composed of cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine and Tween 80, and optimized in vitro and in vivo transfections for potential use as a non-viral DNA vector into human prostate tumor PC-3 cells and xenografts. In vitro transfection resulted in efficient DNA transfer when positive-charged nanoplex was prepared in the presence of sodium chloride (NaCl). In in vivo transfection, negative-charged nanoplex formed in water strongly induced the gene expression compared with positive-charged nanoplex when directly transfected into xenografts. These transfection efficiencies in vitro and in vivo were comparable to each commercial product. Furthermore, NP-OH nanoplexes displayed no induction of tumor necrosis factor (TNF)-alpha when administered by intravenous injection. The results of the experiments provided optimal conditions to form NP-OH nanoplex for gene delivery in vitro and in vivo. NP-OH is a potential non-viral DNA vector for the local treatment of tumor and in vitro.
Collapse
|
46
|
Abstract
Cationic lipids are conceptually and methodologically simple tools to deliver nucleic acids into the cells. Strategies based on cationic lipids are viable alternatives to viral vectors and are becoming increasingly popular owing to their minimal toxicity. The first-generation cationic lipids were built around the quaternary nitrogen primarily for binding and condensing DNA. A large number of lipids with variations in the hydrophobic and hydrophilic region were generated with excellent transfection efficiencies in vitro. These cationic lipids had reduced efficiencies when tested for gene delivery in vivo. Efforts in the last decade delineated the cell biological basis of the cationic lipid gene delivery to a significant detail. The application of techniques such as small angle X-ray spectroscopy (SAXS) and fluorescence microscopy, helped in linking the physical properties of lipid:DNA complex (lipoplex) with its intracellular fate. This biological knowledge has been incorporated in the design of the second-generation cationic lipids. Lipid-peptide conjugates (peptoids) are effective strategies to overcome the various cellular barriers along with the lipoplex formulations methodologies. In this context, cationic lipid-mediated gene delivery is considerably benefited by the methodologies of liposome-mediated drug delivery. Lipid mediated gene delivery has an intrinsic advantage of being a biomimetic platform on which considerable variations could be built to develop efficient in vivo gene delivery protocols.
Collapse
Affiliation(s)
- N Madhusudhana Rao
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
47
|
|
48
|
Savva M, Chen P, Aljaberi A, Selvi B, Spelios M. In vitro lipofection with novel asymmetric series of 1,2-dialkoylamidopropane-based cytofectins containing single symmetric bis-(2-dimethylaminoethane) polar headgroups. Bioconjug Chem 2006; 16:1411-22. [PMID: 16287237 DOI: 10.1021/bc050138c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl[bis-(2-dimethylaminoethane)] bivalent cationic lipids were synthesized and evaluated for in vitro transfection activity against a murine melanoma cell line. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the dioleoyl derivative 22 (1,2lb5) elicited transfection activity. The transfection activity of this lipid was reduced when formulated with DOPE. Contrary to that, the dimyristoyl derivative 19 (1,2lb2) mediated no activity when used alone but induced the highest levels of marker gene expression in the presence of DOPE. In an effort to correlate the transfection activity with cationic lipid structures, the physicochemical properties of cationic lipids in isolation and of lipoplexes were studied with surface tensiometry, photon correlation spectroscopy, gel electrophoresis mobility shift assay, and fluorescence techniques. In regard to the lipoplex properties, gel electrophoresis mobility shift assay and EtBr exclusion fluorescence assay revealed that the 1,2lb5 was the only lipid to associate and condense plasmid DNA, respectively. Photon correlation spectroscopy analysis found that 1,2lb5/DNA complexes were of relatively small size compared to all other lipoplexes. With respect to the properties of isolated lipids, Langmuir monolayer studies and fluorescence anisotropy on cationic lipid dispersions verified high two-plane elasticity and increased fluidity of the transfection competent dioleoyl derivative 1,2lb5, respectively. The results indicate that high transfection activity is mediated by cationic lipids characterized by an expanded mean molecular area, high molecular elasticity, and increased fluidity.
Collapse
Affiliation(s)
- Michalakis Savva
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, New York 11201, USA.
| | | | | | | | | |
Collapse
|
49
|
Cao A, Briane D, Coudert R. Chapter 5: Cationic Liposomes as Transmembrane Carriers of Nucleic Acids. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)04005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
50
|
Narang AS, Thoma L, Miller DD, Mahato RI. Cationic lipids with increased DNA binding affinity for nonviral gene transfer in dividing and nondividing cells. Bioconjug Chem 2005; 16:156-68. [PMID: 15656587 DOI: 10.1021/bc049818q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effect of headgroup structure on catonic lipid-mediated transfection was investigated with either a (i) tertiary amine, (ii) quaternary amine with a hydroxyl, or (iii) quaternary amine with mesylate as headgroups. Liposomes were formulated using cholesterol or dioleoyl phosphatidyl ethanolamine (DOPE) as colipids, and transfection efficiencies were determined in rapidly dividing colon carcinoma (CT 26) and rat aortic smooth muscle (RASM) cells as well as in nondividing human pancreatic islets using luciferase and green fluorescent protein expression plasmids, pcDNA3-Luc and pCMS-EGFP, respectively. Liposome/pDNA complexes were evaluated for DNA conformational state by circular dichroism (CD), DNA condensation by electrophoretic mobility shift assay (EMSA), particle size and zeta potential by laser diffraction technique, and surface morphology by transmission electron microscopy (TEM). Encouraging transfection results were obtained with the mesylate headgroup based lipid in liposome formulations with DOPE as a colipid, which were higher than the commercially available Lipofectamine formulation. We hypothesize that the additional hydrogen bonding or covalent interactions of the headgroup with the plasmid DNA, leading to higher binding affinity of the cationic lipids to pDNA, results in higher transfection. This hypothesis is supported by TEM observations where elongated complexes were observed and more lipid was seen associated with the DNA.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|