1
|
Hymas PP, Conboy JC. Phosphatidylserine affinity for and flip-flop dependence on Ca 2+ and Mg 2+ ions. Faraday Discuss 2025. [PMID: 40351252 DOI: 10.1039/d4fd00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Ca2+ ions are believed to play a crucial role in regulating lipid membrane asymmetry by modulating the activity of flippases, floppases, and scramblases. Dysregulation of Ca2+ homeostasis, and subsequent loss of phosphatidylserine (PS) lipid asymmetry, is associated with physiological conditions such as blood clotting, neurodegeneration, and apoptosis. Yet, despite the prominence of Ca2+ with regards to PS flip-flop, the specific actions of Ca2+ are not fully understood and detailed mechanisms remain elusive. Much focus has been placed on enzymatic interactions, while the endogenous interactions of Ca2+ ions with PS and the direct role Ca2+ ions play on maintaining PS asymmetry have not been characterized in detail, a potentially crucial gap in understanding. In the current study the binding affinities of Ca2+ ions to planar supported lipid membranes containing PS were measured via sum-frequency vibrational spectroscopy (SFVS). Evaluation of binding affinity obtained from SFVS peak area analysis yielded an affinity of 1.3 × 105 M-1. The rate of PS flip-flop was also measured in the presence and absence of Ca2+via SFVS, with a nearly five-fold decrease in the rate of translocation when Ca2+ ions are present. Controls which tested Mg2+ with PS or phosphatidylcholine (PC) with Ca2+ did not show similar slowing effects, highlighting the specificity of the PS-Ca2+ interaction. For the binary lipid mixture tested, the disparity in the PS flip-flop rate would be sufficient to produce an 82% PS asymmetry if Ca2+ ions are localized to one side of the membrane. These studies have important implications for the non-enzymatic role Ca2+ ions may play in the maintenance of PS asymmetry.
Collapse
Affiliation(s)
- Preston P Hymas
- Department of Chemistry, University of Utah, 315 S. 1400 E. RM 2020, Salt Lake City, UT 84112, USA.
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 S. 1400 E. RM 2020, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Taylor JM, Gerton KH, Conboy JC. Does vitamin E behave like cholesterol? An examination of vitamin E's effects on phospholipid membrane structure and dynamics through sum-frequency vibrational spectroscopy. Biophys J 2025; 124:1226-1244. [PMID: 40055893 PMCID: PMC12044400 DOI: 10.1016/j.bpj.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
Vitamin E (VE) has historically been described as an antioxidant and its roles in radical species scavenging and nutrition are well studied. VE has been proposed to have secondary roles within the membrane but these roles are not as well characterized, with contradictory results emerging throughout the literature. Due to similar structural motifs, comparisons between VE and cholesterol (CHO), another membrane component, have been commonly made. Despite these comparisons showing that phospholipid-CHO and phospholipid-VE interactions may behave similarly, VE's potential influence on phospholipid flip-flop specifically is not as well studied when compared with CHO's influence. Here, we show through the use of sum-frequency vibrational spectroscopy that VE at both biological (0.5-1.5 mol %) and supraphysiological (2.5-5 mol %) concentrations shows similar characteristics to that of CHO in its ability to induce alkyl chain ordering of phospholipids within planar supported lipid bilayers of the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. In addition to chain ordering, the introduction of VE accelerates phospholipid flip-flop by approximately three times (0.5-2.5 mol %) with rates approaching an order-of-magnitude increase (5 mol %) at high VE content. The increase in phospholipid flip-flop rates is attributed to the decrease in the molar compression modulus of the membrane. These results suggest that VE influences the ordering and compressibility of the membrane similar to CHO.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Kai H Gerton
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
3
|
Gahtori P, Gunwant V, Pandey R. Probing the Influence of Hydrophobicity of Modified Gold Nanoparticles in Modulating the Lipid Surface Behavior Using Vibrational Sum Frequency Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21211-21221. [PMID: 39323070 DOI: 10.1021/acs.langmuir.4c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A deep understanding of how the surface modifications of nanoparticles impact their interactions with cell membranes is vital for advancing safe and effective biomedical applications. Among the pivotal factors governing these interactions, the hydrophobicity of nanoparticles plays a crucial role, predominantly driven by the hydrophobic interactions with the cell membrane. Herein, we study the influence of the hydrophobic alkyl chain length of thiol-capped gold nanoparticles (GNPs) on lipid surfaces with the help of vibrational sum frequency generation spectroscopy. We have utilized the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer as a representative model of cell membranes on the water surface. Our findings revealed that GNPs capped with the thiol ligand having a shorter alkyl chain such as heptanethiol (HT, C7) show minimal changes in the C-H stretching vibrations while interacting with the lipid monolayer. These observations could be attributed to the perturbation of the lipid chain due to hydrophobic-hydrophobic interactions between the alkyl chain of thiol-capped GNPs and the hydrophobic group of the lipid membrane or simply by the adsorption of GNPs at the interface without disrupting the monolayer structure. However, with increasing the chain length of thiol-capped GNPs from decanethiol (DDT, C10) to octadecanethiol (ODT, C18), the extent of spectral change in the C-H stretching vibration is increased. The controlled experiment performed with the deuterated lipids conforms that the changes observed in the C-H stretching vibration after adding HT (C7) GNPs are only because of their presence in the surface without altering the monolayer structure. However, in the case of DT (C10) and DDT (C12) GNPs, the strong hydrophobic interactions between the monolayer and the alkyl chain of the thiol-capped GNPs result in the increased orientational order of the monolayer. Moreover, in the case of ODT (C18) GNPs, the very long alkyl chain induces pronounced perturbations in the monolayer structure with net disordering of the monolayer. These observations are further supported by the spectral changes observed in the O-H vibration of the interfacial water molecules. Our findings reveal the crucial role of the hydrophobic nature of GNPs in influencing the interface. Understanding these effects is crucial for drug delivery applications and improving the stability and effectiveness of lipid-based systems.
Collapse
Affiliation(s)
- Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
4
|
Taylor JM, Conboy JC. Issues with lipid probes in flip-flop measurements: A comparative study using sum-frequency vibrational spectroscopy and second-harmonic generation. J Chem Phys 2024; 161:085104. [PMID: 39185850 DOI: 10.1063/5.0226075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Fluorescent lipid probes such as 1-palmitoyl-2-(6-[7-nitro-2-1,3-benzoxadiazol-4-yl]amino-hexanoyl)-sn-glycero-3-phosphocholine (C6 NBD-PC) have been used extensively to study the kinetics of lipid flip-flop. However, the efficacy of these probes as reliable reporters of native lipid translocation has never been tested. In this study, sum-frequency vibrational spectroscopy (SFVS) was used to measure the kinetics of C6 NBD-PC lipid flip-flop and the flip-flop of native lipids in planar supported lipid bilayers. C6 NBD-PC was investigated at concentrations of 1 and 3 mol. % in both chain-matched 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chain-mismatched 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) to assess the ability of C6 NBD-PC to mimic the behavior of the surrounding matrix lipids. It was observed that C6 NBD-PC exhibited faster flip-flop kinetics compared to the native lipids in both DPPC and DSPC matrices, with notably accelerated rates in the chain-mismatched DSPC system. SFVS was also used to measure the acyl chain orientation and gauche content of C6 NBD-PC in both DPPC and DSPC membranes. In the DSPC matrix (chain mismatched), C6 NBD-PC was more disordered in terms of both gauche content and acyl tilt, whereas it maintained an orientation similar to that of the native lipids in the DPPC matrix (chain matched). In addition, the flip-flop kinetics of C6 NBD-PC were also measured using second-harmonic generation (SHG) spectroscopy, by probing the motion of the NBD chromophore directly. The flip-flop kinetics measured by SHG were consistent with those obtained from SFVS. This study also marks the first instance of phospholipid flip-flop kinetics being measured via SHG. The results of this study clearly demonstrate that C6 NBD-PC does not adequately mimic the behavior of native lipids within a membrane. These findings also highlight the significant impact of the lipid matrix on the flip-flop behavior of the fluorescently labeled lipid, C6 NBD-PC.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Taylor JM, Conboy JC. Sum-frequency vibrational spectroscopy, a tutorial: Applications for the study of lipid membrane structure and dynamics. Biointerphases 2024; 19:031201. [PMID: 38738942 DOI: 10.1116/6.0003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| |
Collapse
|
6
|
Gunwant V, Gahtori P, Varanasi SR, Pandey R. Protein-Mediated Changes in Membrane Fluidity and Ordering: Insights into the Molecular Mechanism and Implications for Cellular Function. J Phys Chem Lett 2024; 15:4408-4415. [PMID: 38625684 DOI: 10.1021/acs.jpclett.3c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Probing protein-membrane interactions is vital for understanding biological functionality for various applications such as drug development, targeted drug delivery, and creation of functional biomaterials for medical and industrial purposes. In this study, we have investigated interaction of Human Serum Albumin (HSA) with two different lipids, dipalmitoylphosphatidylglycerol (dDPPG) and dipalmitoylphosphatidylcholine (dDPPC), using Vibrational Sum Frequency Generation spectroscopy at different membrane fluidity values. In the liquid-expanded (LE) state of the lipid, HSA (at pH 3.5) deeply intercalated lipid chains through a combination of electrostatic and hydrophobic interactions, which resulted in more ordering of the lipid chains. However, in the liquid-condensed (LC) state, protein intercalation is decreased due to tighter lipid packing. Moreover, our findings revealed distinct differences in HSA's interaction with dDPPG and dDPPC lipids. The interaction with dDPPC remained relatively weak compared to dDPPG. These results shed light on the significance of protein mediated changes in lipid characteristics, which hold considerable implications for understanding membrane protein behavior, lipid-mediated cellular processes, and lipid-based biomaterial design.
Collapse
Affiliation(s)
- Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Srinivasa Rao Varanasi
- Department of Physics, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Oman
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
7
|
Pullanchery S, Dupertuis N, Roesel T, Roke S. Liposomes and Lipid Droplets Display a Reversal of Charge-Induced Hydration Asymmetry. NANO LETTERS 2023; 23:9858-9864. [PMID: 37869786 PMCID: PMC10636888 DOI: 10.1021/acs.nanolett.3c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Indexed: 10/24/2023]
Abstract
The unique properties of water are critical for life. Water molecules have been reported to hydrate cations and anions asymmetrically in bulk water, being a key element in the balance of biochemical interactions. We show here that this behavior extends to charged lipid nanoscale interfaces. Charge hydration asymmetry was investigated by using nonlinear light scattering methods on lipid nanodroplets and liposomes. Nanodroplets covered with negatively charged lipids induce strong water ordering, while droplets covered with positively charged lipids induce negligible water ordering. Surprisingly, this charge-induced hydration asymmetry is reversed around liposomes. This opposite behavior in charge hydration asymmetry is caused by a delicate balance of electrostatic and hydrogen-bonding interactions. These findings highlight the importance of not only the charge state but also the specific distribution of neutral and charged lipids in cellular membranes.
Collapse
Affiliation(s)
- Saranya Pullanchery
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nathan Dupertuis
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tereza Roesel
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Materials Science (IMX), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne
Centre for Ultrafast Science (LACUS), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Huang Y, Karsai A, Sambre PD, Su WC, Faller R, Parikh AN, Liu GY. Production of Lipid Constructs by Design via Three-Dimensional Nanoprinting. MICROMACHINES 2023; 14:372. [PMID: 36838072 PMCID: PMC9963025 DOI: 10.3390/mi14020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Atomic force microscopy (AFM) in conjunction with microfluidic delivery was utilized to produce three-dimensional (3D) lipid structures following a custom design. While AFM is well-known for its spatial precision in imaging and 2D nanolithography, the development of AFM-based nanotechnology into 3D nanoprinting requires overcoming the technical challenges of controlling material delivery and interlayer registry. This work demonstrates the concept of 3D nanoprinting of amphiphilic molecules such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Various formulations of POPC solutions were tested to achieve point, line, and layer-by-layer material delivery. The produced structures include nanometer-thick disks, long linear spherical caps, stacking grids, and organizational chiral architectures. The POPC molecules formed stacking bilayers in these constructions, as revealed by high-resolution structural characterizations. The 3D printing reached nanometer spatial precision over a range of 0.5 mm. The outcomes reveal the promising potential of our designed technology and methodology in the production of 3D structures from nanometer to continuum, opening opportunities in biomaterial sciences and engineering, such as in the production of 3D nanodevices, chiral nanosensors, and scaffolds for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Yuqi Huang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Arpad Karsai
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Pallavi D. Sambre
- Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA
| | - Wan-Chih Su
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| | - Atul N. Parikh
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Cheng V, Conboy JC. Inhibitory Effect of Lanthanides on Native Lipid Flip-Flop. J Phys Chem B 2022; 126:7651-7663. [PMID: 36129784 DOI: 10.1021/acs.jpcb.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of ytterbium ions (Yb3+), a commonly used paramagnetic NMR chemical shift reagent, on the physical properties and flip-flop kinetics of dipalmitoylphosphatidylcholine (DPPC) planar supported lipid bilayers (PSLBs) was investigated. Langmuir isotherm studies revealed that Yb3+ interacts strongly with the phosphate headgroup of DPPC, evidenced by the increases in shear and compression moduli. Using sum-frequency vibrational spectroscopy, changes in the acyl chain ordering and phase transition temperature were also observed, consistent with Yb3+ interacting with the phosphate headgroup of DPPC. The changes in the physical properties of the membrane were also observed to be concentration dependent, with more pronounced modification observed at low (50 μM) Yb3+ concentrations compared to 6.5 mM Tb3+, suggesting a cross-linking mechanism between adjacent DPPC lipids. Additionally, the changes in membrane packing and phase transition temperatures in the presence of Tris buffer suggested that a putative Yb(Tris)3+ complex forms that coordinates to the PC headgroup. The kinetics of DPPC flip-flop in the gel and liquid crystalline (lc) phases were substantially inhibited in the presence of Yb3+, regardless of the Yb3+ concentration. Analysis of the flip-flop kinetics under the framework of transition state theory revealed that the free energy barrier to flip-flop in both the gel and lc phases was substantial increased over a pure DPPC membrane. In the gel phase, the trend in the free energy barrier appeared to follow the trend in the shear moduli, suggesting that the Yb3+-DPPC headgroup interaction was driving the increase in the activation free energy barrier. In the lc phase, activation free energies of DPPC flip-flop in the presence of 50 μM or 6.5 mM Yb3+ were found to mirror the free energies of TEMPO-DPPC flip-flop, leading to the conclusion that the strong interaction between Yb3+ and the PC headgroup was essentially manifested as a headgroup charge modification. These studies illustrate that the presence of the lanthanide Yb3+ results in significant modification to the lipid membrane physical properties and, more importantly, results in a pronounced inhibition of native lipid flip-flop.
Collapse
Affiliation(s)
- Victoria Cheng
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Cheng V, Rallabandi R, Gorusupudi A, Lucas S, Rognon G, Bernstein PS, Rainier JD, Conboy JC. Influence of very-long-chain polyunsaturated fatty acids on membrane structure and dynamics. Biophys J 2022; 121:2730-2741. [PMID: 35711144 PMCID: PMC9382336 DOI: 10.1016/j.bpj.2022.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
The unique attributes of very-long-chain polyunsaturated fatty acids (VLC-PUFAs), their long carbon chains (n > 24) and high degree of unsaturation, impart unique chemical and physical properties to this class of fatty acids. The changes imparted by VLC-PUFA 32:6 n-3 on lipid packing and the compression moduli of model membranes were evaluated from π-A isotherms of VLC-PUFA in 1,2-distearoyl-sn-3-glycero-phosphocholine (DSPC) lipid monolayers. To compare the attractive or repulsive forces between VLC-PUFA and DSPC lipid monolayers, the measured mean molecular areas (MMAs) were compared with the calculated MMAs of an ideal mixture of VLC-PUFA and DSPC. The presence of 0.1, 1, and 10 mol % VLC-PUFA shifted the π-A isotherm to higher MMAs of the lipids comprising the membrane and the observed positive deviations from ideal behavior of the mixed VLC-PUFA:DSPC monolayers correspond to repulsive forces between VLC-PUFAs and DSPC. The MMA of the VLC-PUFA component was estimated using the measured MMAs of DSPC of 47.1 ± 0.7 Å2/molecule, to be 15,000, 1100, and 91 Å2/molecule at 0.1, 1, and 10 mol % VLC-PUFA:DSPC mixtures, respectively. The large MMAs of VLC-PUFA suggest that the docosahexaenoic acid tail reinserts into the membrane and adopts a nonlinear structure in the membrane, which is most pronounced at 0.1 mol % VLC-PUFA. The presence of 0.1 mol % VLC-PUFA:DSPC also significantly increased the compression modulus of the membrane by 28 mN/m compared with a pure DSPC membrane. The influence of VLC-PUFA on lipid "flip-flop" was investigated by sum-frequency vibrational spectroscopy. The incorporation of 0.1 mol % VLC-PUFA increased the DSPC flip-flop rate fourfold. The fact that VLC-PUFA promotes lipid translocation is noteworthy as retinal membranes require a high influx of retinoids which may be facilitated by lipid flip-flop.
Collapse
Affiliation(s)
- Victoria Cheng
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Steven Lucas
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Gregory Rognon
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Jon D Rainier
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
11
|
Li Y, Feng R, Liu M, Guo Y, Zhang Z. Mechanism by Which Cholesterol Induces Sphingomyelin Conformational Changes at an Air/Water Interface. J Phys Chem B 2022; 126:5481-5489. [PMID: 35839485 DOI: 10.1021/acs.jpcb.2c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work investigates the interactions in cholesterol and sphingomyelin monolayers at the molecular level by high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of natural egg sphingomyelin (ESM) as a function of cholesterol concentration are obtained at an air/water interface under different polarization combinations. The analysis of the spectra shows that cholesterol can induce sphingomyelin conformational changes at an air/water interface. The mechanism is proposed. When cholesterol is inserted into the ESM monolayer, the inherent intramolecular hydrogen bonds between the phosphate moiety and 3OH in the sphingosine backbones are destroyed. During this process, the sphingosine backbones become more ordered, while the conformation of the N-linked long acid chain remains unaltered. The OH of the cholesterol head group can bind to the -PO-2 of the ESM molecule, and the orientation of the -PO-2 in the head groups changes to be more parallel to the interface.
Collapse
Affiliation(s)
- Yiyi Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Harris B, Huang Y, Karsai A, Su WC, Sambre PD, Parikh AN, Liu GY, Faller R. Impact of Surface Polarity on Lipid Assembly under Spatial Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7545-7557. [PMID: 35671406 PMCID: PMC9219405 DOI: 10.1021/acs.langmuir.2c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Molecular dynamics (MD) simulations in the MARTINI model are used to study the assembly of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) molecules under spatial confinement, such as during solvent evaporation from ultrasmall (femtoliter quantity) droplets. The impact of surface polarity on molecular assembly is discussed in detail. To the best of our knowledge, this work represents the first of its kind. Our results reveal that solvent evaporation gives rise to the formation of well-defined stacks of lipid bilayers in a smectic alignment. These smectic mesophases form on both polar and nonpolar surfaces but with a notable distinction. On polar surfaces, the director of the stack is oriented perpendicular to the support surface. By contrast, the stacks orient at an angle on the nonpolar surfaces. The packing of head groups on surfaces and lipid molecular mobility exhibits significant differences as surface polarity changes. The role of glycerol in the assembly and stability is also revealed. The insights revealed from the simulation have a significant impact on additive manufacturing, biomaterials, model membranes, and engineering protocells. For example, POPC assemblies via evaporation of ultrasmall droplets were produced and characterized. The trends compare well with the bilayer stack models. The surface polarity influences the local morphology and structures at the interfaces, which could be rationalized via the molecule-surface interactions observed from simulations.
Collapse
Affiliation(s)
- Bradley
S. Harris
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yuqi Huang
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Arpad Karsai
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Wan-Chih Su
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Pallavi D. Sambre
- Department
of Materials Science & Engineering, University of California, Davis, California 95616, United States
| | - Atul N. Parikh
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Gang-yu Liu
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Roland Faller
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
13
|
Ami D, Duse A, Mereghetti P, Cozza F, Ambrosio F, Ponzini E, Grandori R, Lunetta C, Tavazzi S, Pezzoli F, Natalello A. Tear-Based Vibrational Spectroscopy Applied to Amyotrophic Lateral Sclerosis. Anal Chem 2021; 93:16995-17002. [PMID: 34905686 PMCID: PMC8717331 DOI: 10.1021/acs.analchem.1c02546] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Biofluid analysis
by optical spectroscopy techniques is attracting
considerable interest due to its potential to revolutionize diagnostics
and precision medicine, particularly for neurodegenerative diseases.
However, the lack of effective biomarkers combined with the unaccomplished
identification of convenient biofluids has drastically hampered optical
advancements in clinical diagnosis and monitoring of neurodegenerative
disorders. Here, we show that vibrational spectroscopy applied to
human tears opens a new route, offering a non-invasive, label-free
identification of a devastating disease such as amyotrophic lateral
sclerosis (ALS). Our proposed approach has been validated using two
widespread techniques, namely, Fourier transform infrared (FTIR) and
Raman microspectroscopies. In conjunction with multivariate analysis,
this vibrational approach made it possible to discriminate between
tears from ALS patients and healthy controls (HCs) with high specificity
(∼97% and ∼100% for FTIR and Raman spectroscopy, respectively)
and sensitivity (∼88% and ∼100% for FTIR and Raman spectroscopy,
respectively). Additionally, the investigation of tears allowed us
to disclose ALS spectroscopic markers related to protein and lipid
alterations, as well as to a reduction of the phenylalanine level,
in comparison with HCs. Our findings show that vibrational spectroscopy
is a new potential ALS diagnostic approach and indicate that tears
are a reliable and non-invasive source of ALS biomarkers.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Alessandro Duse
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | | | - Federica Cozza
- COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy.,NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Francesca Ambrosio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Piazza Ospedale Maggiore 3, 20162 Milano, Italy.,NEMO Lab, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | - Fabio Pezzoli
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
14
|
Makiura R, Niwa A, Eimura H, Uchida J, Kato T. Air/Water Interfacial Monolayer Assembly of Peptide-Conjugated Liquid-Crystalline Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rie Makiura
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Anna Niwa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Eimura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
16
|
Chaudhury A, Varshney GK, Debnath K, Das G, Jana NR, Basu JK. Compressibility of Multicomponent, Charged Model Biomembranes Tunes Permeation of Cationic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3550-3562. [PMID: 33749276 DOI: 10.1021/acs.langmuir.0c03408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cells respond to external stress by altering their membrane lipid composition to maintain fluidity, integrity and net charge. However, in interactions with charged nanoparticles (NPs), altering membrane charge could adversely affect its ability to transport ions across the cell membrane. Hence, it is important to understand possible pathways by which cells could alter zwitterionic lipid composition to respond to NPs without compromising membrane integrity and charge. Here, we report in situ synchrotron X-ray reflectivity (XR) measurements to monitor the interaction of cationic NPs in the form of quantum dots, with phase-separated supported lipid bilayers of different compositions containing an anionic lipid and zwitterionic lipids having variable degrees of stiffness. We observe that the extent of NP penetration into the respective membranes, as estimated from XR data analysis, is inversely related to membrane compression moduli, which was tuned by altering the stiffness of the zwitterionic lipid component. For a particular membrane composition with a discernible height difference between ordered and disordered phases, we were able to observe subtle correlations between the extent of charge on the NPs and the specificity to bind to the charged and ordered phase, contrary to that observed earlier for phase-separated model biomembranes containing no charged lipids. Our results provide microscopic insight into the role of membrane rigidity and electrostatics in determining membrane permeation. This can lead to great potential benefits in rational designing of NPs for bioimaging and drug delivery applications as well as in assessing and alleviating cytotoxicity of NPs.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | | | - Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Gangadhar Das
- KEK-High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Phan AHT, Le KCM, Le TH, Nguyen AV, Nguyen KT. Evidence of surfactant sub-monolayer adsorption at the air/water interface provided by laser scattering measurements of ultrafine gas bubbles. NEW J CHEM 2021. [DOI: 10.1039/d1nj02802b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the SDS concentration increases in bubble rich solutions, the surfactant layer alters its size and refractive index. The scattered light enhancement and SFG signal cancellation prove that sub-monolayer adsorption exists at the air/water interface.
Collapse
Affiliation(s)
- An Hoang Thien Phan
- School of Biotechnology
- International University
- Vietnam National University
- Ho Chi Minh City
- Vietnam
| | - Khoa Cong Minh Le
- School of Biotechnology
- International University
- Vietnam National University
- Ho Chi Minh City
- Vietnam
| | - Thi Ho Le
- School of Biotechnology
- International University
- Vietnam National University
- Ho Chi Minh City
- Vietnam
| | - Anh Van Nguyen
- School of Chemical Engineering
- The University of Queensland
- Brisbane
- Australia
| | - Khoi Tan Nguyen
- School of Biotechnology
- International University
- Vietnam National University
- Ho Chi Minh City
- Vietnam
| |
Collapse
|
18
|
Dalchand N, Cui Q, Geiger FM. Electrostatics, Hydrogen Bonding, and Molecular Structure at Polycation and Peptide:Lipid Membrane Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21149-21158. [PMID: 31889444 DOI: 10.1021/acsami.9b17431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polycation and peptide-modified surfaces represent opportunities for developing potentially novel biocidal materials in a growing effort to combat bacterial resistance to traditional bactericides. It is well-known that the positive charge of these compounds is crucial to their function in biofouling prevention and as antimicrobials; however, methods for quantifying the number of positive charges on surface-bound polycations and peptides are necessary to predict, control, and optimize the design and therefore the utility of these compounds. This Spotlight on Applications reports on such an approach that combines second harmonic generation (SHG) spectroscopy, quartz crystal microbalance with dissipation monitoring (QCM-D), and atomistic simulations to obtain mechanistic insight into polycation-membrane interactions using supported lipid bilayers (SLBs) as our model system. We find that at high surface coverage, the large polycations we surveyed feature a considerably smaller percentage of ionization when compared to the smaller polycations and peptides. At these high charge densities, we suspect a pKa shift of the charged groups to lower charge-charge repulsion as well as the formation of a looplike conformation such that less monomeric units form contact-ion pairs with the bilayer. Our sum frequency generation (SFG) spectroscopy results complement our understanding of the polycation-membrane interaction. At a high density of the polycation poly(allylamine hydrochloride) (PAH), second-order spectral line shapes are consistent with the expulsion of interfacial water molecules possibly due to contact-ion pair formation between PAH and the lipid bilayer. This finding could be essential for understanding the underlying first steps of cell lysis and penetration by polycations and should be explored further.
Collapse
Affiliation(s)
- Naomi Dalchand
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| |
Collapse
|
19
|
Krywko-Cendrowska A, di Leone S, Bina M, Yorulmaz-Avsar S, Palivan CG, Meier W. Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers (Basel) 2020; 12:E1003. [PMID: 32357541 PMCID: PMC7285097 DOI: 10.3390/polym12051003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Biological membranes, in addition to being a cell boundary, can host a variety of proteins that are involved in different biological functions, including selective nutrient transport, signal transduction, inter- and intra-cellular communication, and cell-cell recognition. Due to their extreme complexity, there has been an increasing interest in developing model membrane systems of controlled properties based on combinations of polymers and different biomacromolecules, i.e., polymer-based hybrid films. In this review, we have highlighted recent advances in the development and applications of hybrid biomimetic planar systems based on different polymeric species. We have focused in particular on hybrid films based on (i) polyelectrolytes, (ii) polymer brushes, as well as (iii) tethers and cushions formed from synthetic polymers, and (iv) block copolymers and their combinations with biomacromolecules, such as lipids, proteins, enzymes, biopolymers, and chosen nanoparticles. In this respect, multiple approaches to the synthesis, characterization, and processing of such hybrid films have been presented. The review has further exemplified their bioengineering, biomedical, and environmental applications, in dependence on the composition and properties of the respective hybrids. We believed that this comprehensive review would be of interest to both the specialists in the field of biomimicry as well as persons entering the field.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| |
Collapse
|
20
|
Castro-Muñoz R, Agrawal KV, Coronas J. Ultrathin permselective membranes: the latent way for efficient gas separation. RSC Adv 2020; 10:12653-12670. [PMID: 35497580 PMCID: PMC9051376 DOI: 10.1039/d0ra02254c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane gas separation has attracted the attention of chemical engineers for the selective separation of gases. Among the different types of membranes used, ultrathin membranes are recognized to break the trade-off between selectivity and permeance to provide ultimate separation. Such success has been associated with the ultrathin nature of the selective layer as well as their defect-free structure. These membrane features can be obtained from specific membrane preparation procedures used, in which the intrinsic properties of different nanostructured materials (e.g., polymers, zeolites, covalent-organic frameworks, metal-organic frameworks, and graphene and its derivatives) also play a crucial role. It is likely that such a concept of membranes will be explored in the coming years. Therefore, the goal of this review study is to give the latest insights into the use of ultrathin selective barriers, highlighting and describing the primary membrane preparation protocols applied, such as atomic layer deposition, in situ crystal formation, interfacial polymerization, Langmuir-Blodgett technique, facile filtration process, and gutter layer formation, to mention just a few. For this, the most recent approaches are addressed, with particular emphasis on the most relevant results in separating gas molecules. A brief overview of the fundamentals for the application of the techniques is given. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are also provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Kumar Varoon Agrawal
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne Sion Switzerland
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA), Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC 50018 Zaragoza Spain
| |
Collapse
|
21
|
Wlodek M, Slastanova A, Fox LJ, Taylor N, Bikondoa O, Szuwarzynski M, Kolasinska-Sojka M, Warszynski P, Briscoe WH. Structural evolution of supported lipid bilayers intercalated with quantum dots. J Colloid Interface Sci 2020; 562:409-417. [PMID: 31806357 DOI: 10.1016/j.jcis.2019.11.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
HYPOTHESIS Supported lipid bilayers (SLBs) embedded with hydrophobic quantum dots (QDs) undergo temporal structural rearrangement. EXPERIMENTS Synchrotron X-ray reflectivity (XRR) was applied to monitor the temporal structural changes over a period of 24 h of mixed SLBs of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) / 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine (POPE) intercalated with 4.9 nm hydrophobic cadmium sulphide quantum dots (CdS QDs). The QD-embedded SLBs (QD-SLBs) were formed via rupture of the mixed liposomes on a positively charged polyethylene imine (PEI) monolayer. Atomic force microscopy (AFM) imaging provided complementary characterization of the bilayer morphology. FINDINGS Our results show time-dependent perturbations in the SLB structure due to the interaction upon QD incorporation. Compared to the SLB without QDs, at 3 h incubation time, there was a measurable decrease in the bilayer thickness and a concurrent increase in the scattering length density (SLD) of the QD-SLB. The QD-SLB then became progressively thicker with increasing incubation time, which - along with the fitted SLD profile - was attributed to the structural rearrangement due to the QDs being expelled from the inner leaflet to the outer leaflet of the bilayer. Our results give unprecedented mechanistic insights into the structural evolution of QD-SLBs on a polymer cushion, important to their potential biomedical and biosensing applications.
Collapse
Affiliation(s)
- Magdalena Wlodek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Anna Slastanova
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Laura J Fox
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Nicholas Taylor
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Oier Bikondoa
- XMaS, The UK-CRG Beamline, The European Synchrotron (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michal Szuwarzynski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Marta Kolasinska-Sojka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Piotr Warszynski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.
| |
Collapse
|
22
|
Biomembrane-based organic electronic devices for ligand–receptor binding studies. Anal Bioanal Chem 2020; 412:6265-6273. [DOI: 10.1007/s00216-020-02449-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
|
23
|
Interaction of particles with mucosae and cell membranes. Colloids Surf B Biointerfaces 2020; 186:110657. [DOI: 10.1016/j.colsurfb.2019.110657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
|
24
|
Richard-Lacroix M, Umuhire KN, Lister E, Pellerin C, Badia A. Selective Isotopic Labeling Resolves the Gel-to-Fluid Phase Transitions of the Individual Leaflets of a Planar-Supported Phospholipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9912-9922. [PMID: 31277548 DOI: 10.1021/acs.langmuir.9b00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Knowledge of the thermotropic phase behavior of solid-supported bilayer lipid assemblies is essential to mimick the molecular organization and lateral fluidity of cell membranes. The gel-to-fluid phase transitions in a homologous series of single phospholipid bilayers supported on planar silicon substrates were investigated by temperature-controlled atomic force microscopy and attenuated total reflection infrared spectroscopy to obtain complementary information at the mesoscopic and molecular scales. Symmetric bilayers of dipalmitoylphosphatidylcholine (DPPC) and vertically asymmetric bilayers composed of a leaflet of DPPC and another of acyl-chain-deuterated DPPC (DPPC-d62) were prepared by the Langmuir-Blodgett technique. The selective deuteration of one of the bilayer leaflets enabled the simultaneous monitoring by IR spectroscopy of the acyl chain melting in each leaflet via the spectrally isolated CH2 and CD2 stretching vibrations. Two gel-to-fluid transitions were discerned for both the symmetric and asymmetric bilayers in ultrapure water. The deuterium isotope effect observed in free-standing membranes was maintained for the supported bilayers. IR spectroscopy revealed that the melting of one leaflet promotes the disordering of the acyl chains in the adjacent one. The findings suggest that the two leaflet phase transitions do not evolve in isolation. This work sheds insight into the nature of leaflet-leaflet interactions and the thermodynamic properties of surface-confined phospholipid bilayers.
Collapse
Affiliation(s)
- Marie Richard-Lacroix
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Kayiganwa Natyvella Umuhire
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Eugénie Lister
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Christian Pellerin
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Antonella Badia
- Département de chimie, Centre québécois sur les matériaux fonctionnels , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| |
Collapse
|
25
|
Cheng V, Kimball DR, Conboy DJC. Determination of the Rate-Limiting Step in Fatty Acid Transport. J Phys Chem B 2019; 123:7157-7168. [DOI: 10.1021/acs.jpcb.9b05162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Victoria Cheng
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Dylan R. Kimball
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Dr. John C. Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Tran RJ, Lalonde MS, Sly KL, Conboy JC. Mechanistic Investigation of HIV-1 Gag Association with Lipid Membranes. J Phys Chem B 2019; 123:4673-4687. [PMID: 31084006 DOI: 10.1021/acs.jpcb.9b02655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An extensive investigation into the initial association of HIV-1 Gag with lipid membranes was conducted with second harmonic generation. The roles of the lipid phase, phospholipid 1,2-dioleoyl- sn-glycero-3-phospho-(1-myo-inositol-4,5-bisphosphate) [PI(4,5)P2], the presence of the myristoyl group on Gag, the C-terminus of Gag, and the presence of transfer ribonucleic acid (tRNA) in Gag-membrane association were examined using the physiologically most relevant full-length Gag protein studied thus far. The tighter packing of a bilayer composed of gel-phase lipids was found to have a lower relative amount of membrane-bound Gag in comparison to its fluid-phase counterpart. Rather than driving membrane association of Gag, the presence of PI(4,5)P2 and the myristoyl group were found to anchor Gag at the membrane by decreasing the rate of desorption. Specifically, the interaction with PI(4,5)P2 allows Gag to overcome electrostatic repulsion with negatively charged lipids at the membrane surface. This behavior was verified by measuring the binding properties of Gag mutants in the matrix domain of Gag, which prevented anchoring to the membrane either by blocking interaction with PI(4,5)P2 or by preventing exposure of the myristoyl group. The presence of tRNA was found to inhibit Gag association with the membrane by specifically blocking the PI(4,5)P2 binding region, thereby preventing exposure of the myristoyl group and precluding subsequent anchoring of Gag to the membrane. While Gag likely samples all membranes, only the anchoring provided by the myristoyl group and PI(4,5)P2 allows Gag to accumulate at the membrane. These quantitative results on the kinetics and thermodynamics of Gag association with lipid membranes provide important new information about the mechanism of Gag-membrane association.
Collapse
Affiliation(s)
- Renee J Tran
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Matthew S Lalonde
- Department of Biochemistry , University of Utah , 15 North Medical Drive East, Room 4100 , Salt Lake City , Utah 84112 , United States
| | - Krystal L Sly
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - John C Conboy
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
27
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
28
|
Nguyen KT, Nguyen AV. New Evidence of Head-to-Tail Complex Formation of SDS-DOH Mixtures Adsorbed at the Air-Water Interface as Revealed by Vibrational Sum Frequency Generation Spectroscopy and Isotope Labelling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4825-4833. [PMID: 30866624 DOI: 10.1021/acs.langmuir.8b04213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Details about the molecular structures of surfactant mixtures adsorbed at the air-water interface have been controversial. Using sum frequency generation vibrational spectroscopy (SFG) and isotope labeling, we show here for the first time that mixtures of dodecanol (DOH) and sodium dodecyl sulfate (SDS) adsorb at the air-water interface with the formation of a head-to-tail complex. We observed this complex formation to occur first in the aqueous subphase, followed by complex adsorption onto the interface. This new piece of evidence for the head-to-tail complex conformation contradicts the conjectured tail-to-tail adsorption of the surfactant mixtures. The SFG data also show the dominating adsorption of the SDS-DOH complex over the single molecules of SDS and DOH at the air-water interface. The interfacial DOH-to-SDS molecular ratio of approximately 2.2:1 at a DOH-to-SDS bulk concentration ratio of 10 μM/2 mM was determined by isotope labeling of the surfactants. In addition to a smaller number of gauche defects, the DOH-SDS complex was found to adopt a higher level of orderliness than the adsorbed single surfactants. These findings provide important insights into the descriptions and interpretation of DOH-SDS adsorption at the air-water interface and its properties.
Collapse
Affiliation(s)
- Khoi Tan Nguyen
- School of Chemical Engineering , The University of Queensland , Brisbane , QLD 4072 , Australia
- International University, Vietnam National University of Ho Chi Minh City , Ho Chi Minh City 700000 , Vietnam
| | - Anh V Nguyen
- School of Chemical Engineering , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
29
|
High-resolution and high-repetition-rate vibrational sum-frequency generation spectroscopy of one- and two-component phosphatidylcholine monolayers. Anal Bioanal Chem 2019; 411:4861-4871. [DOI: 10.1007/s00216-019-01690-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 01/23/2023]
|
30
|
Ge A, Qiao L, Seo JH, Yui N, Ye S. Surface-Restructuring Differences between Polyrotaxanes and Random Copolymers in Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12463-12470. [PMID: 30216076 DOI: 10.1021/acs.langmuir.8b02676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, we investigated the surface reorganization behaviors and adsorption conformations of fibrinogen on the surface of polyrotaxanes containing different amounts of α-cyclodextrin (α-CD) by using surface-sensitive vibrational spectroscopy sum frequency generation (SFG). For comparison, behaviors of the surface restructuring and fibrinogen adsorption on the random copolymers containing similar terminal groups were also investigated. It was found that larger amounts of BMA moieties of polyrotaxanes form ordered surface structures after immersion in water for 48 h. Furthermore, the polyrotaxane surfaces exhibit a much higher capability of fibrinogen adsorption than the random copolymer surfaces. The water-induced surface restructuring of the polyrotaxane films slightly affects the adsorption structure of the fibrinogen molecules.
Collapse
Affiliation(s)
- Aimin Ge
- Institute for Catalysis , Hokkaido University , Sapporo 001-0021 , Japan
| | - Lin Qiao
- Institute for Catalysis , Hokkaido University , Sapporo 001-0021 , Japan
| | - Ji-Hun Seo
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , Tokyo 101-0062 , Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , Tokyo 101-0062 , Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
| |
Collapse
|
31
|
Ami D, Mereghetti P, Leri M, Giorgetti S, Natalello A, Doglia SM, Stefani M, Bucciantini M. A FTIR microspectroscopy study of the structural and biochemical perturbations induced by natively folded and aggregated transthyretin in HL-1 cardiomyocytes. Sci Rep 2018; 8:12508. [PMID: 30131519 PMCID: PMC6104026 DOI: 10.1038/s41598-018-30995-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023] Open
Abstract
Protein misfolding and aggregation are associated with a number of human degenerative diseases. In spite of the enormous research efforts to develop effective strategies aimed at interfering with the pathogenic cascades induced by misfolded/aggregated peptides/proteins, the necessary detailed understanding of the molecular bases of amyloid formation and toxicity is still lacking. To this aim, approaches able to provide a global insight in amyloid-mediated physiological alterations are of importance. In this study, we exploited Fourier transform infrared microspectroscopy, supported by multivariate analysis, to investigate in situ the spectral changes occurring in cultured intact HL-1 cardiomyocytes exposed to wild type (WT) or mutant (L55P) transthyretin (TTR) in native, or amyloid conformation. The presence of extracellular deposits of amyloid aggregates of WT or L55P TTR, respectively, is a key hallmark of two pathological conditions, known as senile systemic amyloidosis and familial amyloid polyneuropathy. We found that the major effects, associated with modifications in lipid properties and in the cell metabolic/phosphorylation status, were observed when natively folded WT or L55P TTR was administered to the cells. The effects induced by aggregates of TTR were milder and in some cases displayed a different timing compared to those elicited by the natively folded protein.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Paolo Mereghetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Manuela Leri
- Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/B, 27100, Pavia, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.,Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy. .,Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| |
Collapse
|
32
|
Bang JJ, Porter AG, Davis TC, Hayes TR, Claridge SA. Spatially Controlled Noncovalent Functionalization of 2D Materials Based on Molecular Architecture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5454-5463. [PMID: 29708753 DOI: 10.1021/acs.langmuir.8b00553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymerizable amphiphiles can be assembled into lying-down phases on 2D materials such as graphite and graphene to create chemically orthogonal surface patterns at 5-10 nm scales, locally modulating functionality of the 2D basal plane. Functionalization can be carried out through Langmuir-Schaefer conversion, in which a subset of molecules is transferred out of a standing phase film on water onto the 2D substrate. Here, we leverage differences in molecular structure to spatially control transfer at both nanoscopic and microscopic scales. We compare transfer properties of five different single- and dual-chain amphiphiles, demonstrating that those with strong lateral interactions (e.g., hydrogen-bonding networks) exhibit the lowest transfer efficiencies. Since molecular structures also influence microscopic domain morphologies in Langmuir films, we show that it is possible to transfer such microscale patterns, taking advantage of variations in the local transfer rates based on the structural heterogeneity in Langmuir films. Nanoscale domain morphologies also vary in ways that are consistent with predicted relative transfer and diffusion rates. These results suggest strategies to tailor noncovalent functionalization of 2D substrates through controlled LS transfer.
Collapse
|
33
|
Doǧangün M, Ohno PE, Liang D, McGeachy AC, Bé AG, Dalchand N, Li T, Cui Q, Geiger FM. Hydrogen-Bond Networks near Supported Lipid Bilayers from Vibrational Sum Frequency Generation Experiments and Atomistic Simulations. J Phys Chem B 2018; 122:4870-4879. [PMID: 29688732 DOI: 10.1021/acs.jpcb.8b02138] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report vibrational sum frequency generation (SFG) spectra in which the C-H stretches of lipid alkyl tails in fully hydrogenated single- and dual-component supported lipid bilayers are detected along with the O-H stretching continuum above the bilayer. As the salt concentration is increased from ∼10 μM to 0.1 M, the SFG intensities in the O-H stretching region decrease by a factor of 2, consistent with significant absorptive-dispersive mixing between χ(2) and χ(3) contributions to the SFG signal generation process from charged interfaces. A method for estimating the surface potential from the second-order spectral lineshapes (in the OH stretching region) is presented and discussed in the context of choosing truly zero-potential reference states. Aided by atomistic simulations, we find that the strength and orientation distribution of the hydrogen bonds over the purely zwitterionic bilayers are largely invariant between submicromolar and hundreds of millimolar concentrations. However, specific interactions between water molecules and lipid headgroups are observed upon replacing phosphocholine (PC) lipids with negatively charged phosphoglycerol (PG) lipids, which coincides with SFG signal intensity reductions in the 3100-3200 cm-1 frequency region. The atomistic simulations show that this outcome is consistent with a small, albeit statistically significant, decrease in the number of water molecules adjacent to both the lipid phosphate and choline moieties per unit area, supporting the SFG observations. Ultimately, the ability to probe hydrogen-bond networks over lipid bilayers holds the promise of opening paths for understanding, controlling, and predicting specific and nonspecific interactions between membranes and ions, small molecules, peptides, polycations, proteins, and coated and uncoated nanomaterials.
Collapse
Affiliation(s)
- Merve Doǧangün
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60660 , United States
| | - Paul E Ohno
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60660 , United States
| | - Dongyue Liang
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Alicia C McGeachy
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60660 , United States
| | - Ariana Gray Bé
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60660 , United States
| | - Naomi Dalchand
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60660 , United States
| | - Tianzhe Li
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60660 , United States
| | - Qiang Cui
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Chemistry , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Franz M Geiger
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60660 , United States
| |
Collapse
|
34
|
Li Y, Feng R, Lin L, Liu M, Guo Y, Zhang Z. Ordering effects of cholesterol on sphingomyelin monolayers investigated by high-resolution broadband sum-frequency generation vibrational spectroscopy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Bryce DA, Kitt JP, Harris JM. Confocal-Raman Microscopy Characterization of Supported Phospholipid Bilayers Deposited on the Interior Surfaces of Chromatographic Silica. J Am Chem Soc 2018; 140:4071-4078. [DOI: 10.1021/jacs.7b13777] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Bryce
- Department of Chemistry, University of Utah, 315 South 1400 East,Salt Lake City, Utah 84112-0850, United States
| | - Jay P. Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East,Salt Lake City, Utah 84112-0850, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, 315 South 1400 East,Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
36
|
Chen Y, Okur HI, Lütgebaucks C, Roke S. Zwitterionic and Charged Lipids Form Remarkably Different Structures on Nanoscale Oil Droplets in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1042-1050. [PMID: 29019694 DOI: 10.1021/acs.langmuir.7b02896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The molecular structure of zwitterionic and charged monolayers on small oil droplets in aqueous solutions is determined using a combined second harmonic and sum frequency study. From the interfacial vibrational signature of the acyl chains and phosphate headgroups as well as the response of the hydrating water, we find that zwitterionic and charged lipids with identical acyl chains form remarkably different monolayers. Zwitterionic phospholipids form a closely packed monolayer with highly ordered acyl tails. In contrast, the charged phospholipids form a monolayer with a low number density and disordered acyl tails. The charged headgroups are oriented perpendicular to the monolayer rather than parallel, as is the case for zwitterionic lipids. These significant differences between the two types of phospholipids indicate important roles of phospholipid headgroups in the determination of properties of cellular membranes and lipid droplets. The observed behavior of charged phospholipids is different from expectations based on studies performed on extended planar interfaces, at which condensed monolayers are readily formed. The difference can be explained by nanoscale related changes in charge condensation behavior that has its origin in a different balance of interfacial intermolecular interactions.
Collapse
Affiliation(s)
- Yixing Chen
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Halil I Okur
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Cornelis Lütgebaucks
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Olenick LL, Chase HM, Fu L, Zhang Y, McGeachy AC, Dogangun M, Walter SR, Wang HF, Geiger FM. Single-component supported lipid bilayers probed using broadband nonlinear optics. Phys Chem Chem Phys 2018; 20:3063-3072. [DOI: 10.1039/c7cp02549a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups.
Collapse
Affiliation(s)
| | | | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
- Sanofi-Genzyme
| | - Yun Zhang
- William R. Wiley Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
- Institute of Optics and Electronics
| | | | - Merve Dogangun
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | | | - Hong-fei Wang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|
38
|
Feng RJ, Lin L, Li YY, Liu MH, Guo Y, Zhang Z. Effect of Ca 2+ to Sphingomyelin Investigated by Sum Frequency Generation Vibrational Spectroscopy. Biophys J 2017; 112:2173-2183. [PMID: 28538154 DOI: 10.1016/j.bpj.2017.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022] Open
Abstract
The interactions between Ca2+ ions and sphingomyelin play crucial roles in a wide range of cellular activities. However, little is known about the molecular details of the interactions at interfaces. In this work, we investigated the interactions between Ca2+ ions and egg sphingomyelin (ESM) Langmuir monolayers at the air/water interface by subwavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). We show that Ca2+ ions can induce ordering of the acyl chains in the ESM monolayer. An analysis of the one alkyl-chain-deuterated ESM revealed that the Ca2+ ions do not affect the N-linked saturated fatty acid chain, although they make the sphingosine backbone become ordered. Further analysis of the SFG-VS spectra shows that the interactions between ESM and Ca2+ ions make the orientation of the methyl group at the end of sphingosine backbone change from pointing downward to pointing upward. Moreover, a large blue shift of the phosphate group at the CaCl2 solution interface indicates, to our knowledge, new cation binding modes. Such binding causes the phosphate moiety to dehydrate, resulting in the conformation change of the phosphate moiety. Based on these results, we propose the molecular mechanism that Ca2+ ions can bind to the phosphate group and subsequently destroy the intramolecular hydrogen bond between the 3-hydroxyl group and the phosphate oxygen, which results in an ordering change of the sphingosine backbone. These findings illustrate the potential application of HR-BB-SFG-VS to investigate lipid-cation interactions and the calcium channel modulated by lipid domain formation through slight structural changes in the membrane lipid. It will also shed light on the interactions of complex molecules at surfaces and interfaces.
Collapse
Affiliation(s)
- Rong-Juan Feng
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Lin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; National Center for Nanoscience and Technology, Beijing, China
| | - Yi-Yi Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Hua Liu
- National Center for Nanoscience and Technology, Beijing, China; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Nguyen KT, Shahir AA, Nguyen AV. Probing the Molecular Orientation of Methyl Isobutyl Carbinol at the Air–Water Interface. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1976-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Khoi Tan Nguyen
- School of Chemical Engineering The University of Queensland 4072 Brisbane QLD Australia
- School of Biotechnology, International University Vietnam National University Ho Chi Minh City Vietnam
| | | | - Anh V. Nguyen
- School of Chemical Engineering The University of Queensland 4072 Brisbane QLD Australia
| |
Collapse
|
40
|
Jia M, Hu X, Liu J, Liu Y, Ai L. Molecular adsorption at electrolyte/α-Al 2O 3 interface of aluminum electrolytic capacitor revealed by sum frequency vibrational spectroscopy. J Chem Phys 2017; 146:194706. [PMID: 28527469 PMCID: PMC5441845 DOI: 10.1063/1.4983698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/04/2017] [Indexed: 11/14/2022] Open
Abstract
The operating voltage of an aluminum electrolytic capacitor is determined by the breakdown voltage (Ub) of the Al2O3 anode. Ub is related to the molecular adsorption at the Al2O3/electrolyte interface. Therefore, we have employed sum-frequency vibrational spectroscopy (SFVS) to study the adsorption states of a simple electrolyte, ethylene glycol (EG) solution with ammonium adipate, on an α-Al2O3 surface. In an acidic electrolyte (pH < 6), the Al2O3 surface is positively charged. The observed SFVS spectra show that long chain molecules poly ethylene glycol and ethylene glycol adipate adopt a "lying" orientation at the interface. In an alkaline electrolyte (pH > 8), the Al2O3 surface is negatively charged and the short chain EG molecules adopt a "tilting" orientation. The Ub results exhibit a much higher value at pH < 6 compared with that at pH > 8. Since the "lying" long chain molecules cover and protect the Al2O3 surface, Ub increases with a decrease of pH. These findings provide new insights to study the breakdown mechanisms and to develop new electrolytes for high operating voltage capacitors.
Collapse
Affiliation(s)
- Ming Jia
- School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha City 410083, China
| | - Xiaoyu Hu
- School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha City 410083, China
| | - Jin Liu
- School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha City 410083, China
| | - Yexiang Liu
- School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha City 410083, China
| | - Liang Ai
- The Aihua Group, East Taohualun Road, Yiyang City 413000, China
| |
Collapse
|
41
|
Troiano JM, McGeachy AC, Olenick LL, Fang D, Liang D, Hong J, Kuech TR, Caudill ER, Pedersen JA, Cui Q, Geiger FM. Quantifying the Electrostatics of Polycation–Lipid Bilayer Interactions. J Am Chem Soc 2017; 139:5808-5816. [DOI: 10.1021/jacs.6b12887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Julianne M. Troiano
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States,
| | - Alicia C. McGeachy
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States,
| | - Laura L. Olenick
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States,
| | - Dong Fang
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
| | - Dongyue Liang
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
| | - Jiewei Hong
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
| | - Thomas R. Kuech
- Environmental
Chemistry and Technology Program, University of Wisconsin, 1415 Engineering
Drive, Madison, Wisconsin 53706, United States
| | - Emily R. Caudill
- Environmental
Chemistry and Technology Program, University of Wisconsin, 1415 Engineering
Drive, Madison, Wisconsin 53706, United States
| | - Joel A. Pedersen
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
- Environmental
Chemistry and Technology Program, University of Wisconsin, 1415 Engineering
Drive, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
| | - Franz M. Geiger
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States,
| |
Collapse
|
42
|
Abstract
Our current view of cellular membranes centers on the fluid-mosaic model, which envisions the cellular membrane as a "liquidlike" bilayer of lipids, cholesterol, and proteins that freely diffuse in two dimensions. In stark contrast, the exchange of materials between the leaflets of a bilayer was presumed to be prohibited by the large enthalpic barrier associated with translocating hydrophilic materials, such as a charged lipid headgroup, through the hydrophobic membrane core. This static picture with regard to lipid translocation (or "flip-flop" as it is affectionately known) has been a long-held belief in the study of membrane dynamics. The current accepted membrane model invokes specific protein flippase (inward moving), floppase (outward moving), and scramblase (bidirectional) enzymes that assist in the movement of lipids between the leaflets of cellular membranes. The low rate of protein-free lipid flip-flop has also been a cornerstone of our understanding of the bilateral organization of cellular membrane components, specifically the asymmetric distribution of lipid species found in the luminal and extracellular leaflets of the plasma membrane of eukaryotic cells. Much of the previous work contributing to our current understanding of lipid flip-flop has utilized fluorescent- or spin-labeled lipids. However, there is growing evidence that these lipid probes do not accurately convey the dynamics and thermodynamics of native (unlabeled) lipid motion. This Account summarizes our research efforts directed toward developing a deep physical and chemical understanding of protein-free lipid flip-flop in phospholipid membrane models using sum-frequency vibrational spectroscopy (SFVS). Our use of SFVS enables the direct measurement of native lipid flip-flop in model membranes. In particular, we have explored the kinetic rates and activation thermodynamics of lipid translocation as a means of deciphering the underlying chemical and physical directors governing this process. By means of transition state theory, the contributions from enthalpy and entropy on the activation energy barrier to lipid flip-flop have been explored in detail for a variety of lipid species and membrane compositions. Specifically, the effect of lipid structure and packing and the inclusion of cholesterol and transmembrane peptides on the rates and thermodynamics of lipid translocation have been investigated in detail. It is our hope that these studies will provide a new perspective on lipid translocation in biological membranes and the role of lipid flip-flop in generating and maintaining cell membrane lipid asymmetry.
Collapse
Affiliation(s)
- John S. Allhusen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - John C. Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
43
|
Feng RJ, Li X, Zhang Z, Lu Z, Guo Y. Spectral assignment and orientational analysis in a vibrational sum frequency generation study of DPPC monolayers at the air/water interface. J Chem Phys 2016; 145:244707. [DOI: 10.1063/1.4972564] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rong-Juan Feng
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Li
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhou Lu
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Shahir AA, Nguyen KT, Nguyen AV. A sum-frequency generation spectroscopic study of the Gibbs analysis paradox: monolayer or sub-monolayer adsorption? Phys Chem Chem Phys 2016; 18:8794-805. [PMID: 26661072 DOI: 10.1039/c5cp06157a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Gibbs adsorption isotherm (GAI) has been considered as the foundation of surfactant adsorption studies for over a century; however, its application in determining the limiting surface excess has recently been intensively discussed, with contradictory experimental evidence either supporting or refuting the theory. The available arguments are based on monolayer adsorption models. In this paper, we experimentally and intellectually propose and validate the contribution of sub-monolayer adsorption to the GAI paradox. We utilize a powerful intrinsically surface-sensitive technique, vibrational sum-frequency generation spectroscopy (SFG), complementing with conventional tensiometric measurements to address these controversies both quantitatively and qualitatively. Our SFG results revealed that the precipitous decrease in surface tension directly corresponds to surface occupancy by adsorbates. In addition, the Gibbs analysis was successfully applied to the soluble monolayer of a surface-active alcohol to full saturation. However, the full saturation of the topmost monolayer does not necessarily mean that the surface adsorption was completed because the adsorption was observed to continuously occur in the sub-monolayer region soon after the topmost monolayer became saturated. Nonetheless, the Gibbs isotherm failed to account for the excess of alcohol adsorbed in this sub-monolayer region. This new concept of surface excess must therefore be treated thermodynamically.
Collapse
Affiliation(s)
- Afshin Asadzadeh Shahir
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Khoi Tan Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
45
|
Ami D, Lavatelli F, Rognoni P, Palladini G, Raimondi S, Giorgetti S, Monti L, Doglia SM, Natalello A, Merlini G. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study. Sci Rep 2016; 6:29096. [PMID: 27373200 PMCID: PMC4931462 DOI: 10.1038/srep29096] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
46
|
Hazell G, Gee AP, Arnold T, Edler KJ, Lewis SE. Langmuir monolayers composed of single and double tail sulfobetaine lipids. J Colloid Interface Sci 2016; 474:190-8. [DOI: 10.1016/j.jcis.2016.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 11/16/2022]
|
47
|
Allhusen JS, Kimball DR, Conboy JC. Structural Origins of Cholesterol Accelerated Lipid Flip-Flop Studied by Sum-Frequency Vibrational Spectroscopy. J Phys Chem B 2016; 120:3157-68. [PMID: 26978577 DOI: 10.1021/acs.jpcb.6b01254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The unique structure of cholesterol and its role in modulating lipid translocation (flip-flop) were examined using sum-frequency vibrational spectroscopy (SFVS). Two structural analogues of cholesterol--cholestanol and cholestene--were examined to explore the influence of ring rigidity and amphiphilicity on controlling distearoylphosphocholine (DSPC) flip-flop. Kinetic rates for DSPC flip-flop were determined as a function of sterol concentration and temperature. All three sterols increased the rate of DSPC flip-flop in a concentration-dependent manner following the order cholestene > cholestanol > cholesterol. Rates of DSPC flip-flop were used to calculate the thermodynamic activation free energy barrier (ΔG(‡)) in the presence of cholesterol, cholestanol, and cholestene. The acyl chain gauche content of DSPC, mean lipid area, and membrane compressibility were correlated to observed trends in ΔG(‡). ΔG(‡) for DSPC flip-flop showed a strong positive correlation with the molar compression modulus (K*) of the membrane, influenced by the type and concentration of the sterol added. Interestingly, cholesterol is distinctive in maintaining invariant membrane compressibility over the range of 2-10 mol %. The results in this study demonstrate that the compression modulus of a membrane plays a significant role in moderating ΔG(‡) and the kinetics of native, protein-free, lipid translocation in membranes.
Collapse
Affiliation(s)
- John S Allhusen
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Dylan R Kimball
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - John C Conboy
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
48
|
Wu HL, Tong Y, Peng Q, Li N, Ye S. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). Phys Chem Chem Phys 2016; 18:1411-21. [DOI: 10.1039/c5cp04960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Heng-Liang Wu
- Catalysis Research Center
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Yujin Tong
- Catalysis Research Center
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Qiling Peng
- Catalysis Research Center
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Na Li
- Catalysis Research Center
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shen Ye
- Catalysis Research Center
- Hokkaido University
- Sapporo 001-0021
- Japan
| |
Collapse
|
49
|
Fu L, Wang Z, Batista VS, Yan ECY. New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions of Islet Amyloid Polypeptides with Lipid Membranes. J Diabetes Res 2015; 2016:7293063. [PMID: 26697504 PMCID: PMC4677203 DOI: 10.1155/2016/7293063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/24/2015] [Indexed: 11/17/2022] Open
Abstract
Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces.
Collapse
Affiliation(s)
- Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Zhuguang Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
50
|
Doğangün M, Hang MN, Troiano JM, McGeachy AC, Melby ES, Pedersen JA, Hamers RJ, Geiger FM. Alteration of Membrane Compositional Asymmetry by LiCoO2 Nanosheets. ACS NANO 2015; 9:8755-8765. [PMID: 26247387 DOI: 10.1021/acsnano.5b01440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Given the projected massive presence of redox-active nanomaterials in the next generation of consumer electronics and electric vehicle batteries, they are likely to eventually come in contact with cell membranes, with biological consequences that are currently not known. Here, we present nonlinear optical studies showing that lithium nickel manganese cobalt oxide nanosheets carrying a negative ζ-potential have no discernible consequences for lipid alignment and interleaflet composition in supported lipid bilayers formed from zwitterionic and negatively charged lipids. In contrast, lithiated and delithiated LiCoO2 nanosheets having positive and neutral ζ-potentials, respectively, alter the compositional asymmetry of the two membrane leaflets, and bilayer asymmetry remains disturbed even after rinsing. The insight that some cobalt oxide nanoformulations induce alterations to the compositional asymmetry in idealized model membranes may represent an important step toward assessing the biological consequences of their predicted widespread use.
Collapse
Affiliation(s)
- Merve Doğangün
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | - Julianne M Troiano
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Alicia C McGeachy
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | - Franz M Geiger
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|