1
|
Rauer SB, Stüwe L, Steinbeck L, de Toledo MAS, Fischer G, Wennemaring S, Marschick J, Koschmieder S, Wessling M, Linkhorst J. Cell Adhesion and Local Cytokine Control on Protein-Functionalized PNIPAM-co-AAc Hydrogel Microcarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404183. [PMID: 39535368 PMCID: PMC11735893 DOI: 10.1002/smll.202404183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Achieving adequate cell densities remains a major challenge in establishing economic biotechnological and biomedical processes. A possible remedy is microcarrier-based cultivation in stirred-tank bioreactors (STBR), which offers a high surface-to-volume ratio, appropriate process control, and scalability. However, despite their potential, commercial microcarriers are currently limited to material systems featuring unnatural mechanical properties and low adaptability. Because matrix stiffness and ligand presentation impact phenotypical attributes, differentiation potential, and genetic stability, biotechnological processes can significantly benefit from microcarrier systems tailorable toward cell-type specific requirements. This study introduces hydrogel particles co-polymerized from poly(N-isopropylacrylamide) (PNIPAM) and acrylic acid (AAc) as a platform technology for cell expansion. The resulting microcarriers exhibit an adjustable extracellular matrix-like softness, an adaptable gel charge, and functional carboxyl groups, allowing electrostatic and covalent coupling of cell adhesive and cell fate-modulating proteins. These features enable the attachment and growth of L929 mouse fibroblast cells in static microtiter plates and dynamic STBR cultivations while also providing vital growth factors, such as interleukin-3, to myeloblast-like 32D cells over 20 days of cultivation. The study explores the effects of different educt compositions on cell-particle interactions and reveals that PNIPAM-co-AAc microcarriers can provide both covalently coupled and diffusively released cytokine to adjacent cells.
Collapse
Affiliation(s)
- Sebastian Bernhard Rauer
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Lucas Stüwe
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Lea Steinbeck
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Marcelo Augusto Szymanski de Toledo
- Department of HematologyOncology, Hemostaseology, and Stem Cell TransplantationFaculty of MedicineRWTH Aachen University52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)52074AachenGermany
| | - Gereon Fischer
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Simon Wennemaring
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Jonas Marschick
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Steffen Koschmieder
- Department of HematologyOncology, Hemostaseology, and Stem Cell TransplantationFaculty of MedicineRWTH Aachen University52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)52074AachenGermany
| | - Matthias Wessling
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - John Linkhorst
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- Process Engineering of Electrochemical SystemsDepartment of Mechanical EngineeringTechnical University of DarmstadtOtto‐Berndt‐Str. 264287DarmstadtGermany
| |
Collapse
|
2
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
3
|
Schutzeichel C, Kiriy N, Kiriy A, Voit B. Self‐Aligned Polymer Film Patterning on Microstructured Silicon Surfaces. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher Schutzeichel
- Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers Technische Universität Dresden 01062 Dresden Germany
| | - Nataliya Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
| | - Anton Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
4
|
Açarı İK, Sel E, Özcan İ, Ateş B, Köytepe S, Thakur VK. Chemistry and engineering of brush type polymers: Perspective towards tissue engineering. Adv Colloid Interface Sci 2022; 305:102694. [PMID: 35597039 DOI: 10.1016/j.cis.2022.102694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
In tissue engineering, it is imperative to control the behaviour of cells/stem cells, such as adhesion, proliferation, propagation, motility, and differentiation for tissue regeneration. Surfaces that allow cells to behave in this way are critical as support materials in tissue engineering. Among these surfaces, brush-type polymers have an important potential for tissue engineering and biomedical applications. Brush structure and length, end groups, bonding densities, hydrophilicity, surface energy, structural flexibility, thermal stability, surface chemical reactivity, rheological and tribological properties, electron and energy transfer ability, cell binding and absorption abilities for various biological molecules of brush-type polymers were increased its importance in tissue engineering applications. In addition, thanks to these functional properties and adjustable surface properties, brush type polymers are used in different high-tech applications such as electronics, sensors, anti-fouling, catalysis, purification and energy etc. This review comprehensively highlights the use of brush-type polymers in tissue engineering applications. Considering the superior properties of brush-type polymer structures, it is believed that in the future, it will be an effective tool in structure designs containing many different biomolecules (enzymes, proteins, etc.) in the field of tissue engineering.
Collapse
|
5
|
Heinritz C, Lamberger Z, Kocourková K, Minařík A, Humenik M. DNA Functionalized Spider Silk Nanohydrogels for Specific Cell Attachment and Patterning. ACS NANO 2022; 16:7626-7635. [PMID: 35521760 DOI: 10.1021/acsnano.1c11148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleated protein self-assembly of an azido modified spider silk protein was employed in the preparation of nanofibrillar networks with hydrogel-like properties immobilized on coatings of the same protein. Formation of the networks in a mild aqueous environment resulted in thicknesses between 2 and 60 nm, which were controlled only by the protein concentration. Incorporated azido groups in the protein were used to "click" short nucleic acid sequences onto the nanofibrils, which were accessible to specific hybridization-based modifications, as proved by fluorescently labeled DNA complements. A lipid modifier was used for efficient incorporation of DNA into the membrane of nonadherent Jurkat cells. Based on the complementarity of the nucleic acids, highly specific DNA-assisted immobilization of the cells on the nanohydrogels with tunable cell densities was possible. Addressability of the DNA cell-to-surface anchor was demonstrated with a competitive oligonucleotide probe, resulting in a rapid release of 75-95% of cells. In addition, we developed a photolithography-based patterning of arbitrarily shaped microwells, which served to spatially define the formation of the nanohydrogels. After detaching the photoresist and PEG-blocking of the surface, DNA-assisted immobilization of the Jurkat cells on the nanohydrogel microstructures was achieved with high fidelity.
Collapse
Affiliation(s)
- Christina Heinritz
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Zan Lamberger
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Karolína Kocourková
- Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - Antonín Minařík
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
- Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
| | - Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| |
Collapse
|
6
|
Jeong H, Choi D, Oh Y, Heo J, Hong J. A Nanocoating Co-Localizing Nitric Oxide and Growth Factor onto Individual Endothelial Cells Reveals Synergistic Effects on Angiogenesis. Adv Healthc Mater 2022; 11:e2102095. [PMID: 34826360 DOI: 10.1002/adhm.202102095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Indexed: 01/19/2023]
Abstract
The delivery of nitric oxide (NO)-an intrinsic cellular signaling molecule-is promising for disease treatment, in particular to vascular diseases, due to its endothelial-derived inherent nature. The limited diffusion distance of labile NO prompts researchers to develop various carriers and targeting methods for specific sites. In contrast to the apoptotic effect of NO, such as anticancer, delivering low NO concentration at the desired targeting area is still intricate in a physiological environment. In this study, the layer-by-layer assembled nanocoating is leveraged to develop a direct NO delivery platform to individual endothelial cells (ECs). NO can be localized to individual ECs via S-nitrosothiol-bound polyacrylic acid which is a polymer directly providing an endothelial-like constant level of NO. To increase angiogenic activation along with NO, VEGF is additionally applied to specific receptors on the cell surface. Notably, the survival and proliferation of ECs are significantly increased by a synergistic effect of NO and VEGF co-localized via nanocoating. Furthermore, the nanocoating remarkably promoted cell migration and tubule formation-prerequisites of angiogenesis. The proposed unique technology based on nanocoating demonstrates great potential for conferring desired angiogenic functions to individual ECs through efficient NO delivery.
Collapse
Affiliation(s)
- Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Daheui Choi
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Yoogyeong Oh
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
7
|
Madduma‐Bandarage USK, Madihally SV. Synthetic hydrogels: Synthesis, novel trends, and applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.50376] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Gregurec D, Senko AW, Chuvilin A, Reddy PD, Sankararaman A, Rosenfeld D, Chiang PH, Garcia F, Tafel I, Varnavides G, Ciocan E, Anikeeva P. Magnetic Vortex Nanodiscs Enable Remote Magnetomechanical Neural Stimulation. ACS NANO 2020; 14:8036-8045. [PMID: 32559057 PMCID: PMC8592276 DOI: 10.1021/acsnano.0c00562] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic nanomaterials in magnetic fields can serve as versatile transducers for remote interrogation of cell functions. In this study, we leveraged the transition from vortex to in-plane magnetization in iron oxide nanodiscs to modulate the activity of mechanosensory cells. When a vortex configuration of spins is present in magnetic nanomaterials, it enables rapid control over their magnetization direction and magnitude. The vortex configuration manifests in near zero net magnetic moment in the absence of a magnetic field, affording greater colloidal stability of magnetic nanomaterials in suspensions. Together, these properties invite the application of magnetic vortex particles as transducers of externally applied minimally invasive magnetic stimuli in biological systems. Using magnetic modeling and electron holography, we predict and experimentally demonstrate magnetic vortex states in an array of colloidally synthesized magnetite nanodiscs 98-226 nm in diameter. The magnetic nanodiscs applied as transducers of torque for remote control of mechanosensory neurons demonstrated the ability to trigger Ca2+ influx in weak (≤28 mT), slowly varying (≤5 Hz) magnetic fields. The extent of cellular response was determined by the magnetic nanodisc volume and magnetic field conditions. Magnetomechanical activation of a mechanosensitive cation channel TRPV4 (transient receptor potential vanilloid family member 4) exogenously expressed in the nonmechanosensitive HEK293 cells corroborated that the stimulation is mediated by mechanosensitive ion channels. With their large magnetic torques and colloidal stability, magnetic vortex particles may facilitate basic studies of mechanoreception and its applications to control electroactive cells with remote magnetic stimuli.
Collapse
Affiliation(s)
- Danijela Gregurec
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander W Senko
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrey Chuvilin
- CIC nanoGUNE, E20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Pooja D Reddy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ashwin Sankararaman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Po-Han Chiang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francisco Garcia
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ian Tafel
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Georgios Varnavides
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eugenia Ciocan
- Department of Engineering and Physical Sciences, Bunker Hill Community College, Boston, Massachusetts 02129, United States
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Lee JS, Shin BH, Yoo BY, Nam SY, Lee M, Choi J, Park H, Choy YB, Heo CY, Koh WG. Modulation of Foreign Body Reaction against PDMS Implant by Grafting Topographically Different Poly(acrylic acid) Micropatterns. Macromol Biosci 2019; 19:e1900206. [PMID: 31709762 DOI: 10.1002/mabi.201900206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/15/2019] [Indexed: 01/25/2023]
Abstract
The surface of poly(dimethylsiloxane) (PDMS) is grafted with poly(acrylic acid) (PAA) layers via surface-initiated photopolymerization to suppress the capsular contracture resulting from a foreign body reaction. Owing to the nature of photo-induced polymerization, various PAA micropatterns can be fabricated using photolithography. Hole and stripe micropatterns ≈100-µm wide and 3-µm thick are grafted onto the PDMS surface without delamination. The incorporation of PAA micropatterns provides not only chemical cues by hydrophilic PAA microdomains but also topographical cues by hole or stripe micropatterns. In vitro studies reveal that a PAA-grafted PDMS surface has a lower proliferation of both macrophages (Raw 264.7) and fibroblasts (NIH 3T3) regardless of the pattern presence. However, PDMS with PAA micropatterns, especially stripe micropatterns, minimizes the aggregation of fibroblasts and their subsequent differentiation into myofibroblasts. An in vivo study also shows that PDMS samples with stripe micropatterns polarized macrophages into anti-inflammatory M2 macrophages and most effectively inhibits capsular contracture, which is demonstrated by investigation of inflammation score, transforming-growth-factor-β expression, number of macrophages, and myofibroblasts as well as the collagen density and capsule thickness.
Collapse
Affiliation(s)
- Jae Sang Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Byung Ho Shin
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Byoung Yong Yoo
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Miji Lee
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Juhwan Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Interdisciplinary Program for Bioengineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chan Yeong Heo
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.,Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Mantz A, Rosenthal A, Farris E, Kozisek T, Bittrich E, Nazari S, Schubert E, Schubert M, Stamm M, Uhlmann P, Pannier AK. Free Polyethylenimine Enhances Substrate-Mediated Gene Delivery on Titanium Substrates Modified With RGD-Functionalized Poly(acrylic acid) Brushes. Front Chem 2019; 7:51. [PMID: 30792979 PMCID: PMC6374293 DOI: 10.3389/fchem.2019.00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Substrate mediated gene delivery (SMD) is a method of immobilizing DNA complexes to a substrate via covalent attachment or nonspecific adsorption, which allows for increased transgene expression with less DNA compared to traditional bolus delivery. It may also increase cells receptivity to transfection via cell-material interactions. Substrate modifications with poly(acrylic) acid (PAA) brushes may improve SMD by enhancing substrate interactions with DNA complexes via tailored surface chemistry and increasing cellular adhesion via moieties covalently bound to the brushes. Previously, we described a simple method to graft PAA brushes to Ti and further demonstrated conjugation of cell adhesion peptides (i.e., RGD) to the PAA brushes to improve biocompatibility. The objective of this work was to investigate the ability of Ti substrates modified with PAA-RGD brushes (PAA-RGD) to immobilize complexes composed of branched polyethyleneimine and DNA plasmids (bPEI-DNA) and support SMD in NIH/3T3 fibroblasts. Transfection in NIH/3T3 cells cultured on bPEI-DNA complexes immobilized onto PAA-RGD substrates was measured and compared to transfection in cells cultured on control surfaces with immobilized complexes including Flat Ti, PAA brushes modified with a control peptide (RGE), and unmodified PAA. Transfection was two-fold higher in cells cultured on PAA-RGD compared to those cultured on all control substrates. While DNA immobilization measured with radiolabeled DNA indicated that all substrates (PAA-RGD, unmodified PAA, Flat Ti) contained nearly equivalent amounts of loaded DNA, ellipsometric measurements showed that more total mass (i.e., DNA and bPEI, both complexed and free) was immobilized to PAA and PAA-RGD compared to Flat Ti. The increase in adsorbed mass may be attributed to free bPEI, which has been shown to improve transfection. Further transfection investigations showed that removing free bPEI from the immobilized complexes decreased SMD transfection and negated any differences in transfection success between cells cultured on PAA-RGD and on control substrates, suggesting that free bPEI may be beneficial for SMD in cells cultured on bPEI-DNA complexes immobilized on PAA-RGD grafted to Ti. This work demonstrates that substrate modification with PAA-RGD is a feasible method to enhance SMD outcomes on Ti and may be used for future applications such as tissue engineering, gene therapy, and diagnostics.
Collapse
Affiliation(s)
- Amy Mantz
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Alice Rosenthal
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Institute of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Saghar Nazari
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Eva Schubert
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Mathias Schubert
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE, United States
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Physics, Chemistry, and Biology, Linkoping University, Linkoping, Sweden
- Terahertz Materials Analysis Center (THeMAC), Linkoping University, Linkoping, Sweden
| | - Manfred Stamm
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Institute of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Angela K. Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
11
|
Qi B, Feng H, Qiu X, Beaune G, Guo X, Brochard-Wyart F, Winnik FM. Spreading of Cell Aggregates on Zwitterion-Modified Chitosan Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1902-1908. [PMID: 30142974 PMCID: PMC6365911 DOI: 10.1021/acs.langmuir.8b02461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/16/2018] [Indexed: 06/08/2023]
Abstract
The sulfobetaine (SB) moiety, which comprises a quaternary ammonium group linked to a negatively charged sulfonate ester, is known to impart nonfouling properties to interfaces coated with polysulfobetaines or grafted with SB-polymeric brushes. Increasingly, evidence emerges that the SB group is, overall, a better antifouling group than the phosphorylcholine (PC) moiety extensively used in the past. We report here the synthesis of a series of SB-modified chitosans (CH-SB) carrying between 20 and 40 mol % SB per monosaccharide unit. Chitosan (CH) itself is a naturally derived copolymer of glucosamine and N-acetyl-glucosamine linked with a β-1,4 bond. Analysis by quartz crystal microbalance with dissipation (QCM-D) indicates that CH-SB films (thickness ∼ 20 nm) resist adsorption of bovine serum albumin (BSA) with increasing efficiency as the SB content of the polymer augments (surface coverage ∼ 15 μg cm-2 for films of CH with 40 mol % SB). The cell adhesivity of CH-SB films coated on glass was assessed by determining the spreading dynamics of CT26 cell aggregates. When placed on chitosan films, known to be cell-adhesive, the CT26 cell aggregates spread by forming a cell monolayer around them. The spreading of CT26 cell aggregates on zwitterion-modified chitosans films is thwarted remarkably. In the cases of CH-SB30 and CH-SB40 films, only a few isolated cells escape from the aggregates. The extent of aggregate spreading, quantified based on the theory of liquid wetting, provides a simple in vitro assay of the nonfouling properties of substrates toward specific cell lines. This assay can be adopted to test and compare the fouling characteristics of substrates very different from the chemical viewpoint.
Collapse
Affiliation(s)
- Baowen Qi
- College
of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
- Département
de Chimie, Université de Montréal, CP 6128 Succursale CentreVille, Montréal, QC H3C 3J7, Canada
- International
Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Haike Feng
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Xingping Qiu
- Département
de Chimie, Université de Montréal, CP 6128 Succursale CentreVille, Montréal, QC H3C 3J7, Canada
| | - Grégory Beaune
- International
Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaoqiang Guo
- College
of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | | | - Françoise M. Winnik
- Département
de Chimie, Université de Montréal, CP 6128 Succursale CentreVille, Montréal, QC H3C 3J7, Canada
- International
Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Laboratory
of Polymer Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
12
|
Morgese G, Gombert Y, Ramakrishna SN, Benetti EM. Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41839-41848. [PMID: 30395432 DOI: 10.1021/acsami.8b17193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly(2-alkyl-2-oxazoline)s (PAOXAs) have progressively emerged as suitable alternatives for replacing poly(ethylene glycol) (PEG) in a variety of biomaterial-related applications, especially in the designing of polymer brush-based biointerfaces because of their stealth properties and chemical robustness. When equimolar mixtures of PEG and PAOXAs are assembled on surfaces to yield mixed polymer brushes, the interfacial physicochemical properties of the obtained films are significantly altered, in some cases, surpassing the biopassive and lubricious characteristics displayed by single-component PAOXA and PEG counterparts. With a combination of variable angle spectroscopic ellipsometry, quartz crystal microbalance with dissipation, and atomic force microscopy-based methods, we demonstrate that mixing of PEG brushes with equimolar amounts of PAOXA grafts determines an increment in film's hydration and viscoelasticity. In the case of mixtures of PEG and poly(2-methyl-2-oxazoline) or poly(2-ethyl-2-oxazoline), brushes displaying full inertness toward serum proteins and improved lubricity with respect to the corresponding single-component layers can be generated, while providing a multifunctional surface that substantially enlarges the applicability of the designed coatings.
Collapse
Affiliation(s)
- Giulia Morgese
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich CH 8093 , Zürich , Switzerland
| | - Yvonne Gombert
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich CH 8093 , Zürich , Switzerland
| | - Shivaprakash N Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich CH 8093 , Zürich , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich CH 8093 , Zürich , Switzerland
| |
Collapse
|
13
|
Lian X, Shi D, Ma J, Cai X, Gu Z. Peptide dendrimer-crosslinked inorganic-organic hybrid supramolecular hydrogel for efficient anti-biofouling. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Nunes SC, Cova TFGG, Dias RS, Pais AACC. Adsorption of charged macromolecules upon multicomponent responsive surfaces. Phys Chem Chem Phys 2018; 20:19811-19818. [DOI: 10.1039/c8cp03383h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A predictive model for polyelectrolyte adsorption upon responsive surfaces is presented, decoupling the effect of surface charges and crowders.
Collapse
Affiliation(s)
- Sandra C.C. Nunes
- Coimbra Chemistry Center
- CQC
- Faculty of Science and Technology
- University of Coimbra
- Portugal
| | - Tânia F. G. G. Cova
- Coimbra Chemistry Center
- CQC
- Faculty of Science and Technology
- University of Coimbra
- Portugal
| | - Rita S. Dias
- Department of Physics
- NTNU – Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - Alberto A. C. C. Pais
- Coimbra Chemistry Center
- CQC
- Faculty of Science and Technology
- University of Coimbra
- Portugal
| |
Collapse
|
15
|
Wakefield DL, Holowka D, Baird B. The FcεRI Signaling Cascade and Integrin Trafficking Converge at Patterned Ligand Surfaces. Mol Biol Cell 2017; 28:mbc.E17-03-0208. [PMID: 28794269 PMCID: PMC5687038 DOI: 10.1091/mbc.e17-03-0208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
We examined the spatial targeting of early and downstream signaling mediated by the IgE receptor (FcεRI) in RBL mast cells utilizing surface-patterned 2,4 dinitrophenyl (DNP) ligands. Micron-sized features of DNP are presented as densely immobilized conjugates of bovine serum albumin (DNP-BSA) or mobile in a supported lipid bilayer (DNP-SLB). Although soluble anti-DNP IgE binds uniformly across features for both pattern types, IgE bound to FcεRI on cells shows distinctive distributions: uniform for DNP-SLB and edge-concentrated for DNP-BSA. These distributions of IgE-FcεRI propagate to the spatial recruitment of early signaling proteins, including spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and activated phospholipase C gamma 1 (PLCγ1), which all localize with engaged receptors. We found stimulated polymerization of F-actin is not required for Syk recruitment but is progressively involved in the recruitment of LAT and PLCγ1. We further found β1- and β3-integrins colocalize with IgE-FcεRI at patterned ligand surfaces as cells spread. This recruitment corresponds to directed exocytosis of recycling endosomes (REs) containing these integrins and their fibronectin ligand. Together, our results show targeting of signaling components, including integrins, to regions of clustered IgE-FcεRI in processes that depend on stimulated actin polymerization and outward trafficking of REs.
Collapse
Affiliation(s)
- Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Current address: Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, 91010
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
16
|
Anderson CR, Gambinossi F, DiLillo KM, Laschewsky A, Wischerhoff E, Ferri JK, Sefcik LS. Tuning reversible cell adhesion to methacrylate-based thermoresponsive polymers: Effects of composition on substrate hydrophobicity and cellular responses. J Biomed Mater Res A 2017; 105:2416-2428. [DOI: 10.1002/jbm.a.36100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
Affiliation(s)
| | - Filippo Gambinossi
- Department of Chemical and Biomolecular Engineering; Lafayette College; Easton Pennsylvania
| | - Katarina M. DiLillo
- Department of Chemical and Biomolecular Engineering; Lafayette College; Easton Pennsylvania
| | - André Laschewsky
- Fraunhofer Institute for Applied Polymer Research; Potsdam-Golm D-14476 Germany
| | - Erik Wischerhoff
- Fraunhofer Institute for Applied Polymer Research; Potsdam-Golm D-14476 Germany
| | - James K. Ferri
- Department of Chemical and Biomolecular Engineering; Lafayette College; Easton Pennsylvania
| | - Lauren S. Sefcik
- Department of Chemical and Biomolecular Engineering; Lafayette College; Easton Pennsylvania
| |
Collapse
|
17
|
Kim W, Jung J. Polymer brush: a promising grafting approach to scaffolds for tissue engineering. BMB Rep 2017; 49:655-661. [PMID: 27697112 PMCID: PMC5346310 DOI: 10.5483/bmbrep.2016.49.12.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 01/21/2023] Open
Abstract
Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate’s properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.
Collapse
Affiliation(s)
- Woonjung Kim
- Department of Chemistry, Hannam University, Daejeon 34054, Korea
| | - Jongjin Jung
- Department of Chemistry, Hannam University, Daejeon 34054, Korea
| |
Collapse
|
18
|
Ma X, Gosai A, Balasubramanian G, Shrotriya P. Aptamer based electrostatic-stimuli responsive surfaces for on-demand binding/unbinding of a specific ligand. J Mater Chem B 2017; 5:3675-3685. [DOI: 10.1039/c6tb02386j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an aptamer functionalized stimuli responsive surface that can controllably switch between binding and releasing its specific ligand α-thrombin under application of electrical stimuli.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
- Department of Bioinformatics
| | - Agnivo Gosai
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
| | - Ganesh Balasubramanian
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
- Microelectronics Research Center
| | - Pranav Shrotriya
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
| |
Collapse
|
19
|
Laradji AM, McNitt CD, Yadavalli NS, Popik VV, Minko S. Robust, Solvent-Free, Catalyst-Free Click Chemistry for the Generation of Highly Stable Densely Grafted Poly(ethylene glycol) Polymer Brushes by the Grafting To Method and Their Properties. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01573] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Amine M. Laradji
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Christopher D. McNitt
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Nataraja S. Yadavalli
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Vladimir V. Popik
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured Materials Lab and ‡Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Synthesis and characterization of well-defined ligand-terminated block copolymer brushes for multifunctional biointerfaces. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Yin MJ, Yao M, Gao S, Zhang AP, Tam HY, Wai PKA. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1394-1399. [PMID: 26643765 DOI: 10.1002/adma.201504021] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/20/2015] [Indexed: 06/05/2023]
Abstract
Poly(acrylic acid) (PAA), as a highly ionic conductive hydrogel, can reversibly swell/deswell according to the surrounding pH conditions. An optical maskless -stereolithography technology is presented to rapidly 3D pattern PAA for device fabrication. A highly sensitive miniature pH sensor is demonstrated by in situ printing of periodic PAA micropads on a tapered optical microfiber.
Collapse
Affiliation(s)
- Ming-Jie Yin
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - Mian Yao
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
- Photonics Research Center, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - Shaorui Gao
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - A Ping Zhang
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - Hwa-Yaw Tam
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - Ping-Kong A Wai
- Photonics Research Center, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
22
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
23
|
Qu Z, Xu H, Gu H. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14537-14551. [PMID: 26067846 DOI: 10.1021/acsami.5b02912] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.
Collapse
Affiliation(s)
- Zhenyuan Qu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hong Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongchen Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
24
|
Gunnewiek MK, Di Luca A, Bollemaat HZ, van Blitterswijk CA, Vancso GJ, Moroni L, Benetti EM. Creeping proteins in microporous structures: polymer brush-assisted fabrication of 3D gradients for tissue engineering. Adv Healthc Mater 2015; 4:1169-74. [PMID: 25676461 DOI: 10.1002/adhm.201400797] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/22/2015] [Indexed: 01/22/2023]
Abstract
Coupling of rapid prototyping techniques and surface-confined polymerizations allows the fabrication of 3D multidirectional gradients of biomolecules within microporous scaffolds. The compositional gradients can be tailored by polymer-brush-assisted diffusion of protein solutions. This technique allows spatial control over stem cells manipulation within 3D environments.
Collapse
Affiliation(s)
- Michel Klein Gunnewiek
- Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Andrea Di Luca
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Hermannes Z. Bollemaat
- Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Department of Complex Tissue Regeneration; MERLN Institute for Technology Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| | - G. Julius Vancso
- Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Department of Complex Tissue Regeneration; MERLN Institute for Technology Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| | - Edmondo M. Benetti
- Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Laboratory for Surface Science and Technology (LSST); Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| |
Collapse
|
25
|
|
26
|
Kojima T, Moraes C, Cavnar SP, Luker GD, Takayama S. Surface-templated hydrogel patterns prompt matrix-dependent migration of breast cancer cells towards chemokine-secreting cells. Acta Biomater 2015; 13:68-77. [PMID: 25463502 PMCID: PMC4293228 DOI: 10.1016/j.actbio.2014.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022]
Abstract
This paper describes a novel technique for fabricating spatially defined cell-laden collagen hydrogels, using patterned, non-adhesive polyacrylamide-coated polydimethylsiloxane (PDMS) surfaces as a template. Precisely patterned embedded co-cultures of breast cancer cells and chemokine-producing cells generated with this technique revealed matrix-dependent and chemokine isoform-dependent migration of cancer cells. CXCL12 chemokine-secreting cells induce significantly more chemotaxis of cancer cells when the 3-D extracellular matrix (ECM) includes components that bind the secreted CXCL12 chemokines. Experimental observations using cells that secrete CXCL12 isoforms with different matrix affinities together with computational simulations show that stronger ligand-matrix interactions sharpen chemoattractant gradients, leading to increased chemotaxis of the CXCL12 gradient-sensing CXCR4 receptor-expressing (CXCR4+) cells patterned in the hydrogel. These results extend our recent report on CXCL12 isoform-dependent chemotaxis studies from 2-D to 3-D environments and additionally reveal the important role of ECM composition. The developed technology is simple, versatile and robust; and as chemoattractant-matrix interactions are common, the methods described here should be broadly applicable for study of physiological migration of many different cell types in response to a variety of chemoattractants.
Collapse
Affiliation(s)
- Taisuke Kojima
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen P Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Shuichi Takayama
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 2014; 114:10976-1026. [PMID: 25353708 DOI: 10.1021/cr500252u] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahentha Krishnamoorthy
- Institute of Bioengineering and ‡School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
28
|
Welch ME, Doublet T, Bernard C, Malliaras GG, Ober CK. A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27392] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M. Elizabeth Welch
- Department of Materials Science & Engineering; Cornell University; Bard Hall, Ithaca New York 14853
- Department of Chemistry and Chemical Biology; Cornell University; Bard Hall, Ithaca New York 14853
| | - Thomas Doublet
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC; 880 route de Mimet 13541 Gardanne France
- Aix Marseille Université; INS UMR_S 1106; 13005 Marseille France
| | - Christophe Bernard
- Aix Marseille Université; INS UMR_S 1106; 13005 Marseille France
- Inserm, UMR_S 1106; 13005 Marseille France
| | - George G. Malliaras
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC; 880 route de Mimet 13541 Gardanne France
| | - Christopher K. Ober
- Department of Materials Science & Engineering; Cornell University; Bard Hall, Ithaca New York 14853
- Department of Chemistry and Chemical Biology; Cornell University; Bard Hall, Ithaca New York 14853
| |
Collapse
|
29
|
Moroni L, Klein Gunnewiek M, Benetti EM. Polymer brush coatings regulating cell behavior: passive interfaces turn into active. Acta Biomater 2014; 10:2367-78. [PMID: 24607856 DOI: 10.1016/j.actbio.2014.02.048] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
Abstract
Material technology platforms able to modulate the communication with cells at the interface of biomaterials are being increasingly experimented. Progress in the fabrication of supports is simultaneously introducing new surface modification strategies aimed at turning these supports from passive to active components in engineered preparations. Among these platforms, polymer brushes are arising not only as coatings determining the physical and (bio)chemical surface properties of biomaterials, but also as smart linkers between surfaces and biological cues. Their peculiar properties, especially when brushes are synthesized by "grafting-from" methods, enable closer mimicking of the complex and heterogeneous biological microenvironments. Inspired by the growing interest in this field of materials science, we summarize here the most prominent and recent advances in the synthesis of "grafted-from" polymer brush surfaces to modulate the response of adhering cells.
Collapse
Affiliation(s)
- Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Michel Klein Gunnewiek
- Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Edmondo M Benetti
- Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
30
|
Petruczok CD, Armagan E, Ince GO, Gleason KK. Initiated Chemical Vapor Deposition and Light-Responsive Cross-Linking of Poly(vinyl cinnamate) Thin Films. Macromol Rapid Commun 2014; 35:1345-50. [DOI: 10.1002/marc.201400130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/13/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Christy D. Petruczok
- Department of Chemical Engineering; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Efe Armagan
- Faculty of Engineering and Natural Sciences; Sabanci University; 34956 Istanbul Turkey
| | - Gozde Ozaydin Ince
- Faculty of Engineering and Natural Sciences; Sabanci University; 34956 Istanbul Turkey
| | - Karen K. Gleason
- Department of Chemical Engineering; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
31
|
Stabley D, Retterer S, Marshall S, Salaita K. Manipulating the lateral diffusion of surface-anchored EGF demonstrates that receptor clustering modulates phosphorylation levels. Integr Biol (Camb) 2013; 5:659-68. [PMID: 23416883 DOI: 10.1039/c3ib20239a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and displayed a lower ratio of phosphorylated EGFR to EGF when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (>1 μm(2)) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (<1 μm(2)) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated the mechanism of EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning biochemical function.
Collapse
Affiliation(s)
- D Stabley
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
32
|
Wang LP, Lv XH, Li G, Li YC. Fabrication of poly(methyl methacrylate)-block
-poly(N
-isopropylacrylamide) amphiphilic diblock copolymer on silicon substrates via surface-initiated reverse iodine transfer polymerization. POLYM ENG SCI 2013. [DOI: 10.1002/pen.23626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li-Ping Wang
- College of Materials Science and Engineering; Liaocheng University; Liaocheng 252059 China
| | - Xin-Hu Lv
- College of Materials Science and Engineering; Liaocheng University; Liaocheng 252059 China
| | - Guang Li
- College of Materials Science and Engineering; Liaocheng University; Liaocheng 252059 China
| | - Yu-Chao Li
- College of Materials Science and Engineering; Liaocheng University; Liaocheng 252059 China
| |
Collapse
|
33
|
Arnold RM, Locklin J. Self-sorting click reactions that generate spatially controlled chemical functionality on surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5920-5926. [PMID: 23581996 DOI: 10.1021/la4012857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This Article describes the generation of a patterned surface that can be postpolymerization modified to incorporate fragile macromolecules or delicate biomolecules without the need for special equipment. Two monomers that undergo different click reactions, pentafluorophenyl acrylate (PFPA) and 4-(trimethylsilyl) ethynylstyrene (TMSES), were sequentially polymerized from a silicon surface in the presence of a shadowmask with UV light, generating 12.5 and 62 μm pitch patterns. Two different dyes, 1-aminomethylpyrene (AMP) and 5-azidofluorescein (AF), were covalently attached to the polymer brushes through aminolysis and dual desilylation/copper(I)-catalyzed alkyne/azide cycloaddition (CuAAC) in one pot. Unlike most CuAAC reactions, the terminal alkyne of TMSES was not deprotected prior to functionalization. Although a 2 nm thickness increase was observed for poly(PFPA) brushes after polymerization of TMSES, cross-contamination was not visible through fluorescence microscopy after functionalization.
Collapse
Affiliation(s)
- Rachelle M Arnold
- Department of Chemistry, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | | |
Collapse
|
34
|
Petruczok CD, Gleason KK. Initiated chemical vapor deposition-based method for patterning polymer and metal microstructures on curved substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:6445-6450. [PMID: 23011917 DOI: 10.1002/adma.201201975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/23/2012] [Indexed: 06/01/2023]
Abstract
A simple, efficient, and scalable method for patterning microstructures on curved substrates is demonstrated. Initiated chemical vapor deposition is used to synthesize a thin film that crosslinks upon UV exposure. Polymeric features are defined on glass rods with high curvature and used as masks for metal patterning. Additionally, vapor-deposited polymer layers are selectively patterned to produce bifunctional surfaces.
Collapse
Affiliation(s)
- Christy D Petruczok
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
35
|
Azzaroni O. Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26119] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
|