1
|
Sohail SH, Sohoni S, Ting PC, Fantz LR, Abdulhadi SM, MacGregor-Chatwin C, Hitchcock A, Hunter CN, Engel GS, Massey SC. Functional Connectivity of Red Chlorophylls in Cyanobacterial Photosystem I Revealed by Fluence-Dependent Transient Absorption. J Phys Chem B 2025; 129:3191-3197. [PMID: 40100810 PMCID: PMC11956136 DOI: 10.1021/acs.jpcb.5c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/20/2025]
Abstract
External stressors modulate the oligomerization state of photosystem I (PSI) in cyanobacteria. The number of red chlorophylls (Chls), pigments lower in energy than the P700 reaction center, depends on the oligomerization state of PSI. Here, we use ultrafast transient absorption spectroscopy to interrogate the effective connectivity of the red Chls in excitonic energy pathways in trimeric PSI in native thylakoid membranes of the model cyanobacterium Synechocystis sp. PCC 6803, including emergent dynamics, as red Chls increase in number and proximity. Fluence-dependent dynamics indicate singlet-singlet annihilation within energetically connected red Chl sites in the PSI antenna but not within bulk Chl sites on the picosecond time scale. These data support picosecond energy transfer between energetically connected red Chl sites as the physical basis of singlet-singlet annihilation. The time scale of this energy transfer is faster than predicted by Förster resonance energy transfer calculations, raising questions about the physical mechanism of the process. Our results indicate distinct strategies to steer excitations through the PSI antenna; the red Chls present a shallow reservoir that direct excitations away from P700, extending the time to trapping by the reaction center.
Collapse
Affiliation(s)
- Sara H. Sohail
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Laboratory
of Chemical Physics, National Institute
of Diabetes, and Digestive, and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
- Department
of Chemistry and Biochemistry, Swarthmore
College, Swarthmore, Pennsylvania 19081, United States
| | - Siddhartha Sohoni
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Po-Chieh Ting
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lexi R. Fantz
- Department
of Chemistry and Biochemistry, Southwestern
University, Georgetown, Texas 78626, United States
| | - Sami M. Abdulhadi
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | | | - Andrew Hitchcock
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Gregory S. Engel
- Department
of Chemistry, Institute for Biophysical
Dynamics, the James Franck Institute, and the Pritzker School for
Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sara C. Massey
- Department
of Chemistry and Biochemistry, Southwestern
University, Georgetown, Texas 78626, United States
| |
Collapse
|
2
|
Nakamura Y, Okochi M, Itoh S, Kimura A. Key Chlorophyll a Molecules in the Uphill Energy Transfer from Chlorophyll f to P700 in Far-Red Light-Adapted Photosystem I. J Phys Chem B 2025; 129:599-610. [PMID: 39750059 DOI: 10.1021/acs.jpcb.4c05007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Multiple far-red light-adapted photosystem I (FR-PSI) reaction centers are recently found to work in oxygenic photosynthesis. They contain a small amount of a new type pigment chlorophyll f (Chl f) in addition to the major pigment chlorophyll a (Chl a). FR-PSI differs from the conventional PSIs in plants and cyanobacteria, which use only visible light absorbed by Chl a, although the mechanism of FR-PSI is not fully clear yet. We theoretically studied the light-harvesting mechanism of FR-PSI of Fischerella thermalis PCC 7521, in which a small amount of Chl f transfers the excitation energy of FR-light uphill to Chl a. We constructed two types of exciton models for FR-PSI using pigment arrangements based on the structural information. A model that assumes the same site energy value for all of the antenna Chl a molecules reproduced most of the experimentally obtained properties. The transient absorption spectra, excitation energy relaxation, and mean first passage time (MFPT) of the excitation energy transfer from Chls f and a to the special pair P700 (a pair of Chl a/Chl a') were numerically calculated. The model, however, could not reproduce the low but distinct absorption intensity between the Chl a- and Chl f-bands and predicted a rather slow energy transfer from Chl f to P700. Advanced "modified models" further tested the effect of modification of the site energy values at individual antenna Chl a molecules. The optical properties and MFPTs of FR-PSI were calculated for each model with modified site energy values to evaluate the uphill light-harvesting process. The analysis showed that Chl a-1131 and -1222 play key roles in the light-harvesting process from Chl f molecules to P700, regardless of the excitation wavelength. The locations and site energy values of these Chl a molecules were found to be essential to reproduce the unique uphill energy transfer function of FR-PSI.
Collapse
Affiliation(s)
- Yuka Nakamura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mikihito Okochi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
3
|
Zazubovich V, Jankowiak R. High-Resolution Frequency-Domain Spectroscopic and Modeling Studies of Photosystem I (PSI), PSI Mutants and PSI Supercomplexes. Int J Mol Sci 2024; 25:3850. [PMID: 38612659 PMCID: PMC11011720 DOI: 10.3390/ijms25073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Saito K, Mitsuhashi K, Tamura H, Ishikita H. Quantum mechanical analysis of excitation energy transfer couplings in photosystem II. Biophys J 2023; 122:470-483. [PMID: 36609140 PMCID: PMC9941724 DOI: 10.1016/j.bpj.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
We evaluated excitation energy transfer (EET) coupling (J) between all pairs of chlorophylls (Chls) and pheophytins (Pheos) in the protein environment of photosystem II based on the time-dependent density functional theory with a quantum mechanical/molecular mechanics approach. In the reaction center, the EET coupling between Chls PD1 and PD2 is weaker (|J(PD1/PD2)| = 79 cm-1), irrespective of a short edge-to-edge distance of 3.6 Å (Mg-to-Mg distance of 8.1 Å), than the couplings between PD1 and the accessory ChlD1 (|J(PD1/ChlD2)| = 104 cm-1) and between PD2 and ChlD2 (|J(PD2/ChlD1)| = 101 cm-1), suggesting that PD1 and PD2 are two monomeric Chls rather than a "special pair". There exist strongly coupled Chl pairs (|J| > ∼100 cm-1) in the CP47 and CP43 core antennas, which may be candidates for the red-shifted Chls observed in spectroscopic studies. In CP47 and CP43, Chls ligated to CP47-His26 and CP43-His56, which are located in the middle layer of the thylakoid membrane, play a role in the "hub" that mediates the EET from the lumenal to stromal layers. In the stromal layer, Chls ligated to CP47-His466, CP43-His441, and CP43-His444 mediate the EET from CP47 to ChlD2/PheoD2 and from CP43 to ChlD1/PheoD1 in the reaction center. Thus, the excitation energy from both CP47 and CP43 can always be utilized for the charge-separation reaction in the reaction center.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | - Koji Mitsuhashi
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Russo M, Casazza AP, Cerullo G, Santabarbara S, Maiuri M. Ultrafast excited state dynamics in the monomeric and trimeric photosystem I core complex of Spirulina platensis probed by two-dimensional electronic spectroscopy. J Chem Phys 2022; 156:164202. [PMID: 35490013 DOI: 10.1063/5.0078911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Photosystem I (PSI), a naturally occurring supercomplex composed of a core part and a light-harvesting antenna, plays an essential role in the photosynthetic electron transfer chain. Evolutionary adaptation dictates a large variability in the type, number, arrangement, and absorption of the Chlorophylls (Chls) responsible for the early steps of light-harvesting and charge separation. For example, the specific location of long-wavelength Chls (referred to as red forms) in the cyanobacterial core has been intensively investigated, but the assignment of the chromophores involved is still controversial. The most red-shifted Chl a form has been observed in the trimer of the PSI core of the cyanobacterium Spirulina platensis, with an absorption centered at ∼740 nm. Here, we apply two-dimensional electronic spectroscopy to study photoexcitation dynamics in isolated trimers and monomers of the PSI core of S. platensis. By means of global analysis, we resolve and compare direct downhill and uphill excitation energy transfer (EET) processes between the bulk Chls and the red forms, observing significant differences between the monomer (lacking the most far red Chl form at 740 nm) and the trimer, with the ultrafast EET component accelerated by five times, from 500 to 100 fs, in the latter. Our findings highlight the complexity of EET dynamics occurring over a broad range of time constants and their sensitivity to energy distribution and arrangement of the cofactors involved. The comparison of monomeric and trimeric forms, differing both in the antenna dimension and in the extent of red forms, enables us to extract significant information regarding PSI functionality.
Collapse
Affiliation(s)
- Mattia Russo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
6
|
Kondo T, Shibata Y. Recent advances in single-molecule spectroscopy studies on light-harvesting processes in oxygenic photosynthesis. Biophys Physicobiol 2022. [PMCID: PMC9173860 DOI: 10.2142/biophysico.bppb-v19.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Photosynthetic light-harvesting complexes (LHCs) play a crucial role in concentrating the photon energy from the sun that otherwise excites a typical pigment molecule, such as chlorophyll-a, only several times a second. Densely packed pigments in the complexes ensure efficient energy transfer to the reaction center. At the same time, LHCs have the ability to switch to an energy-quenching state and thus play a photoprotective role under excessive light conditions. Photoprotection is especially important for oxygenic photosynthetic organisms because toxic reactive oxygen species can be generated through photochemistry under aerobic conditions. Because of the extreme complexity of the systems in which various types of pigment molecules strongly interact with each other and with the surrounding protein matrixes, there has been long-standing difficulty in understanding the molecular mechanisms underlying the flexible switching between the light-harvesting and quenching states. Single-molecule spectroscopy studies are suitable to reveal the conformational dynamics of LHCs reflected in the fluorescence properties that are obscured in ordinary ensemble measurements. Recent advanced single-molecule spectroscopy studies have revealed the dynamical fluctuations of LHCs in their fluorescence peak position, intensity, and lifetime. The observed dynamics seem relevant to the conformational plasticity required for the flexible activations of photoprotective energy quenching. In this review, we survey recent advances in the single-molecule spectroscopy study of the light-harvesting systems of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University
| |
Collapse
|
7
|
Excitation energy transfer kinetics of trimeric, monomeric and subunit-depleted Photosystem I from Synechocystis PCC 6803. Biochem J 2021; 478:1333-1346. [PMID: 33687054 DOI: 10.1042/bcj20210021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023]
Abstract
Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing 'red' chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a 'minimal' monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5-2 red Chls emitting at 710-715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer-monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.
Collapse
|
8
|
The structure of a red-shifted photosystem I reveals a red site in the core antenna. Nat Commun 2020; 11:5279. [PMID: 33077842 PMCID: PMC7573975 DOI: 10.1038/s41467-020-18884-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Photosystem I coordinates more than 90 chlorophylls in its core antenna while achieving near perfect quantum efficiency. Low energy chlorophylls (also known as red chlorophylls) residing in the antenna are important for energy transfer dynamics and yield, however, their precise location remained elusive. Here, we construct a chimeric Photosystem I complex in Synechocystis PCC 6803 that shows enhanced absorption in the red spectral region. We combine Cryo-EM and spectroscopy to determine the structure−function relationship in this red-shifted Photosystem I complex. Determining the structure of this complex reveals the precise architecture of the low energy site as well as large scale structural heterogeneity which is probably universal to all trimeric Photosystem I complexes. Identifying the structural elements that constitute red sites can expand the absorption spectrum of oxygenic photosynthetic and potentially modulate light harvesting efficiency. Cyanobacterial photosystem I has a highly conserved core antenna consisting of eleven subunits and more than 90 chlorophylls. Here via CryoEM and spectroscopy, the authors determine the location of a red-shifted low-energy chlorophyll that allows harvesting of longer wavelengths of light.
Collapse
|
9
|
Khmelnitskiy A, Toporik H, Mazor Y, Jankowiak R. On the Red Antenna States of Photosystem I Mutants from Cyanobacteria Synechocystis PCC 6803. J Phys Chem B 2020; 124:8504-8515. [DOI: 10.1021/acs.jpcb.0c05201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton Khmelnitskiy
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hila Toporik
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuval Mazor
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
10
|
Ostroumov EE, Götze JP, Reus M, Lambrev PH, Holzwarth AR. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. PHOTOSYNTHESIS RESEARCH 2020; 144:171-193. [PMID: 32307623 DOI: 10.1007/s11120-020-00745-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Light-harvesting complex II (LHCII) is the major antenna complex in higher plants and green algae. It has been suggested that a major part of the excited state energy dissipation in the so-called "non-photochemical quenching" (NPQ) is located in this antenna complex. We have performed an ultrafast kinetics study of the low-energy fluorescent states related to quenching in LHCII in both aggregated and the crystalline form. In both sample types the chlorophyll (Chl) excited states of LHCII are strongly quenched in a similar fashion. Quenching is accompanied by the appearance of new far-red (FR) fluorescence bands from energetically low-lying Chl excited states. The kinetics of quenching, its temperature dependence down to 4 K, and the properties of the FR-emitting states are very similar both in LHCII aggregates and in the crystal. No such FR-emitting states are found in unquenched trimeric LHCII. We conclude that these states represent weakly emitting Chl-Chl charge-transfer (CT) states, whose formation is part of the quenching process. Quantum chemical calculations of the lowest energy exciton and CT states, explicitly including the coupling to the specific protein environment, provide detailed insight into the chemical nature of the CT states and the mechanism of CT quenching. The experimental data combined with the results of the calculations strongly suggest that the quenching mechanism consists of a sequence of two proton-coupled electron transfer steps involving the three quenching center Chls 610/611/612. The FR-emitting CT states are reaction intermediates in this sequence. The polarity-controlled internal reprotonation of the E175/K179 aa pair is suggested as the switch controlling quenching. A unified model is proposed that is able to explain all known conditions of quenching or non-quenching of LHCII, depending on the environment without invoking any major conformational changes of the protein.
Collapse
Affiliation(s)
- Evgeny E Ostroumov
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
- Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, V6T 1Z1, Canada
| | - Jan P Götze
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Michael Reus
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Petar H Lambrev
- Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Alfred R Holzwarth
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany.
| |
Collapse
|
11
|
Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T, Dohmae N, Chen M, Allakhverdiev SI, Shen JR, Akita F, Miyazaki N, Tomo T. Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nat Commun 2020; 11:238. [PMID: 31932639 PMCID: PMC6957486 DOI: 10.1038/s41467-019-13898-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/05/2019] [Indexed: 12/03/2022] Open
Abstract
Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f. Chlorophyll f (Chl f) is the most red-shifted Chl in oxygenic photosynthesis but its localization in photosystem I (PSI) has been unknown so far. Here the authors determine the cryo-EM structures of PSI complexes from a Chl f-containing cyanobacterium grown either under white light or far-red light conditions and identify seven Chls f in the far-red light PSI structure, whereas PSI from cells grown under white light contains only Chl a.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Toshiyuki Shinoda
- Faculty of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia.,Institute of Basic Biological Problems RAS, Pushchino, Moscow Region, Russia.,M.V. Lomonosov Moscow State University, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia.,Institute of Molecular Biology and Biotechnology ANAS, -Baku, Azerbaijan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan. .,Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan.
| | - Naoyuki Miyazaki
- Institute for Protein Research, Laboratory of Protein Synthesis and Expression, Osaka University, Osaka, 565-0871, Japan. .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, 305-8577, Japan.
| | - Tatsuya Tomo
- Faculty of Science, Tokyo University of Science, Tokyo, 162-8601, Japan.
| |
Collapse
|
12
|
Jana S, Du T, Nagao R, Noguchi T, Shibata Y. Redox-state dependent blinking of single photosystem I trimers at around liquid-nitrogen temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:30-40. [PMID: 30428304 DOI: 10.1016/j.bbabio.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
Efficient light harvesting in a photosynthetic antenna system is disturbed by a ragged and fluctuating energy landscape of the antenna pigments in response to the conformation dynamics of the protein. This situation is especially pronounced in Photosystem I (PSI) containing red shifted chlorophylls (red Chls) with the excitation energy much lower than the primary donor. The present study was conducted to clarify light-harvesting dynamics of PSI isolated from Synechocystis sp. PCC6803 by using single-molecule spectroscopy at liquid‑nitrogen temperatures. Fluorescence emission at around 720 nm from the red Chls in single PSI trimers was monitored at 80-100 K. Intermittent variations in the emission intensities, so-called blinking, were frequently observed. Its time scale lay in several tens of seconds. The blinking amplitude depended on the redox state of the phylloquinone (A1). Electrochromic shifts of Chls induced by the negative charge on A1 were calculated based on the X-ray crystallographic structure. A Chl molecule, Chl-A839 (numbering according to PDB 5OY0), bound near A1 was found to have a large electrochromic shift. This Chl has strong exciton coupling with neighboring Chl (A838) whose site energy was predicted to be determined by interaction with an arginine residue (ArgF84) [Adolphs et al., 2010]. A possible scenario of the blinking was proposed. Conformational fluctuations of ArgF84 seesaw the excitation-energy of Chl-A838, which perturbs the branching ratio of excitation-energy between the red Chl and the cationic form of P700 as a quencher. The electrochromic shift of Chl-A839 enhances the effect of the conformation dynamics of ArgF84.
Collapse
Affiliation(s)
- Sankar Jana
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Ting Du
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Ryo Nagao
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
13
|
Lee Y, Gorka M, Golbeck JH, Anna JM. Ultrafast Energy Transfer Involving the Red Chlorophylls of Cyanobacterial Photosystem I Probed through Two-Dimensional Electronic Spectroscopy. J Am Chem Soc 2018; 140:11631-11638. [DOI: 10.1021/jacs.8b04593] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yumin Lee
- Deparment of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jessica M. Anna
- Deparment of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Pieper J, Artene P, Rätsep M, Pajusalu M, Freiberg A. Evaluation of Electron–Phonon Coupling and Spectral Densities of Pigment–Protein Complexes by Line-Narrowed Optical Spectroscopy. J Phys Chem B 2018; 122:9289-9301. [DOI: 10.1021/acs.jpcb.8b05220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Pieper J, Rätsep M, Golub M, Schmitt FJ, Artene P, Eckert HJ. Excitation energy transfer in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by spectral hole burning. PHOTOSYNTHESIS RESEARCH 2017; 133:225-234. [PMID: 28560566 DOI: 10.1007/s11120-017-0396-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
The cyanobacterium Acaryochloris marina developed two types of antenna complexes, which contain chlorophyll-d (Chl d) and phycocyanobilin (PCB) as light-harvesting pigment molecules, respectively. The latter membrane-extrinsic complexes are denoted as phycobiliproteins (PBPs). Spectral hole burning was employed to study excitation energy transfer and electron-phonon coupling in PBPs. The data reveal a rich spectral substructure with a total of four low-energy electronic states whose absorption bands peak at 633, 644, 654, and at about 673 nm. The electronic states at ~633 and 644 nm can be tentatively attributed to phycocyanin (PC) and allophycocyanin (APC), respectively. The remaining low-energy electronic states including the terminal emitter at 673 nm may be associated with different isoforms of PC, APC, or the linker protein. Furthermore, the hole burning data reveal a large number of excited state vibrational frequencies, which are characteristic for the chromophore PCB. In summary, the results are in good agreement with the low-energy level structure of PBPs and electron-phonon coupling parameters reported by Gryliuk et al. (BBA 1837:1490-1499, 2014) based on difference fluorescence line-narrowing experiments.
Collapse
Affiliation(s)
- Jörg Pieper
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia.
| | - Margus Rätsep
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Maksym Golub
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Franz-Josef Schmitt
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Petrica Artene
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Hann-Jörg Eckert
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| |
Collapse
|
16
|
Szewczyk S, Giera W, D'Haene S, van Grondelle R, Gibasiewicz K. Comparison of excitation energy transfer in cyanobacterial photosystem I in solution and immobilized on conducting glass. PHOTOSYNTHESIS RESEARCH 2017; 132:111-126. [PMID: 27696181 PMCID: PMC5387024 DOI: 10.1007/s11120-016-0312-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
Excitation energy transfer in monomeric and trimeric forms of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 in solution or immobilized on FTO conducting glass was compared using time-resolved fluorescence. Deposition of PSI on glass preserves bi-exponential excitation decay of ~4-7 and ~21-25 ps lifetimes characteristic of PSI in solution. The faster phase was assigned in part to photochemical quenching (charge separation) of excited bulk chlorophylls and in part to energy transfer from bulk to low-energy (red) chlorophylls. The slower phase was assigned to photochemical quenching of the excitation equilibrated over bulk and red chlorophylls. The main differences between dissolved and immobilized PSI (iPSI) are: (1) the average excitation decay in iPSI is about 11 ps, which is faster by a few ps than for PSI in solution due to significantly faster excitation quenching of bulk chlorophylls by charge separation (~10 ps instead of ~15 ps) accompanied by slightly weaker coupling of bulk and red chlorophylls; (2) the number of red chlorophylls in monomeric PSI increases twice-from 3 in solution to 6 after immobilization-as a result of interaction with neighboring monomers and conducting glass; despite the increased number of red chlorophylls, the excitation decay accelerates in iPSI; (3) the number of red chlorophylls in trimeric PSI is 4 (per monomer) and remains unchanged after immobilization; (4) in all the samples under study, the free energy gap between mean red (emission at ~710 nm) and mean bulk (emission at ~686 nm) emitting states of chlorophylls was estimated at a similar level of 17-27 meV. All these observations indicate that despite slight modifications, dried PSI complexes adsorbed on the FTO surface remain fully functional in terms of excitation energy transfer and primary charge separation that is particularly important in the view of photovoltaic applications of this photosystem.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznan, Poland
| | - Wojciech Giera
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznan, Poland
| | - Sandrine D'Haene
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Krzysztof Gibasiewicz
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznan, Poland.
| |
Collapse
|
17
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
18
|
Herascu N, Hunter MS, Shafiei G, Najafi M, Johnson TW, Fromme P, Zazubovich V. Spectral Hole Burning in Cyanobacterial Photosystem I with P700 in Oxidized and Neutral States. J Phys Chem B 2016; 120:10483-10495. [PMID: 27661089 DOI: 10.1021/acs.jpcb.6b07803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicoleta Herascu
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - Mark S. Hunter
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States
| | - Golia Shafiei
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - Mehdi Najafi
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - T. Wade Johnson
- Department
of Chemistry, Susquehanna University, Selinsgrove, Pennsylvania, United States
| | - Petra Fromme
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States
| | - Valter Zazubovich
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| |
Collapse
|
19
|
Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1627-1640. [PMID: 27372198 DOI: 10.1016/j.bbabio.2016.06.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023]
Abstract
While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding.
Collapse
|
20
|
Rätsep M, Pajusalu M, Linnanto JM, Freiberg A. Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy. J Chem Phys 2015; 141:155102. [PMID: 25338912 DOI: 10.1063/1.4897637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have observed that an assembly of the bacteriochloropyll a molecules into B850 and B875 groups of cyclic bacterial light-harvesting complexes LH2 and LH1, respectively, results an almost total loss of the intra-molecular vibronic structure in the fluorescence spectrum, and simultaneously, an essential enhancement of its phonon sideband due to electron-phonon coupling. While the suppression of the vibronic coupling in delocalized (excitonic) molecular systems is predictable, as also confirmed by our model calculations, a boost of the electron-phonon coupling is rather unexpected. The latter phenomenon is explained by exciton self-trapping, promoted by mixing the molecular exciton states with charge transfer states between the adjacent chromophores in the tightly packed B850 and B875 arrangements. Similar, although less dramatic trends were noted for the light-harvesting complexes containing chlorophyll pigments.
Collapse
Affiliation(s)
- Margus Rätsep
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
| | - Mihkel Pajusalu
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
| | | | - Arvi Freiberg
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
21
|
Skandary S, Konrad A, Hussels M, Meixner AJ, Brecht M. Orientations between Red Antenna States of Photosystem I Monomers from Thermosynechococcus elongatus Revealed by Single-Molecule Spectroscopy. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sepideh Skandary
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Alexander Konrad
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Martin Hussels
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Alfred J. Meixner
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Marc Brecht
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
- Zurich University of Applied Science (ZHAW), CH-8401 Winterthur, Switzerland
| |
Collapse
|
22
|
|
23
|
Karapetyan NV, Bolychevtseva YV, Yurina NP, Terekhova IV, Shubin VV, Brecht M. Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions. BIOCHEMISTRY (MOSCOW) 2014; 79:213-20. [PMID: 24821447 DOI: 10.1134/s0006297914030067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.
Collapse
Affiliation(s)
- N V Karapetyan
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | | | |
Collapse
|
24
|
Tomo T, Shinoda T, Chen M, Allakhverdiev SI, Akimoto S. Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1484-9. [PMID: 24792349 DOI: 10.1016/j.bbabio.2014.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/05/2023]
Abstract
We examined energy transfer dynamics in the unique chlorophyll (Chl) f-containing cyanobacterium Halomicronema hongdechloris. The absorption band of Chl f appeared during cultivation of this organism under far-red light. The absorption maximum of Chl f in organic solvents occurs at a wavelength of approximately 40 nm longer than that of Chl a. In vivo, the cells display a new absorption band at approximately 730 nm at 298 K, which is at a significantly longer wavelength than that of Chl a. We primarily assigned this band to a long wavelength form of Chl a. The function of Chl f is currently unknown. We measured the fluorescence of cells using time-resolved fluorescence spectroscopy in the picosecond-to-nanosecond time range and found clear differences in fluorescence properties between the cells that contained Chl f and the cells that did not. After excitation, the fluorescence peaks of photosystem I and photosystem II appeared quickly but diminished immediately. A unique fluorescence peak located at 748 nm subsequently appeared in cells containing Chl f. This finding strongly suggests that the Chl f in this alga exists in photosystem I and II complexes and is located close to each molecule of Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Tatsuya Tomo
- Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan; PRESTO, Japan Science and Technology Agency (JST) , Saitama 332-0012, Japan.
| | - Toshiyuki Shinoda
- Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Min Chen
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan; CREST, Japan Science and Technology Agency (JST) , Kobe 657-8501, Japan
| |
Collapse
|
25
|
Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1490-9. [PMID: 24560813 DOI: 10.1016/j.bbabio.2014.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/26/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
In adaption to its specific environmental conditions, the cyanobacterium Acaryochloris marina developed two different types of light-harvesting complexes: chlorophyll-d-containing membrane-intrinsic complexes and phycocyanobilin (PCB) - containing phycobiliprotein (PBP) complexes. The latter complexes are believed to form a rod-shaped structure comprising three homo-hexamers of phycocyanin (PC), one hetero-hexamer of phycocyanin and allophycocyanin (APC) and probably a linker protein connecting the PBPs to the reaction centre. Excitation energy transfer and electron-vibrational coupling in PBPs have been investigated by selectively excited fluorescence spectra. The data reveal a rich spectral substructure with a total of five low-energy electronic states with fluorescence bands at 635nm, 645nm, 654nm, 659nm and a terminal emitter at about 673 nm. The electronic states at ~635 and 645 nm are tentatively attributed to PC and APC, respectively, while an apparent heterogeneity among PC subunits may also play a role. The other fluorescence bands may be associated with three different isoforms of the linker protein. Furthermore, a large number of vibrational features can be identified for each electronic state with intense phonon sidebands peaking at about 31 to 37cm⁻¹, which are among the highest phonon frequencies observed for photosynthetic antenna complexes. The corresponding Huang-Rhys factors S fall in the range between 0.98 (terminal emitter), 1.15 (APC), and 1.42 (PC). Two characteristic vibronic lines at about 1580 and 1634cm⁻¹ appear to reflect CNH⁺ and CC stretching modes of the PCB chromophore, respectively. The exact phonon and vibrational frequencies vary with electronic state implying that the respective PCB chromophores are bound to different protein environments. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
|
26
|
Tian L, Farooq S, van Amerongen H. Probing the picosecond kinetics of the photosystem II core complex in vivo. Phys Chem Chem Phys 2013; 15:3146-54. [DOI: 10.1039/c3cp43813a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Yao DCI, Brune DC, Vermaas WFJ. Lifetimes of photosystem I and II proteins in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 2011; 586:169-73. [PMID: 22197103 DOI: 10.1016/j.febslet.2011.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 11/26/2022]
Abstract
The half-life times of photosystem I and II proteins were determined using (15)N-labeling and mass spectrometry. The half-life times (30-75h for photosystem I components and <1-11h for the large photosystem II proteins) were similar when proteins were isolated from monomeric vs. oligomeric complexes on Blue-Native gels, suggesting that the two forms of both photosystems can interchange on a timescale of <1h or that only one form of each photosystem exists in thylakoids in vivo. The half-life times of proteins associated with either photosystem generally were unaffected by the absence of Small Cab-like proteins.
Collapse
Affiliation(s)
- Danny C I Yao
- School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | |
Collapse
|
28
|
Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T. Site Selective and Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation Energy Transfer, and Electron–Phonon Coupling of Selected Photosynthetic Complexes. Chem Rev 2011; 111:4546-98. [DOI: 10.1021/cr100234j] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mike Reppert
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal H4B1R6 Quebec, Canada
| | - Jörg Pieper
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University of Berlin, Germany
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
| | - Tonu Reinot
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
29
|
Pieper J, Rätsep M, Trostmann I, Schmitt FJ, Theiss C, Paulsen H, Eichler H, Freiberg A, Renger G. Excitonic Energy Level Structure and Pigment−Protein Interactions in the Recombinant Water-Soluble Chlorophyll Protein. II. Spectral Hole-Burning Experiments. J Phys Chem B 2011; 115:4053-65. [DOI: 10.1021/jp111457t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Pieper
- Max-Volmer-Laboratories for
Biophysical Chemistry, Berlin Institute of Technology, Berlin, Germany
| | - M. Rätsep
- Institute of Physics, University of Tartu, Tartu, Estonia
| | - I. Trostmann
- Institute of General Botany, Johannes Gutenberg University Mainz, Germany
| | - F.-J. Schmitt
- Max-Volmer-Laboratories for
Biophysical Chemistry, Berlin Institute of Technology, Berlin, Germany
- Institute of Optics and Atomic
Physics, Berlin Institute of Technology, Germany
| | - C. Theiss
- Institute of Optics and Atomic
Physics, Berlin Institute of Technology, Germany
| | - H. Paulsen
- Institute of General Botany, Johannes Gutenberg University Mainz, Germany
| | - H.J. Eichler
- Institute of Optics and Atomic
Physics, Berlin Institute of Technology, Germany
| | - A. Freiberg
- Institute of Physics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - G. Renger
- Max-Volmer-Laboratories for
Biophysical Chemistry, Berlin Institute of Technology, Berlin, Germany
| |
Collapse
|
30
|
El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rögner M. Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 2010; 49:4740-51. [PMID: 20359245 DOI: 10.1021/bi901807p] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Until now, the functional and structural characterization of monomeric photosystem 1 (PS1) complexes from Thermosynechococcus elongatus has been hampered by the lack of a fully intact PS1 preparation; for this reason, the three-dimensional crystal structure at 2.5 A resolution was determined with the trimeric PS1 complex [Jordan, P., et al. (2001) Nature 411 (6840), 909-917]. Here we show the possibility of isolating from this cyanobacterium the intact monomeric PS1 complex which preserves all subunits and the photochemical activity of the isolated trimeric complex. Moreover, the equilibrium between these complexes in the thylakoid membrane can be shifted by a high-salt treatment in favor of monomeric PS1 which can be quantitatively extracted below the phase transition temperature. Both monomers and trimers exhibit identical posttranslational modifications of their subunits and the same reaction centers but differ in the long-wavelength antenna chlorophylls. Their chlorophyll/P700 ratio (108 for the monomer and 112 for the trimer) is slightly higher than in the crystal structure, confirming mild preparation conditions. Interaction of antenna chlorophylls of the monomers within the trimer leads to a larger amount of long-wavelength chlorophylls, resulting in a higher photochemical activity of the trimers under red or far-red illumination. The dynamic equilibrium between monomers and trimers in the thylakoid membrane may indicate a transient monomer population in the course of biogenesis and could also be the basis for short-term adaptation of the cell to changing environmental conditions.
Collapse
|
31
|
|
32
|
Brecht M, Radics V, Nieder JB, Bittl R. Protein dynamics-induced variation of excitation energy transfer pathways. Proc Natl Acad Sci U S A 2009; 106:11857-61. [PMID: 19574453 PMCID: PMC2715472 DOI: 10.1073/pnas.0903586106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Indexed: 11/18/2022] Open
Abstract
Strong anticorrelation between the fluorescence emission of different emitters is observed by employing single-molecule fluorescence spectroscopy on photosystem I at cryogenic temperatures. This anticorrelation demonstrates a time-dependent interaction between pigments participating in the exciton transfer chain, implying that uniquely defined energy transfer pathways within the complex do not exist. Fluctuations of the chromophores themselves or their immediate protein surroundings induce changes in their site energy, and, as a consequence, these fluctuations change the coupling within the excitation transfer pathways. The time scales of the site energy fluctuations of the individual emitters do not meet the time scales of the observed correlated emission behavior. Therefore, the emitters must be fed individually by energetically higher lying states, causing the observed intensity variations. This phenomenon is shown for photosystem I pigment-protein complexes from 2 different cyanobacteria (Thermosynechococcus elongatus and Synechocystis sp. PCC 6803) with strongly different spectral properties underlining the general character of the findings. The variability of energy transfer pathways might play a key role in the extreme robustness of light-harvesting systems in general.
Collapse
Affiliation(s)
- M Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
33
|
Brecht M, Radics V, Nieder JB, Studier H, Bittl R. Red Antenna States of Photosystem I from Synechocystis PCC 6803. Biochemistry 2008; 47:5536-43. [DOI: 10.1021/bi800121t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Volker Radics
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Jana B. Nieder
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Hauke Studier
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | - Robert Bittl
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
34
|
Brecht M, Nieder JB, Studier H, Schlodder E, Bittl R. Red antenna states of photosystem I from Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2008; 95:155-162. [PMID: 17924203 DOI: 10.1007/s11120-007-9241-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 05/25/2023]
Abstract
Absorption, fluorescence and single-molecule spectroscopy at low temperatures were used to elucidate spectral properties, heterogeneities and dynamics of the red-shifted chlorophyll a (Chla) molecules responsible for the fluorescence in photosystem I (PSI) from the cyanobacterium Synechoccocus sp. PCC 7002. The 77 K absorption spectrum indicates the presence of 2-3 red-shifted Chla's absorbing at about 708 nm. The fluorescence emission spectrum is dominated by a broad band at 714 nm. The emission spectra of single PSI complexes show zero-phonon lines (ZPLs) as well as a broad intensity distribution without ZPLs. The spectral region below 710 nm often shows ZPLs, they form a spectral band with a maximum at 698 nm (F698). The region above 710 nm is dominated by broad intensity distributions and the observation of ZPLs is less frequent. The broad distributions are due to the emission of the C708 Chla's and the emission from F698 stems from a Chla species absorbing at the blue side of P700. The properties of these two emissions show a close relation to those of the C708 and C719 pools observed in T. elongatus. Therefore an assignment of F698 and C708 to Chla-species with similarities to C708 and C719 in T. elongatus is proposed.
Collapse
Affiliation(s)
- Marc Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195, Berlin, Germany
| | | | | | | | | |
Collapse
|
35
|
Riley KJ, Reinot T, Jankowiak R, Fromme P, Zazubovich V. Red Antenna States of Photosystem I from Cyanobacteria Synechocystis PCC 6803 and Thermosynechococcus elongatus: Single-Complex Spectroscopy and Spectral Hole-Burning Study. J Phys Chem B 2006; 111:286-92. [PMID: 17201451 DOI: 10.1021/jp062664m] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hole-burning and single photosynthetic complex spectroscopy were used to study the excitonic structure and excitation energy-transfer processes of cyanobacterial trimeric Photosystem I (PS I) complexes from Synechocystis PCC 6803 and Thermosynechococcus elongatus at low temperatures. It was shown that individual PS I complexes of Synechocystis PCC 6803 (which have two red antenna states, i.e., C706 and C714) reveal only a broad structureless fluorescence band with a maximum near 720 nm, indicating strong electron-phonon coupling for the lowest energy C714 red state. The absence of zero-phonon lines (ZPLs) belonging to the C706 red state in the emission spectra of individual PS I complexes from Synechocystis PCC 6803 suggests that the C706 and C714 red antenna states of Synechocystis PCC 6803 are connected by efficient energy transfer with a characteristic transfer time of approximately 5 ps. This finding is in agreement with spectral hole-burning data obtained for bulk samples of Synechocystis PCC 6803. The importance of comparing the results of ensemble (spectral hole burning) and single-complex measurements was demonstrated. The presence of narrow ZPLs near 710 nm in addition to the broad fluorescence band at approximately 730 nm in Thermosynechococcus elongatus (Jelezko et al. J. Phys. Chem. B 2000, 104, 8093-8096) has been confirmed. We also demonstrate that high-quality samples obtained by dissolving crystals of PS I of Thermosynechococcus elongatus exhibit stronger absorption in the red antenna region than any samples studied so far by us and other groups.
Collapse
Affiliation(s)
- Kerry J Riley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
36
|
Gibasiewicz K, Szrajner A, Ihalainen JA, Germano M, Dekker JP, van Grondelle R. Characterization of Low-Energy Chlorophylls in the PSI-LHCI Supercomplex from Chlamydomonas reinhardtii. A Site-Selective Fluorescence Study. J Phys Chem B 2005; 109:21180-6. [PMID: 16853744 DOI: 10.1021/jp0530909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost all photosystem I (PSI) complexes from oxygenic photosynthetic organisms contain chlorophylls that absorb at longer wavelength than that of the primary electron donor P700. We demonstrate here that the low-energy pool of chlorophylls in the PSI-LHCI complex from the green alga Chlamydomonas reinhardtii, containing five to six pigments, is significantly blue-shifted (A(max) at 700 nm at 4 K) compared to that in the PSI core preparations from several species of cyanobacteria and in PSI-LHCI particles from higher plants. This makes them almost isoenergetic with the primary donor. However, they keep the other characteristic features of "red" chlorophylls: clear spectral separation from the bulk chlorophylls, big Stokes shift revealing pronounced electron-phonon coupling, and large homogeneous and inhomogeneous broadening of approximately 170 and approximately 310 cm(-1), respectively.
Collapse
Affiliation(s)
- Krzysztof Gibasiewicz
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Zucchelli G, Morosinotto T, Garlaschi FM, Bassi R, Jennings RC. The low energy emitting states of the Lhca4 subunit of higher plant photosystem I. FEBS Lett 2005; 579:2071-6. [PMID: 15811320 DOI: 10.1016/j.febslet.2005.02.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/08/2005] [Accepted: 02/21/2005] [Indexed: 11/16/2022]
Abstract
The selectively red excited emission spectrum, at room temperature, of the in vitro reconstituted Lhca4, has a pronounced non-equilibrium distribution, leading to enhanced emission from the directly excited low-energy pigments. Two different emitting forms (or states), with maximal emission at 713 and 735nm (F713 and F735) and unusual spectral properties, have been identified. Both high-energy states are populated when selective excitation is into the F735 state and the fluorescence anisotropy spectrum attains the value of 0.3 in the wavelength region where both emission states are present. This indicates that the two states are on the same Lhca4 complex and have transition dipoles with similar orientation.
Collapse
Affiliation(s)
- Giuseppe Zucchelli
- Istituto di Biofisica del Consiglio Nazionale delle Ricerche - Sezione di Milano, Dipartimento di Biologia, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
38
|
Holzwarth AR, Müller MG, Niklas J, Lubitz W. Charge Recombination Fluorescence in Photosystem I Reaction Centers from Chlamydomonas reinhardtii. J Phys Chem B 2005; 109:5903-11. [PMID: 16851643 DOI: 10.1021/jp046299f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fluorescence kinetics of photosystem I core particles from Chlamydomonas reinhardtii have been measured with picosecond resolution in order to test a previous hypothesis suggesting a charge recombination mechanism for the early electron-transfer steps and the fluorescence kinetics (Müller et al. Biophys. J. 2003, 85, 3899-3922). Performing global target analyses for various kinetic models on the original fluorescence data confirms the "charge recombination" model as the only acceptable one of the models tested while all of the other models can be excluded. The analysis allowed a precise determination of (i) the effective charge separation rate constant from the equilibrated reaction center excited state (438 ns(-1)) confirming our previous assignment based on transient absorption data (Müller et al. Biophys. J. 2003, 85, 3899-3922), (ii) the effective charge recombination rate constant back to the excited state (52 ns(-1)), and (iii) the intrinsic secondary electron-transfer rate constant (80 ns(-1)). The average energy equilibration lifetime core antenna/RC is about 1 ps in the "charge recombination" model, in agreement with previous transient absorption data, vs the 18-20 ps energy transfer lifetime from antenna to RC within "transfer-to-the-trap-limited" models. The apparent charge separation lifetime in the recombination model is about three times faster than in the "transfer-to-the-trap-limited" model. We conclude that the charge separation kinetics is trap-limited in PS I cores devoid of red antenna states such as in C. reinhardtii.
Collapse
Affiliation(s)
- Alfred R Holzwarth
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim a.d. Ruhr, Germany
| | | | | | | |
Collapse
|
39
|
Schlodder E, Cetin M, Byrdin M, Terekhova IV, Karapetyan NV. P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:53-67. [PMID: 15620365 DOI: 10.1016/j.bbabio.2004.08.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 08/27/2004] [Accepted: 08/27/2004] [Indexed: 11/26/2022]
Abstract
The 5 K absorption spectrum of Photosystem I (PS I) trimers from Arthrospira platensis (old name: Spirulina platensis) exhibits long-wavelength antenna (exciton) states absorbing at 707 nm (called C707) and at 740 nm (called C740). The lowest energy state (C740) fluoresces around 760 nm (F760) at low temperature. The analysis of the spectral properties (peak position and line width) of the lowest energy transition (C740) as a function of temperature within the linear electron-phonon approximation indicates a large optical reorganization energy of approximately 110 cm(-1) and a broad inhomogeneous site distribution characterized by a line width of approximately 115 cm(-1). Linear dichroism (LD) measurements indicate that the transition dipole moment of the red-most state is virtually parallel to the membrane plane. The relative fluorescence yield at 760 nm of PS I with P700 oxidized increases only slightly when the temperature is lowered to 77 K, whereas in the presence of reduced P700 the fluorescence yield increases nearly 40-fold at 77 K as compared to that at room temperature (RT). A fluorescence induction effect could not be resolved at RT. At 77 K the fluorescence yield of PS I trimers frozen in the dark in the presence of sodium ascorbate decreases during illumination by about a factor of 5 due to the irreversible formation of (P700+)F(A/B-) in about 60% of the centers and the reversible accumulation of the longer-lived state (P700+)FX-. The quenching efficiency of different functionally relevant intermediate states of the photochemistry in PS I has been studied. The redox state of the acceptors beyond A(0) does not affect F760. Direct kinetic evidence is presented that the fluorescence at 760 nm is strongly quenched not only by P700+ but also by 3P700. Similar kinetics were observed for flash-induced absorbance changes attributed to the decay of 3P700 or P700+, respectively, and flash-induced fluorescence changes at 760 nm measured under identical conditions. A nonlinear relationship between the variable fluorescence around 760 nm and the [P700red]/[P700total] ratio was derived from titration curves of the absorbance change at 826 nm and the variable fluorescence at 760 nm as a function of the redox potential imposed on the sample solution at room temperature before freezing. The result indicates that the energy exchange between the antennae of different monomers within a PS I trimer stimulates quenching of F760 by P700+.
Collapse
Affiliation(s)
- Eberhard Schlodder
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17 Juni, 135, 10623 Berlin, Germany.
| | | | | | | | | |
Collapse
|
40
|
Melkozernov AN, Blankenship RE. Structural and functional organization of the peripheral light-harvesting system in photosystem I. PHOTOSYNTHESIS RESEARCH 2005; 85:33-50. [PMID: 15977058 DOI: 10.1007/s11120-004-6474-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 11/19/2004] [Indexed: 05/03/2023]
Abstract
This review centers on the structural and functional organization of the light-harvesting system in the peripheral antenna of Photosystem I (LHC I) and its energy coupling to the Photosystem I (PS I) core antenna network in view of recently available structural models of the eukaryotic Photosystem I-LHC I complex, eukaryotic LHC II complexes and the cyanobacterial Photosystem I core. A structural model based on the 3D homology of Lhca4 with LHC II is used for analysis of the principles of pigment arrangement in the LHC I peripheral antenna, for prediction of the protein ligands for the pigments that are unique for LHC I and for estimates of the excitonic coupling in strongly interacting pigment dimers. The presence of chlorophyll clusters with strong pigment-pigment interactions is a structural feature of PS I, resulting in the characteristic red-shifted fluorescence. Analysis of the interactions between the PS I core antenna and the peripheral antenna leads to the suggestion that the specific function of the red pigments is likely to be determined by their localization with respect to the reaction center. In the PS I core antenna, the Chl clusters with a different magnitude of low energy shift contribute to better spectral overlap of Chls in the reaction center and the Chls of the antenna network, concentrate the excitation around the reaction center and participate in downhill enhancement of energy transfer from LHC II to the PS I core. Chlorophyll clusters forming terminal emitters in LHC I are likely to be involved in photoprotection against excess energy.
Collapse
Affiliation(s)
- Alexander N Melkozernov
- Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Tempe, AZ, 85287-1604, USA.
| | | |
Collapse
|
41
|
Gobets B, Valkunas L, van Grondelle R. Bridging the gap between structural and lattice models: a parameterization of energy transfer and trapping in Photosystem I. Biophys J 2004; 85:3872-82. [PMID: 14645077 PMCID: PMC1303689 DOI: 10.1016/s0006-3495(03)74802-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In the absence of an accurate structural model, the excited state dynamics of energy-transferring systems are often modeled using lattice models. To demonstrate the validity and other potential merits of such an approach we present the results of the modeling of the energy transfer and trapping in Photosystem I based upon the 2.5 A structural model, and show that these results can be reproduced in terms of a lattice model with only a few parameters. It has recently been shown that at room temperature the dynamics of a hypothetical Photosystem I particle, not containing any red chlorophylls (chls), are characterized by a longest (trapping) lifetime of 18 ps. The structure-based modeling of the dynamics of this particle yields an almost linear relationship between the possible values of the intrinsic charge-separation time at P700, 1/gamma, and the average single-site lifetime in the antenna, tauss. Lattice-based modeling, using the approach of a perturbed two-level model, reproduces this linear relation between tauss and 1/gamma. Moreover, this approach results in a value of the (modified) structure-function corresponding to a structure exhibiting a mixture of the characteristics of both a square and a cubic lattice, consistent with the structural model. These findings demonstrate that the lattice model describes the dynamics of the system appropriately. In the lattice model, the total trapping time is the sum of the delivery time to the reaction center and the time needed to quench the excitation after delivery. For the literature value of tauss=150 fs, both these times contribute almost equally to the total trapping time of 18 ps, indicating that the system is neither transfer- nor trap-limited. The value of approximately 9 ps for the delivery time is basically equal to the excitation-transfer time from the bulk chls to the red chls in Synechococcus elongatus, indicating that energy transfer from the bulk to the reaction center and to the red chls are competing processes. These results are consistent with low-temperature time-resolved and steady-state fluorescence measurements. We conclude that lattice models can be used to describe the global energy-transfer properties in complex chromophore networks, with the advantage that such models deal with only a few global, intuitive parameters rather than the many microscopic parameters obtained in structure-based modeling.
Collapse
Affiliation(s)
- Bas Gobets
- Division of Physics and Astronomy of the Faculty of Exact Sciences and Institute of Molecular Biological Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Gobets B, van Stokkum IHM, van Mourik F, Dekker JP, van Grondelle R. Excitation wavelength dependence of the fluorescence kinetics in Photosystem I particles from Synechocystis PCC 6803 and Synechococcus elongatus. Biophys J 2004; 85:3883-98. [PMID: 14645078 PMCID: PMC1303690 DOI: 10.1016/s0006-3495(03)74803-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The excitation-wavelength dependence of the excited-state dynamics of monomeric and trimeric Photosystem I (PSI) particles from Synechocystis PCC 6803 as well as trimeric PSI particles from Synechococcus elongatus has been studied at room temperature using time-resolved fluorescence spectroscopy. For aselective (400 nm), carotenoid (505 nm), and bulk chlorophyll (approximately 650 nm) excitation in all species, a downhill energy-transfer component is observed, corresponding to a lifetime of 3.4-5.5 ps. For selective red excitation (702-719 nm) in all species, a significantly faster, an approximately 1-ps, uphill transfer component was recorded. In Synechococcus PSI, an additional approximately 10-ps downhill energy-transfer component is found for all wavelengths of excitation, except 719 nm. Each of the species exhibits its own characteristic trap spectrum, the shape of which is independent of the wavelength of excitation. This trap spectrum decays in approximately 23 ps in both monomeric and trimeric Synechocystis PSI and in approximately 35 ps in trimeric Synechococcus PSI. The data were simulated based on the 2.5 A structural model of PSI of Synechococcus elongatus using the Förster equation for energy transfer, and using the 0.6-1-ps charge-separation time and the value of 1.2-1.3 for the index of refraction that were obtained from the dynamics of a hypothetical PSI particle without red chls. The experimentally obtained lifetimes and spectra were reproduced well by assigning three of the chlorophyll-a (chla) dimers observed in the structure to the C708/C702RT pool of red chls present in PSI from both species. Essential for the simulation of the dynamics of Synechococcus PSI is the assignment of the single chla trimer in the structure to the C719/C708RT pool present in this species.
Collapse
Affiliation(s)
- Bas Gobets
- Division of Physics and Astronomy of the Exact Faculty of Sciences and Institute of Molecular Biological Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Hsin TM, Zazubovich V, Hayes JM, Small GJ. Red Antenna States of PS I of Cyanobacteria: Stark Effect and Interstate Energy Transfer. J Phys Chem B 2004. [DOI: 10.1021/jp049572m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T.-M. Hsin
- Department of Chemistry, Iowa State University and Ames Laboratory-USDOE, Ames, Iowa 50011
| | - V. Zazubovich
- Department of Chemistry, Iowa State University and Ames Laboratory-USDOE, Ames, Iowa 50011
| | - J. M. Hayes
- Department of Chemistry, Iowa State University and Ames Laboratory-USDOE, Ames, Iowa 50011
| | - G. J. Small
- Department of Chemistry, Iowa State University and Ames Laboratory-USDOE, Ames, Iowa 50011
| |
Collapse
|
44
|
Dispersive hole growth kinetics and fluence broadening of the zero-phonon hole of impurities in amorphous hosts. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2003.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Ihalainen JA, Rätsep M, Jensen PE, Scheller HV, Croce R, Bassi R, Korppi-Tommola JEI, Freiberg A. Red Spectral Forms of Chlorophylls in Green Plant PSI− A Site-Selective and High-Pressure Spectroscopy Study. J Phys Chem B 2003. [DOI: 10.1021/jp034778t] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Janne A. Ihalainen
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland, Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldensvej, DK-1871 Fredriksberg C, Copenhagen, Denmark, and Facolta di Scienze MM.FF.NN., Università di Verona, Strada Le Grazie-Cà Vignal, 37134 Verona, Italy
| | - Margus Rätsep
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland, Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldensvej, DK-1871 Fredriksberg C, Copenhagen, Denmark, and Facolta di Scienze MM.FF.NN., Università di Verona, Strada Le Grazie-Cà Vignal, 37134 Verona, Italy
| | - Poul Erik Jensen
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland, Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldensvej, DK-1871 Fredriksberg C, Copenhagen, Denmark, and Facolta di Scienze MM.FF.NN., Università di Verona, Strada Le Grazie-Cà Vignal, 37134 Verona, Italy
| | - Henrik Vibe Scheller
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland, Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldensvej, DK-1871 Fredriksberg C, Copenhagen, Denmark, and Facolta di Scienze MM.FF.NN., Università di Verona, Strada Le Grazie-Cà Vignal, 37134 Verona, Italy
| | - Roberta Croce
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland, Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldensvej, DK-1871 Fredriksberg C, Copenhagen, Denmark, and Facolta di Scienze MM.FF.NN., Università di Verona, Strada Le Grazie-Cà Vignal, 37134 Verona, Italy
| | - Roberto Bassi
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland, Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldensvej, DK-1871 Fredriksberg C, Copenhagen, Denmark, and Facolta di Scienze MM.FF.NN., Università di Verona, Strada Le Grazie-Cà Vignal, 37134 Verona, Italy
| | - Jouko E. I. Korppi-Tommola
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland, Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldensvej, DK-1871 Fredriksberg C, Copenhagen, Denmark, and Facolta di Scienze MM.FF.NN., Università di Verona, Strada Le Grazie-Cà Vignal, 37134 Verona, Italy
| | - Arvi Freiberg
- Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland, Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldensvej, DK-1871 Fredriksberg C, Copenhagen, Denmark, and Facolta di Scienze MM.FF.NN., Università di Verona, Strada Le Grazie-Cà Vignal, 37134 Verona, Italy
| |
Collapse
|
46
|
Jankowiak R, Rätsep M, Hayes J, Zazubovich V, Picorel R, Seibert M, Small GJ. Primary Charge-Separation Rate at 5 K in Isolated Photosystem II Reaction Centers Containing Five and Six Chlorophyll a Molecules. J Phys Chem B 2003. [DOI: 10.1021/jp021787d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Jankowiak
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - M. Rätsep
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - J. Hayes
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - V. Zazubovich
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - R. Picorel
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - M. Seibert
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - G. J. Small
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| |
Collapse
|
47
|
|
48
|
Stübner M, Hecht C, Friedrich J. Labeling proteins via hole burning of their aromatic amino acids: pressure tuning spectroscopy of BPTI. Biophys J 2002; 83:3553-7. [PMID: 12496122 PMCID: PMC1302430 DOI: 10.1016/s0006-3495(02)75355-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate hole burning on a protein by using an intrinsic aromatic amino acid as a probe. The protein is bovine pancreatic trypsin inhibitor (BPTI), the labeled amino acid is tyrosine. Only one of the four tyrosines could be burned. As an application we present pressure tuning experiments from which the local compressibility around the burned tyrosine probe is determined.
Collapse
Affiliation(s)
- Markus Stübner
- Physik Department E14--Lehrstuhl für Physik Weihenstephan, Technische Universität München, Vottinger Strasse 40, 85350 Freising, Germany
| | | | | |
Collapse
|
49
|
Frese RN, Palacios MA, Azzizi A, van Stokkum IHM, Kruip J, Rögner M, Karapetyan NV, Schlodder E, van Grondelle R, Dekker JP. Electric field effects on red chlorophylls, beta-carotenes and P700 in cyanobacterial Photosystem I complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:180-91. [PMID: 12160991 DOI: 10.1016/s0005-2728(02)00242-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have probed the absorption changes due to an externally applied electric field (Stark effect) of Photosystem I (PSI) core complexes from the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus and Spirulina platensis. The results reveal that the so-called C719 chlorophylls in S. elongatus and S. platensis are characterized by very large polarizability differences between the ground and electronically excited states (with Tr(Deltaalpha) values up to about 1000 A(3) f(-2)) and by moderately high change in permanent dipole moments (with average Deltamu values between 2 and 3 D f(-1)). The C740 chlorophylls in S. platensis and, in particular, the C708 chlorophylls in all three species give rise to smaller Stark shifts, which are, however, still significantly larger than those found before for monomeric chlorophyll. The results confirm the hypothesis that these states originate from strongly coupled chlorophyll a molecules. The absorption and Stark spectra of the beta-carotene molecules are almost identical in all complexes and suggest similar or slightly higher values for Tr(Deltaalpha) and Deltamu than for those of beta-carotene in solution. Oxidation of P700 did not significantly change the Stark response of the carotenes and the red antenna states C719 and C740, but revealed in all PSI complexes changes around 700-705 and 690-693 nm, which we attribute to the change in permanent dipole moments of reduced P700 and the chlorophylls responsible for the strong absorption band at 690 nm with oxidized P700, respectively.
Collapse
Affiliation(s)
- Raoul N Frese
- Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gibasiewicz K, Ramesh VM, Lin S, Woodbury NW, Webber AN. Excitation Dynamics in Eukaryotic PS I from Chlamydomonas reinhardtii CC 2696 at 10 K. Direct Detection of the Reaction Center Exciton States. J Phys Chem B 2002. [DOI: 10.1021/jp014608l] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krzysztof Gibasiewicz
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| | - V. M. Ramesh
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| | - Su Lin
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| | - Neal W. Woodbury
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| | - Andrew N. Webber
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| |
Collapse
|