1
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
2
|
Divya Mohan R, Anaswara SA, Kulkarni NV, Bojilov DG, Manolov SP, Ivanov II, Al-Otaibi JS, Sheena Mary Y. Synthesis, Characterization and Assessment of Antioxidant and Melanogenic Inhibitory Properties of Edaravone Derivatives. Antioxidants (Basel) 2024; 13:1148. [PMID: 39334807 PMCID: PMC11429142 DOI: 10.3390/antiox13091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
A series of edaravone derivatives and the corresponding Cu(II) complexes were synthesized and characterized using spectroscopic and analytical techniques such as IR, UV, NMR and elemental analysis. Antioxidant activities of all compounds were examined using free radical scavenging methods such as hydrogen peroxide scavenging activity (HPSA), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2-2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) assays. All of the tested compounds exhibited good antioxidant activity. Further, the frontier orbital energy levels, as well as various chemical properties, were determined using the density functional theory (DFT) calculations. The MEP maps of all of the derivatives were plotted to identify the nucleophilic and electrophilic reactive sites. Further, binding energies of all of the organic compounds with the protein tyrosinase was investigated to determine their potential anti-melanogenic applications. The selected ligand, L6 was subjected to molecular dynamics simulation analysis to determine the stability of the ligand-protein complex. The MD simulation was performed (150 ns) to estimate the stability of the tyrosinase-L6 complex. Other key parameters, such as, RMSD, RMSF, Rg, hydrogen bonds, SASA and MMPBSA were also analyzed to understand the interaction of L6 with the tyrosinase protein.
Collapse
Affiliation(s)
- R Divya Mohan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - S A Anaswara
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Naveen V Kulkarni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Dimitar G Bojilov
- Department of Organic Chemistry, University of Plovdiv, 24 Tzar Assen str., 4000 Plovdiv, Bulgaria
| | - Stanimir P Manolov
- Department of Organic Chemistry, University of Plovdiv, 24 Tzar Assen str., 4000 Plovdiv, Bulgaria
| | - Iliyan I Ivanov
- Department of Organic Chemistry, University of Plovdiv, 24 Tzar Assen str., 4000 Plovdiv, Bulgaria
| | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Y Sheena Mary
- Department of Physics, FMNC, University of Kerala, Kollam 691001, India
| |
Collapse
|
3
|
Spiegel M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J Chem Inf Model 2022; 62:2639-2658. [PMID: 35436117 PMCID: PMC9198981 DOI: 10.1021/acs.jcim.2c00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The antioxidative
nature of chemicals is now routinely studied
using computational quantum chemistry. Scientists are constantly proposing
new approaches to investigate those methods, and the subject is evolving
at a rapid pace. The goal of this review is to collect, consolidate,
and present current trends in a clear, methodical, and reference-rich
manner. This paper is divided into several sections, each of which
corresponds to a different stage of elaborations: preliminary concerns,
electronic structure analysis, and general reactivity (thermochemistry
and kinetics). The sections are further subdivided based on methodologies
used. Concluding remarks and future perspectives are presented based
on the remaining elements.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Zhou S, Hong Q, Mei W, He Y, Wu C, Sun T. Scale-Up of a Continuous Manufacturing Process of Edaravone. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuhao Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Qingxia Hong
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Wenliu Mei
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Yan He
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, P. R. China
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| |
Collapse
|
5
|
The antioxidant capacity of an imidazole alkaloids family through single-electron transfer reactions. J Mol Model 2020; 26:321. [PMID: 33113023 DOI: 10.1007/s00894-020-04583-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The single-electron transfer (SET) reactions from the neutral and mono-anion species of five imidazole alkaloids (lepidines A, B, C, D, and E) against hydroperoxyl radicals have been studied using the density functional theory and the Marcus theory. The deprotonated species of three alkaloids were found to have free radical scavenging activity. The antioxidant activity was studied via single-electron transfer (SET) under physiological conditions. The SET reactions for lepidines B, D, and E were found to have rate constants ranging from 105 to 106 M-1 s-1. Therefore, they are predicted to be able to deactivate hydroperoxyl radicals and therefore the damage caused by them to polyunsaturated fatty acids. It is important to mention that the acid-base equilibrium plays an important role in their free radical scavenging activity. Graphical abstract Lepidines are predicted to be able to deactivate hydroperoxyl radicals and the damage caused by them to polyunsaturated fatty acids.
Collapse
|
6
|
Synthesis, Characterization and Antioxidant Properties of a New Lipophilic Derivative of Edaravone. Antioxidants (Basel) 2019; 8:antiox8080258. [PMID: 31370225 PMCID: PMC6720979 DOI: 10.3390/antiox8080258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
As part of a program aimed to obtain antioxidants able to interact with cell membrane, edaravone (EdV, 3-methyl-1-phenyl-2-pyrazolin-5-one), a well-known free radical scavenger, has been modified by alkylation at its allylic position (4) with a C-18 hydrocarbon chain, and the increased lipophilicity has been determined towards the interaction with liposomes. The obtained derivative has been studied by means of density functional theory (DFT) methods in order to characterize its lowest energy conformers and predict its antioxidant properties with respect to the parent compound EdV. The in vitro antioxidant activity of C18-edaravone was studied by means of the α,α-diphenyl-β-picrylhydrazyl (DPPH) assay and in lipid peroxidation experiments performed on artificial lipid membranes using water-soluble as well as lipid-soluble radical initiators. Moreover, since oxidative stress is involved in numerous retinal degenerative diseases, the ability of C18-edaravone to contrast 2,2-azobis (2-amidinopropane hydrochloride) (AAPH)-induced cell death was assessed in adult retinal pigmented epithelium (ARPE-19) cells. Overall, the results demonstrated that the newly synthesized molecule has a high affinity for lipid membrane, increasing the efficacy of the unmodified edaravone under stress conditions.
Collapse
|
7
|
Zhang J, Zhao M, Tian X, Lv X, Chen Z, Zhou K, Ren X, Zhang P, Mei X. Protein-mediated mineralization of edaravone into injectable, pH-sensitive microspheres used for potential minimally invasive treatment of osteomyelitis. NEW J CHEM 2018. [DOI: 10.1039/c7nj04745b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteomyelitis, an infection within bone, is difficult to treat.
Collapse
Affiliation(s)
- Jie Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Mengen Zhao
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xiaohan Tian
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xinyan Lv
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Zhenhua Chen
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Kang Zhou
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xiuli Ren
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Peng Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xifan Mei
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| |
Collapse
|
8
|
Hernandez DA, Tenorio FJ. Reactivity indexes of antioxidant molecules from Rosmarinus officinalis. Struct Chem 2017. [DOI: 10.1007/s11224-017-1066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr 2017; 62:20-38. [PMID: 29371752 PMCID: PMC5773834 DOI: 10.3164/jcbn.17-62] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Edaravone is a low-molecular-weight antioxidant drug targeting peroxyl radicals among many types of reactive oxygen species. Because of its amphiphilicity, it scavenges both lipid- and water-soluble peroxyl radicals by donating an electron to the radical. Thus, it inhibits the oxidation of lipids by scavenging chain-initiating water-soluble peroxyl radicals and chain-carrying lipid peroxyl radicals. In 2001, it was approved in Japan as a drug to treat acute-phase cerebral infarction, and then in 2015 it was approved for amyotrophic lateral sclerosis (ALS). In 2017, the U.S. Food and Drug Administration also approved edaravone for treatment of patients with ALS. Its mechanism of action was inferred to be scavenging of peroxynitrite. In this review, we focus on the radical-scavenging characteristics of edaravone in comparison with some other antioxidants that have been studied in clinical trials, and we summarize its pharmacological action and clinical efficacy in patients with acute cerebral infarction and ALS.
Collapse
Affiliation(s)
- Kazutoshi Watanabe
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiko Tanaka
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| | - Satoshi Yuki
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 17-10 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Manabu Hirai
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 3-2-10 Dosho-machi, Chuo-ku, Osaka 541-8505, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| |
Collapse
|
10
|
Zhang D, Xiao Y, Lv P, Teng Z, Dong Y, Qi Q, Liu Z. Edaravone attenuates oxidative stress induced by chronic cerebral hypoperfusion injury: role of ERK/Nrf2/HO-1 signaling pathway. Neurol Res 2017; 40:1-10. [PMID: 29125058 DOI: 10.1080/01616412.2017.1376457] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objectives The potential protective effects and mechanisms of edaravone have not been well elucidated in vascular dementia (VaD) induced by chronic cerebral hypoperfusion (CCH). The aim of this study was to investigate whether edaravone could improve cognitive damage in rats induced by CCH, and whether the effects of edaravone were associated with ERK/Nrf2/HO-1 signaling pathway. Methods CCH was induced by bilateral common carotid arteries occlusion (BCCAO). Sprague-Dawley (SD) rats were randomly divided into four groups: sham (sham-operated) group, vehicle (BCCAO + normal saline) group, edaravone3.0 group and edaravone6.0 group. The edaravone3.0 and edaravone6.0 group rats were provided 3.0 mg/kg and 6.0 mg/kg of edaravone, respectively, intraperitoneal (i.p.) injection twice daily following the first day after BCCAO. In this experiment, the spatial learning and memory were assessed using the Morris water maze. The malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities in the hippocampus were measured biochemically. And, the levels of total ERK1/2 (t-ERK1/2), Phospho-ERK1/2 (p-ERK1/2), total Nrf2 (t-Nrf2), nuclear Nrf2 (n-Nrf2), and HO-1 were assessed by western blot. Results The results showed that the treatment with edaravone significantly improved CCH-induced cognitive damage, and boosted endogenous antioxidants SOD activity and HO-1 level, decreased MDA contents in the hippocampus by activating Nrf2 signaling pathway which was related to ERK1/2. We also found that the neuronal morphology of the hippocampal CA1 area significantly improved and the number of Nrf2 positive cells markedly increased in the edaravone treatment groups. Conclusion Our results demonstrated a neuroprotective effect of edaravone on hippocampus against oxidative stress and cognitive deficit induced by CCH. The mechanism may be related to the enhancement of antioxidant defense system by activating ERK/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Yining Xiao
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Peiyuan Lv
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Zhenjie Teng
- a Hebei Medical University , Shijiazhuang , China.,b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Yanhong Dong
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Qianqian Qi
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| | - Zhijuan Liu
- b Department of Neurology , Hebei General Hospital , Shijiazhuang , China
| |
Collapse
|
11
|
Synthesis, molecular properties prediction and anticancer, antioxidant evaluation of new edaravone derivatives. Bioorg Med Chem Lett 2016; 26:2562-2568. [DOI: 10.1016/j.bmcl.2016.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
|
12
|
Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016; 7:335-52. [DOI: 10.1146/annurev-food-041715-033206] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Ruslán Alvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - J. Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, D. F., Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
13
|
Free-radical scavenging by tryptophan and its metabolites through electron transfer based processes. J Mol Model 2015. [DOI: 10.1007/s00894-015-2758-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Verma G, Mishra S, Sangwan N, Sharma S. Reactive oxygen species mediate axis-cotyledon signaling to induce reserve mobilization during germination and seedling establishment in Vigna radiata. JOURNAL OF PLANT PHYSIOLOGY 2015; 184:79-88. [PMID: 26241759 DOI: 10.1016/j.jplph.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/18/2023]
Abstract
Seeds represent an excellent opportunity to investigate the role of reactive oxygen species (ROS) in control of metabolism during germination and seedling establishment. Cotyledons, the storage organs in Vigna, do not display growth/cell division while the embryonic axis shows rapid growth and intense metabolic activity. The present study investigates the possibility of ROS generated during respiration in the axis serving as messengers guiding storage reserve mobilization from cotyledons at the pre-greening stage. Seeds were germinated in the presence of hydroxyurea to halt cell division in the S-phase and separately in Edaravone, a potent free radical scavenger. Both treatments caused a decrease in germination percentage, seedling growth and protein mobilization. In the growing axis, both treatments resulted in a decrease in hydrogen peroxide (H2O2), total ROS, MDA and protein carbonyls. The picture in cotyledons was quite different, owing to the physiological dissimilarities between the tissues. The status of redox as evident by GSH/GSSG ratios tended toward oxidizing in axis in comparison to the highly reducing environment found in cotyledons. This is construed as a tendency to maintain redox buffering on the oxidizing side in the axis, to facilitate the passage of ROS message. These results strongly indicate that suppression of cell division or scavenging of ROS adversely affects protein reserve mobilization. It is proposed that apart from H2O2 being a transportable signal, the final message perceived in cotyledons also comprises lipid peroxidation, protein carbonylation and alteration of redox status of the glutathione pool.
Collapse
Affiliation(s)
- Giti Verma
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India.
| | - Sujata Mishra
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Neelam Sangwan
- Metabolic and Structural Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| | - Samir Sharma
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
15
|
Guthrie DA, Ho A, Takahashi CG, Collins A, Morris M, Toscano JP. “Catch-and-Release” of HNO with Pyrazolones. J Org Chem 2015; 80:1338-48. [DOI: 10.1021/jo502330w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daryl A. Guthrie
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Ho
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Cyrus G. Takahashi
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Collins
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Matthew Morris
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John P. Toscano
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Ren Y, Wei B, Song X, An N, Zhou Y, Jin X, Zhang Y. Edaravone's free radical scavenging mechanisms of neuroprotection against cerebral ischemia: review of the literature. Int J Neurosci 2014; 125:555-65. [PMID: 25171224 DOI: 10.3109/00207454.2014.959121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Free radicals and oxidative stress play key roles in cerebral ischemic pathogenesis and represent pharmacological targets for treatment. Edaravone (Edv), one of antioxidant agents that have been used in acute ischemic stroke in both clinical settings and animal experiments, exerts neuroprotective effect on ischemic injured brains. This review is aimed to elaborate the latest molecular mechanisms of the neuroprotection of Edv on cerebral ischemia and provide reasonable evidence in its clinical application. It is found that Edv has neuroprotective influence on cerebral ischemia, which is closely related to the facets of scavenging reactive oxygen species (ROS), hydroxyl radical (ċOH) and reactive nitrogen species (RNS). And it is a good antioxidant agent that can be safely used in the treatment of cerebral ischemia and chronic neurodegenerative disorders as well as other ischemia/reperfusion (I/R)-related diseases. The combination of Edv with thrombolytic therapy also can be applied in clinical settings and will be greatly beneficial to patients with stroke.
Collapse
Affiliation(s)
- Yanxin Ren
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Marino T, Galano A, Russo N. Radical Scavenging Ability of Gallic Acid toward OH and OOH Radicals. Reaction Mechanism and Rate Constants from the Density Functional Theory. J Phys Chem B 2014; 118:10380-9. [DOI: 10.1021/jp505589b] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tiziana Marino
- Dipartimento
di Chimica e Tecnologie Chimiche, University of Calabria, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Annia Galano
- Departamento
de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina C.P., 09340, Mexico
| | - Nino Russo
- Dipartimento
di Chimica e Tecnologie Chimiche, University of Calabria, Arcavacata di Rende, Cosenza, 87036, Italy
- Departamento
de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina C.P., 09340, Mexico
| |
Collapse
|
18
|
Tang Y, Rong X, Hu W, Li G, Yang X, Yang J, Xu P, Luo J. Effect of edaravone on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma after radiotherapy: a randomized controlled trial. J Neurooncol 2014; 120:441-7. [PMID: 25142813 PMCID: PMC4220954 DOI: 10.1007/s11060-014-1573-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 07/31/2014] [Indexed: 12/11/2022]
Abstract
Excessive generation of free radicals plays a critical role in the pathogenesis of radiation-induced brain injury. This study was designed to evaluate the protective effect of edaravone, a free radical scavenger, on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma. Eligible patients were randomized 1:1 to the control group and the edaravone group (intravenous 30 mg twice per day for 2 weeks). Both groups received intravenous conventional steroid therapy and were monitored by brain MRI and LENT/SOMA scales prior to the entry of the trial and at 3-months after completing the trial. The primary end point was a 3-month response rate of the proportional changes determined by MRI. The trial is registered at Clinicaltrials.gov Identifier: NCT01865201. Between 2009 and 2012, we enrolled 154 patients. Of whom 137 were eligible for analysis. The volumes of necrosis estimated on T2-weighted image showed that 55.6 % edaravone-treated patients (40 out of 72) showed edema decreases ≥25 %, which was significantly higher than that in the control group (35.4 %, 23 out of 65, p = 0.025). Forty-four patients treated with edaravone (61.1 %) reported improvement in neurologic symptoms and signs evaluated by LENT/SOMA scales, while the rate was 38.5 % in the control group (p = 0.006). MRI of the edaravone group showed a significant decrease in area of T1-weighted contrast enhancement (1.67 ± 4.69 cm2, p = 0.004) and the T2-weighted edema (5.08 ± 10.32 cm2, p = 0.000). Moreover, compared with those in control group, patients with edaravone exhibited significantly better radiological improvement measured by T2-weighted image (p = 0.042). Administration of edaravone, in adjunct to steroid regimen, might provide a better outcome in patients with radiation-induced brain necrosis.
Collapse
Affiliation(s)
- Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, China,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pérez-González A, Galano A, Ortiz JV. Vertical Ionization Energies of Free Radicals and Electron Detachment Energies of Their Anions: A Comparison of Direct and Indirect Methods Versus Experiment. J Phys Chem A 2014; 118:6125-31. [DOI: 10.1021/jp505276n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Adriana Pérez-González
- Departamento
de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Annia Galano
- Departamento
de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340 México DF, México
| | - J. V. Ortiz
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
20
|
Galano A, Francisco Marquez M, Pérez-González A. Ellagic acid: an unusually versatile protector against oxidative stress. Chem Res Toxicol 2014; 27:904-18. [PMID: 24697747 DOI: 10.1021/tx500065y] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several aspects related to the antioxidant activity of ellagic acid were investigated using the density functional theory. It was found that this compound is unusually versatile for protecting against the toxic effects caused by oxidative stress. Ellagic acid, in aqueous solution at physiological pH, is able of deactivating a wide variety of free radicals, which is a desirable capability since in biological systems, these species are diverse. Under such conditions, the ellagic acid anion is proposed as the key species for its protective effects. It is predicted to be efficiently and continuously regenerated after scavenging two free radicals per cycle. This is an advantageous and unusual behavior that contributes to increase its antioxidant activity at low concentrations. In addition, the ellagic acid metabolites are also capable of efficiently scavenging a wide variety of free radicals. Accordingly, it is proposed that the ellagic acid efficiency for that purpose is not reduced after being metabolized. On the contrary, it provides continuous protection against oxidative stress through a free radical scavenging cascade. This is an uncommon and beneficial behavior, which makes ellagic acid particularly valuable to that purpose. After deprotonation, ellagic acid is also capable of chelating copper, in a concentration dependent way, decreasing the free radical production. In summary, ellagic acid is proposed to be an efficient multiple-function protector against oxidative stress.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 México D. F., México
| | | | | |
Collapse
|
21
|
Theoretical insights on the antioxidant activity of edaravone free radical scavengers derivatives. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Pérez-González A, Galano A, Alvarez-Idaboy JR. Dihydroxybenzoic acids as free radical scavengers: mechanisms, kinetics, and trends in activity. NEW J CHEM 2014. [DOI: 10.1039/c4nj00071d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Density functional study of the antioxidant activity of some recently synthesized resveratrol analogues. Food Chem 2013; 141:2017-24. [PMID: 23870923 DOI: 10.1016/j.foodchem.2013.05.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/17/2013] [Accepted: 05/16/2013] [Indexed: 11/22/2022]
Abstract
In this paper we have investigated the two main working mechanisms (H atom and single-electron transfer) of five new potential antioxidant analogues of cis-resveratrol. The O-H bond dissociation energy (BDE) and ionization potential (IP) key parameters were computed in methanol. Results obtained indicate that all the examined compounds are more efficient antioxidants than the molecule from which they derive, mainly due to their higher degree of conjugation and the capability to delocalize the π-electrons which contribute to the stabilization of the radical species. The enhancement of these stabilizing effects is in part a result of the introduction of a single bond between the C2' and C6 carbon atoms of cis-resveratrol that generates a new central aromatic ring. However, the number of hydroxyl groups and in particular the presence of the catechol moiety remains the most significant features in determining the order of radical scavenging potentiality. Spectroscopic UV-Vis characterization is also reported and discussed.
Collapse
|
24
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Pérez-González A, Galano A. On the hydroperoxyl radical scavenging activity of two Edaravone derivatives: mechanism and kinetics. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adriana Pérez-González
- Departamento de Quimica, Division de Ciencias Basicas e Ingenieria; Universidad Autonoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No.186, Col. Vicentina; CP 09340; Mexico; D.F.; Mexico
| | - Annia Galano
- Departamento de Quimica, Division de Ciencias Basicas e Ingenieria; Universidad Autonoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No.186, Col. Vicentina; CP 09340; Mexico; D.F.; Mexico
| |
Collapse
|