1
|
Sorour MI, Kistler KA, Marcus AH, Matsika S. Molecular Dynamical and Quantum Mechanical Exploration of the Site-Specific Dynamics of Cy3 Dimers Internally Linked to dsDNA. J Phys Chem B 2024; 128:7750-7760. [PMID: 39105720 PMCID: PMC11343064 DOI: 10.1021/acs.jpcb.4c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Performing spectroscopic measurements on biomolecules labeled with fluorescent probes is a powerful approach to locating the molecular behavior and dynamics of large systems at specific sites within their local environments. The indocarbocyanine dye Cy3 has emerged as one of the most commonly used chromophores. The incorporation of Cy3 dimers into DNA enhances experimental resolution owing to the spectral characteristics influenced by the geometric orientation of excitonically coupled monomeric units. Various theoretical models and simulations have been utilized to aid in the interpretation of the experimental spectra. In this study, we employ all-atom molecular dynamics simulations to study the structural dynamics of Cy3 dimers internally linked to the dsDNA backbone. We used quantum mechanical calculations to derive insights from both the linear absorption spectra and the circular dichroism data. Furthermore, we explore potential limitations within a commonly used force field for cyanine dyes. The molecular dynamics simulations suggest the presence of four possible Cy3 dimeric populations. The spectral simulations on the four populations show one of them to agree better with the experimental signatures, suggesting it to be the dominant population. The relative orientation of Cy3 in this population compares very well with previous predictions from the Holstein-Frenkel Hamiltonian model.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kurt A Kistler
- Department of Chemistry, Pennsylvania State University, Brandywine Campus, Media, Pennsylvania 19063, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
2
|
Chu J, Ejaz A, Lin KM, Joseph MR, Coraor AE, Drummond DA, Squires AH. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. NATURE NANOTECHNOLOGY 2024; 19:1150-1157. [PMID: 38750166 PMCID: PMC11329371 DOI: 10.1038/s41565-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
Multiplexed, real-time fluorescence detection at the single-molecule level can reveal the stoichiometry, dynamics and interactions of multiple molecular species in mixtures and other complex samples. However, fluorescence-based sensing is typically limited to the detection of just 3-4 colours at a time due to low signal-to-noise ratio, high spectral overlap and the need to maintain the chemical compatibility of dyes. Here we engineered a palette of several dozen composite fluorescent labels, called FRETfluors, for multiplexed spectroscopic measurements at the single-molecule level. FRETfluors are compact nanostructures constructed from three chemical components (DNA, Cy3 and Cy5) with tunable spectroscopic properties due to variations in geometry, fluorophore attachment chemistry and DNA sequence. We demonstrate FRETfluor labelling and detection for low-concentration (<100 fM) mixtures of mRNA, dsDNA and proteins using an anti-Brownian electrokinetic trap. In addition to identifying the unique spectroscopic signature of each FRETfluor, this trap differentiates FRETfluors attached to a target from unbound FRETfluors, enabling wash-free sensing. Although usually considered an undesirable complication of fluorescence, here the inherent sensitivity of fluorophores to the local physicochemical environment provides a new design axis complementary to changing the FRET efficiency. As a result, the number of distinguishable FRETfluor labels can be combinatorically increased while chemical compatibility is maintained, expanding prospects for spectroscopic multiplexing at the single-molecule level using a minimal set of chemical building blocks.
Collapse
Affiliation(s)
- Jiachong Chu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ayesha Ejaz
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Kyle M Lin
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Interdisicplinary Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Madeline R Joseph
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aria E Coraor
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Murdoch TJ, Quienne B, Pinaud J, Caillol S, Martín-Fabiani I. Understanding associative polymer self-assembly with shrinking gate fluorescence correlation spectroscopy. NANOSCALE 2024; 16:12660-12669. [PMID: 38888295 DOI: 10.1039/d4nr00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The self-assembly of polymers is integral to their role in liquid formulations. In this study, we combine a dye whose lifetime is sensitive to the nanoviscosity of its local environment with shrinking gate fluorescence correlation spectroscopy (sgFCS) to study the self-assembly of a model telechelic polymer, hydrophobically modified ethoxylated urethane (HEUR). Fluorescence lifetime measurements show a monotonic increase in average lifetime with increasing HEUR concentration driven by a small fraction of dye (<1%) with long lifetimes strongly bound to HEUR. Despite this small fraction, sgFCS isolates the diffusional dynamics of the bound fraction with no a priori assumptions as to the distribution of lifetimes. Sensitivity is greatly enhanced compared to standard FCS, revealing micellar aggregates forming between 0.2 and 1 wt% followed by formation of a percolated network. This sgFCS approach, which we apply for the first time to polymers in this work, is readily extendable to any dye that changes lifetime on binding.
Collapse
Affiliation(s)
- Timothy J Murdoch
- Department of Materials, Loughborough University, LE11 1RJ Loughborough, UK.
| | | | - Julien Pinaud
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
4
|
Maurer J, Albrecht CS, Herbert P, Heussman D, Chang A, von Hippel PH, Marcus AH. Studies of DNA 'Breathing' by Polarization-Sweep Single-Molecule Fluorescence Microscopy of Exciton-Coupled (iCy3) 2 Dimer-Labeled DNA Fork Constructs. J Phys Chem B 2023; 127:10730-10748. [PMID: 38060691 PMCID: PMC10754251 DOI: 10.1021/acs.jpcb.3c06463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Local fluctuations of the sugar-phosphate backbones and bases of DNA (often called DNA 'breathing') play a variety of critical roles in controlling the functional interactions of the DNA genome with the protein complexes that regulate it. Here, we present a single-molecule fluorescence method that we have used to measure and characterize such conformational fluctuations at and near biologically important positions in model DNA replication fork constructs labeled with exciton-coupled cyanine [(iCy3)2] dimer probes. Previous work has shown that the constructs that we tested here exhibit a broad range of spectral properties at the ensemble level, and these differences can be structurally and dynamically interpreted using our present methodology at the single-molecule level. The (iCy3)2 dimer has one symmetric (+) and one antisymmetric (-) exciton, with the respective transition dipole moments oriented perpendicular to one another. We excite single-molecule samples using a continuous-wave linearly polarized laser, with the polarization direction continuously rotated at the frequency of 1 MHz. The ensuing fluorescence signal is modulated as the laser polarization alternately excites the symmetric and antisymmetric excitons of the (iCy3)2 dimer probe. Phase-sensitive detection of the modulated signal provides information about the distribution of local conformations and the conformational interconversion dynamics of the (iCy3)2 probe. We find that at most construct positions that we examined, the (iCy3)2 dimer-labeled DNA fork constructs can adopt four topologically distinct conformational macrostates. These results suggest that in addition to observing DNA breathing at and near ss-dsDNA junctions, our new methodology should be useful to determine which of these pre-existing macrostates are recognized by, bind to, and are stabilized by various genome-regulatory proteins.
Collapse
Affiliation(s)
- Jack Maurer
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Claire S. Albrecht
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Physics, University of Oregon, Eugene, Oregon 97403
| | - Patrick Herbert
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Dylan Heussman
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Anabel Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Peter H. von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Andrew H. Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
5
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
6
|
Barcenas G, Biaggne A, Mass OA, Knowlton WB, Yurke B, Li L. Molecular Dynamic Studies of Dye-Dye and Dye-DNA Interactions Governing Excitonic Coupling in Squaraine Aggregates Templated by DNA Holliday Junctions. Int J Mol Sci 2023; 24:4059. [PMID: 36835471 PMCID: PMC9967300 DOI: 10.3390/ijms24044059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Dye molecules, arranged in an aggregate, can display excitonic delocalization. The use of DNA scaffolding to control aggregate configurations and delocalization is of research interest. Here, we applied Molecular Dynamics (MD) to gain an insight on how dye-DNA interactions affect excitonic coupling between two squaraine (SQ) dyes covalently attached to a DNA Holliday junction (HJ). We studied two types of dimer configurations, i.e., adjacent and transverse, which differed in points of dye covalent attachments to DNA. Three structurally different SQ dyes with similar hydrophobicity were chosen to investigate the sensitivity of excitonic coupling to dye placement. Each dimer configuration was initialized in parallel and antiparallel arrangements in the DNA HJ. The MD results, validated by experimental measurements, suggested that the adjacent dimer promotes stronger excitonic coupling and less dye-DNA interaction than the transverse dimer. Additionally, we found that SQ dyes with specific functional groups (i.e., substituents) facilitate a closer degree of aggregate packing via hydrophobic effects, leading to a stronger excitonic coupling. This work advances a fundamental understanding of the impacts of dye-DNA interactions on aggregate orientation and excitonic coupling.
Collapse
Affiliation(s)
- German Barcenas
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
| | - Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
| | - Olga A. Mass
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| |
Collapse
|
7
|
Adamczyk AK, Huijben TAPM, Sison M, Di Luca A, Chiarelli G, Vanni S, Brasselet S, Mortensen KI, Stefani FD, Pilo-Pais M, Acuna GP. DNA Self-Assembly of Single Molecules with Deterministic Position and Orientation. ACS NANO 2022; 16:16924-16931. [PMID: 36065997 DOI: 10.1021/acsnano.2c06936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge. Here, we show how single molecules, namely, Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving unpaired bases in the scaffold. Increasing the number of bases unpaired induces a stretching of the fluorophore linkers, reducing its mobility freedom, and leaves more space for the fluorophore to accommodate and find different sites for interaction with the DNA. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 bases unpaired and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double-helix, respectively. We foresee that these results will expand the application field of DNA origami toward the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nanoantenna modes.
Collapse
Affiliation(s)
- Aleksandra K Adamczyk
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| | - Teun A P M Huijben
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800Kongens Lyngby, Denmark
| | - Miguel Sison
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013Marseille, France
| | - Andrea Di Luca
- Department of Biology, University of Fribourg, Chemin du Musée 10, FribourgCH-1700, Switzerland
| | - Germán Chiarelli
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, FribourgCH-1700, Switzerland
| | - Sophie Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013Marseille, France
| | - Kim I Mortensen
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800Kongens Lyngby, Denmark
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQDCiudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHACiudad Autónoma de Buenos Aires, Argentina
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland
| |
Collapse
|
8
|
Biaggne A, Kim YC, Melinger JS, Knowlton WB, Yurke B, Li L. Molecular dynamics simulations of cyanine dimers attached to DNA Holliday junctions. RSC Adv 2022; 12:28063-28078. [PMID: 36320263 PMCID: PMC9530999 DOI: 10.1039/d2ra05045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Dye aggregates and their excitonic properties are of interest for their applications to organic photovoltaics, non-linear optics, and quantum information systems. DNA scaffolding has been shown to be effective at promoting the aggregation of dyes in a controllable manner. Specifically, isolated DNA Holliday junctions have been used to achieve strongly coupled cyanine dye dimers. However, the structural properties of the dimers and the DNA, as well as the role of Holliday junction isomerization are not fully understood. To study the dynamics of cyanine dimers in DNA, molecular dynamics simulations were carried out for adjacent and transverse dimers attached to Holliday junctions in two different isomers. It was found that dyes attached to adjacent strands in the junction exhibit stronger dye-DNA interactions and larger inter-dye separations compared to transversely attached dimers, as well as end-to-end arrangements. Transverse dimers exhibit lower inter-dye separations and more stacked configurations. Furthermore, differences in Holliday junction isomer are analyzed and compared to dye orientations. For transverse dyes exhibiting the smaller inter-dye separations, excitonic couplings were calculated and shown to be in agreement with experiment. Our results suggested that dye attachment locations on DNA Holliday junctions affect dye-DNA interactions, dye dynamics, and resultant dye orientations which can guide the design of DNA-templated cyanine dimers with desired properties. Molecular dynamics simulations reveal dye attachment and DNA Holliday junction isomer effects on dye dimer orientations and excitonic couplings. These simulations can guide synthesis and experiments of dye-DNA structures for excitonic applications.![]()
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research LaboratoryWashingtonDC20375USA
| | - Joseph. S. Melinger
- Electronics Science and Technology Division, U.S. Naval Research LaboratoryWashingtonDC20375USA
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Department of Electrical and Computer Engineering, Boise State UniversityBoiseID 83725USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Department of Electrical and Computer Engineering, Boise State UniversityBoiseID 83725USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Center for Advanced Energy StudiesIdaho FallsID 83401USA
| |
Collapse
|
9
|
Cervantes-Salguero K, Biaggne A, Youngsman JM, Ward BM, Kim YC, Li L, Hall JA, Knowlton WB, Graugnard E, Kuang W. Strategies for Controlling the Spatial Orientation of Single Molecules Tethered on DNA Origami Templates Physisorbed on Glass Substrates: Intercalation and Stretching. Int J Mol Sci 2022; 23:7690. [PMID: 35887059 PMCID: PMC9323263 DOI: 10.3390/ijms23147690] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/18/2022] Open
Abstract
Nanoarchitectural control of matter is crucial for next-generation technologies. DNA origami templates are harnessed to accurately position single molecules; however, direct single molecule evidence is lacking regarding how well DNA origami can control the orientation of such molecules in three-dimensional space, as well as the factors affecting control. Here, we present two strategies for controlling the polar (θ) and in-plane azimuthal (ϕ) angular orientations of cyanine Cy5 single molecules tethered on rationally-designed DNA origami templates that are physically adsorbed (physisorbed) on glass substrates. By using dipolar imaging to evaluate Cy5's orientation and super-resolution microscopy, the absolute spatial orientation of Cy5 is calculated relative to the DNA template. The sequence-dependent partial intercalation of Cy5 is discovered and supported theoretically using density functional theory and molecular dynamics simulations, and it is harnessed as our first strategy to achieve θ control for a full revolution with dispersion as small as ±4.5°. In our second strategy, ϕ control is achieved by mechanically stretching the Cy5 from its two tethers, being the dispersion ±10.3° for full stretching. These results can in principle be applied to any single molecule, expanding in this way the capabilities of DNA as a functional templating material for single-molecule orientation control. The experimental and modeling insights provided herein will help engineer similar self-assembling molecular systems based on polymers, such as RNA and proteins.
Collapse
Affiliation(s)
- Keitel Cervantes-Salguero
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - John M. Youngsman
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Brett M. Ward
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Code 6300, Washington, DC 20375, USA;
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - John A. Hall
- Division of Research and Economic Development, Boise State University, Boise, ID 83725, USA;
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Wan Kuang
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
10
|
Biaggne A, Spear L, Barcenas G, Ketteridge M, Kim YC, Melinger JS, Knowlton WB, Yurke B, Li L. Data-Driven and Multiscale Modeling of DNA-Templated Dye Aggregates. Molecules 2022; 27:3456. [PMID: 35684394 PMCID: PMC9182218 DOI: 10.3390/molecules27113456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dye aggregates are of interest for excitonic applications, including biomedical imaging, organic photovoltaics, and quantum information systems. Dyes with large transition dipole moments (μ) are necessary to optimize coupling within dye aggregates. Extinction coefficients (ε) can be used to determine the μ of dyes, and so dyes with a large ε (>150,000 M−1cm−1) should be engineered or identified. However, dye properties leading to a large ε are not fully understood, and low-throughput methods of dye screening, such as experimental measurements or density functional theory (DFT) calculations, can be time-consuming. In order to screen large datasets of molecules for desirable properties (i.e., large ε and μ), a computational workflow was established using machine learning (ML), DFT, time-dependent (TD-) DFT, and molecular dynamics (MD). ML models were developed through training and validation on a dataset of 8802 dyes using structural features. A Classifier was developed with an accuracy of 97% and a Regressor was constructed with an R2 of above 0.9, comparing between experiment and ML prediction. Using the Regressor, the ε values of over 18,000 dyes were predicted. The top 100 dyes were further screened using DFT and TD-DFT to identify 15 dyes with a μ relative to a reference dye, pentamethine indocyanine dye Cy5. Two benchmark MD simulations were performed on Cy5 and Cy5.5 dimers, and it was found that MD could accurately capture experimental results. The results of this study exhibit that our computational workflow for identifying dyes with a large μ for excitonic applications is effective and can be used as a tool to develop new dyes for excitonic applications.
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Lawrence Spear
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - German Barcenas
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Maia Ketteridge
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - Joseph S. Melinger
- Electronics Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| |
Collapse
|
11
|
Hart SM, Wang X, Guo J, Bathe M, Schlau-Cohen GS. Tuning Optical Absorption and Emission Using Strongly Coupled Dimers in Programmable DNA Scaffolds. J Phys Chem Lett 2022; 13:1863-1871. [PMID: 35175058 DOI: 10.1021/acs.jpclett.1c03848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular materials for light harvesting, computing, and fluorescence imaging require nanoscale integration of electronically active subunits. Variation in the optical absorption and emission properties of the subunits has primarily been achieved through modifications to the chemical structure, which is often synthetically challenging. Here, we introduce a facile method for varying optical absorption and emission properties by changing the geometry of a strongly coupled Cy3 dimer on a double-crossover (DX) DNA tile. Leveraging the versatility and programmability of DNA, we tune the length of the complementary strand so that it "pushes" or "pulls" the dimer, inducing dramatic changes in the photophysics including lifetime differences observable at the ensemble and single-molecule level. The separable lifetimes, along with environmental sensitivity also observed in the photophysics, suggest that the Cy3-DX tile constructs could serve as fluorescence probes for multiplexed imaging. More generally, these constructs establish a framework for easily controllable photophysics via geometric changes to coupled chromophores, which could be applied in light-harvesting devices and molecular electronics.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiajia Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Pace NA, Hennelly SP, Goodwin PM. Immobilization of Cyanines in DNA Produces Systematic Increases in Fluorescence Intensity. J Phys Chem Lett 2021; 12:8963-8971. [PMID: 34506152 DOI: 10.1021/acs.jpclett.1c02022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cyanines are useful fluorophores for a myriad of biological labeling applications, but their interactions with biomolecules are unpredictable. Cyanine fluorescence intensity can be highly variable due to complex photoisomerization kinetics, which are exceedingly sensitive to the surrounding environment. This introduces large errors in Förster resonance energy transfer (FRET)-based experiments where fluorescence intensity is the output parameter. However, this environmental sensitivity is a strength from a biological sensing point of view if specific relationships between biomolecular structure and cyanine photophysics can be identified. We describe a set of DNA structures that modulate cyanine fluorescence intensity through the insertion of adenine or thymine bases. These structures simultaneously provide photophysical predictability and tunability. We characterize these structures using steady-state fluorescence measurements, fluorescence correlation spectroscopy (FCS), and time-resolved photoluminescence (TRPL). We find that the photoisomerization rate decreases over an order of magnitude across the adenine series, which is consistent with increasing immobilization of the cyanine moiety by the surrounding DNA structure.
Collapse
Affiliation(s)
- Natalie A Pace
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott P Hennelly
- Bioenergy and Biome Sciences Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Peter M Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
13
|
Hart SM, Chen WJ, Banal JL, Bricker WP, Dodin A, Markova L, Vyborna Y, Willard AP, Häner R, Bathe M, Schlau-Cohen GS. Engineering couplings for exciton transport using synthetic DNA scaffolds. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Biaggne A, Knowlton WB, Yurke B, Lee J, Li L. Substituent Effects on the Solubility and Electronic Properties of the Cyanine Dye Cy5: Density Functional and Time-Dependent Density Functional Theory Calculations. Molecules 2021; 26:molecules26030524. [PMID: 33498306 PMCID: PMC7863957 DOI: 10.3390/molecules26030524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The aggregation ability and exciton dynamics of dyes are largely affected by properties of the dye monomers. To facilitate aggregation and improve excitonic function, dyes can be engineered with substituents to exhibit optimal key properties, such as hydrophobicity, static dipole moment differences, and transition dipole moments. To determine how electron donating (D) and electron withdrawing (W) substituents impact the solvation, static dipole moments, and transition dipole moments of the pentamethine indocyanine dye Cy5, density functional theory (DFT) and time-dependent (TD-) DFT calculations were performed. The inclusion of substituents had large effects on the solvation energy of Cy5, with pairs of withdrawing substituents (W-W pairs) exhibiting the most negative solvation energies, suggesting dyes with W-W pairs are more soluble than others. With respect to pristine Cy5, the transition dipole moment was relatively unaffected upon substitution while numerous W-W pairs and pairs of donating and withdrawing substituents (D-W pairs) enhanced the static dipole difference. The increase in static dipole difference was correlated with an increase in the magnitude of the sum of the Hammett constants of the substituents on the dye. The results of this study provide insight into how specific substituents affect Cy5 monomers and which pairs can be used to engineer dyes with desired properties.
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
- Correspondence:
| |
Collapse
|
15
|
Sobek J, Schlapbach R. Dependence of Fluorescence Quenching of CY3 Oligonucleotide Conjugates on the Oxidation Potential of the Stacking Base Pair. Molecules 2020; 25:molecules25225369. [PMID: 33212871 PMCID: PMC7698394 DOI: 10.3390/molecules25225369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
To understand the complex fluorescence properties of astraphloxin (CY3)-labelled oligonucleotides, it is necessary to take into account the redox properties of the nucleobases. In oligonucleotide hybrids, we observed a dependence of the fluorescence intensity on the oxidation potential of the neighbouring base pair. For the series I < A < G < 8-oxoG, the extent of fluorescence quenching follows the trend of decreasing oxidation potentials. In a series of 7 nt hybrids, stacking interactions of CY3 with perfect match and mismatch base pairs were found to stabilise the hybrid by 7–8 kJ/mol. The fluorescence measurements can be explained by complex formation resulting in fluorescence quenching that prevails over the steric effect of a reduced excited state trans-cis isomerisation, which was expected to increase the fluorescence efficiency of the dye when stacking to a base pair. This can be explained by the fact that, in a double strand, base pairing and stacking cause a dramatic change in the oxidation potential of the nucleobases. In single-molecule fluorescence measurements, the oxidation of G to 8-oxoG was observed as a result of photoinduced electron transfer and subsequent chemical reactions. Our results demonstrate that covalently linked CY3 is a potent oxidant towards dsDNA. Sulfonated derivatives should be used instead.
Collapse
|
16
|
Cunningham PD, Díaz SA, Yurke B, Medintz IL, Melinger JS. Delocalized Two-Exciton States in DNA Scaffolded Cyanine Dimers. J Phys Chem B 2020; 124:8042-8049. [PMID: 32706583 DOI: 10.1021/acs.jpcb.0c06732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The engineering and manipulation of delocalized molecular exciton states is a key component for artificial biomimetic light harvesting complexes as well as alternative circuitry platforms based on exciton propagation. Here we examine the consequences of strong electronic coupling in cyanine homodimers on DNA duplex scaffolds. The most closely spaced dyes, attached to positions directly across the double-helix from one another, exhibit pronounced Davydov splitting due to strong electronic coupling. We demonstrate that the DNA scaffold is sufficiently robust to support observation of the transition from the lowest energy (J-like) one-exciton state to the nonlocal two-exciton state, where each cyanine dye is in the excited state. This transition proceeds via sequential photon absorption and persists for the lifetime of the exciton, establishing this as a controlled method for creating two-exciton states. Our observations suggest that DNA-organized dye networks have potential as platforms for molecular logic gates and entangled photon emission based on delocalized two-exciton states.
Collapse
Affiliation(s)
- Paul D Cunningham
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Sebastián A Díaz
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Bernard Yurke
- Boise State University, Boise, Idaho 83725, United States
| | - Igor L Medintz
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S Melinger
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
17
|
Sohail SH, Otto JP, Cunningham PD, Kim YC, Wood RE, Allodi MA, Higgins JS, Melinger JS, Engel GS. DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer. Chem Sci 2020; 11:8546-8557. [PMID: 34123114 PMCID: PMC8163443 DOI: 10.1039/d0sc01127d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vibronic coupling between pigment molecules is believed to prolong coherences in photosynthetic pigment–protein complexes. Reproducing long-lived coherences using vibronically coupled chromophores in synthetic DNA constructs presents a biomimetic route to efficient artificial light harvesting. Here, we present two-dimensional (2D) electronic spectra of one monomeric Cy5 construct and two dimeric Cy5 constructs (0 bp and 1 bp between dyes) on a DNA scaffold and perform beating frequency analysis to interpret observed coherences. Power spectra of quantum beating signals of the dimers reveal high frequency oscillations that correspond to coherences between vibronic exciton states. Beating frequency maps confirm that these oscillations, 1270 cm−1 and 1545 cm−1 for the 0-bp dimer and 1100 cm−1 for the 1-bp dimer, are coherences between vibronic exciton states and that these coherences persist for ∼300 fs. Our observations are well described by a vibronic exciton model, which predicts the excitonic coupling strength in the dimers and the resulting molecular exciton states. The energy spacing between those states closely corresponds to the observed beat frequencies. MD simulations indicate that the dyes in our constructs lie largely internal to the DNA base stacking region, similar to the native design of biological light harvesting complexes. Observed coherences persist on the timescale of photosynthetic energy transfer yielding further parallels to observed biological coherences, establishing DNA as an attractive scaffold for synthetic light harvesting applications. Dyes coupled to DNA display distance-dependent vibronic couplings that prolongs quantum coherences detected with 2D spectroscopy.![]()
Collapse
Affiliation(s)
- Sara H Sohail
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - John P Otto
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Paul D Cunningham
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Young C Kim
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Ryan E Wood
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Marco A Allodi
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Jacob S Higgins
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Joseph S Melinger
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Gregory S Engel
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| |
Collapse
|
18
|
Sobek J, Schmidt M, Grossmann J, Rehrauer H, Schmidt L, Schlapbach R. Single-molecule chemistry. Part I: monitoring oxidation of G in oligonucleotides using CY3 fluorescence. Methods Appl Fluoresc 2020; 8:035010. [PMID: 32428873 DOI: 10.1088/2050-6120/ab947d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-molecule hybridisation of CY3 dye labelled short oligonucleotides to surface immobilised probes was investigated in zero-mode waveguide nanostructures using a modified DNA sequencer. At longer measuring times, we observed changes of the initial hybridisation fluorescence pulse pattern which we attribute to products created by chemical reactions at the nucleobases. The origin is a charge separated state created by a photoinduced electron transfer from nucleobases to the dye followed by secondary reactions with oxygen and water, respectively. The positive charge can migrate through the hybrid resulting in base modifications at distant sites. Static fluorescence spectra were recorded in order to determine the properties of CY3 stacking to different base pairs, and compared to pulse intensities. A characteristic pulse pattern change was assigned to the oxidation of G to 8-oG besides the formation of a number of secondary products that are not yet identified. Further, we present a method to visualise the degree of chemical reactions to gain an overview of ongoing processes. Our study demonstrates that CY3 is able to oxidise nucleobases in ds DNA, and also in ss overhangs. An important finding is the correlation between nucleobase oxidation potential and fluorescence quenching which explains the intensity changes observed in single molecule measurements. The analysis of fluorescence traces provides the opportunity to track complete and coherent reaction sequences enabling to follow the fate of a single molecule over a long period of time, and to observe chemical reactions in real-time. This opens up the opportunity to analyse reaction pathways, to detect new products and short-lived intermediates, and to investigate rare events due to the large number of single molecules observed in parallel.
Collapse
Affiliation(s)
- Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Hart SM, Banal JL, Bathe M, Schlau-Cohen GS. Identification of Nonradiative Decay Pathways in Cy3. J Phys Chem Lett 2020; 11:5000-5007. [PMID: 32484350 DOI: 10.1021/acs.jpclett.0c01201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoexcited fluorescent markers are extensively used in spectroscopy, imaging, and analysis of biological systems. The performance of fluorescent markers depends on high levels of emission, which are limited by competing nonradiative decay pathways. Small-molecule fluorescent dyes have been increasingly used as markers due to their high and stable emission. Despite their prevalence, the nonradiative decay pathways of these dyes have not been determined. Here, we investigate these pathways for a widely used indocarbocyanine dye, Cy3, using transient grating spectroscopy. We identify a nonradiative decay pathway via a previously unknown dark state formed within ∼1 ps of photoexcitation. Our experiments, in combination with electronic structure calculations, suggest that the generation of the dark state is mediated by picosecond vibrational mode coupling, likely via a conical intersection. We further identify the vibrational modes, and thus structural elements, responsible for the formation and dynamics of the dark state, providing insight into suppressing nonradiative decay pathways in fluorescent markers such as Cy3.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Hübner K, Pilo-Pais M, Selbach F, Liedl T, Tinnefeld P, Stefani FD, Acuna GP. Directing Single-Molecule Emission with DNA Origami-Assembled Optical Antennas. NANO LETTERS 2019; 19:6629-6634. [PMID: 31449421 DOI: 10.1021/acs.nanolett.9b02886] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We demonstrate the capability of DNA self-assembled optical antennas to direct the emission of an individual fluorophore, which is free to rotate. DNA origami is used to fabricate optical antennas composed of two colloidal gold nanoparticles separated by a predefined gap and to place a single Cy5 fluorophore near the gap center. Although the fluorophore is able to rotate, its excitation and far-field emission is mediated by the antenna, with the emission directionality following a dipolar pattern according to the antenna main resonant mode. This work is intended to set out the basis for manipulating the emission pattern of single molecules with self-assembled optical antennas based on colloidal nanoparticles.
Collapse
Affiliation(s)
- Kristina Hübner
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Mauricio Pilo-Pais
- Faculty of Physics and Center for NanoScience , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany
- Department of Physics , University of Fribourg , Chemin du Musée 3 , Fribourg CH-1700 , Switzerland
| | - Florian Selbach
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires , Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Güiraldes 2620, C1428EHA, Ciudad Autónoma de Buenos Aires , Argentina
| | - Guillermo P Acuna
- Department of Physics , University of Fribourg , Chemin du Musée 3 , Fribourg CH-1700 , Switzerland
| |
Collapse
|
21
|
Algar WR, Hildebrandt N, Vogel SS, Medintz IL. FRET as a biomolecular research tool — understanding its potential while avoiding pitfalls. Nat Methods 2019; 16:815-829. [DOI: 10.1038/s41592-019-0530-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/15/2019] [Indexed: 01/14/2023]
|
22
|
Heussman D, Kittell J, Kringle L, Tamimi A, von Hippel PH, Marcus AH. Measuring local conformations and conformational disorder of (Cy3) 2 dimer labeled DNA fork junctions using absorbance, circular dichroism and two-dimensional fluorescence spectroscopy. Faraday Discuss 2019; 216:211-235. [PMID: 31038134 DOI: 10.1039/c8fd00245b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sugar-phosphate backbone of DNA near single-stranded (ss)-double-stranded (ds) junctions likely fluctuates within a broad distribution of conformations to permit the proper binding of genome regulatory proteins that function at these sites. In this work we use absorbance, circular dichroism (CD), and two-dimensional fluorescence spectroscopy (2DFS) to study the local conformations and conformational disorder within chromophore-labeled DNA constructs. These constructs employ dimers of the fluorescent chromophore Cy3 that are site-specifically incorporated into the sugar-phosphate backbones of DNA strands at ss-ds DNA fork junctions. We show that these data can be analyzed to determine the local conformations of the (Cy3)2 dimer, and the degree of conformational disorder. Our analysis employs an essential-state Holstein-Frenkel Hamiltonian model, which takes into account the internal electronic-vibrational motions within each Cy3 chromophore, and the resonant electronic interaction that couples the two chromophores together. Our results suggest that this approach may be applied generally to understand local backbone conformation and conformational disorder at ss-ds DNA fork junctions.
Collapse
Affiliation(s)
- Dylan Heussman
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403, USA.
| | - Justin Kittell
- Department of Physics, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403, USA
| | - Loni Kringle
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403, USA.
| | - Amr Tamimi
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403, USA.
| | - Peter H von Hippel
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403, USA. and Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
23
|
Schmidt A, Altincekic N, Gustmann H, Wachtveitl J, Hengesbach M. The Protein Microenvironment Governs the Suitability of Labeling Sites for Single-Molecule Spectroscopy of RNP Complexes. ACS Chem Biol 2018; 13:2472-2483. [PMID: 30060648 DOI: 10.1021/acschembio.8b00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single-molecule techniques allow unique insights into biological systems as they provide unrivaled access to structural dynamics and conformational heterogeneity. One major bottleneck for reliable single-molecule Förster resonance energy transfer (smFRET) analysis is the identification of suitable fluorophore labeling sites that neither impair the function of the biological system nor cause photophysical artifacts of the fluorophore. To address this issue, we identified the contribution of virtually all individual parameters that affect Förster resonance energy transfer between two fluorophores attached to a ribonucleoprotein complex consisting of the RNA-binding protein L7Ae and a cognate kink turn containing RNA. A non-natural amino acid was incorporated at various positions of the protein using an amber suppression system (pEVOL) to label the protein via copper(I)-catalyzed alkyne-azide cycloaddition. On the basis of simulations followed by functional, structural, and multiparameter fluorescence analysis of five different smFRET RNPs, new insights into the design of smFRET RNPs were obtained. From this, a correlation between the photophysical properties of fluorophores attached to the protein and the predictability of the corresponding smFRET construct was established. Additionally, we identify a straightforward experimental method for characterizing selected labeling sites. Overall, this protocol allows fast generation and assessment of functional RNPs for accurate single-molecule experiments.
Collapse
Affiliation(s)
- Andreas Schmidt
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Henrik Gustmann
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
24
|
Cunningham PD, Kim YC, Díaz SA, Buckhout-White S, Mathur D, Medintz IL, Melinger JS. Optical Properties of Vibronically Coupled Cy3 Dimers on DNA Scaffolds. J Phys Chem B 2018; 122:5020-5029. [PMID: 29698610 DOI: 10.1021/acs.jpcb.8b02134] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We examine the effect of electronic coupling on the optical properties of Cy3 dimers attached to DNA duplexes as a function of base pair (bp) separation using steady-state and time-resolved spectroscopy. For close Cy3-Cy3 separations, 0 and 1 bp between dyes, intermediate to strong electronic coupling is revealed by modulation of the absorption and fluorescence properties including spectral band shape, peak wavelength, and excited-state lifetime. Using a vibronic exciton model, we estimate coupling strengths of 150 and 266 cm-1 for the 1 and 0 bp separations, respectively, which are comparable to those found in natural light-harvesting complexes. For the strongest electronic coupling (0 bp separation), we observe that the absorption band shape is strongly affected by the base pairs that surround the dyes, where more strongly hydrogen-bonded G-C pairs produce a red-shifted absorption spectrum consistent with a J-type dimer. This effect is studied theoretically using molecular dynamics simulation, which predicts an in-line dye configuration that is consistent with the experimental J-type spectrum. When the Cy3 dimers are in a standard aqueous buffer, the presence of relatively strong electronic coupling is accompanied by decreased fluorescence lifetime, suggesting that it promotes nonradiative relaxation in cyanine dyes. However, we show that the use of a viscous solvent can suppress this nonradiative recombination and thereby restore the dimer fluorescent emission. Ultrafast transient absorption measurements of Cy3 dimers in both standard aqueous buffer and viscous glycerol buffer suggest that sufficiently strong electronic coupling increases the probability of excited-state relaxation through a dark state that is related to Cy3 torsional motion.
Collapse
Affiliation(s)
| | | | | | | | - Divita Mathur
- College of Science , George Mason University , Fairfax , Virginia 22030 , United States
| | | | | |
Collapse
|
25
|
Kuzyk A, Jungmann R, Acuna GP, Liu N. DNA Origami Route for Nanophotonics. ACS PHOTONICS 2018; 5:1151-1163. [PMID: 30271812 PMCID: PMC6156112 DOI: 10.1021/acsphotonics.7b01580] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 05/21/2023]
Abstract
The specificity and simplicity of the Watson-Crick base pair interactions make DNA one of the most versatile construction materials for creating nanoscale structures and devices. Among several DNA-based approaches, the DNA origami technique excels in programmable self-assembly of complex, arbitrary shaped structures with dimensions of hundreds of nanometers. Importantly, DNA origami can be used as templates for assembly of functional nanoscale components into three-dimensional structures with high precision and controlled stoichiometry. This is often beyond the reach of other nanofabrication techniques. In this Perspective, we highlight the capability of the DNA origami technique for realization of novel nanophotonic systems. First, we introduce the basic principles of designing and fabrication of DNA origami structures. Subsequently, we review recent advances of the DNA origami applications in nanoplasmonics, single-molecule and super-resolution fluorescent imaging, as well as hybrid photonic systems. We conclude by outlining the future prospects of the DNA origami technique for advanced nanophotonic systems with tailored functionalities.
Collapse
Affiliation(s)
- Anton Kuzyk
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI-00076 Aalto, Finland
| | - Ralf Jungmann
- Department
of Physics and Center for Nanoscience, Ludwig
Maximilian University, 80539 Munich, Germany
- Max
Planck Institute of Biochemistry, 82152 Martinsried near Munich, Germany
| | - Guillermo P. Acuna
- Institute
for Physical & Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Na Liu
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Steffen FD, Sigel RKO, Börner R. An atomistic view on carbocyanine photophysics in the realm of RNA. Phys Chem Chem Phys 2018; 18:29045-29055. [PMID: 27783069 DOI: 10.1039/c6cp04277e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbocyanine dyes have a long-standing tradition in fluorescence imaging and spectroscopy, due to their photostability and large spectral separation between individual dye species. Herein, we explore the versatility of cyanine dyes to probe the dynamics of nucleic acids and we report on the interrelation of fluorophores, RNA, and metal ions, namely K+ and Mg2+. Photophysical parameters including the fluorescence lifetime, quantum yield and dynamic anisotropy are monitored as a function of the nucleic acid composition, conformation, and metal ion abundance. Occasional excursions to a non-fluorescent cis-state hint at the remarkable sensitivity of carbocyanines to their local environment. Comparison of time-correlated single photon experiments with all-atom molecular dynamics simulations demonstrate that the propensity of photoisomerization is dictated by sterical constraints imposed on the fluorophore. Structural features in the vicinity of the dye play a crucial role in RNA recognition and have far-reaching implications on the mobility of the fluorescent probe. An atomic level description of the mutual interactions will ultimately benefit the quantitative interpretation of single-molecule FRET measurements on large RNA systems.
Collapse
Affiliation(s)
- Fabio D Steffen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Richard Börner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
27
|
Nicoli F, Barth A, Bae W, Neukirchinger F, Crevenna AH, Lamb DC, Liedl T. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform. ACS NANO 2017; 11:11264-11272. [PMID: 29063765 PMCID: PMC6546591 DOI: 10.1021/acsnano.7b05631] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Elaborating efficient strategies and deepening the understanding of light transport at the nanoscale is of great importance for future designs of artificial light-harvesting assemblies and dye-based photonic circuits. In this work, we focus on studying the phenomenon of Förster resonance energy transfer (FRET) among fluorophores of the same kind (homo-FRET) and its implications for energy cascades containing two or three different dye molecules. Utilizing the spatial programmability of DNA origami, we arranged a chain of cyanine 3 (Cy3) dyes flanked at one end with a dye of lower excitation energy, cyanine 5 (Cy5), with or without an additional dye of higher excitation energy, Alexa488, at the other end. We characterized the response of our fluorophore assemblies with bulk and single-molecule spectroscopy and support our measurements by Monte Carlo modeling of energy transfer within the system. We find that, depending on the arrangement of the fluorophores, homo-FRET between the Cy3 dyes can lead to an overall enhanced energy transfer to the acceptor fluorophore. Furthermore, we systematically analyzed the homo-FRET system by addressing the fluorescence lifetime and anisotropy. Finally, we built a homo-FRET-mediated photonic wire capable of transferring energy through the homo-FRET system from the blue donor dye (Alexa488) to the red acceptor fluorophore (Cy5) across a total distance of 16 nm.
Collapse
Affiliation(s)
- Francesca Nicoli
- Department of Physics and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
| | - Anders Barth
- Department of Chemistry and Biochemistry and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
| | - Wooli Bae
- Department of Physics and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
| | - Fabian Neukirchinger
- Department of Physics and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
| | - Alvaro H. Crevenna
- Department of Chemistry and Biochemistry and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
| | - Don C. Lamb
- Department of Chemistry and Biochemistry and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
- Correspondence to and
| | - Tim Liedl
- Department of Physics and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
- Correspondence to and
| |
Collapse
|
28
|
Purohit A, England JK, Douma LG, Tondnevis F, Bloom LB, Levitus M. Electrostatic Interactions at the Dimer Interface Stabilize the E. coli β Sliding Clamp. Biophys J 2017; 113:794-804. [PMID: 28834716 DOI: 10.1016/j.bpj.2017.06.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli β-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the β-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states.
Collapse
Affiliation(s)
- Anirban Purohit
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jennifer K England
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida
| | - Farzaneh Tondnevis
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida.
| | - Marcia Levitus
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona.
| |
Collapse
|
29
|
Karathanasis C, Fricke F, Hummer G, Heilemann M. Molecule Counts in Localization Microscopy with Organic Fluorophores. Chemphyschem 2017; 18:942-948. [PMID: 28196307 DOI: 10.1002/cphc.201601425] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 11/08/2022]
Abstract
Single-molecule localization microscopy (SMLM) can be used to count fluorescently labeled molecules even when they are not individually resolved. We demonstrate SMLM molecule counting for nucleic acids labeled with the organic fluorophore Alexa Fluor 647 and imaged under photoswitching conditions. From the observed distributions of the number of fluorophore blinking events, we extract the number of fluorophores per spot using a statistical model. We validate the molecule counting method for single Alexa Fluor 647 fluorophores, and for trimers of Alexa Fluor 647 constructed on a DNA origami structure. This simple counting strategy enables quantitative super-resolution imaging with organic fluorophores.
Collapse
Affiliation(s)
- Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Franziska Fricke
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Gidi Y, Götte M, Cosa G. Conformational Changes Spanning Angstroms to Nanometers via a Combined Protein-Induced Fluorescence Enhancement-Förster Resonance Energy Transfer Method. J Phys Chem B 2017; 121:2039-2048. [PMID: 28177636 DOI: 10.1021/acs.jpcb.6b11495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Förster resonance energy transfer (FRET)-based single-molecule techniques have revolutionized our understanding of conformational dynamics in biomolecular systems. Recently, a new single-molecule technique based on protein-induced fluorescence enhancement (PIFE) has aided studies in which minimal (<3 nm) displacements occur. Concerns have been raised regarding whether donor fluorophore intensity (and correspondingly fluorescence quantum yield Φf) fluctuations, intrinsic to PIFE methods, may adversely affect FRET studies when retrieving the donor-acceptor dye distance. Here, we initially show through revisions of Förster's original equation that distances may be calculated in FRET experiments regardless of protein-induced intensity (and Φf) fluctuations occurring in the donor fluorophore. We additionally demonstrate by an analysis of the recorded emission intensity and competing decay pathways that PIFE and FRET methods may be conveniently combined, providing parallel complementary information in a single experiment. Single-molecule studies conducted with Cy3- and ATTO647N-labeled RNA structures and the HCV-NS5B polymerase protein undergoing binding dynamics along the RNA backbone provide a case study to validate the results. The analysis behind the proposed method enables for PIFE and FRET changes to be disentangled when both FRET and PIFE fluctuate over time following protein arrival and, for example, sliding. A new method, intensity-FRET, is thus proposed to monitor conformational changes spanning from angstroms to nanometers.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Matthias Götte
- Department of Biochemistry and Department of Medical Microbiology and Immunology, University of Alberta , 6020K Katz Group Centre, Edmonton, Alberta, Canada T6G 2E1
| | - Gonzalo Cosa
- Department of Chemistry and Center for Self-Assembled Chemical Structures (CSACS-CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
31
|
Nicoli F, Roos MK, Hemmig EA, Di Antonio M, de Vivie-Riedle R, Liedl T. Proximity-Induced H-Aggregation of Cyanine Dyes on DNA-Duplexes. J Phys Chem A 2016; 120:9941-9947. [PMID: 27934475 PMCID: PMC6544512 DOI: 10.1021/acs.jpca.6b10939] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A wide variety of organic dyes form, under certain conditions, clusters know as J- and H-aggregates. Cyanine dyes are such a class of molecules where the spatial proximity of several dyes leads to overlapping electron orbitals and thus to the creation of a new energy landscape compared to that of the individual units. In this work, we create artificial H-aggregates of exactly two Cyanine 3 (Cy3) dyes by covalently linking them to a DNA molecule with controlled subnanometer distances. The absorption spectra of these coupled systems exhibit a blue-shifted peak, whose intensity varies depending on the distance between the dyes and the rigidity of the DNA template. Simulated vibrational resolved spectra, based on molecular orbital theory, excellently reproduce the experimentally observed features. Circular dichroism spectroscopy additionally reveals distinct signals, which indicates a chiral arrangement of the dye molecules. Molecular dynamic simulations of a Cy3-Cy3 construct including a 14-base pair DNA sequence verified chiral stacking of the dye molecules.
Collapse
Affiliation(s)
- Francesca Nicoli
- Faculty of Physics and Center for NanoScience (CENS), Ludwig-Maximilians-Universität München (LMU), Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Matthias K. Roos
- Department Chemie, Ludwig-Maximilians-Universität München (LMU), Butenandt Str. 11, 81377 Munich, Germany
| | - Elisa A. Hemmig
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave., CB3 0HE Cambridge, United Kingdom
| | - Marco Di Antonio
- Chemistry Department, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Regina de Vivie-Riedle
- Department Chemie, Ludwig-Maximilians-Universität München (LMU), Butenandt Str. 11, 81377 Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CENS), Ludwig-Maximilians-Universität München (LMU), Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| |
Collapse
|
32
|
Melinger JS, Sha R, Mao C, Seeman NC, Ancona MG. Fluorescence and Energy Transfer in Dye-Labeled DNA Crystals. J Phys Chem B 2016; 120:12287-12292. [DOI: 10.1021/acs.jpcb.6b09385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph S. Melinger
- Electronics
Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Ruojie Sha
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Chengde Mao
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nadrian C. Seeman
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Mario G. Ancona
- Electronics
Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
33
|
Lerner E, Ploetz E, Hohlbein J, Cordes T, Weiss S. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET). J Phys Chem B 2016; 120:6401-10. [PMID: 27184889 PMCID: PMC4939467 DOI: 10.1021/acs.jpcb.6b03692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Single-molecule,
protein-induced fluorescence enhancement (PIFE)
serves as a molecular ruler at molecular distances inaccessible to
other spectroscopic rulers such as Förster-type resonance energy
transfer (FRET) or photoinduced electron transfer. In order to provide
two simultaneous measurements of two distances on different molecular
length scales for the analysis of macromolecular complexes, we and
others recently combined measurements of PIFE and FRET (PIFE-FRET)
on the single molecule level. PIFE relies on steric hindrance of the
fluorophore Cy3, which is covalently attached to a biomolecule of
interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate.
In this work, we provide a theoretical framework that accounts for
relevant photophysical and kinetic parameters of PIFE-FRET, show how
this framework allows the extraction of the fold-decrease in isomerization
mobility from experimental data, and show how these results provide
information on changes in the accessible volume of Cy3. The utility
of this model is then demonstrated for experimental results on PIFE-FRET
measurement of different protein–DNA interactions. The proposed
model and extracted parameters could serve as a benchmark to allow
quantitative comparison of PIFE effects in different biological systems.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Evelyn Ploetz
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research , Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.,Microspectroscopy Centre, Wageningen University and Research , Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
34
|
Kawai K, Maruyama A. Triple helix conformation-specific blinking of Cy3 in DNA. Chem Commun (Camb) 2015; 51:4861-4. [PMID: 25697775 DOI: 10.1039/c5cc00607d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that Cy3 undergoes triple helix conformation-specific blinking in DNA. Blinking patterns were affected by the stabilization of the Hoogsteen base-pair, suggesting that not only the presence but also the fluctuating behaviour of the triple helix can be monitored by the changes in the Cy3 blinking patterns.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 5670047, Japan.
| | | |
Collapse
|
35
|
Wei S, Falk SJ, Black BE, Lee TH. A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome. Nucleic Acids Res 2015; 43:e111. [PMID: 26013809 PMCID: PMC4787812 DOI: 10.1093/nar/gkv549] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/22/2015] [Accepted: 05/14/2015] [Indexed: 11/23/2022] Open
Abstract
Structural dynamics of nucleic acid and protein is an important physical basis of their functions. These motions are often very difficult to synchronize and too fast to be clearly resolved with the currently available single molecule methods. Here we demonstrate a novel hybrid single molecule approach combining stochastic data analysis with fluorescence correlation that enables investigations of sub-ms unsynchronized structural dynamics of macromolecules. Based on the method, we report the first direct evidence of spontaneous DNA motions at the nucleosome termini. The nucleosome, comprising DNA and a histone core, is the fundamental packing unit of eukaryotic genes that must be accessed during various genome transactions. Spontaneous DNA opening at the nucleosome termini has long been hypothesized to enable gene access in the nucleosome, but has yet to be directly observed. Our approach reveals that DNA termini in the nucleosome open and close repeatedly at 0.1-1 ms(-1). The kinetics depends on salt concentration and DNA-histone interactions but not much on DNA sequence, suggesting that this dynamics is universal and imposes the kinetic limit to gene access. These results clearly demonstrate that our method provides an efficient and robust means to investigate unsynchronized structural changes of DNA at a sub-ms time resolution.
Collapse
Affiliation(s)
- Sijie Wei
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Samantha J Falk
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Søndergaard S, Aznauryan M, Haustrup EK, Schiøtt B, Birkedal V, Corry B. Dynamics of fluorescent dyes attached to G-quadruplex DNA and their effect on FRET experiments. Chemphyschem 2015; 16:2562-70. [PMID: 26174803 DOI: 10.1002/cphc.201500271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/05/2015] [Indexed: 11/08/2022]
Abstract
FRET spectroscopy is a promising approach for investigating the dynamics of G-quadruplex DNA folds and improving the targeting of G-quadruplexes by potential anticancer compounds. To better interpret such experiments, classical and replica-exchange molecular dynamics simulations and fluorescence-lifetime measurements are used to understand the behavior of a range of Cy3-based dyes attached to the 3' end of G-quadruplex DNA. The simulations revealed that the dyes interact extensively with the G-quadruplex. Identification of preferred dye positions relative to the G-quadruplex in the simulations allows the impact of dye-DNA interactions on FRET results to be determined. All the dyes show significant deviations from the common approximation of being freely rotating and not interacting with the host, but one of the Cy3 dye analogues is slightly closer to this case.
Collapse
Affiliation(s)
- Siri Søndergaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C (Denmark).,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C (Denmark)
| | - Mikayel Aznauryan
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C (Denmark)
| | - Emil K Haustrup
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C (Denmark)
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C (Denmark).,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C (Denmark)
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C (Denmark).
| | - Ben Corry
- Research School of Biology, Australian National University, Linnaeus Way, Canberra ACT 2601 (Australia).
| |
Collapse
|
37
|
Stennett EMS, Ciuba MA, Lin S, Levitus M. Demystifying PIFE: The Photophysics Behind the Protein-Induced Fluorescence Enhancement Phenomenon in Cy3. J Phys Chem Lett 2015; 6:1819-1823. [PMID: 26263254 DOI: 10.1021/acs.jpclett.5b00613] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein-induced fluorescence enhancement (PIFE) is a term used to describe the increase in fluorescence intensity observed when a protein binds to a nucleic acid in the proximity of a fluorescent probe. PIFE using the single-molecule dye Cy3 is gaining popularity as an approach to investigate the dynamics of proteins that interact with nucleic acids. In this work, we used complexes of DNA and Klenow fragment and a combination of time-resolved fluorescence and transient spectroscopy techniques to elucidate the photophysical mechanism that leads to protein-enhanced fluorescence emission of Cy3 when in close proximity to a protein (PIFE). By monitoring the formation of the cis isomer directly, we proved that the enhancement of Cy3 fluorescence correlates with a decrease in the efficiency of photoisomerization, and occurs in conditions where the dye is sterically constrained by the protein.
Collapse
Affiliation(s)
- Elana M S Stennett
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, P.O. Box 875601, Tempe, Arizona 85287, United States
| | - Monika A Ciuba
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, P.O. Box 875601, Tempe, Arizona 85287, United States
| | - Su Lin
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, P.O. Box 875601, Tempe, Arizona 85287, United States
| | - Marcia Levitus
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, P.O. Box 875601, Tempe, Arizona 85287, United States
| |
Collapse
|
38
|
Cunningham PD, Khachatrian A, Buckhout-White S, Deschamps JR, Goldman ER, Medintz IL, Melinger JS. Resonance Energy Transfer in DNA Duplexes Labeled with Localized Dyes. J Phys Chem B 2014; 118:14555-65. [DOI: 10.1021/jp5065006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Paul D. Cunningham
- U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Ani Khachatrian
- U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
- Sotera Defense, 430 National
Business Parkway, Suite 100, Annapolis Junction, Maryland 20701, United States
| | - Susan Buckhout-White
- U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
- George Mason University, 10910
University Boulevard, MS 4E3, Manassas, Virginia 20110, United States
| | - Jeffrey R. Deschamps
- U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Ellen R. Goldman
- U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Igor L. Medintz
- U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Joseph S. Melinger
- U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| |
Collapse
|
39
|
Kroutil O, Romancová I, Šíp M, Chval Z. Cy3 and Cy5 dyes terminally attached to 5'C end of DNA: structure, dynamics, and energetics. J Phys Chem B 2014; 118:13564-72. [PMID: 25365696 DOI: 10.1021/jp509459y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cy3 and Cy5 cyanine dyes terminally attached to the 5'C end (C1) of the DNA oligonucleotide were studied by metadynamics (MTD), molecular dynamics (MD), and density-functional methods with dispersion corrections (DFT-D). MTD simulations explored the free energy surface (FES) of the dye-DNA interactions, which included stacking and major groove binding motifs and unstacked structures. Dynamics of the stacked structures was studied by the MD simulations. All possible combinations of stacking interactions between the two indole rings of the dyes and the neighbor guanine and cytosine rings were observed. The most probable interaction included the stacking between the dye's distal indole ring and the guanine base. In ∼10% of the structures the delocalized π-electrons of the dyes' polymethine linkers played a key role in the dye-DNA dispersion interactions. The stacked conformers of the Cy3 dye were confirmed as true minima by DFT-D full optimizations. The stacked dye decreased flexibility up to two neighbor base pairs.
Collapse
Affiliation(s)
- Ondřej Kroutil
- Department of Laboratory Methods and Information Systems, Faculty of Health and Social Studies, University of South Bohemia , J. Boreckého 27, 37011 České Budějovice, Czech Republic
| | | | | | | |
Collapse
|
40
|
Binder JK, Douma LG, Ranjit S, Kanno DM, Chakraborty M, Bloom LB, Levitus M. Intrinsic stability and oligomerization dynamics of DNA processivity clamps. Nucleic Acids Res 2014; 42:6476-86. [PMID: 24728995 PMCID: PMC4041429 DOI: 10.1093/nar/gku255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
Sliding clamps are ring-shaped oligomeric proteins that are essential for processive deoxyribonucleic acid replication. Although crystallographic structures of several clamps have been determined, much less is known about clamp structure and dynamics in solution. Here, we characterized the intrinsic solution stability and oligomerization dynamics of the homodimeric Escherichia coli β and the homotrimeric Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) clamps using single-molecule approaches. We show that E. coli β is stable in solution as a closed ring at concentrations three orders of magnitude lower than PCNA. The trimeric structure of PCNA results in slow subunit association rates and is largely responsible for the lower solution stability. Despite this large difference, the intrinsic lifetimes of the rings differ by only one order of magnitude. Our results show that the longer lifetime of the E. coli β dimer is due to more prominent electrostatic interactions that stabilize the subunit interfaces.
Collapse
Affiliation(s)
- Jennifer K Binder
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Suman Ranjit
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - David M Kanno
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Manas Chakraborty
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Marcia Levitus
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| |
Collapse
|