1
|
Oh J, Davis J, Tusseau-Nenez S, Plapp M, Baron A, Gacoin T, Kim J. Continuous Anisotropic Growth of Plasmonic Cs xWO 3-δ Nanocrystals into Rods and Platelets. ACS NANO 2025; 19:14445-14455. [PMID: 40184512 DOI: 10.1021/acsnano.5c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Shape control during nanocrystal synthesis enables tunable physicochemical properties that emerge at the nanoscale. While extensive efforts have been devoted to controlling shapes in various systems such as plasmonic metal nanoparticles or semiconductor quantum dots, the shape control of plasmonic doped semiconductor nanocrystals remains less explored and limited. Here, we report the synthesis of CsxWO3-δ nanocrystals with exquisite shape control achieved through a continuous injection synthesis combined with precursor-mediated facet-selective growth. We demonstrate that the anisotropic growth of CsxWO3-δ nanocrystals is strongly dependent on the precursor injection rate, which we attribute to the material's intrinsic structural anisotropy and the contrasting reaction kinetics on different crystallographic facets. Furthermore, we reveal that the presence of halide ions in the reaction medium is critical for passivating and suppressing the growth of Cs-exposed basal planes. By systematically modulating the shape aspect ratio, we achieved an extended range of nanocrystal morphologies, leading to a broad tunability of LSPR spectra, spanning the entire near-infrared region and extending into the mid-infrared. Computational simulations effectively reproduce the observed shape-dependent optical properties and highlight the size-dependent damping behavior consistent with the free electron model. These findings provide a robust experimental methodology for shape control in structurally anisotropic nanocrystals and offer theoretical insights into the tunable LSPR properties of heavily doped plasmonic semiconductor systems.
Collapse
Affiliation(s)
- Jisoo Oh
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| | - Joshua Davis
- CNRS, CRPP, UMR 5031, Univ. Bordeaux, F-33600 Pessac, France
| | - Sandrine Tusseau-Nenez
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| | - Mathis Plapp
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| | - Alexandre Baron
- CNRS, CRPP, UMR 5031, Univ. Bordeaux, F-33600 Pessac, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Cedex 05 Paris, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
2
|
Li X, Ge F, Zhang C, Wei J, Wang Y, Li YM, Zhu X, Zhang W, Wu XJ, Zhai L, Zhai B. Facet-Selective Growth of Dots-on-Plate II-VI Heterostructures for Efficient Photocatalytic Hydrogen Evolution. NANO LETTERS 2025; 25:4560-4567. [PMID: 40063788 DOI: 10.1021/acs.nanolett.5c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
High-level control over the surface and interface of II-VI heterostructures is crucial for enhancing charge separation and optimizing active sites, thus improving photocatalytic performance. However, due to variations in surface energy and atomic arrangement among different crystal facets, achieving selective growth of specific facets remains a significant challenge. Herein, we have achieved the selective growth of CdSe or ZnSe dots on the lateral facets or basal facets of two-dimensional CdS or ZnS nanoplates by carefully selecting Se source precursors with different reaction activities. The lateral-ZnSe/CdS exhibit enhanced activity for photocatalytic hydrogen evolution compared to that of basal-ZnSe/CdS, attributed to the high exposure ratio of the basal facets and the effective modulation of photoinduced electron-hole pairs at the lateral-ZnSe/CdS interfaces. This work expands the structural diversity of II-VI heterostructures and also provides a viable strategy to enhance their photocatalytic performance by tailoring the surface and interface structures.
Collapse
Affiliation(s)
- Xuefei Li
- Engineering Technical Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chi Zhang
- Engineering Technical Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| | - Jiaxin Wei
- Engineering Technical Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| | - Ying Wang
- Engineering Technical Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| | - Ya-Min Li
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xinrui Zhu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077 P. R. China
| | - Bin Zhai
- Engineering Technical Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| |
Collapse
|
3
|
Rashmi, Sharma SK, Chaudhary V, Pala RGS, Sivakumar S. Rapid nucleation and optimal surface-ligand interaction stabilize wurtzite MnSe. Phys Chem Chem Phys 2024; 26:20837-20851. [PMID: 39044559 DOI: 10.1039/d4cp02294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Non-native structures (NNS) differ in discrete translational symmetry from the bulk ground state native structure (NS). To explore the extent of deconvolution of various factors relevant to the stabilization of the wurtzite/NNS of MnSe via a heat-up method, we performed experiments using various ligands (oleic acid, oleylamine, octadecylamine, stearic acid, and octadecene), solvents (tetraethylene glycol and octadecene), and precursor salts (manganese chloride and manganese acetate). Experiments suggest that oleic acid in the presence of tetraethylene glycol and oleylamine in the presence of octadecene stabilize wurtzite/NNS. Further, density functional theory (DFT) computations explore the interaction between the functional groups in ligands and the most exposed surfaces of wurtzite/NNS and rocksalt/NS polymorphs. Computations suggest that the interactions between relevant surface facets with carboxylic acid and the double bond functional groups suppress the phase transformation from NNS to NS. In addition, the ionizability of the precursor salt also determines the rate of formation of the metal-ligand complex and the rate of nucleation. Consequently, the formation rate of the Mn-ligand complex is expected to be greater in the case of chloride salt than acetate salt because the chloride salt has higher ionizability in ethylene glycol. From the above, we conclude that the kinetics of the wurtzite/NNS to rocksalt/NS phase transformation depends mainly on two factors: (1) nucleation/growth kinetics which is controlled by the ionizability of the precursor salt, solvent, and stability of the metal-ligand complex, and (2) the activation energy barrier of the NNS to NS conversion which is controlled by surface energy minimization with the ligand.
Collapse
Affiliation(s)
- Rashmi
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Shilendra Kumar Sharma
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Vivek Chaudhary
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Raj Ganesh S Pala
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Sri Sivakumar
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Centre for Nanosciences, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Gangwal School and Mehta Family Center for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
4
|
Calvin JJ, Brewer AS, Crook MF, Kaufman TM, Alivisatos AP. Observation of negative surface and interface energies of quantum dots. Proc Natl Acad Sci U S A 2024; 121:e2307633121. [PMID: 38648471 PMCID: PMC11067453 DOI: 10.1073/pnas.2307633121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.
Collapse
Affiliation(s)
- Jason J. Calvin
- Department of Chemistry, University of California, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Amanda S. Brewer
- Department of Chemistry, University of California, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Michelle F. Crook
- Department of Chemistry, University of California, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Tierni M. Kaufman
- Department of Chemistry, University of California, Berkeley, CA94720
| | - A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA94720
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
5
|
Drake GA, Keating LP, Huang C, Shim M. Colloidal Multi-Dot Nanorods. J Am Chem Soc 2024; 146:9074-9083. [PMID: 38517010 DOI: 10.1021/jacs.3c14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Colloidal nanorod heterostructures consisting of multiple quantum dots within a nanorod (n-DNRs, where n is the number of quantum dots within a nanorod) are synthesized with alternating segments of CdSe "dot" and CdS "rod" via solution heteroepitaxy. The reaction temperature, time dependent ripening, and asymmetry of the wurtzite lattice and the resulting anisotropy of surface ligand steric hindrance are exploited to vary the morphology of the growing quantum dot segments. The alternating CdSe and CdS growth steps can be easily repeated to increment the dot number in unidirectional or bidirectional growth regimes. As an initial exploration of electron occupation effects on their optical properties, asymmetric 2-DNRs consisting of two dots of different lengths and diameters are synthesized and are shown to exhibit a change in color and an unusual photoluminescence quantum yield increase upon photochemical doping.
Collapse
Affiliation(s)
- Gryphon A Drake
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Logan P Keating
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Conan Huang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Ren H, Sun Y, Hoffmann F, Vandichel M, Adegoke TE, Liu N, McCarthy C, Gao P, Ryan KM. Resolving Multielement Semiconductor Nanocrystals at the Atomic Level: Complete Deciphering of Domains and Order in Complex Cu αZn βSn γSe δ (CZTSe) Tetrapods. NANO LETTERS 2024; 24:2125-2130. [PMID: 38341872 DOI: 10.1021/acs.nanolett.3c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Semiconductor nanocrystals (NCs) with high elemental and structural complexity can be engineered to tailor for electronic, photovoltaic, thermoelectric, and battery applications etc. However, this greater complexity causes ambiguity in the atomic structure understanding. This in turn hinders the mechanistic studies of nucleation and growth, the theoretical calculations of functional properties, and the capability to extend functional design across complementary semiconductor nanocrystals. Herein, we successfully deciphered the atomic arrangements of 4 different nanocrystal domains in CuαZnβSnγSeδ (CZTSe) nanocrystals using crucial zone axis analysis on multiple crystals in different orientations. The results show that the essence of crystallographic progression from binary to multielemental semiconductors is actually the change of theoretical periodicity. This transition is caused by decreased symmetry in the crystal instead of previously assumed crystal deformation. We further reveal that these highly complex crystalline entities have highly ordered element arrangements as opposed to the previous understanding that their elemental orderings are random.
Collapse
Affiliation(s)
- Huan Ren
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- Material Science and Engineering, National University of Singapore, 117557, Singapore
| | - Yuanwei Sun
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Frank Hoffmann
- Department of Chemistry, Institute of Inorganic and Applied Chemistry, University of Hamburg, Hamburg 20148, Germany
| | - Matthias Vandichel
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Temilade E Adegoke
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Ning Liu
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Conor McCarthy
- Confirm Centre & Bernal Institute, School of Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
7
|
Lee HC, Bootharaju MS, Lee K, Chang H, Kim SY, Ahn E, Li S, Kim BH, Ahn H, Hyeon T, Yang J. Revealing Two Distinct Formation Pathways of 2D Wurtzite-CdSe Nanocrystals Using In Situ X-Ray Scattering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307600. [PMID: 38072639 PMCID: PMC10853705 DOI: 10.1002/advs.202307600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Indexed: 02/10/2024]
Abstract
Understanding the mechanism underlying the formation of quantum-sized semiconductor nanocrystals is crucial for controlling their synthesis for a wide array of applications. However, most studies of 2D CdSe nanocrystals have relied predominantly on ex situ analyses, obscuring key intermediate stages and raising fundamental questions regarding their lateral shapes. Herein, the formation pathways of two distinct quantum-sized 2D wurtzite-CdSe nanocrystals - nanoribbons and nanosheets - by employing a comprehensive approach, combining in situ small-angle X-ray scattering techniques with various ex situ characterization methods is studied. Although both nanostructures share the same thickness of ≈1.4 nm, they display contrasting lateral dimensions. The findings reveal the pivotal role of Se precursor reactivity in determining two distinct synthesis pathways. Specifically, highly reactive precursors promote the formation of the nanocluster-lamellar assemblies, leading to the synthesis of 2D nanoribbons with elongated shapes. In contrast, mild precursors produce nanosheets from a tiny seed of 2D nuclei, and the lateral growth is regulated by chloride ions, rather than relying on nanocluster-lamellar assemblies or Cd(halide)2 -alkylamine templates, resulting in 2D nanocrystals with relatively shorter lengths. These findings significantly advance the understanding of the growth mechanism governing quantum-sized 2D semiconductor nanocrystals and offer valuable guidelines for their rational synthesis.
Collapse
Affiliation(s)
- Hyo Cheol Lee
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Kyunghoon Lee
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Samsung Advanced Institute of TechnologySamsung ElectronicsSuwon16678Republic of Korea
| | - Seo Young Kim
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Eonhyoung Ahn
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Shi Li
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- Department of Material Science and EngineeringSoongsil UniversitySeoul06978Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator LaboratoryPohang37673Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
- Energy Science and Engineering Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| |
Collapse
|
8
|
Llusar J, du Fossé I, Hens Z, Houtepen A, Infante I. Surface Reconstructions in II-VI Quantum Dots. ACS NANO 2024; 18:1563-1572. [PMID: 38169474 PMCID: PMC10795476 DOI: 10.1021/acsnano.3c09265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Although density functional theory (DFT) calculations have been crucial in our understanding of colloidal quantum dots (QDs), simulations are commonly carried out on QD models that are significantly smaller than those generally found experimentally. While smaller models allow for efficient study of local surface configurations, increasing the size of the QD model will increase the size or number of facets, which can in turn influence the energetics and characteristics of trap formation. Moreover, core-shell structures can only be studied with QD models that are large enough to accommodate the different layers with the correct thickness. Here, we use DFT calculations to study the electronic properties of QDs as a function of size, up to a diameter of ∼4.5 nm. We show that increasing the size of QD models traditionally used in DFT studies leads to a disappearance of the band gap and localization of the HOMO and LUMO levels on facet-specific regions of the QD surface. We attribute this to the lateral coupling of surface orbitals and the formation of surface bands. The introduction of surface vacancies and their a posteriori refilling with Z-type ligands leads to surface reconstructions that widen the band gap and delocalize both the HOMO and LUMO. These results show that the surface geometry of the facets plays a pivotal role in defining the electronic properties of the QD.
Collapse
Affiliation(s)
- Jordi Llusar
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Indy du Fossé
- Department
of Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Department of Chemistry, and Center
of Nano and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Arjan Houtepen
- Department
of Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Ivan Infante
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
9
|
Levi A, Hou B, Alon O, Ossia Y, Verbitsky L, Remennik S, Rabani E, Banin U. The Effect of Monomer Size on Fusion and Coupling in Colloidal Quantum Dot Molecules. NANO LETTERS 2023; 23:11307-11313. [PMID: 38047748 PMCID: PMC11145643 DOI: 10.1021/acs.nanolett.3c03903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
The fusion step in the formation of colloidal quantum dot molecules, constructed from two core/shell quantum dots, dictates the coupling strength and hence their properties and enriched functionalities compared to monomers. Herein, studying the monomer size effect on fusion and coupling, we observe a linear relation of the fusion temperature with the inverse nanocrystal radius. This trend, similar to that in nanocrystal melting, emphasizes the role of the surface energy. The suggested fusion mechanism involves intraparticle ripening where atoms diffuse to the reactive connecting neck region. Moreover, the effect of monomer size and neck filling on the degree of electronic coupling is studied by combined atomistic-pseudopotential calculations and optical measurements, uncovering strong coupling effects in small QD dimers, leading to significant optical changes. Understanding and controlling the fusion and hence coupling effect allows tailoring the optical properties of these nanoscale structures, with potential applications in photonic and quantum technologies.
Collapse
Affiliation(s)
- Adar Levi
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Bokang Hou
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Omer Alon
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Yonatan Ossia
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Lior Verbitsky
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sergei Remennik
- The
Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem,
Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Eran Rabani
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- The
Raymond and Beverly Sackler Center of Computational Molecular and
Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Uri Banin
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Cao W, Yakimov A, Qian X, Li J, Peng X, Kong X, Copéret C. Surface Sites and Ligation in Amine-capped CdSe Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202312713. [PMID: 37869935 DOI: 10.1002/anie.202312713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Converting colloidal nanocrystals (NCs) into devices for various applications is facilitated by designing and controlling their surface properties. One key strategy for tailoring surface properties is thus to choose tailored surface ligands. In that context, amines have been universally used, with the goal to improve NCs synthesis, processing and performances. However, understanding the nature of surface sites in amine-capped NCs remains challenging, due to the complex surface compositions as well as surface ligands dynamic. Here, we investigate both surface sites and amine ligation in CdSe NCs by combining advanced NMR spectroscopy and computational modelling. Notably, dynamic nuclear polarization (DNP) enhanced 113 Cd and 77 Se 1D NMR helps to identify both bulk and surface sites of NCs, while 113 Cd 2D NMR spectroscopy enables to resolve amines terminated sites on both Se-rich and nonpolar surfaces. In addition to directly bonding to surface sites, amines are shown to also interact through hydrogen-bonding with absorbed water as revealed by 15 N NMR, augmented with computations. The characterization methodology developed for this work provides unique molecular-level insight into the surface sites of a range of amine-capped CdSe NCs, and paves the way to identify structure-function relationships and rational approaches towards colloidal NCs with tailored properties.
Collapse
Affiliation(s)
- Weicheng Cao
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Alexander Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Xudong Qian
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Jiongzhao Li
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xiaogang Peng
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
11
|
Lei H, Li J, Kong X, Wang L, Peng X. Toward Surface Chemistry of Semiconductor Nanocrystals at an Atomic-Molecular Level. Acc Chem Res 2023. [PMID: 37413974 DOI: 10.1021/acs.accounts.3c00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
ConspectusProperties of colloidal semiconductor nanocrystals with a single-crystalline structure are largely dominated by their surface structure at an atomic-molecular level, which is not well understood and controlled, due to a lack of experimental tools. However, if viewing the nanocrystal surface as three relatively independent spatial zones (i.e., crystal facets, inorganic-ligands interface, and ligands monolayer), we may approach an atomic-molecular level by coupling advanced experimental techniques and theoretical calculations.Semiconductor nanocrystals of interest are mainly based on compound semiconductors and mostly in two (or related) crystal structures, namely zinc-blende and wurtzite, which results in a small group of common low-index crystal facets. These low-index facets, from a surface-chemistry perspective, can be further classified into polar and nonpolar ones. Albeit far from being successful, the controlled formation of either polar or nonpolar facets is available for cadmium chalcogenide nanocrystals. Such facet-controlled systems offer a reliable basis for studying the inorganic-ligands interface. For convenience, here facet-controlled nanocrystals refer to a special class of shape-controlled ones, in which shape control is at an atomic level, instead of those with poorly defined facets (e.g., typical spheroids, nanorods, etc).Experimental and theoretical results reveal that type and bonding mode of surface ligands on nanocrystals is facet-specific and often beyond Green's classification (X-type, Z-type, and L-type). For instance, alkylamines bond strongly to the anion-terminated (0001) wurtzite facet in the form of ammonium ions, with three hydrogens of an ammonium ion bonding to three adjacent surface anion sites. With theoretically assessable experimental data, facet-ligands pairing can be identified using density functional theory (DFT) calculations. To make the pairing meaningful, possible forms of all potential ligands in the system need to be examined systematically, revealing the advantage of simple solution systems.Unlike the other two spatial zones, the ligands monolayer is disordered and dynamic at an atomic level. Thus, an understanding of the ligands monolayer on a molecular scale is sufficient for many cases. For colloidal nanocrystals stably coordinated with surface ligands, their solution properties are dictated by the ligands monolayer. Experimental and theoretical results reveal that solubility of a nanocrystal-ligands complex is an interplay between the intramolecular entropy of the ligands monolayer and intermolecular interactions of the ligands/nanocrystals. By introducing entropic ligands, solubility of nanocrystal-ligands complexes can be universally boosted by several orders of magnitude, i.e., up to >1 g/mL in typical organic solvents. Molecular environment in the pseudophase surrounding each nanocrystal plays a critical role in its chemical, photochemical, and photophysical properties.For some cases, such as the synthesis of high-quality nanocrystals, all three spatial zones of the nanocrystal surface must be taken into account. By optimizing nanocrystal surface at an atomic-molecular level, semiconductor nanocrystals with monodisperse size and facet structure become available recently through either direct synthesis or afterward facet reconstruction, implying full realization of their size-dependent properties.
Collapse
Affiliation(s)
- Hairui Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Ma H, Kang S, Lee S, Park G, Bae Y, Park G, Kim J, Li S, Baek H, Kim H, Yu JS, Lee H, Park J, Yang J. Moisture-Induced Degradation of Quantum-Sized Semiconductor Nanocrystals through Amorphous Intermediates. ACS NANO 2023. [PMID: 37399231 DOI: 10.1021/acsnano.3c03103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Elucidating the water-induced degradation mechanism of quantum-sized semiconductor nanocrystals is an important prerequisite for their practical application because they are vulnerable to moisture compared to their bulk counterparts. In-situ liquid-phase transmission electron microscopy is a desired method for studying nanocrystal degradation, and it has recently gained technical advancement. Herein, the moisture-induced degradation of semiconductor nanocrystals is investigated using graphene double-liquid-layer cells that can control the initiation of reactions. Crystalline and noncrystalline domains of quantum-sized CdS nanorods are clearly distinguished during their decomposition with atomic-scale imaging capability of the developed liquid cells. The results reveal that the decomposition process is mediated by the involvement of the amorphous-phase formation, which is different from conventional nanocrystal etching. The reaction can proceed without the electron beam, suggesting that the amorphous-phase-mediated decomposition is induced by water. Our study discloses unexplored aspects of moisture-induced deformation pathways of semiconductor nanocrystals, involving amorphous intermediates.
Collapse
Affiliation(s)
- Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghan Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Gisang Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yuna Bae
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyuri Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jihoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Shi Li
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hayeon Baek
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeongseung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hoonkyung Lee
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
13
|
Fenoll D, Sodupe M, Solans-Monfort X. Influence of Capping Ligands, Solvent, and Thermal Effects on CdSe Quantum Dot Optical Properties by DFT Calculations. ACS OMEGA 2023; 8:11467-11478. [PMID: 37008094 PMCID: PMC10061629 DOI: 10.1021/acsomega.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Cadmium selenide nanomaterials are very important materials in photonics, catalysis, and biomedical applications due to their optical properties that can be tuned through size, shape, and surface passivation. In this report, static and ab initio molecular dynamics density functional theory (DFT) simulations are used to characterize the effect of ligand adsorption on the electronic properties of the (110) surface of zinc blende and wurtzite CdSe and a (CdSe)33 nanoparticle. Adsorption energies depend on ligand surface coverage and result from a balance between chemical affinity and ligand-surface and ligand-ligand dispersive interactions. In addition, while little structural reorganization occurs upon slab formation, Cd···Cd distances become shorter and the Se-Cd-Se angles become smaller in the bare nanoparticle model. This originates mid-gap states that strongly influence the absorption optical spectra of nonpassivated (CdSe)33. Ligand passivation on both zinc blende and wurtzite surfaces does not induce a surface reorganization, and thus, the band gap remains nonaffected with respect to bare surfaces. In contrast, structural reconstruction is more apparent for the nanoparticle, which significantly increases its highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap upon passivation. Solvent effects decrease the band gap difference between the passivated and nonpassivated nanoparticles, the maximum of the absorption spectra being blue-shifted around 20 nm by the effect of the ligands. Overall, calculations show that flexible surface cadmium sites are responsible for the appearance of mid-gap states that are partially localized on the most reconstructed regions of the nanoparticle that can be controlled through appropriate ligand adsorption.
Collapse
|
14
|
Yang Q, Hu J, Fang YW, Jia Y, Yang R, Deng S, Lu Y, Dieguez O, Fan L, Zheng D, Zhang X, Dong Y, Luo Z, Wang Z, Wang H, Sui M, Xing X, Chen J, Tian J, Zhang L. Ferroelectricity in layered bismuth oxide down to 1 nanometer. Science 2023; 379:1218-1224. [PMID: 36952424 DOI: 10.1126/science.abm5134] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair-driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices.
Collapse
Affiliation(s)
- Qianqian Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingcong Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yue-Wen Fang
- Centro de Física de Materiales (CSIC-UPV/EHU), Manuel de Lardizabal Pasealekua 5, 20018 Donostia/San Sebastián, Spain
- Fisika Aplikatua Saila, Gipuzkoako Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Europa Plaza 1, 20018 Donostia/San Sebastián, Spain
| | - Yueyang Jia
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Yang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shiqing Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Oswaldo Dieguez
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel
| | - Longlong Fan
- Institute of High Energy Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxing Zheng
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yongqi Dong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Wang
- Institute of High Energy Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhua Wang
- Institute of High Energy Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xianran Xing
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianjun Tian
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linxing Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
15
|
Lei H, Li T, Li J, Zhu J, Zhang H, Qin H, Kong X, Wang L, Peng X. Reversible Facet Reconstruction of CdSe/CdS Core/Shell Nanocrystals by Facet-Ligand Pairing. J Am Chem Soc 2023; 145:6798-6810. [PMID: 36942751 DOI: 10.1021/jacs.2c13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Synthesis of colloidal semiconductor nanocrystals with defined facet structures is challenging, though such nanocrystals are essential for fully realizing their size-dependent optical and optoelectronic properties. Here, for the mostly developed colloidal wurtzite CdSe/CdS core/shell nanocrystals, facet reconstruction is investigated under typical synthetic conditions, excluding nucleation, growth, and interparticle ripening. Within the reaction time window, two reproducible sets of facets─each with a specific group of low-index facets─can be reversibly reconstructed by switching the ligand system, indicating thermodynamic stability of each set. With a unique <0001> axis, atomic structures of the low-index facets of wurtzite nanocrystals are diverse. Experimental and theoretical studies reveal that each facet in a given set is paired with a common ligand in the solution, namely, either fatty amine and/or cadmium alkanoate. The robust bonding modes of ligands are found to be strongly facet-dependent and often unconventional, instead of following Green's classification. Results suggest that facet-controlled nanocrystals can be synthesized by optimal facet-ligand pairing either in synthesis or after-synthesis reconstruction, implying semiconductor nanocrystal formation with size-dependent properties down to an atomic level.
Collapse
Affiliation(s)
- Hairui Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tenghui Li
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haibing Zhang
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xueqian Kong
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
McIsaac AR, Goldzak T, Van Voorhis T. It Is a Trap!: The Effect of Self-Healing of Surface Defects on the Excited States of CdSe Nanocrystals. J Phys Chem Lett 2023; 14:1174-1181. [PMID: 36715489 DOI: 10.1021/acs.jpclett.2c03317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal semiconductor nanocrystals have attracted much interest due to their unique optical properties, with applications ranging from displays to biomedical imaging. Nanocrystal optical properties depend on the structure of the surface, where defects can lead to traps. CdSe nanocrystals undergo surface reorganization, or self-healing, to eliminate defects, removing midgap traps from the band structure. However, the effect of this process on the optical spectrum is not well studied. Here, we show that self-healing not only eliminates midgap traps from the band structure but also brightens the spectrum and causes the excitonic states to emerge as the dominant features, in agreement with experimental annealing studies. We find that self-healing can lead to new traps like bonded Se-Se or Cd-Cd dimers, and their behavior is different from that of undercoordinated atom traps. These results suggest that eliminating traps requires a balance of allowing enough surface reorganization to eliminate undercoordinated atoms, but not so much that dimeric traps form.
Collapse
Affiliation(s)
- Alexandra R McIsaac
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tamar Goldzak
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Bai B, Zhang C, Dou Y, Kong L, Wang L, Wang S, Li J, Zhou Y, Liu L, Liu B, Zhang X, Hadar I, Bekenstein Y, Wang A, Yin Z, Turyanska L, Feldmann J, Yang X, Jia G. Atomically flat semiconductor nanoplatelets for light-emitting applications. Chem Soc Rev 2023; 52:318-360. [PMID: 36533300 DOI: 10.1039/d2cs00130f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.
Collapse
Affiliation(s)
- Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Yongjiang Dou
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Jun Li
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Yi Zhou
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henaon University, Kaifeng 475004, China
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Ido Hadar
- Institute of Chemistry, and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehonadav Bekenstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aixiang Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, ACT 2601, Australia
| | - Lyudmila Turyanska
- Faculty of Engineering, The University of Nottingham, Additive Manufacturing Building, Jubilee Campus, University Park, Nottingham NG7 2RD, UK
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, Munich 80539, Germany
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, China.
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
18
|
Kim TY, Woo C, Choi KH, Dong X, Jeon J, Ahn J, Zhang X, Kang J, Oh HS, Yu HK, Choi JY. Colloidal synthesis of 1-D van der Waals material Nb 2Se 9: study of synergism of coordinating agent in a co-solvent system. NANOSCALE 2022; 14:17365-17371. [PMID: 36382607 DOI: 10.1039/d2nr04513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Low-dimensional Nb2Se9 nanocrystals were synthesised through a simple one-pot colloidal synthesis with C18 organic solvents (octadecane, oleylalcohol, octadecanethiol, octadecene (ODE), and oleylamine (OLA)) of varied terminal functional groups. The solvent with high reducing power facilitated the nucleation of the nanoparticle, lowering threshold concentration and broadening the concentration spectrum. As a solvent, reducing agent, and capping agent, ODE functions as a primary factor in the synthesis of high-quality Nb2Se9 nanorods. We further discuss the unique adhesion role of ODE under the co-solvent system and demonstrate morphology control through synergism between ODE and OLA, verified by the electrochemical measurements.
Collapse
Affiliation(s)
- Tae Yeong Kim
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Chaeheon Woo
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Xue Dong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Jiho Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Jungyoon Ahn
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Xiaojie Zhang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Jinsu Kang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Hyung-Suk Oh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea.
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hak Ki Yu
- Dept. of Materials Science and Engineering & Dept. of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea.
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Weiss R, VanOrman ZA, Sullivan CM, Nienhaus L. A Sensitizer of Purpose: Generating Triplet Excitons with Semiconductor Nanocrystals. ACS MATERIALS AU 2022; 2:641-654. [PMID: 36855545 PMCID: PMC9928406 DOI: 10.1021/acsmaterialsau.2c00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
The process of photon upconversion promises importance for many optoelectronic applications, as it can result in higher efficiencies and more effective photon management. Upconversion via triplet-triplet annihilation (TTA) occurs at low incident powers and at high efficiencies, requirements for integration into existing optoelectronic devices. Semiconductor nanocrystals are a diverse class of triplet sensitizers with advantages over traditional molecular sensitizers such as energetic tunability and minimal energy loss during the triplet sensitization process. In this Perspective, we review current progress in semiconductor nanocrystal triplet sensitization, specifically focusing on the nanocrystal, the ligand shell which surrounds the nanocrystal, and progress in solid-state sensitization. Finally, we discuss potential areas of improvement which could result in more efficient upconversion systems sensitized by semiconductor nanocrystals. Specifically, we focus on the development of solid-state TTA upconversion systems, elucidation of the energy transfer mechanisms from nanocrystal to transmitter ligand which underpin the upconversion process and propose novel configurations of nanocrystal-sensitized systems.
Collapse
|
20
|
Li M, Li J, Zhang X, Wu D, Li M, Long M. Effects of conjugated structure on electronic and transport properties in organic-inorganic hybrid superlattices Cd 2Se 2(C 2H 4N 2) 1/2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:295501. [PMID: 35504273 DOI: 10.1088/1361-648x/ac6c6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
By inducingπ-conjugated organic molecule C2H4N2in group II-VI based CdSe network structure materials, the band structures and carrier transport of organic-inorganic hybrid superlattices Cd2Se2(C2H4N2)1/2were investigated via first-principles calculations based on the density functional theory. With different stacking patterns, it is found that the carrier mobility can be modulated by 5-6 orders of magnitude. The physical mechanism of the high carrier mobility in the hybrid structures has been revealed, which means dipole organic layers realize electron delocalization via electrostatic potential difference and build-in electric field. Our calculations shown that the dipole organic layers originate from asymmetricπ-conjugated organic molecules and the charges movement between molecules, while symmetric organic molecules tend to electrostatic balance. And although the electronic transport properties were highly restrained by the flat bands of organic layers around Fermi energy in most structures, we found that the collective electrostatic effect can lead to very high electron mobility in AA1 and AA2 stacking systems, which might be attributed to the superposition of molecule electrostatic potential along with electrons transfer between molecules. Furthermore, it is also found that the anisotropy of electron mobility can be modulated via the difference directions of dipole layers.
Collapse
Affiliation(s)
- Mingming Li
- Hunan Key laboratory of Super Micro-Structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Jialin Li
- Hunan Key laboratory of Super Micro-Structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Xiaojiao Zhang
- Department of Applied Physics, School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha 410205, People's Republic of China
| | - Di Wu
- Hunan Key laboratory of Super Micro-Structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Mingjun Li
- Hunan Key laboratory of Super Micro-Structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Mengqiu Long
- Hunan Key laboratory of Super Micro-Structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
21
|
Regulating interface nucleus growth of CuTCPP membranes via polymer collaboration method. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Li Z, Saruyama M, Asaka T, Tatetsu Y, Teranishi T. Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions. Science 2021; 373:332-337. [PMID: 34437152 DOI: 10.1126/science.abh2741] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
Changes in the crystal system of an ionic nanocrystal during a cation exchange reaction are unusual yet remain to be systematically investigated. In this study, chemical synthesis and computational modeling demonstrated that the height of hexagonal-prism roxbyite (Cu1.8S) nanocrystals with a distorted hexagonal close-packed sulfide anion (S2-) sublattice determines the final crystal phase of the cation-exchanged products with Co2+ [wurtzite cobalt sulfide (CoS) with hexagonal close-packed S2- and/or cobalt pentlandite (Co9S8) with cubic close-packed S2-]. Thermodynamic instability of exposed planes drives reconstruction of anion frameworks under mild reaction conditions. Other incoming cations (Mn2+, Zn2+, and Ni2+) modulate crystal structure transformation during cation exchange reactions by various means, such as volume, thermodynamic stability, and coordination environment.
Collapse
Affiliation(s)
- Zhanzhao Li
- Department of Chemistry, Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Toru Asaka
- Division of Advanced Ceramics and Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Yasutomi Tatetsu
- University Center for Liberal Arts Education, Meio University, Nago 905-8585, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
23
|
Chang H, Kim BH, Lim SG, Baek H, Park J, Hyeon T. Role of the Precursor Composition in the Synthesis of Metal Ferrite Nanoparticles. Inorg Chem 2021; 60:4261-4268. [PMID: 33522226 DOI: 10.1021/acs.inorgchem.0c03567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ternary oxide nanoparticles have attracted much interest because of their intriguing properties, which are not exhibited by binary oxide nanoparticles. However, the synthesis of ternary oxide nanoparticles is not trivial and requires a fundamental understanding of the complicated precursor chemistry that governs the formation mechanism. Herein, we investigate the role of the chemical composition of precursors in the formation of ternary oxide nanoparticles via a combination of mass spectrometry, electron microscopy with elemental mapping, and thermogravimetric analysis. Mn2+, Co2+, and Ni2+ ions easily form bimetallic-oxo clusters with Fe3+ ions with a composition of MFe2O(oleate)6 (M = Mn, Co, Ni). The use of clusters as precursors leads to the successful synthesis of monodisperse metal ferrite nanoparticles (MFe2O4). On the contrary, zinc- or copper-containing complexes are formed independently from iron-oxo clusters in the precursor synthesis. The mixture of complexes without a bimetallic-oxo core yields a mixture of two different nanoparticles. This study reveals the importance of the precursor composition in the synthesis of ternary oxide nanoparticles.
Collapse
Affiliation(s)
- Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hyo Kim
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Suk Gyu Lim
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hayeon Baek
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Abutbul RE, Golan Y. 'Beneficial impurities' in colloidal synthesis of surfactant coated inorganic nanoparticles. NANOTECHNOLOGY 2021; 32:102001. [PMID: 33305737 DOI: 10.1088/1361-6528/abc0c7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal synthesis of nanoparticles (NP) has advanced tremendously over the past 25 years, with an increasing number of research papers introducing nanomaterials with a variety of compositions, shapes, sizes, and phases. Although much progress has been achieved, commonly used synthetic procedures often fail to reproduce results, and the fine details of the syntheses are often disregarded. Reproducibility issues in synthesis can be ascribed to the effects of impurities, trace amounts of chemical moieties which significantly affect the reaction products. Impurities in NP synthesis are rarely reported or regularly studied, despite their impact, deleterious, or beneficial. This topical review discusses several case studies of colloidal NP synthesis where the sources and the chemistry of impurities are highlighted, and their role is examined.
Collapse
Affiliation(s)
- Ran Eitan Abutbul
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yuval Golan
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
25
|
Woznica H, Banski M, Podhorodecki A. CdS Dots, Rods and Platelets-How to Obtain Predefined Shapes in a One-Pot Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:476. [PMID: 33498501 PMCID: PMC7864161 DOI: 10.3390/ma14030476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
In recent years, numerous protocols for nanoplatelet synthesis have been developed. Here, we present a facile, one-pot method for controlling cadmium sulfide (CdS) nanoparticles' shape that allows for obtaining zero-dimensional, one-dimensional, or two-dimensional structures. The proposed synthesis protocol is a simple heating-up approach and does not involve any inconvenient steps such as injection and/or pouring the precursors at elevated temperatures. Because of this, the synthesis protocol is highly repeatable. A gradual increase in the zinc acetate concentration causes the particles' shape to undergo a transition from isotropic quantum dots through rods to highly anisotropic nanoplatelets. We identified conditions at which synthesized platelets were purely five monolayers thick. All samples acquired during different stages of the reaction were characterized via optical spectroscopy, which allowed for the identification of the presence of high-temperature, magic-size clusters prior to the platelets' formation.
Collapse
Affiliation(s)
| | - Mateusz Banski
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (H.W.); (A.P.)
| | | |
Collapse
|
26
|
Liu R, Hao J, Li J, Wang S, Liu H, Zhou Z, Delville MH, Cheng J, Wang K, Zhu X. Causal Inference Machine Learning Leads Original Experimental Discovery in CdSe/CdS Core/Shell Nanoparticles. J Phys Chem Lett 2020; 11:7232-7238. [PMID: 32787235 DOI: 10.1021/acs.jpclett.0c02115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The synthesis of CdSe/CdS core/shell nanoparticles was revisited with the help of a causal inference machine learning framework. The tadpole morphology with 1-2 tails was experimentally discovered. The causal inference model revealed the causality between the oleic acid (OA), octadecylphosphonic acid (ODPA) ligands, and the detailed tail shape of the tadpole morphology. Further, with the identified causality, a neural network was provided to predict and directly lead to the original experimental discovery of new tadpole-shaped structures. An entropy-driven nucleation theory was developed to understand both the ligand and temperature dependent experimental data and the causal inference from the machine learning framework. This work provided a vivid example of how the artificial intelligence technology, including machine learning, could benefit the materials science research for the discovery.
Collapse
Affiliation(s)
- Rulin Liu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Junjie Hao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33608, France
| | - Jiagen Li
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Shujie Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Haochen Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziming Zhou
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Kai Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Zhu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
27
|
Bai X, Purcell-Milton F, Gun'ko YK. Near-infrared-emitting CIZSe/CIZS/ZnS colloidal heteronanonail structures. NANOSCALE 2020; 12:15295-15303. [PMID: 32648560 DOI: 10.1039/d0nr02777d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multicomponent quantum nanostructures have attracted significant attention due to their potential applications in photovoltaics, optoelectronics and bioimaging. However, the preparation of anisotropic quaternary nanoheterostructures such as Cu-In-Zn-S(Se) (CIZS and CIZSe) is still very poorly explored and understood. Here, we report the synthesis and studies of NIR emissive CIZSe/CIZS/ZnS core/shell/shell nanoheterostructures with a unique hetero-nanonail (HNN) morphology. In our approach, wurtzite (WZ) CIZSe/CIZS core/shell QDs have been prepared by depositing a CIZS shell onto a previously synthesized chalcopyrite CIZSe QD core using a seeded growth technique. Following careful control of the ZnS shell growth resulted in the formation of the distinct nail-like CIZSe/CIZS/ZnS nanoheterostructure, where the CIZSe/CIZS core/shell QD is located near the "head" of the nail. The emission in the NIR region of the CIZSe/CIZS/ZnS nanocrystals is assigned to the CIZSe/CIZS core/shell quantum nanostructure. The CIZSe/CIZS/ZnS HNNs are particularly interesting due to a range of potential applications including bioimaging, biosensing, energy harvesting and NIR photodetectors. Finally, we also report the successful controlled growth of gold nanoparticles on the surface of the CIZSe/CIZS/ZnS nanonail-like heterostructure and the investigation of the resulting multimodal nanocomposites.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland.
| | - Finn Purcell-Milton
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland. and BEACON, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland
| | - Yurii K Gun'ko
- School of Chemistry and CRANN institute, University of Dublin, Trinity College, Dublin, D02, Ireland. and BEACON, Bioeconomy SFI Research Centre, University College Dublin, Dublin 4, Ireland and ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
28
|
Kim D, Lee DC. Surface Ligands as Permeation Barrier in the Growth and Assembly of Anisotropic Semiconductor Nanocrystals. J Phys Chem Lett 2020; 11:2647-2657. [PMID: 32175742 DOI: 10.1021/acs.jpclett.9b03052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Because of the large surface-to-volume ratio of colloidal nanocrystals (NCs), surfactant molecules grafted at the NC surface play an important role in NC growth, interparticle interaction, processing, and application. For this reason, much progress has been made in understanding the surface chemistry of NCs along with the organic ligand shell, particularly in terms of grafted polar groups. However, most explanations of aliphatic counterparts are based on spherical NCs that usually have a dilute ligand layer. In anisotropic NCs such as nanorods and nanoplatelets, the linearly extended dimension results in a high-density aliphatic layer on the NC surface. Unlike spherical NCs, the compact organic shell could serve as a permeation membrane, effectively impeding a penetration of foreign molecules toward the NC surface. In this Perspective, we highlight the effects of ligand configuration on the properties of anisotropic NCs by exploring morphologies, assembled superstructures, and surface reaction of anisotropic NCs.
Collapse
Affiliation(s)
- Dahin Kim
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
29
|
Lee H, Yoon DE, Koh S, Kang MS, Lim J, Lee DC. Ligands as a universal molecular toolkit in synthesis and assembly of semiconductor nanocrystals. Chem Sci 2020; 11:2318-2329. [PMID: 32206291 PMCID: PMC7069383 DOI: 10.1039/c9sc05200c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 01/05/2023] Open
Abstract
The multiple ligands with different functionalities enable atomic-precision control of NCs morphology and subtle inter-NC interactions, which paves the way for novel optoelectronic applications.
Successful exploitation of semiconductor nanocrystals (NCs) in commercial products is due to the remarkable progress in the wet-chemical synthesis and controlled assembly of NCs. Central to the cadence of this progress is the ability to understand how NC growth and assembly can be controlled kinetically and thermodynamically. The arrested precipitation strategy offers a wide opportunity for materials selection, size uniformity, and morphology control. In this colloidal approach, capping ligands play an instrumental role in determining growth parameters and inter-NC interactions. The impetus for exquisite control over the size and shape of NCs and orientation of NCs in an ensemble has called for the use of two or more types of ligands in the system. In multiple ligand approaches, ligands with different functionalities confer extended tunability, hinting at the possibility of atomic-precision growth and long-range ordering of desired superlattices. Here, we highlight the progress in understanding the roles of ligands in size and shape control and assembly of NCs. We discuss the implication of the advances in the context of optoelectronic applications.
Collapse
Affiliation(s)
- Hyeonjun Lee
- Department of Chemical and Biomolecular Engineering , KAIST Institute for the Nanocentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea .
| | - Da-Eun Yoon
- Department of Chemical and Biomolecular Engineering , KAIST Institute for the Nanocentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea .
| | - Sungjun Koh
- Department of Chemical and Biomolecular Engineering , KAIST Institute for the Nanocentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea .
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Jaehoon Lim
- Department of Energy Science , Center for Artificial Atoms , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi-do 16419 , Republic of Korea .
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering , KAIST Institute for the Nanocentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
30
|
Yu S, Huang D, Withanage K. Computational insights into structural and optical properties of P-containing and N-containing ligands capped CdSe clusters. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1642473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shengping Yu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, People’s Republic of China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, People’s Republic of China
| | - Delin Huang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Kushantha Withanage
- Physics Department and Science of Advanced Materials Ph. D Program, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
31
|
Wang Y, Pu C, Lei H, Qin H, Peng X. CdSe@CdS Dot@Platelet Nanocrystals: Controlled Epitaxy, Monoexponential Decay of Two-Dimensional Exciton, and Nonblinking Photoluminescence of Single Nanocrystal. J Am Chem Soc 2019; 141:17617-17628. [DOI: 10.1021/jacs.9b06932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yonghong Wang
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chaodan Pu
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hairui Lei
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Qin
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Yang J, Zeng Z, Kang J, Betzler S, Czarnik C, Zhang X, Ophus C, Yu C, Bustillo K, Pan M, Qiu J, Wang LW, Zheng H. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. NATURE MATERIALS 2019; 18:970-976. [PMID: 31285617 DOI: 10.1038/s41563-019-0415-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) materials have attracted significant interest because of their large surface-to-volume ratios and electron confinement. Compared to common 2D materials such as graphene or metal hydroxides, with their intrinsic layered atomic structures, the formation mechanisms of 2D metal oxides with a rocksalt structure are not well understood. Here, we report the formation process for 2D cobalt oxide and cobalt nickel oxide nanosheets, after analysis by in situ liquid-phase transmission electron microscopy. Our observations reveal that three-dimensional (3D) nanoparticles are initially formed from the molecular precursor solution and then transform into 2D nanosheets. Ab initio calculations show that a small nanocrystal is dominated by positive edge energy, but when it grows to a certain size, the negative surface energy becomes dominant, driving the transformation of the 3D nanocrystal into a 2D structure. Uncovering these growth pathways, including the 3D-to-2D transition, provides opportunities for future material design and synthesis in solution.
Collapse
Affiliation(s)
- Juan Yang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhiyuan Zeng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jun Kang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sophia Betzler
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Xiaowei Zhang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Karen Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, China.
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Lin-Wang Wang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Material Science and Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
33
|
Li Y, Huang H, Xiong Y, Richter AF, Kershaw SV, Feldmann J, Rogach AL. Using Polar Alcohols for the Direct Synthesis of Cesium Lead Halide Perovskite Nanorods with Anisotropic Emission. ACS NANO 2019; 13:8237-8245. [PMID: 31294549 DOI: 10.1021/acsnano.9b03508] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Semiconductor nanorods (NRs) offer the useful property of linearly polarized light emission. While this would be an attractive functionality for strongly emitting perovskite nanoparticles, to date, there has been limited success in demonstrating a direct chemical synthesis of cesium lead halide perovskite NRs. In this work, we realized the direct synthesis of CsPbBr3 NRs with an average width of around 5 nm and average lengths of 10.8 and 23.2 nm, respectively, in two samples, which show a high photoluminescence quantum yield of 60-76% and reasonably high emission anisotropy of about 0.2 for longer rods. Both CsPbCl3 and CsPbI3 NRs with similar dimensions have then been derived from the CsPbBr3 NRs by anion-exchange reactions. Remarkably, the synthesis of the NRs has been achieved in polar alcohols, a class of solvents not usually found to be beneficial in classical perovskite nanoparticle synthesis. This work not only offers the possibility to control the shape of chemically synthesized perovskite nanocrystals but also constitutes the hitherto less common strategy of synthesizing perovskite nanoparticles in polar rather than nonpolar or only weakly polar solvents.
Collapse
Affiliation(s)
- Yanxiu Li
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong S.A.R
| | - He Huang
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Physics Department , Ludwig-Maximilians-Universität (LMU) , Königinstr. 10 , 80539 Munich , Germany
- Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Yuan Xiong
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong S.A.R
| | - Alexander F Richter
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Physics Department , Ludwig-Maximilians-Universität (LMU) , Königinstr. 10 , 80539 Munich , Germany
- Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong S.A.R
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Physics Department , Ludwig-Maximilians-Universität (LMU) , Königinstr. 10 , 80539 Munich , Germany
- Nanosystems Initiative Munich (NIM) and Center for NanoScience (CeNS) , Schellingstrasse 4 , 80799 Munich , Germany
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong S.A.R
| |
Collapse
|
34
|
Brown AAM, Hooper TJN, Veldhuis SA, Chin XY, Bruno A, Vashishtha P, Tey JN, Jiang L, Damodaran B, Pu SH, Mhaisalkar SG, Mathews N. Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes. NANOSCALE 2019; 11:12370-12380. [PMID: 31215940 DOI: 10.1039/c9nr02566a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report the self-assembly of an extensive inter-ligand hydrogen-bonding network of octylphosphonates on the surface of cesium lead bromide nanocrystals (CsPbBr3 NCs). The post-synthetic addition of octylphosphonic acid to oleic acid/oleylamine-capped CsPbBr3 NCs promoted the attachment of octylphosphonate to the NC surface, while the remaining oleylammonium ligands maintained the high dispersability of the NCs in non-polar solvent. Through powerful 2D solid-state 31P-1H NMR, we demonstrated that an ethyl acetate/acetonitrile purification regime was crucial for initiating the self-assembly of extensive octylphosphonate chains. Octylphosphonate ligands were found to preferentially bind in a monodentate mode through P-O-, leaving polar P[double bond, length as m-dash]O and P-OH groups free to form inter-ligand hydrogen bonds. The octylphosphonate ligand network strongly passivated the nanocrystal surface, yielding a fully-purified CsPbBr3 NC ink with PLQY of 62%, over 3 times higher than untreated NCs. We translated this to LED devices, achieving maximum external quantum efficiency and luminance of 7.74% and 1022 cd m-2 with OPA treatment, as opposed to 3.59% and 229 cd m-2 for untreated CsPbBr3 NCs. This represents one of the highest efficiency LEDs obtained for all-inorganic CsPbBr3 NCs, accomplished through simple, effective passivation and purification processes. The robust binding of octylphosphonates to the perovskite lattice, and specifically their ability to interlink through hydrogen bonding, offers a promising passivation approach which could potentially be beneficial across a breadth of halide perovskite optoelectronic applications.
Collapse
Affiliation(s)
- Alasdair A M Brown
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK. and Agency for Science and Technology Research (A*STAR) Singapore Institute of Manufacturing Technology (SIMTech), 73 Nanyang Drive, Singapore 637662, Republic of Singapore and University of Southampton Malaysia, Iskandar Puteri 79200, Johor, Malaysia and Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Thomas J N Hooper
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Sjoerd A Veldhuis
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Xin Yu Chin
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Annalisa Bruno
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Parth Vashishtha
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore and School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
| | - Ju Nie Tey
- Agency for Science and Technology Research (A*STAR) Singapore Institute of Manufacturing Technology (SIMTech), 73 Nanyang Drive, Singapore 637662, Republic of Singapore
| | - Liudi Jiang
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Bahulayan Damodaran
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Suan Hui Pu
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK. and University of Southampton Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Subodh G Mhaisalkar
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore and School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
| | - Nripan Mathews
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore 637553, Republic of Singapore and School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
| |
Collapse
|
35
|
du Fossé I, ten Brinck S, Infante I, Houtepen AJ. Role of Surface Reduction in the Formation of Traps in n-Doped II-VI Semiconductor Nanocrystals: How to Charge without Reducing the Surface. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:4575-4583. [PMID: 31274957 PMCID: PMC6595709 DOI: 10.1021/acs.chemmater.9b01395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/25/2019] [Indexed: 05/19/2023]
Abstract
The efficiency of nanocrystal (NC)-based devices is often limited by the presence of surface states that lead to localized energy levels in the bandgap. Yet, a complete understanding of the nature of these traps remains challenging. Although theoretical modeling has greatly improved our comprehension of the NC surface, several experimental studies suggest the existence of metal-based traps that have not yet been found with theoretical methods. Since there are indications that these metal-based traps form in the presence of excess electrons, the present work uses density functional theory (DFT) calculations to study the effects of charging II-VI semiconductor NCs with either full or imperfect surface passivation. It is found that charge injection can lead to trap-formation via two pathways: metal atom ejection from perfectly passivated NCs or metal-metal dimer-formation in imperfectly passivated NCs. Fully passivated CdTe NCs are observed to be stable up to a charge of two electrons. Further reduction leads to charge localization on a surface Cd atom and the formation of in-gap states. The effects of suboptimal passivation are probed by charging NCs where an X-type ligand is removed from the (100) plane. In this case, injection of even one electron leads to Cd-dimerization and trap-formation. Addition of an L-type amine ligand prevents this dimer-formation and is suggested to also prevent trapping of photoexcited electrons in charge neutral NCs. The results presented in this work are generalized to NCs of different sizes and other II-VI semiconductors. This has clear implications for n-doping II-VI semiconductor NCs without introducing surface traps due to metal ion reduction. The possible effect of these metal ion localized traps on the photoluminescence efficiency of neutral NCs is also discussed.
Collapse
Affiliation(s)
- Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stephanie ten Brinck
- Department
of Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Ivan Infante
- Department
of Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- E-mail:
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
36
|
Chang H, Kim BH, Jeong HY, Moon JH, Park M, Shin K, Chae SI, Lee J, Kang T, Choi BK, Yang J, Bootharaju MS, Song H, An SH, Park KM, Oh JY, Lee H, Kim MS, Park J, Hyeon T. Molecular-Level Understanding of Continuous Growth from Iron-Oxo Clusters to Iron Oxide Nanoparticles. J Am Chem Soc 2019; 141:7037-7045. [DOI: 10.1021/jacs.9b01670] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Minwoo Park
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Sue In Chae
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisoo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Back Kyu Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwoong Yang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoin Song
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong Hee An
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Man Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Hoonkyung Lee
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Myung Soo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
37
|
Wang H, Butler DJ, Straus DB, Oh N, Wu F, Guo J, Xue K, Lee JD, Murray CB, Kagan CR. Air-Stable CuInSe 2 Nanocrystal Transistors and Circuits via Post-Deposition Cation Exchange. ACS NANO 2019; 13:2324-2333. [PMID: 30707549 DOI: 10.1021/acsnano.8b09055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colloidal semiconductor nanocrystals (NCs) are a promising materials class for solution-processable, next-generation electronic devices. However, most high-performance devices and circuits have been achieved using NCs containing toxic elements, which may limit their further device development. We fabricate high mobility CuInSe2 NC field-effect transistors (FETs) using a solution-based, post-deposition, sequential cation exchange process that starts with electronically coupled, thiocyanate (SCN)-capped CdSe NC thin films. First Cu+ is substituted for Cd2+ transforming CdSe NCs to Cu-rich Cu2Se NC films. Next, Cu2Se NC films are dipped into a Na2Se solution to Se-enrich the NCs, thus compensating the Cu-rich surface, promoting fusion of the Cu2Se NCs, and providing sites for subsequent In-dopants. The liquid-coordination-complex trioctylphosphine-indium chloride (TOP-InCl3) is used as a source of In3+ to partially exchange and n-dope CuInSe2 NC films. We demonstrate Al2O3-encapsulated, air-stable CuInSe2 NC FETs with linear (saturation) electron mobilities of 8.2 ± 1.8 cm2/(V s) (10.5 ± 2.4 cm2/(V s)) and with current modulation of 105, comparable to that for high-performance Cd-, Pb-, and As-based NC FETs. The CuInSe2 NC FETs are used as building blocks of integrated inverters to demonstrate their promise for low-cost, low-toxicity NC circuits.
Collapse
Affiliation(s)
| | | | | | - Nuri Oh
- Division of Materials Science and Engineering , Hanyang University , Seoul 133-791 , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Ghosh S, Manna L. The Many "Facets" of Halide Ions in the Chemistry of Colloidal Inorganic Nanocrystals. Chem Rev 2018; 118:7804-7864. [PMID: 30062881 PMCID: PMC6107855 DOI: 10.1021/acs.chemrev.8b00158] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Over the years, scientists have identified various synthetic "handles" while developing wet chemical protocols for achieving a high level of shape and compositional complexity in colloidal nanomaterials. Halide ions have emerged as one such handle which serve as important surface active species that regulate nanocrystal (NC) growth and concomitant physicochemical properties. Halide ions affect the NC growth kinetics through several means, including selective binding on crystal facets, complexation with the precursors, and oxidative etching. On the other hand, their presence on the surfaces of semiconducting NCs stimulates interesting changes in the intrinsic electronic structure and interparticle communication in the NC solids eventually assembled from them. Then again, halide ions also induce optoelectronic tunability in NCs where they form part of the core, through sheer composition variation. In this review, we describe these roles of halide ions in the growth of nanostructures and the physical changes introduced by them and thereafter demonstrate the commonality of these effects across different classes of nanomaterials.
Collapse
Affiliation(s)
- Sandeep Ghosh
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Liberato Manna
- Department
of Nanochemistry, Istituto Italiano di Tecnologia
(IIT), via Morego 30, I-16163 Genova, Italy
- Kavli Institute
of Nanoscience and Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
39
|
Berends AC, van der Stam W, Akkerman QA, Meeldijk JD, van der Lit J, de Mello Donega C. Anisotropic 2D Cu 2-x Se Nanocrystals from Dodecaneselenol and Their Conversion to CdSe and CuInSe 2 Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:3836-3846. [PMID: 29910536 PMCID: PMC6002073 DOI: 10.1021/acs.chemmater.8b01143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/09/2018] [Indexed: 05/28/2023]
Abstract
We present the synthesis of colloidal anisotropic Cu2-x Se nanocrystals (NCs) with excellent size and shape control, using the unexplored phosphine-free selenium precursor 1-dodecaneselenol (DDSe). This precursor forms lamellar complexes with Cu(I) that enable tailoring the NC morphology from 0D polyhedral to highly anisotropic 2D shapes. The Cu2-x Se NCs are subsequently used as templates in postsynthetic cation exchange reactions, through which they are successfully converted to CdSe and CuInSe2 quantum dots, nanoplatelets, and ultrathin nanosheets. The shape of the template hexagonal nanoplatelets is preserved during the cation exchange reaction, despite a substantial reorganization of the anionic sublattice, which leads to conversion of the tetragonal umangite crystal structure of the parent Cu2-x Se NCs into hexagonal wurtzite CdSe and CuInSe2, accompanied by a change of both the thickness and the lateral dimensions of the nanoplatelets. The crystallographic transformation and reconstruction of the product NCs are attributed to a combination of the unit cell dimensionalities of the parent and product crystal phases and an internal ripening process. This work provides novel tools for the rational design of shape-controlled colloidal anisotropic Cu2-x Se NCs, which, besides their promising optoelectronic properties, also constitute a new family of cation exchange templates for the synthesis of shape-controlled NCs of wurtzite CdSe, CuInSe2, and other metal selenides that cannot be attained through direct synthesis approaches. Moreover, the insights provided here are likely applicable also to the direct synthesis of shape-controlled NCs of other metal selenides, since DDSe may be able to form lamellar complexes with several other metals.
Collapse
Affiliation(s)
- Anne C. Berends
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
| | - Ward van der Stam
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
| | - Quinten A. Akkerman
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Electron
Microscopy Utrecht, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Joost van der Lit
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
40
|
Hong YK, Cho G, Park Y, Oh SJ, Ha DH. Trioctylphosphine-assisted morphology control of ZnO nanoparticles. NANOTECHNOLOGY 2018; 29:225602. [PMID: 29513266 DOI: 10.1088/1361-6528/aab4c6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.
Collapse
Affiliation(s)
- Yun-Kun Hong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chem Rev 2018; 118:3121-3207. [PMID: 29400955 DOI: 10.1021/acs.chemrev.7b00613] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals (NCs) that results in resonant absorption, scattering, and near field enhancement around the NC can be tuned across a wide optical spectral range from visible to far-infrared by synthetically varying doping level, and post synthetically via chemical oxidation and reduction, photochemical control, and electrochemical control. In this review, we will discuss the fundamental electromagnetic dynamics governing light matter interaction in plasmonic semiconductor NCs and the realization of various distinctive physical properties made possible by the advancement of colloidal synthesis routes to such NCs. Here, we will illustrate how free carrier dielectric properties are induced in various semiconductor materials including metal oxides, metal chalcogenides, metal nitrides, silicon, and other materials. We will highlight the applicability and limitations of the Drude model as applied to semiconductors considering the complex band structures and crystal structures that predominate and quantum effects that emerge at nonclassical sizes. We will also emphasize the impact of dopant hybridization with bands of the host lattice as well as the interplay of shape and crystal structure in determining the LSPR characteristics of semiconductor NCs. To illustrate the discussion regarding both physical and synthetic aspects of LSPR-active NCs, we will focus on metal oxides with substantial consideration also of copper chalcogenide NCs, with select examples drawn from the literature on other doped semiconductor materials. Furthermore, we will discuss the promise that LSPR in doped semiconductor NCs holds for a wide range of applications such as infrared spectroscopy, energy-saving technologies like smart windows and waste heat management, biomedical applications including therapy and imaging, and optical applications like two photon upconversion, enhanced luminesence, and infrared metasurfaces.
Collapse
Affiliation(s)
- Ankit Agrawal
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Shin Hum Cho
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Omid Zandi
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Sandeep Ghosh
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Robert W Johns
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
42
|
Saniepay M, Mi C, Liu Z, Abel EP, Beaulac R. Insights into the Structural Complexity of Colloidal CdSe Nanocrystal Surfaces: Correlating the Efficiency of Nonradiative Excited-State Processes to Specific Defects. J Am Chem Soc 2018; 140:1725-1736. [PMID: 29293359 DOI: 10.1021/jacs.7b10649] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
II-VI colloidal semiconductor nanocrystals (NCs), such as CdSe NCs, are often plagued by efficient nonradiative recombination processes that severely limit their use in energy-conversion schemes. While these processes are now well-known to occur at the surface, a full understanding of the exact nature of surface defects and of their role in deactivating the excited states of NCs has yet to be established, which is partly due to challenges associated with the direct probing of the complex and dynamic surface of colloidal NCs. Here, we report a detailed study of the surface of cadmium-rich zinc-blende CdSe NCs. The surfaces of these cadmium-rich species are characterized by the presence of cadmium carboxylate complexes (CdX2) that act as Lewis acid (Z-type) ligands that passivate undercoordinated selenide surface species. The systematic displacement of CdX2 from the surface by N,N,N',N'-tetramethylethylene-1,2-diamine (TMEDA) has been studied using a combination of 1H NMR and photoluminescence spectroscopies. We demonstrate the existence of two independent surface sites that differ strikingly in the binding affinity for CdX2 and that are under dynamic equilibrium with each other. A model involving coupled dual equilibria allows a full characterization of the thermodynamics of surface binding (free energy, as well as enthalpic and entropic terms), showing that entropic contributions are responsible for the difference between the two surface sites. Importantly, we demonstrate that cadmium vacancies only lead to important photoluminescence quenching when created on one of the two sites, allowing a complete picture of the surface composition to be drawn where each site is assigned to specific NC facet locale, with CdX2 binding affinity and nonradiative recombination efficiencies that differ by up to two orders of magnitude.
Collapse
Affiliation(s)
- Mersedeh Saniepay
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Chenjia Mi
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Zhihui Liu
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - E Paige Abel
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Rémi Beaulac
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
43
|
Enright MJ, Cossairt BM. Synthesis of tailor-made colloidal semiconductor heterostructures. Chem Commun (Camb) 2018; 54:7109-7122. [DOI: 10.1039/c8cc03498b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This feature article provides an account of the various bottom-up and top-down methods that have been developed to prepare colloidal heterostructures and highlights the benefits of a seeded assembly approach for greater control and customizability.
Collapse
|
44
|
Kim D, Lee YK, Lee D, Kim WD, Bae WK, Lee DC. Colloidal Dual-Diameter and Core-Position-Controlled Core/Shell Cadmium Chalcogenide Nanorods. ACS NANO 2017; 11:12461-12472. [PMID: 29131591 DOI: 10.1021/acsnano.7b06542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To capitalize on shape- and structure-dependent properties of semiconductor nanorods (NRs), high-precision control and exquisite design of their growth are desired. Cadmium chalcogenide (CdE; E = S or Se) NRs are the most studied class of such, whose growth exhibits axial anisotropy, i.e., different growth rates along the opposite directions of {0001} planes. However, the mechanism behind asymmetric axial growth of NRs remains unclear because of the difficulty in instant analysis of growth surfaces. Here, we design colloidal dual-diameter semiconductor NRs (DDNRs) under the quantum confinement regime, which have two sections along the long axis with different diameters. The segmentation of the DDNRs allows rigorous assessment of the kinetics of NR growth at a molecular level. The reactivity of a terminal facet passivated by an organic ligand is governed by monomer diffusivity through the surface ligand monolayer. Therefore, the growth rate in two polar directions can be finely tuned by controlling the strength of ligand-ligand attraction at end surfaces. Building on these findings, we report the synthesis of single-diameter CdSe/CdS core/shell NRs with CdSe cores of controllable position, which reveals a strong structure-optical polarization relationship. The understanding of the NR growth mechanism with controllable anisotropy will serve as a cornerstone for the exquisite design of more complex anisotropic nanostructures.
Collapse
Affiliation(s)
- Dahin Kim
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Young Kuk Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, Korea
| | - Dongkyu Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Whi Dong Kim
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Wan Ki Bae
- Photoelectronic Hybrids Research Center, Korea Institute of Science and Technology (KIST) , Seoul 02792, Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| |
Collapse
|
45
|
Davis JL, Chalifoux AM, Brock SL. Role of Crystal Structure and Chalcogenide Redox Properties on the Oxidative Assembly of Cadmium Chalcogenide Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9434-9443. [PMID: 28636384 PMCID: PMC5605437 DOI: 10.1021/acs.langmuir.7b01118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative assembly of metal chalcogenide nanocrystals (NCs) enables the formation of 2-D (dense) and 3-D porous structures without the presence of intervening ligands between particles that can moderate transport properties. This route has been demonstrated to be successful for a range of single-component structures including CdQ, PbQ, and ZnQ (Q = S, Se, Te). En route to the controllable assembly of multicomponent nanostructures, the roles of Q redox properties (2Q2- → Q22- + 2e) responsible for particle cross-linking and the native structure (cubic zinc blende vs hexagonal wurtzite) in the kinetics of assembly in single-component CdQ NCs are evaluated using time-resolved dynamic light scattering (TR-DLS). For wurtzite CdQ, the rates follow the ease of oxidation, with telluride as the fastest, followed by selenide and sulfide. However, when comparing CdS wurtzite (w) and zinc blende (zb), the cubic NCs exhibit surprisingly slow kinetics. NMR studies reveal the zb structure to have lower ligand coverage (by a factor of 4) relative to that of w, and the formation of free disulfide (the product of ligand oxidation) is slow. This is attributed to differences in the surface energies of w and zb facets, with w having polar (0001) facets of high energy compared to the neutral facets of the zb structure. The zb-CdS NCs prepared by low-temperature synthesis methods are likely to suffer from surface defects that may moderate reactivity. EPR studies suggest that zb-CdS has paramagnetic sulfur vacancies not present in w-CdS. These data suggest that structure plays an unexpectedly large role in the kinetics of CdQ NC oxidative assembly, providing a useful lever to moderate activities in multicomponent assemblies.
Collapse
|
46
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
47
|
Arora V, Soni U, Mittal M, Yadav S, Sapra S. Synthesis of trap emission free cadmium sulfide quantum dots: Role of phosphonic acids and halide ions. J Colloid Interface Sci 2017; 491:329-335. [DOI: 10.1016/j.jcis.2016.12.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/01/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
|
48
|
Spirin MG, Brichkin SB, Razumov VF. Phosphonic acids as stabilizing ligands for cadmium chalcogenide colloidal quantum dots. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1531-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Jang Y, Shapiro A, Isarov M, Rubin-Brusilovski A, Safran A, Budniak AK, Horani F, Dehnel J, Sashchiuk A, Lifshitz E. Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem Commun (Camb) 2017; 53:1002-1024. [DOI: 10.1039/c6cc08742f] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Core/shell heterostructures provide controlled optical properties, tuneable electronic structure, and chemical stability due to an appropriate interface design.
Collapse
|
50
|
Abstract
Chemical epitaxy of CdSe thin films on GaAs(100) and GaAs(111) substrates.
Collapse
Affiliation(s)
- Ofir Friedman
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Be'er-Sheva 8410501
- Israel
| | - Dor Korn
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Be'er-Sheva 8410501
- Israel
| | - Vladimir Ezersky
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Be'er-Sheva 8410501
- Israel
| | - Yuval Golan
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Be'er-Sheva 8410501
- Israel
| |
Collapse
|