1
|
Dar AI, Randhawa S, Verma M, Saini TC, Acharya A. Debugging the dynamics of protein corona: Formation, composition, challenges, and applications at the nano-bio interface. Adv Colloid Interface Sci 2025; 342:103535. [PMID: 40319752 DOI: 10.1016/j.cis.2025.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The intricate interplay between nanomaterials and the biological molecules has garnered considerable interest in understanding the dynamics of protein corona formation at the nano-bio interface. This review provides an in-depth exploration of protein-nanoparticle interactions, elucidating their structural dynamics and thermodynamics at the nano-Bio interface and further on emphasizing its formation, composition, challenges, and applications in the biomedical and nanotechnological domains, such as drug delivery, theranostics, and the translational medicine. We delve the nuanced mechanisms governing protein corona formation on nanoparticle surfaces, highlighting the influence of nanoparticle and biological factors, and review the impact of corona formation on the biological identity and functionality of nanoparticles. Notably, emerging applications of artificial intelligence and machine learning have begun to revolutionize this field, enabling accurate prediction of corona composition and related biological outcomes. These tools not only enhance efficiency over traditional experimental methods but also help decode complex protein-nanoparticle interaction patterns, offering new insights into corona-driven cellular responses and disease diagnostics. Additionally, it discusses recent advancements in the field of protein corona, particularly in translational nanomedicine and associated applications entailing current and future strategies which are aimed at mitigating the adverse effects of protein-nanoparticle interactions at the biological interface, for tailoring the protein coronas by engineering of the nanomaterials. This comprehensive assessment from chemical, technological, and biological aspects serves as a guiding beacon for the development of future nanomedicine, enabling the more effective emulation of the biological milieu and the design of protein-NP systems for enhanced biomedical applications.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Ghosh D, Bag S, De P. Facially Amphiphilic Cholate-Conjugated Polymers for Regulating Insulin Fibrillation. Bioconjug Chem 2025. [PMID: 40240031 DOI: 10.1021/acs.bioconjchem.5c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
To understand the influence of facially amphiphilic polymers (FAPs) on insulin fibril (IF) inhibition, three different cholate-based FAPs [cationic (PFCAQA), anionic (PFCASF), and zwitterionic (PFCASB)] have been synthesized. Besides, two control polymers [cholate and sulfobetaine-pendant random copolymer PRCASB (without facial amphiphilicity) and sulfobetaine-tethered homopolymer PSBMA (without cholate pendants)] are also prepared. Several biophysical experiments such as spectroscopic techniques [thioflavin T (ThT), Nile red (NR), tyrosine (Tyr) fluorescence assay], turbidity assay by ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), circular dichroism (CD) study, and microscopic investigation are performed to investigate the role of polymers as antiamyloidogenic agents during insulin fibrillation. Interestingly, the PFCASB zwitterionic polymer behaves as the most efficacious antiamyloidogenic agent. To clarify the interaction of PFCASB and native insulin (NI), an isothermal titration calorimetry (ITC) experiment is carried out. Tyr and the NR fluorescence investigation suggest the important role of hydrophobic interactions, whereas the ITC experiment confirms the significance of hydrophobic and electrostatic interactions in the IF inhibitory process. A hemolytic test is conducted to investigate the toxicity caused by IF and the efficacy of PFCASB in prohibiting erythrocyte disruption caused by IF. Overall, the present work reveals the impact of the facially amphiphilic cholic acid (CA)-based zwitterionic polymer in modulating the insulin aggregation process and gives a new perspective for investigations on different protein aggregations.
Collapse
Affiliation(s)
- Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| | - Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, 741246 Mohanpur, West Bengal, India
| |
Collapse
|
3
|
Upadhyaya J, Singh IR, Pun B, Baishya HJ, Kumar S, Joshi SR, Mitra S. Therapeutic Advantages of Nanoparticle-Impregnated Lysozyme Conjugates toward Amyloid-β Fibrillation and Antimicrobial Activity. J Phys Chem B 2025; 129:1274-1288. [PMID: 39812393 DOI: 10.1021/acs.jpcb.4c07261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation. However, the present results showed that spherical ZnO NPs (sZnO) offer superior efficacy in modulating fibrillation with an extended lag time of about 158.70 h, further emphasizing the importance of detailed investigation on the nanomaterial characteristics and fibril formation kinetics beyond initial observations. The experimental findings further confirmed a strong correlation between the binding affinity of NPs to the native protein and their effective inhibition of protein denaturation, ultimately preventing fibril formation. Interestingly, the lysozyme nanoconjugates showed intriguing bactericidal effects, as confirmed through the agar plate assay and SEM imaging, over the native protein. Overall, this study shows that appropriate bionanomaterials can exhibit multifunctional properties, which paves the way for a deeper investigation of NP characteristics, ultimately benefiting a wide array of intriguing research.
Collapse
Affiliation(s)
- Jahnabi Upadhyaya
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | | | - Bishal Pun
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Hirak Jyoti Baishya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S R Joshi
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| |
Collapse
|
4
|
Kuroi K, Kanazawa Y, Shinaridome A, Yasuda Y, Jung M, Pack CG, Fujii F. Protein corona formation on different-shaped CdSe/CdS semiconductor nanocrystals. NANOSCALE ADVANCES 2025; 7:560-571. [PMID: 39650619 PMCID: PMC11621831 DOI: 10.1039/d4na00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Nanoparticles (NPs) have been widely studied and applied in medical and pharmaceutical fields. When NPs enter the in vivo environment, they are covered with protein molecules to form the so-called "protein corona". Because NPs and proteins are comparable in size, the shape of NPs has a significant impact on NP-protein interactions. Although NPs of various shapes have been synthesized, how the shape of NPs affects the protein corona is poorly understood, and little is known about the underlying molecular mechanism. In the present study, we synthesized spherical, football-shaped, and rod-shaped semiconductor nanocrystals (SNCs) as model NPs and compared their interaction with human serum albumin (HSA) using fluorescence correlation spectroscopy, fluorescence quenching, Fourier-transform infrared spectroscopy, and thermodynamic analysis. Based on the binding enthalpy and entropy and secondary structural changes of HSA, with the help of hydrodynamic diameter changes of SNCs, we concluded that HSA adopts a conformation or orientation that is appropriate for the local curvature of SNCs. This study demonstrates the effect of NP shape on their interaction with proteins and provides a mechanistic perspective.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Yuta Kanazawa
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Akane Shinaridome
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Yuna Yasuda
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute Daegu 41062 Korea
| | - Chan-Gi Pack
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center Seoul 05505 Korea
- Department of Biomedical Engineering, University of Ulsan College of Medicine Seoul 05505 Korea
| | - Fumihiko Fujii
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University Kobe 650-8586 Japan
| |
Collapse
|
5
|
Gusta MF, Ernst LM, Moriones OH, Piella J, Valeri M, Bastus NG, Puntes V. Long-Term Intracellular Tracking of Label-Free Nanoparticles in Live Cells and Tissues with Confocal Microscopy. SMALL METHODS 2024; 8:e2301713. [PMID: 38564783 DOI: 10.1002/smtd.202301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.
Collapse
Affiliation(s)
- Muriel F Gusta
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Vall d'Hebron Institut of Research (VHIR), Barcelona, 08035, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Lena M Ernst
- Vall d'Hebron Institut of Research (VHIR), Barcelona, 08035, Spain
| | - Oscar H Moriones
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Jordi Piella
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Marta Valeri
- Vall d'Hebron Institut of Research (VHIR), Barcelona, 08035, Spain
| | - Neus G Bastus
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Vall d'Hebron Institut of Research (VHIR), Barcelona, 08035, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
6
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
7
|
Önal Acet B, Gül D, Stauber RH, Odabaşı M, Acet Ö. A Review for Uncovering the "Protein-Nanoparticle Alliance": Implications of the Protein Corona for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:823. [PMID: 38786780 PMCID: PMC11124003 DOI: 10.3390/nano14100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Understanding both the physicochemical and biological interactions of nanoparticles is mandatory for the biomedical application of nanomaterials. By binding proteins, nanoparticles acquire new surface identities in biological fluids, the protein corona. Various studies have revealed the dynamic structure and nano-bio interactions of the protein corona. The binding of proteins not only imparts new surface identities to nanoparticles in biological fluids but also significantly influences their bioactivity, stability, and targeting specificity. Interestingly, recent endeavors have been undertaken to harness the potential of the protein corona instead of evading its presence. Exploitation of this 'protein-nanoparticle alliance' has significant potential to change the field of nanomedicine. Here, we present a thorough examination of the latest research on protein corona, encompassing its formation, dynamics, recent developments, and diverse bioapplications. Furthermore, we also aim to explore the interactions at the nano-bio interface, paving the way for innovative strategies to advance the application potential of the protein corona. By addressing challenges and promises in controlling protein corona formation, this review provides insights into the evolving landscape of the 'protein-nanoparticle alliance' and highlights emerging.
Collapse
Affiliation(s)
- Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray 68100, Turkey; (B.Ö.A.); (M.O.)
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray 68100, Turkey; (B.Ö.A.); (M.O.)
| | - Ömür Acet
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany;
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus 33100, Turkey
| |
Collapse
|
8
|
Baruah K, Singh AK, Kumari K, Nongbri DL, Jha AN, Singha Roy A. Interactions of Turmeric- and Curcumin-Functionalized Gold Nanoparticles with Human Serum Albumin: Exploration of Protein Corona Formation, Binding, Thermodynamics, and Antifibrillation Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1381-1398. [PMID: 38159065 DOI: 10.1021/acs.langmuir.3c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In order to better understand the bioavailability and biocompatibility of polyphenol-assisted surface-modified bioengineered nanoparticles in nanomedicine applications, here, we address a series of photophysical experiments to quantify the binding affinity of serum albumin toward polyphenol-capped gold nanoparticles. For this, two different gold nanoparticles (AuNPs) were synthesized via the green synthesis approach, where curcumin and turmeric extract act as reducing as well as capping agents. The size, surface charge, and surface plasmon bands of the AuNPs were highly affected by the adsorption of human serum albumin (HSA) during protein corona formation, which was investigated using dynamic light scattering (DLS), ξ-potential, ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM) measurements. Fluorescence-based methods, absorbance, and SERS experiments were carried out to evaluate the binding aspects of AuNPs with HSA. We found that the AuNPs show moderate binding affinity toward HSA (Kb ∼ 104 M-1), irrespective of the capping agents on the surface. Hydrophobic association, along with some contribution of electrostatic interaction, played a key role in the binding process. The binding interaction was more toward the subdomain IIA region of HSA, as indicated by the competitive displacement studies using site-specific binders (warfarin and flufenamic acid). Because of the large surface curvature of small-sized AuNPs, the secondary structural conformations of HSA were slightly altered, as revealed by circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and surface-enhanced Raman scattering (SERS) measurements. Additionally, the findings of the binding interactions were re-evaluated using molecular dynamics (MD) simulation studies by determining the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), and changes in the binding energy of HSA upon complexation with AuNPs. To determine the tentative evidence for pharmacokinetic administration, these biocompatible AuNPs were applied to inhibit the amyloid fibril formation of HSA and monitored by using the thioflavin T (ThT) assay, ANS fluorescence assay, fluorescence microscopic imaging, and FESEM. AuNPs were found to show better resistance toward fibrillation of the adsorbed protein.
Collapse
Affiliation(s)
- Kakali Baruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Ajit Kumar Singh
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kalpana Kumari
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam India
| | - Dasuk Lyngdoh Nongbri
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| |
Collapse
|
9
|
Kumar M, Jaiswal VD, Pangam DS, Bhatia P, Kulkarni A, Dongre PM. Biophysical study of DC electric field induced stable formation of albumin-gold nanoparticles corona and curcumin binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123469. [PMID: 37778178 DOI: 10.1016/j.saa.2023.123469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Targeted drug delivery (TDD) is a method of delivering optimum concentrations of pharmaceutical substances in the tissue to achieve the desired therapeutic effect. Hence, TDD systems are considered as an emerging strategy to deliver the drug at the specific site of the tissues/cells. The nanoparticle-protein corona as a drug delivery vehicle has demonstrated immense benefits including potential theragnostic, improved pharmacodynamics and targeted drug delivery. In the present investigation, efforts have been to establish stable and functionalized Bovine serum albumin-gold nanoparticle (BSA-GNP) corona (conjugates) using a Direct Current (DC) electric field. With the application of DC electric field (DEF) across the BSA-GNP solution, the formation of BSA-GNP corona/conjugate takes place which was characterized using various biophysical techniques such a Dynamic Light Scattering (DLS), UV Visible spectroscopy, Fluorescence spectroscopy, electrophoresis, etc. Furthermore, the DEF engineered BSA-GNP corona was loaded/interacted with curcumin (CUR). The size of the BSA-GNP corona was increased with increasing DC voltage (5-30 V) at constant concentration of BSA. The strong and stable binding of curcumin with BSA-GNP corona was revealed by the techniques used in the investigation; however, binding affinity of CUR was decreased for 30 V DEF exposed BSA-GNP conjugate. The biocompatible experimental data confirms the nontoxic nature of BSA-GNP corona. This investigation adds a new and novel physical method for the preparation of protein-nanoparticle corona for various applications including drug delivery.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Vinod D Jaiswal
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Dhanashri S Pangam
- Department of Biophysics, University of Mumbai, Vidyanagari, Santacruz, Mumbai 400098, India
| | - Pushpinder Bhatia
- Department of Physics, Guru Nanak College, Sion, Mumbai 400037, India
| | - Amol Kulkarni
- Vasantdada Patil Dental College & Hospital, Kavalpur Sangli 416 306, India
| | - P M Dongre
- Pravara Gramin Education Society's ACS Senior College, Satral, Ta. Rahuri. Dist, Ahmednagar 431711, India(1).
| |
Collapse
|
10
|
Wu Q, Niu M, Zhou C, Wang Y, Xu J, Shi L, Xiong H, Feng N. Formation and detection of biocoronas in the food industry and their fate in the human body. Food Res Int 2023; 174:113566. [PMID: 37986519 DOI: 10.1016/j.foodres.2023.113566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
The rapid advancement of nanotechnology has opened up new avenues for applications in all stages of the food industry. Over the past decade, extensive research has emphasized that when nanoparticles (NPs) enter organisms, they spontaneously adsorbed biomolecules, leading to the formation of biocorona. This paper provided a detailed review of the process of biocorona formation in the food industry, including their classification and influencing factors. Additionally, various characterization methods to investigated the morphology and structure of biocoronas were introduced. As a real state of food industry nanoparticles in biological environments, the biocorona causes structural transformations of biomolecules bound to NPs, thus affecting their fate in the body. It can either promote or inhibit enzyme activity in the human environment, and may also positively or negatively affect the cellular uptake and toxicity of NPs. Since NPs present in the food industry will inevitably enter the human body, further investigations on biocoronas will offer valuable insights and perspectives on the safety of incorporating more NPs into the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chen Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yaxiong Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., LTD., Suizhou, Hubei 441300, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - He Xiong
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - Nianjie Feng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
11
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
12
|
Dolci M, Wang Y, Nooteboom SW, Soto Rodriguez PED, Sánchez S, Albertazzi L, Zijlstra P. Real-Time Optical Tracking of Protein Corona Formation on Single Nanoparticles in Serum. ACS NANO 2023; 17:20167-20178. [PMID: 37802067 PMCID: PMC10604089 DOI: 10.1021/acsnano.3c05872] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
The formation of a protein corona, where proteins spontaneously adhere to the surface of nanomaterials in biological environments, leads to changes in their physicochemical properties and subsequently affects their intended biomedical functionalities. Most current methods to study protein corona formation are ensemble-averaging and either require fluorescent labeling, washing steps, or are only applicable to specific types of particles. Here we introduce real-time all-optical nanoparticle analysis by scattering microscopy (RONAS) to track the formation of protein corona in full serum, at the single-particle level, without any labeling. RONAS uses optical scattering microscopy and enables real-time and in situ tracking of protein adsorption on metallic and dielectric nanoparticles with different geometries directly in blood serum. We analyzed the adsorbed protein mass, the affinity, and the kinetics of the protein adsorption at the single particle level. While there is a high degree of heterogeneity from particle to particle, the predominant factor in protein adsorption is surface chemistry rather than the underlying nanoparticle material or size. RONAS offers an in-depth understanding of the mechanisms related to protein coronas and, thus, enables the development of strategies to engineer efficient bionanomaterials.
Collapse
Affiliation(s)
- Mathias Dolci
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sjoerd W. Nooteboom
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | | | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for
Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Nienhaus K, Nienhaus GU. Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301663. [PMID: 37010040 DOI: 10.1002/smll.202301663] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Although a wide variety of nanoparticles (NPs) have been engineered for use as disease markers or drug delivery agents, the number of nanomedicines in clinical use has hitherto remained small. A key obstacle in nanomedicine development is the lack of a deep mechanistic understanding of NP interactions in the bio-environment. Here, the focus is on the biomolecular adsorption layer (protein corona), which quickly enshrouds a pristine NP exposed to a biofluid and modifies the way the NP interacts with the bio-environment. After a brief introduction of NPs for nanomedicine, proteins, and their mutual interactions, research aimed at addressing fundamental properties of the protein corona, specifically its mono-/multilayer structure, reversibility and irreversibility, time dependence, as well as its role in NP agglomeration, is critically reviewed. It becomes quite evident that the knowledge of the protein corona is still fragmented, and conflicting results on fundamental issues call for further mechanistic studies. The article concludes with a discussion of future research directions that should be taken to advance the understanding of the protein corona around NPs. This knowledge will provide NP developers with the predictive power to account for these interactions in the design of efficacious nanomedicines.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76049, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76049, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Hess KA, Spear NJ, Vogelsang SA, Macdonald JE, Buchanan LE. Determining the impact of gold nanoparticles on amyloid aggregation with 2D IR spectroscopy. J Chem Phys 2023; 158:091101. [PMID: 36889961 PMCID: PMC9981241 DOI: 10.1063/5.0136376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
As nanomaterials become more prevalent in both industry and medicine, it is crucial to fully understand their health risks. One area of concern is the interaction of nanoparticles with proteins, including their ability to modulate the uncontrolled aggregation of amyloid proteins associated with diseases, such as Alzheimer's disease and type II diabetes, and potentially extend the lifetime of cytotoxic soluble oligomers. This work demonstrates that two-dimensional infrared spectroscopy and 13C18O isotope labeling can be used to follow the aggregation of human islet amyloid polypeptide (hIAPP) in the presence of gold nanoparticles (AuNPs) with single-residue structural resolution. 60 nm AuNPs were found to inhibit hIAPP, tripling the aggregation time. Furthermore, calculating the actual transition dipole strength of the backbone amide I' mode reveals that hIAPP forms a more ordered aggregate structure in the presence of AuNPs. Ultimately, such studies can provide insight into how mechanisms of amyloid aggregation are altered in the presence of nanoparticles, furthering our understanding of protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Kayla A. Hess
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Nathan J. Spear
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Sophia A. Vogelsang
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Janet E. Macdonald
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Lauren E. Buchanan
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| |
Collapse
|
15
|
González-Rioja R, Salazar VA, Bastús NG, Puntes V. The development of highly dense highly protected surfactant ionizable lipid RNA loaded nanoparticles. Front Immunol 2023; 14:1129296. [PMID: 36923400 PMCID: PMC10009161 DOI: 10.3389/fimmu.2023.1129296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
The long quest for efficient drug administration has been looking for a universal carrier that can precisely transport traditional drugs, new genomic and proteic therapeutic agents. Today, researchers have found conditions to overcome the two main drug delivery dilemmas. On the one side, the versatility of the vehicle to efficiently load, protect and transport the drug and then release it at the target place. On the other hand, the questions related to the degree of PEGylation which are needed to avoid nanoparticle (NP) aggregation and opsonization while preventing cellular uptake. The development of different kinds of lipidic drug delivery vehicles and particles has resulted in the development of ionizable lipid nanoparticles (iLNPs), which can overcome most of the typical drug delivery problems. Proof of their success is the late approval and massive administration as the prophylactic vaccine for SARS-CoV-2. These ILNPs are built by electrostatic aggregation of surfactants, the therapeutic agent, and lipids that self-segregate from an aqueous solution, forming nanoparticles stabilized with lipid polymers, such as PEG. These vehicles overcome previous limitations such as low loading and high toxicity, likely thanks to low charge at the working pH and reduced size, and their entry into the cells via endocytosis rather than membrane perforation or fusion, always associated with higher toxicity. We herein revise their primary features, synthetic methods to prepare and characterize them, pharmacokinetic (administration, distribution, metabolization and excretion) aspects, and biodistribution and fate. Owing to their advantages, iLNPs are potential drug delivery systems to improve the management of various diseases and widely available for clinical use.
Collapse
Affiliation(s)
- Ramon González-Rioja
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Vivian A. Salazar
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Neus G. Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina, Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina, Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Malalties Infeccioses, Nanopartícules farmacocinétiques, Vall d’Hebron Institut de Recerca, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
16
|
Halder K, Sengupta P, Chaki S, Saha R, Dasgupta S. Understanding Conformational Changes in Human Serum Albumin and Its Interactions with Gold Nanorods: Do Flexible Regions Play a Role in Corona Formation? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1651-1664. [PMID: 36635089 DOI: 10.1021/acs.langmuir.2c03145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The importance of protein-nanoparticle (NP) conjugates for biomedical applications has seen an exponential growth in the past few years. The protein corona formation on NPs with human serum albumin (HSA), being the most abundant protein in blood serum, has become one of the most studied protein analyses under NP-protein interactions as HSA is readily adsorbed on the surface of the NPs. Understanding the fate of the NPs in physiological media along with the change in biological responses due to the formation of the protein corona thus becomes important. We analyzed the HSA protein corona formation on gold nanorods (AuNRs) through different spectroscopic studies in addition to the effects of change in the protein concentration on the protein-NP interactions. Different imaging techniques such as high-resolution transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to determine the morphology and the dimensions of the nanorods and the protein-nanorod conjugates. Fourier-transform infrared data showed a reduction in the α-helix content and an increase in β-sheet content for the HSA-AuNR conjugate compared to the native protein. A decrease in steady-state fluorescence intensity occurred with instant addition of AuNR to HSA showing better and efficient quenching of Trp fluorescence for the lower concentration of protein. Time-correlated single photon counting results showed greater energy transfer efficiency and faster decay rate for higher concentrations of proteins. The circular dichroism study gives insight into the secondary structural changes due to unfolding, and a greater change was observed for lower concentrations of protein due to a thermodynamically stable protein corona formation. Surface-enhanced Raman spectroscopy (SERS) indicated the presence of aromatic residues such as Phe, Tyr, and Cys that appear to be close to the surface of the AuNRs in addition to hydrophobic interactions between AuNR and the protein. The disordered and flexible regions mapped onto HSA (PDB: 1AO6), predicted by the intrinsically disordered region predictors, point toward the interactions of similar residues with the nanorods observed from SERS and fluorescence studies. These studies could provide a clearer understanding of the interactions between HSA and AuNRs for possible biological applications.
Collapse
Affiliation(s)
- Krishna Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Piyashi Sengupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Sreshtha Chaki
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Rahul Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
17
|
Yang W, Jannatun N, Zeng Y, Liu T, Zhang G, Chen C, Li Y. Impacts of microplastics on immunity. FRONTIERS IN TOXICOLOGY 2022; 4:956885. [PMID: 36238600 PMCID: PMC9552327 DOI: 10.3389/ftox.2022.956885] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Most disposable plastic products are degraded slowly in the natural environment and continually turned to microplastics (MPs) and nanoplastics (NPs), posing additional environmental hazards. The toxicological assessment of MPs for marine organisms and mammals has been reported. Thus, there is an urgent need to be aware of the harm of MPs to the human immune system and more studies about immunological assessments. This review focuses on how MPs are produced and how they may interact with the environment and our body, particularly their immune responses and immunotoxicity. MPs can be taken up by cells, thus disrupting the intracellular signaling pathways, altering the immune homeostasis and finally causing damage to tissues and organs. The generation of reactive oxygen species is the mainly toxicological mechanisms after MP exposure, which may further induce the production of danger-associated molecular patterns (DAMPs) and associate with the processes of toll-like receptors (TLRs) disruption, cytokine production, and inflammatory responses in immune cells. MPs effectively interact with cell membranes or intracellular proteins to form a protein-corona, and combine with external pollutants, chemicals, and pathogens to induce greater toxicity and strong adverse effects. A comprehensive research on the immunotoxicity effects and mechanisms of MPs, including various chemical compositions, shapes, sizes, combined exposure and concentrations, is worth to be studied. Therefore, it is urgently needed to further elucidate the immunological hazards and risks of humans that exposed to MPs.
Collapse
Affiliation(s)
- Wenjie Yang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nahar Jannatun
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tinghao Liu
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, National Centre for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
18
|
Palmieri V, Caracciolo G. Tuning the immune system by nanoparticle-biomolecular corona. NANOSCALE ADVANCES 2022; 4:3300-3308. [PMID: 36131704 PMCID: PMC9419885 DOI: 10.1039/d2na00290f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 05/24/2023]
Abstract
Nanotechnology has a great potential to revolutionize the landscape of medicine, but an inadequate understanding of the nanomaterial-biological (nano-bio) interface hampers its ultimate clinical translation. Surface attachment of biomolecules provides a new biological identity of nanoparticles that plays a crucial role in vivo as it can activate the immune system triggering inflammatory responses, clearance from the body, and cellular toxicity. In this review, we summarize and critically analyze progress in understanding the relationship between the biological identity of nanoparticles and immune system activation. Accordingly, we discuss the implications of biomolecular corona on nanotoxicity, immune safety, and biocompatibility. We also highlight a perspective on engineering the biological identity of nanoparticles for modulating immunological responses.
Collapse
Affiliation(s)
- Valentina Palmieri
- Institute for Complex Systems, National Research Council of Italy Via dei Taurini 19 00185 Rome Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| |
Collapse
|
19
|
Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. Int J Mol Sci 2022; 23:7683. [PMID: 35887030 PMCID: PMC9325171 DOI: 10.3390/ijms23147683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fine-tuning of the physicochemical properties of gold nanoparticles has facilitated the rapid development of multifunctional gold-based nanomaterials with diagnostic, therapeutic, and therapeutic applications. Work on gold nanoparticles is increasingly focusing on their cancer application. This review provides a summary of the main biological effects exerted by gold nanoparticles on cancer cells and highlights some critical factors involved in the interaction process (protein corona, tumor microenvironment, surface functionalization). The review also contains a brief discussion of the application of gold nanoparticles in target discovery.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Silvia Strada
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
20
|
Halder S, Aggrawal R, Saha SK. Concentration-dependent β-cyclodextrin-promoted refolding of gold nanoparticles-conjugated bovine serum albumin complexed with gemini surfactants with different spacer groups. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines. Expert Opin Drug Deliv 2022; 19:833-846. [PMID: 35738018 DOI: 10.1080/17425247.2022.2093854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Targeted drug delivery has been widely explored as a promising way to improve the performance of nanomedicines. However, protein corona formed on the nano-surface represents a major issue that has great impacts on the in vivo fate of targeting nanomedicines, which has been overlooked in the past. With the increasing understanding of protein corona in the recent decade, many efforts have been made to improve targeting efficacy. AREAS COVERED In this review, we briefly summarize insights of targeted delivery systems inspired by protein corona, and discuss the promising strategies to regulate protein corona for better targeting. EXPERT OPINION The interaction between nanomedicines and endogenous proteins brings great uncertainty and challenges, but it also provides great opportunities for the development of targeting nanomedicines at the same time. With increasing understanding of protein corona, the strategies to regulate protein corona pave new avenues for the development of targeting nanomedicines.
Collapse
Affiliation(s)
- Zhuxuan Jiang
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Yuxiu Chu
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Changyou Zhan
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China.,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, P.R. China.,Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, P.R. China
| |
Collapse
|
22
|
Bilardo R, Traldi F, Vdovchenko A, Resmini M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1788. [PMID: 35257495 PMCID: PMC9539658 DOI: 10.1002/wnan.1788] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
Nanomaterials offer promising solutions as drug delivery systems and imaging agents in response to the demand for better therapeutics and diagnostics. However, the limited understanding of the interaction between nanoparticles and biological entities is currently hampering the development of new systems and their applications in clinical settings. Proteins and lipids in biological fluids are known to complex with nanoparticles to form a "biomolecular corona". This has been shown to affect particles' morphology and behavior in biological systems and their interactions with cells. Hence, understanding how nanomaterials' physicochemical properties affect the formation and composition of this biocorona is a crucial step. This work evaluates existing literature on how morphology (size and shape), and surface chemistry (charge and hydrophobicity) of nanoparticles influence the formation of protein corona. The latest evidence suggest that although surface charge promotes the interaction with proteins and lipids, surface chemistry plays a leading role in determining the affinity of the nanoparticle for biomolecules and, ultimately, the composition of the corona. More recently the study of additional nanoparticles' properties like shape and surface chirality have demonstrated a significant effect on protein corona architecture, providing new tools to tailor biomolecular corona formation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Roberta Bilardo
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Federico Traldi
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Alena Vdovchenko
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Marina Resmini
- Department of Chemistry, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Latreille PL, Le Goas M, Salimi S, Robert J, De Crescenzo G, Boffito DC, Martinez VA, Hildgen P, Banquy X. Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS NANO 2022; 16:1689-1707. [PMID: 35138808 DOI: 10.1021/acsnano.1c05901] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This Review aims to provide a systematic analysis of the literature regarding ongoing debates in protein corona research. Our goal is to portray the current understanding of two fundamental and debated characteristics of the protein corona, namely, the formation of mono- or multilayers of proteins and their binding (ir)reversibility. The statistical analysis we perform reveals that these characterisitics are strongly correlated to some physicochemical factors of the NP-protein system (particle size, bulk material, protein type), whereas the technique of investigation or the type of measurement (in situ or ex situ) do not impact the results, unlike commonly assumed. Regarding the binding reversibility, the experimental design (either dilution or competition experiments) is also shown to be a key factor, probably due to nontrivial protein binding mechanisms, which could explain the paradoxical phenomena reported in the literature. Overall, we suggest that to truly predict and control the protein corona, future efforts should be directed toward the mechanistic aspects of protein adsorption.
Collapse
Affiliation(s)
- Pierre-Luc Latreille
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Marine Le Goas
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Sina Salimi
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jordan Robert
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Daria C Boffito
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Vincent A Martinez
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, U.K
| | - Patrice Hildgen
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
24
|
Bychkova AV, Lopukhova MV, Wasserman LA, Degtyarev YN, Kovarski AL, Chakraborti S, Mitkevich VA. The influence of pH and ionic strength on the interactions between human serum albumin and magnetic iron oxide nanoparticles. Int J Biol Macromol 2022; 194:654-665. [PMID: 34813783 DOI: 10.1016/j.ijbiomac.2021.11.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) is a very well-characterized protein, which has already been used for many biocompatible coatings. We hypothesized binding between HSA and magnetic iron oxide nanoparticles (MNPs) as well as HSA coating stability to be pH- and ionic strength-dependent. The impact of phosphate buffer on protein coating was studied at varying pH (6.0, 6.6, and 7.5) and ionic strengths (0.15 and 0.30 M NaCl) using different physicochemical methods. In addition, the stability of HSA coatings on MNPs was studied by means of UV/visible spectrophotometry, dynamic light scattering, and electron magnetic resonance. We used differential scanning calorimetry (DSC) to determine the differences in the change of enthalpies and denaturation temperatures of HSA in various buffer conditions and on the surface of the particles. The binding thermodynamics of HSA and MNPs were determined by isothermal titration calorimetry (ITC), and it was also dependent on pH and ionic strength. The stability of adsorbed layer on MNPs decreases with increasing pH [from weakly acidic (pH 6.0-6.6) to slightly alkaline (pH 7.5)], as well as with an increase of ionic strength. This study develops stable HSA coating on MNPs which might be applied to a wide range of biomedical applications.
Collapse
Affiliation(s)
- Anna V Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia.
| | - Mariia V Lopukhova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | - Luybov A Wasserman
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | - Yevgeniy N Degtyarev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia; N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina str., 4, 119991 Moscow, Russia
| | - Alexander L Kovarski
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | | | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str., 32, 119991 Moscow, Russia
| |
Collapse
|
25
|
Halder S, Aggrawal R, Jana S, Saha SK. Binding interactions of cationic gemini surfactants with gold nanoparticles-conjugated bovine serum albumin: A FRET/NSET, spectroscopic, and docking study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 225:112351. [PMID: 34763228 DOI: 10.1016/j.jphotobiol.2021.112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022]
Abstract
This work demonstrates binding interactions of two cationic gemini surfactants, 12-4-12,2Br- and 12-8-12,2Br- with gold nanoparticles (AuNPs)-conjugated bovine serum albumin (BSA) presenting binding isotherms from specific binding to saturation binding regions of surfactants. The binding isotherm has been successfully constructed using Förster's resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) parameters calculated based on fluorescence quenching of donor, tryptophan (Trp) residue by acceptor, AuNP. Energy transfer efficiency (ET) changes due to alteration in the donor-acceptor distance when surfactants interact with bioconjugates. A solid reverse relationship between α-helix and β-turn contents of BSA-AuNPs-conjugates is noted while interacting with surfactants. 12-8-12,2Br- shows stronger binding interactions with BSA-bioconjugates than 12-4-12,2Br-. The effect of bioconjugation on secondary/tertiary structures of BSA in the absence and presence of a surfactant is studied through circular dichroism, fluorescence, and Fourier transform infrared spectroscopic measurements. Motional restrictions imposed by AuNPs on Trp residues of folded and unfolded BSA have been investigated using red edge emission shift (REES) measurements. Finally, the molecular docking results present the modes of interactions of 12-4-12,2Br- and 12-8-12,2Br-, and Au-nanoclusters (Au92) with BSA. An approach to describe the binding isotherms of surfactants using AuNPs-bioconjugates as optical-based molecular ruler and possible effects of AuNPs on microenvironment and conformations of the protein is presented.
Collapse
Affiliation(s)
- Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Srabanti Jana
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Maharajpura, Gwalior 474005, India
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
26
|
Zhang T, Zhang D, Liu H, Chen K. Quantitative analysis and degradation mechanisms of different protein degradation methods. J Biomed Mater Res B Appl Biomater 2021; 110:1034-1043. [PMID: 34842354 DOI: 10.1002/jbm.b.34977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/25/2021] [Accepted: 11/13/2021] [Indexed: 11/12/2022]
Abstract
The abrasive debris produced by wear test of artificial joints in vitro is encapsulated by proteins in serum lubricants, which hinder the characterization of debris analysis. One of the key issues of isolating wear debris from serum is degrading the proteins wrapping the wear debris. In this article, the proteins in calf serum were degraded by a strong alkali, a strong acid, and an enzyme. The residual concentration of proteins in calf serum was detected by UV absorption. Quantitative analysis of protein degradation and the protein degradation rate was proposed, following treatment with different degradation reagents and different incubation times. The results showed that when 10 mL of 25% volume calf serum was added with 40 mL of NaOH and incubated at 65°C for 24 h, the protein degradation rate reached a maximum of 95.52%. The protein degradation rate in the solution ranged from 31.86% to 71.64% when a different volume of 37% HCl was added and incubated at 60°C. The highest protein degradation rate was 94.98% in the protease degradation solution. When the protein degradation rate is less than 70%, the particles were coated by protein. When the protein degradation rate was more than 95%, there was no protein coating around the particles. The three protein degradation methods have different processes and protein degradation rates. A suitable method for protein degradation can be selected according to these practical applications.
Collapse
Affiliation(s)
- Tao Zhang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
| | - Dekun Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, China
| | - Hongtao Liu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, China
| | - Kai Chen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
27
|
Chen X, Chen J, Huang N. The structure, formation, and effect of plasma protein layer on the blood contact materials: A review. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Xiao Chen
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials Ministry of Education Southwest Jiaotong University Chengdu China
| |
Collapse
|
28
|
The Interactions between Nanoparticles and the Innate Immune System from a Nanotechnologist Perspective. NANOMATERIALS 2021; 11:nano11112991. [PMID: 34835755 PMCID: PMC8621168 DOI: 10.3390/nano11112991] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
The immune system contributes to maintaining the body’s functional integrity through its two main functions: recognizing and destroying foreign external agents (invading microorganisms) and identifying and eliminating senescent cells and damaged or abnormal endogenous entities (such as cellular debris or misfolded/degraded proteins). Accordingly, the immune system can detect molecular and cellular structures with a spatial resolution of a few nm, which allows for detecting molecular patterns expressed in a great variety of pathogens, including viral and bacterial proteins and bacterial nucleic acid sequences. Such patterns are also expressed in abnormal cells. In this context, it is expected that nanostructured materials in the size range of proteins, protein aggregates, and viruses with different molecular coatings can engage in a sophisticated interaction with the immune system. Nanoparticles can be recognized or passed undetected by the immune system. Once detected, they can be tolerated or induce defensive (inflammatory) or anti-inflammatory responses. This paper describes the different modes of interaction between nanoparticles, especially inorganic nanoparticles, and the immune system, especially the innate immune system. This perspective should help to propose a set of selection rules for nanosafety-by-design and medical nanoparticle design.
Collapse
|
29
|
Allantoin from Valuable Romanian Animal and Plant Sources with Promising Anti-Inflammatory Activity as a Nutricosmetic Ingredient. SUSTAINABILITY 2021. [DOI: 10.3390/su131810170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Helix aspersa (HA), Helix pomatia (HP) and Symphytum officinale are common organisms in Romania’s biosphere, widely known for their allantoin content and their therapeutic properties. Herein, the allantoin was separated and quantified from the aqueous extracts of Romanian comfrey root and the secretions of HA and HP snails. This study also focused on determining the antioxidant and anti-inflammatory activities of these Romanian allantoin-rich samples. The plant extracts were obtained through two methods: ultrasonic extraction and enzymatic ultrasonic extraction. A microplate method was used for the quantitative determination of allantoin content. The antioxidant activity was measured by using the DPPH radical scavenging method. The antioxidant capacity of the samples was studied in order to observe the type of interactions generated by the chemical complex present in their composition. High concentrations of allantoin were obtained by enzymatic ultrasonic extraction method (EUE—102 ± 0.74 μg/mL), and also in the water-soluble fraction of the snail secretion (FS1—22.051 μg/mL). The antioxidant screening suggests that Symphytum officinale and snail mucus extracts could be used as promising natural substitutes for synthetic antioxidants in products used for therapeutic purposes. The evaluation of anti-inflammatory activity was also investigated, allantoin-rich samples showing a promising action (FS1—81.87 ± 2.34%). In future, the inclusion of allantoin-rich extracts in various novel pharmaceutical forms for new therapeutic applications could be achieved. The study will continue with the formulation of a nutricosmetic product with snail mucus and Symphytum officinale extract as principal bioactive ingredients.
Collapse
|
30
|
Yang M, Wu E, Tang W, Qian J, Zhan C. Interplay between nanomedicine and protein corona. J Mater Chem B 2021; 9:6713-6727. [PMID: 34328485 DOI: 10.1039/d1tb01063h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicine is recognized as a promising agent for diverse biomedical applications; however, its safety and efficiency in clinical practice remains to be enhanced. A priority issue is the protein corona (PC), which imparts unique biological identities to prototype and determines the actual biological functions in biological fluids. Decades of work has already illuminated abundant considerations that influence the composition of the protein corona. Thereinto, the physical assets of nanomedicines (e.g., size and shape, surface properties, nanomaterials) and the biological environment collectively play fundamental roles in shaping the PC, including the types and quantities of plasma proteins. The properties of nanomedicines are dependent on certain factors. This review aims to explore the applications of nanomedicines by regulating their interplay with PC.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
| | - Ercan Wu
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Wenjing Tang
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Jun Qian
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China. and MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
31
|
Zhao Z, Li G, Liu QS, Liu W, Qu G, Hu L, Long Y, Cai Z, Zhao X, Jiang G. Identification and interaction mechanism of protein corona on silver nanoparticles with different sizes and the cellular responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125582. [PMID: 34030421 DOI: 10.1016/j.jhazmat.2021.125582] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
With the potential biomedical applications of nanomaterials such as silver nanoparticles (SNPs), nanotoxicity concerns are growing, and the importance of NP and protein interactions is far from being addressed enough. Here, we identified the major binding protein on SNPs in blood as human serum albumin (HSA) using polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. By comparing with the previous methods, we emphasized surface area concentration as a new dose metric to address the importance of NP curvature. SNPs interacted with cysteine and cystine, disrupting the secondary structure and conformation of HSA, and this tendency became stronger on small SNPs than large ones. The protein corona significantly alleviated the toxicity and decreased SNPs' internalization in a particle size-dependent manner, where more significant inhibition effects occurred on larger particles at the same area concentration. These findings may shed light on nanotoxicity and also the design of safe nanomaterials by a comprehensive preconsideration of the metrological method.
Collapse
Affiliation(s)
- Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Wei Liu
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine, Beijing 100124, PR China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanmin Long
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
32
|
Okyem S, Awotunde O, Ogunlusi T, Riley MB, Driskell JD. High-Affinity Points of Interaction on Antibody Allow Synthesis of Stable and Highly Functional Antibody-Gold Nanoparticle Conjugates. Bioconjug Chem 2021; 32:1753-1762. [PMID: 34228917 DOI: 10.1021/acs.bioconjchem.1c00261] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many emerging nanobiotechnologies rely on the proper function of proteins immobilized on gold nanoparticles. Often, the surface chemistry of the AuNP is engineered to control the orientation, surface coverage, and structure of the adsorbed protein to maximize conjugate function. Here, we chemically modified antibody to investigate the effect of protein surface chemistries on adsorption to AuNPs. A monoclonal anti-horseradish peroxidase IgG antibody (anti-HRP) was reacted with N-succinimidyl acrylate (NSA) or reduced dithiobissuccinimidyl propionate (DSP) to modify lysine residues. Zeta potential measurements confirmed that both chemical modifications reduced the localized regions of positive charge on the protein surface, while the DSP modification incorporated additional free thiols. Dynamic light scattering confirmed that native and chemically modified antibodies adsorbed onto AuNPs to form bioconjugates; however, adsorption kinetics revealed that the NSA-modified antibody required significantly more time to allow for the formation of a hard corona. Moreover, conjugates formed with the NSA-modified antibody lost antigen-binding function, whereas unmodified and DSP-modified antibodies adsorbed onto AuNPs to form functional conjugates. These results indicate that high-affinity functional groups are required to prevent protein unfolding and loss of function when adsorbed on the AuNP surface. The reduced protein charge and high-affinity thiol groups on the DSP-modified antibody enabled pH-dependent control of protein orientation and the formation of highly active conjugates at solution pHs (<7.5) that are inaccessible with unmodified antibody due to conjugate aggregation. This study establishes parameters for protein modification to facilitate the formation of highly functional and stable protein-AuNP conjugates.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Tosin Ogunlusi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - McKenzie B Riley
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
33
|
Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, Lynch I. Environmental dimensions of the protein corona. NATURE NANOTECHNOLOGY 2021; 16:617-629. [PMID: 34117462 DOI: 10.1038/s41565-021-00924-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 05/02/2023]
Abstract
The adsorption of biomolecules to the surface of engineered nanomaterials, known as corona formation, defines their biological identity by altering their surface properties and transforming the physical, chemical and biological characteristics of the particles. In the first decade since the term protein corona was coined, studies have focused primarily on biomedical applications and human toxicity. The relevance of the environmental dimensions of the protein corona is still emerging. Often referred to as the eco-corona, a biomolecular coating forms upon nanomaterials as they enter the environment and may include proteins, as well as a diverse array of other biomolecules such as metabolites from cellular activity and/or natural organic matter. Proteins remain central in studies of eco-coronas because of the ease of monitoring and structurally characterizing proteins, as well as their crucial role in receptor engagement and signalling. The proteins within the eco-corona are optimal targets to establish the biophysicochemical principles of corona formation and transformation, as well as downstream impacts on nanomaterial uptake, distribution and impacts on the environment. Moreover, proteins appear to impart a biological identity, leading to cellular or organismal recognition of nanomaterials, a unique characteristic compared with natural organic matter. We contrast insights into protein corona formation from clinical samples with those in environmentally relevant systems. Principles specific to the environment are also explored to gain insights into the dynamics of interaction with or replacement by other biomolecules, including changes during trophic transfer and ecotoxicity. With many challenges remaining, we also highlight key opportunities for method development and impactful systems on which to focus the next phase of eco-corona studies. By interrogating these environmental dimensions of the protein corona, we offer a perspective on how mechanistic insights into protein coronas in the environment can lead to more sustainable, environmentally safe nanomaterials, as well as enhancing the efficacy of nanomaterials used in remediation and in the agri-food sector.
Collapse
Affiliation(s)
- Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA.
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kira M Fahy
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Brian S Hong
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Jose A Tochihuitl
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Lilah A Foster
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
34
|
Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology 2021; 19:159. [PMID: 34051806 PMCID: PMC8164776 DOI: 10.1186/s12951-021-00896-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.
Collapse
Affiliation(s)
- Ehsan Kianfar
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
35
|
Huang W, Xiao G, Zhang Y, Min W. Research progress and application opportunities of nanoparticle-protein corona complexes. Biomed Pharmacother 2021; 139:111541. [PMID: 33848776 DOI: 10.1016/j.biopha.2021.111541] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles (NPs) can be used to design for nanomedicines with different chemical surface properties owing to their size advantages and the capacity of specific delivery to targeted sites in organisms. The discovery of the presence of protein corona (PC) has changed our classical view of NPs, stimulating researchers to investigate the in vivo fate of NPs as they enter biological systems. Both NPs and PC have their specificity but complement each other, so they should be considered as a whole. The formation and characterization of NP-PC complexes provide new insights into the design, functionalization, and application of nanocarriers. Based on progress of recent researches, we reviewed the formation, characterization, and composition of the PC, and introduced those critical factors influencing PC, simultaneously expound the effect of PC on the biological function of NPs. Especially we put forward the opportunities and challenges when NP-PC as a novel nano-drug carrier for targeted applications. Furthermore, we discussed the pros versus cons of the PC, as well as how to make better PC in the future application of NPs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacy, The First People's Hospital of Jiande, Jiande 311600, China; Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Gao Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Yujuan Zhang
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China.
| | - Weiping Min
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
36
|
Okyem S, Awotunde O, Ogunlusi T, Riley MB, Driskell JD. Probing the Mechanism of Antibody-Triggered Aggregation of Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2993-3000. [PMID: 33621098 DOI: 10.1021/acs.langmuir.1c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique physicochemical properties of gold nanoparticles (AuNPs) provide many opportunities to develop novel biomedical technologies. The surface chemistry of AuNPs can be engineered to perform a variety of functions, including targeted binding, cellular uptake, or stealthlike properties through the immobilization of biomolecules, such as proteins. It is well established that proteins can spontaneously adsorb onto AuNPs, to form a stable and functional bioconjugate; however, the protein-AuNP interaction may result in the formation of less desirable protein-AuNP aggregates. Therefore, it is imperative to investigate the protein-AuNP interaction and elucidate the mechanism by which protein triggers AuNP aggregation. Herein, we systematically investigated the interaction of immunoglobulin G (IgG) antibody with citrate-capped AuNPs as a function of solution pH. We found that the addition of antibody triggers the aggregation of AuNPs for pH < 7.5, whereas a monolayer of antibody adsorbs onto the AuNP to form a stable bioconjugate when the antibody is added to AuNPs at pH ≥ 7.5. Our data identifies electrostatic bridging between the antibody and the negatively charged AuNPs as the mechanism by which aggregation occurs and rules out protein unfolding and surface charge depletion as potential causes. Furthermore, we found that the electrostatic bridging of AuNPs is reversible within the first few hours of interaction, but the protein-AuNP interactions strengthen over 24 h, after which the protein-AuNP aggregate is irreversibly formed. From this data, we developed a straightforward approach to acrylate the basic residues on the antibody to prevent protein-induced aggregation of AuNP over a wide pH range. The results of this study provide additional insight into antibody-nanoparticle interactions and provide a pathway to control the interaction with the potential to enhance the conjugate function.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Tosin Ogunlusi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - McKenzie B Riley
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
37
|
Martínez-Negro M, González-Rubio G, Aicart E, Landfester K, Guerrero-Martínez A, Junquera E. Insights into colloidal nanoparticle-protein corona interactions for nanomedicine applications. Adv Colloid Interface Sci 2021; 289:102366. [PMID: 33540289 DOI: 10.1016/j.cis.2021.102366] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Colloidal nanoparticles (NPs) have attracted significant attention due to their unique physicochemical properties suitable for diagnosing and treating different human diseases. Nevertheless, the successful implementation of NPs in medicine demands a proper understanding of their interactions with the different proteins found in biological fluids. Once introduced into the body, NPs are covered by a protein corona (PC) that determines the biological behavior of the NPs. The formation of the PC can eventually favor the rapid clearance of the NPs from the body before fulfilling the desired objective or lead to increased cytotoxicity. The PC nature varies as a function of the different repulsive and attractive forces that govern the NP-protein interaction and their colloidal stability. This review focuses on the phenomenon of PC formation on NPs from a physicochemical perspective, aiming to provide a general overview of this critical process. Main issues related to NP toxicity and clearance from the body as a result of protein adsorption are covered, including the most promising strategies to control PC formation and, thereby, ensure the successful application of NPs in nanomedicine.
Collapse
|
38
|
Barbir R, Pem B, Kalčec N, Kastner S, Podlesnaia K, Csáki A, Fritzsche W, Vinković Vrček I. Application of Localized Surface Plasmon Resonance Spectroscopy to Investigate a Nano-Bio Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1991-2000. [PMID: 33499594 DOI: 10.1021/acs.langmuir.0c03569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The accurate determination of events at the interface between a biological system and nanomaterials is necessary for efficacy and safety evaluation of novel nano-enabled medical products. Investigating the interaction of proteins with nanoparticles (NPs) and the formation of protein corona on nanosurfaces is particularly challenging from the methodological point of view due to the multiparametric complexity of such interactions. This study demonstrated the application of localized surface plasmon resonance (LSPR) spectroscopy as a low-cost and rapid biosensing technique that can be used in parallel with other sophisticated methods to monitor nano-bio interplay. Interaction of citrate-coated gold NPs (AuNPs) with human plasma proteins was selected as a case study to evaluate the applicability and value of scientific data acquired by LSPR as compared to fluorescence spectroscopy, which is one of the most used techniques to study NP interaction with biomolecules. LSPR results obtained for interaction of AuNPs with bovine serum albumin, glycosylated human transferrin, and non-glycosylated recombinant human transferrin correlated nicely with the adsorption constants obtained by fluorescence spectroscopy. This ability, complemented by its fast operation and reliability, makes the LSPR methodology an attractive option for the investigation of a nano-bio interface.
Collapse
Affiliation(s)
- Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia
| | - Stephan Kastner
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | | | - Andrea Csáki
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | | | | |
Collapse
|
39
|
Taneva SG, Krumova S, Bogár F, Kincses A, Stoichev S, Todinova S, Danailova A, Horváth J, Násztor Z, Kelemen L, Dér A. Insights into graphene oxide interaction with human serum albumin in isolated state and in blood plasma. Int J Biol Macromol 2021; 175:19-29. [PMID: 33508363 DOI: 10.1016/j.ijbiomac.2021.01.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
The interactions of graphene oxide (GO), a 2-dimensional nanomaterial with hydrophilic edges, hydrophobic basal plane and large flat surfaces, with biological macromolecules, are of key importance for the development of novel nanomaterials for biomedical applications. To gain more insight into the interaction of GO flakes with human serum albumin (HSA), we examined GO binding to HSA in its isolated state and in blood plasma. Calorimetric data reveal that GO strongly stabilizes free isolated HSA against a thermal challenge at low ionic strength, indicating strong binding interactions, confirmed by the drop in ζ-potential of the HSA/GO assemblies compared to bare GO flakes. However, calorimetry also revealed that the HSA-GO molecular interaction is hampered in blood plasma, the ionic strength being particularly important for the interactions. Molecular modelling calculations are in full concert with these experimental findings, indicating a considerably higher binding affinity for HSA to GO in its partially unfolded state, characteristic to low-ionic-strength environment, than for the native protein conformation, observed under physiological conditions. Therefore, for the first time we demonstrate an impeded interaction between HSA and GO nanoflakes in blood plasma, and suggest that the protein is protected from the plausible toxic effects of GO under native conditions.
Collapse
Affiliation(s)
- Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria.
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Svetozar Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Avgustina Danailova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - János Horváth
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; Doctoral School of Physics, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Násztor
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
40
|
Huang HY, Chen LQ, Sun W, Du HH, Dong S, Ahmed AMQ, Cao D, Cui JH, Zhang Y, Cao QR. Collagenase IV and clusterin-modified polycaprolactone-polyethylene glycol nanoparticles for penetrating dense tumor tissues. Theranostics 2021; 11:906-924. [PMID: 33391512 PMCID: PMC7738847 DOI: 10.7150/thno.47446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: Novel collagenase IV (ColIV) and clusterin (CLU)-modified polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles that load doxorubicin (DOX) were designed and fully evaluated in vitro and in vivo. Methods: PCL-PEG-ColIV was synthesized by linking PCL-PEG and ColIV through a carbodiimide method. DOX-loaded nanoparticles (DOX-PCL-PEG-ColIV) were self-assembly prepared, followed by noncovalently adsorbing CLU on the DOX-PCL-PEG-ColIV surface to obtain DOX-PCL-PEG-ColIV /CLU nanoparticles, which can penetrate through the tumor extracellular matrix (ECM) and inhibit phagocytosis by macrophage. The physicochemical properties of nanoparticles were characterized. The cellular uptake and antiphagocytosis ability of nanoparticles in MCF-7 tumor cells and RAW264.7 cells were investigated. The penetration ability of nanoparticles was individually evaluated in the two-dimensional (2D) and three-dimensional (3D) ECM models. The tissue distribution and antitumor effect of nanoparticles were evaluated in MCF-7 cell-bearing nude mice. Results: Compared with DOX-PCL-PEG-COOH nanoparticles, DOX-PCL-PEG-ColIV/CLU nanoparticles could effectively overcome the phagocytosis by RAW264.7 and showed excellent cellular uptake in MCF-7 cells. In addition, they showed remarkable penetration ability through the 2D and 3D ECM models. DOX-PCL-PEG-ColIV/CLU nanoparticles significantly reduced the drug distribution in the liver and spleen and enhanced the drug accumulation in tumor tissue compared with DOX-PCL-PEG-COOH or DOX-PCL-PEG-ColIV nanoparticles. DOX-PCL-PEG-ColIV/CLU nanoparticles showed remarkable antitumor effect but did not cause severe pathological damages in the main tissues, including the heart, liver, spleen, lung, and kidney. Conclusion: Novel ColIV and CLU-modified PCL-PEG nanoparticles showed excellent cellular uptake, ECM penetration, antiphagocytosis, and antitumor effects both in vitro and in vivo.
Collapse
|
41
|
Saravani R, Sargazi S, Saravani R, Rabbani M, Rahdar A, Taboada P. Newly crocin-coated magnetite nanoparticles induce apoptosis and decrease VEGF expression in breast carcinoma cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101987] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
43
|
Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease. Nat Commun 2020; 11:4790. [PMID: 32963242 PMCID: PMC7509831 DOI: 10.1038/s41467-020-18525-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
Preventing aggregation of amyloid beta (Aβ) peptides is a promising strategy for the treatment of Alzheimer’s disease (AD), and gold nanoparticles have previously been explored as a potential anti-Aβ therapeutics. Here we design and prepare 3.3 nm L- and D-glutathione stabilized gold nanoparticles (denoted as L3.3 and D3.3, respectively). Both chiral nanoparticles are able to inhibit aggregation of Aβ42 and cross the blood-brain barrier (BBB) following intravenous administration without noticeable toxicity. D3.3 possesses a larger binding affinity to Aβ42 and higher brain biodistribution compared with its enantiomer L3.3, giving rise to stronger inhibition of Aβ42 fibrillation and better rescue of behavioral impairments in AD model mice. This conjugation of a small nanoparticle with chiral recognition moiety provides a potential therapeutic approach for AD. Nanoparticles are being explored as a potential method to target Aβ aggregation in Alzheimer’s disease. Here, the authors develop gold nanoparticles that were capped with chiral L or D-glutathione which has been shown to improve BBB permeability and demonstrate their ability to improve cognitive function in a mouse model of AD.
Collapse
|
44
|
Vitali M, Casals E, Canals F, Colomé N, Puntes V. Simple spectroscopic determination of the hard protein corona composition in AuNPs: albumin at 75. NANOSCALE 2020; 12:15832-15844. [PMID: 32692793 DOI: 10.1039/d0nr02379e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We analyzed the different spectroscopic profiles of nanoparticle hard protein corona formation using two model proteins, albumin and immunoglobulin. When compared to serum, this served for the analysis of the hard protein corona main components. To do that, we employed time-resolved UV-Visible light absorption spectroscopy, dynamic light scattering, and zeta potential measurements during nanoparticle-protein incubation. Under the tested experimental conditions, the expected evolution from a non-stable (soft) to a stable (hard) protein corona was confirmed for serum and albumin. At the same time, immunoglobulin incubation inevitably failed to form a corona and led to nanoparticle aggregation. The formation profiles of the protein corona were similar in the case of albumin and serum, indicating the dominance of albumin coating the nanoparticle surface when exposed to plasma. This was confirmed by mass spectrometry. Chemical digestion of the nanoparticles bearing different protein coronas gave indications of the density of the different protein coatings. Overall, this study of the protein corona by determining the adsorption kinetics finger-print enables the development of precise nanotechnologies avoiding cumbersome processes and delaying proteomics analysis.
Collapse
Affiliation(s)
- Michele Vitali
- Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
45
|
Russo Krauss I, Picariello A, Vitiello G, De Santis A, Koutsioubas A, Houston JE, Fragneto G, Paduano L. Interaction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8777-8791. [PMID: 32575987 PMCID: PMC8008447 DOI: 10.1021/acs.langmuir.0c01083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alessandra Picariello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
| | - Giuseppe Vitiello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Augusta De Santis
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alexandros Koutsioubas
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | | | - Giovanna Fragneto
- Institut
Laue-Langevin (ILL), 71 avenue des Martyrs, BP 156, 38042 Grenoble, France
| | - Luigi Paduano
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| |
Collapse
|
46
|
Zhang Y, Xu J, Yang Y, Sun B, Wang K, Zhu L. Impacts of Proteins on Dissolution and Sulfidation of Silver Nanowires in an Aquatic Environment: Importance of Surface Charges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5560-5568. [PMID: 32259435 DOI: 10.1021/acs.est.0c00461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With increasing utilization of silver nanomaterials, growing concerns are raised on their deleterious effects to the environment. Once discharged in an aquatic environment, the interactions between silver nanowires (AgNWs) and proteins may significantly affect the environmental behaviors, fate, and toxicities of AgNWs. In the present study, three representative model proteins, including ovalbumin (OVA), bovine serum albumin (BSA), and lysozyme (LYZ), were applied to investigate the impacts of the interactions between proteins and AgNWs on the transformations (oxidative dissolution and sulfidation) of AgNWs in an aquatic environment. Fluorescence spectroscopy and isothermal titration calorimetry analyses indicated that there was very weak interaction between OVA or BSA and AgNWs, but there was a strong interaction between the positively charged LYZ and the negatively charged AgNWs. The presence of LYZ not only reversed the surface charge of AgNWs but also resulted in the breakup of the nanowire structure and increased the reactive surface area. The positively charged surface of AgNWs in the presence of LYZ favored the access of sulfide ions. As a consequence, the kinetics of oxidative dissolution and sulfidation of AgNWs were not affected by OVA and BSA but were significantly facilitated by LYZ. The results shed light on the important roles of electrostatic interactions between AgNWs and proteins, which may have important implications for evaluating the fate and effects of silver nanomaterials in complicated environments.
Collapse
Affiliation(s)
- Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jinliang Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
47
|
Restriction of microwave-induced amyloid fibrillar growth by gold nanoparticles. Int J Biol Macromol 2020; 151:212-219. [DOI: 10.1016/j.ijbiomac.2020.02.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
|
48
|
Bis-quaternary ammonium gemini surfactants for gene therapy: Effects of the spacer hydrophobicity on the DNA complexation and biological activity. Colloids Surf B Biointerfaces 2020; 189:110817. [DOI: 10.1016/j.colsurfb.2020.110817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/25/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023]
|
49
|
Chetwynd AJ, Zhang W, Thorn JA, Lynch I, Ramautar R. The Nanomaterial Metabolite Corona Determined Using a Quantitative Metabolomics Approach: A Pilot Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000295. [PMID: 32240572 DOI: 10.1002/smll.202000295] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Nanomaterials (NMs) are promptly coated with biomolecules in biological systems leading to the formation of the so-called corona. To date, research has predominantly focused on the protein corona and how it affects NM uptake, distribution, and bioactivity by conferring a biological identity to NMs enabling interactions with receptors to mediate cellular responses. Thus, protein corona studies are now integral to nanosafety assessment. However, a larger class of molecules, the metabolites, which are orders of magnitude smaller than proteins (<1000 Da) and regulate metabolic pathways, has been largely overlooked. This hampers the understanding of the bio-nano interface, development of computational predictions of corona formation, and investigations into uptake or toxicity at the cellular level, including identification of molecular initiating events triggering adverse outcome pathways. Here, a capillary electrophoresis-mass spectrometry based metabolomics approach reveals that pure polar ionogenic metabolite standards differentially adsorb to a range of 6 NMs (SiO2 , 3 TiO2 with different surface chemistries, and naïve and carboxylated polystyrene NMs). The metabolite corona composition is quantitatively compared using protein-free and complete plasma samples, revealing that proteins in samples significantly change the composition of the metabolite corona. This key finding provides the basis to include the metabolite corona in future nanosafety endeavors.
Collapse
Affiliation(s)
- Andrew J Chetwynd
- AB Sciex UK Ltd, Phoenix House, Lakeside Drive, Warrington, Cheshire, WA1 1RX, UK
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Wei Zhang
- Biomedical Microscale Analytics, Leiden University, Einsterinweg 55, Leiden, 2333CC, The Netherlands
| | - James A Thorn
- AB Sciex UK Ltd, Phoenix House, Lakeside Drive, Warrington, Cheshire, WA1 1RX, UK
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Rawi Ramautar
- Biomedical Microscale Analytics, Leiden University, Einsterinweg 55, Leiden, 2333CC, The Netherlands
| |
Collapse
|
50
|
Zhang Y, Wu JLY, Lazarovits J, Chan WCW. An Analysis of the Binding Function and Structural Organization of the Protein Corona. J Am Chem Soc 2020; 142:8827-8836. [DOI: 10.1021/jacs.0c01853] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuwei Zhang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Jamie L. Y. Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - James Lazarovits
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Warren C. W. Chan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|