1
|
Yue C, Ding C, Xu M, Hu M, Zhang R. Self-Assembly Behavior of Collagen and Its Composite Materials: Preparation, Characterizations, and Biomedical Engineering and Allied Applications. Gels 2024; 10:642. [PMID: 39451295 PMCID: PMC11507467 DOI: 10.3390/gels10100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen is the oldest and most abundant extracellular matrix protein and has many applications in biomedical, food, cosmetic, and other industries. Previous reviews have already introduced collagen's sources, structures, and biosynthesis. The biological and mechanical properties of collagen-based composite materials, their modification and application forms, and their interactions with host tissues are pinpointed. It is worth noting that self-assembly behavior is the main characteristic of collagen molecules. However, there is currently relatively little review on collagen-based composite materials based on self-assembly. Herein, we briefly reviewed the biosynthesis, extraction, structure, and properties of collagen, systematically presented an overview of the various factors and corresponding characterization techniques that affect the collagen self-assembly process, and summarize and discuss the preparation methods and application progress of collagen-based composite materials in different fields. By combining the self-assembly behavior of collagen with preparation methods of collagen-based composite materials, collagen-based composite materials with various functional reactions can be selectively prepared, and these experiences and outcomes can provide inspiration and practical techniques for the future development directions and challenges of collagen-based composite biomaterials in related applications fields.
Collapse
Affiliation(s)
- Chengfei Yue
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changkun Ding
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Minjie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Min Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| |
Collapse
|
2
|
Shi C, Zorman M, Zhao X, Salmeron MB, Pfaendtner J, Liu XY, Zhang S, De Yoreo JJ. Two-dimensional silk. SCIENCE ADVANCES 2024; 10:eado4142. [PMID: 39292781 PMCID: PMC11409968 DOI: 10.1126/sciadv.ado4142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Despite the promise of silk-based devices, the inherent disorder of native silk limits performance. Here, we report highly ordered two-dimensional silk fibroin (SF) films grown epitaxially on van der Waals (vdW) substrates. Using atomic force microscopy, nano-Fourier transform infrared spectroscopy, and molecular dynamics, we show that the films consist of lamellae of SF molecules that exhibit the same secondary structure as the nanocrystallites of native silk. Increasing the SF concentration results in multilayers that grow either by direct assembly of SF molecules into the lamellae or, at high concentrations, along a two-step pathway beginning with a disordered monolayer that then crystallizes. Scanning Kelvin probe measurements show that these films substantially alter the surface potential; thus, they provide a platform for silk-based electronics on vdW solids.
Collapse
Affiliation(s)
- Chenyang Shi
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Marlo Zorman
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Miquel B Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Jim Pfaendtner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiang Yang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Garcia-Sacristan C, Gisbert VG, Klein K, Šarić A, Garcia R. In Operando Imaging Electrostatic-Driven Disassembly and Reassembly of Collagen Nanostructures. ACS NANO 2024; 18:18485-18492. [PMID: 38958189 PMCID: PMC11256892 DOI: 10.1021/acsnano.4c03839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Collagen is the most abundant protein in tissue scaffolds in live organisms. Collagen can self-assemble in vitro, which has led to a number of biotechnological and biomedical applications. To understand the dominant factors that participate in the formation of collagen nanostructures, here we study in real time and with nanoscale resolution the disassembly and reassembly of collagens. We implement a high-speed force microscope, which provides in situ high spatiotemporal resolution images of collagen nanostructures under changing pH conditions. The disassembly and reassembly are dominated by the electrostatic interactions among amino-acid residues of different molecules. Acidic conditions favor disassembly by neutralizing negatively charged residues. The process sets a net repulsive force between collagen molecules. A neutral pH favors the presence of negative and positively charged residues along the collagen molecules, which promotes their electrostatic attraction. Molecular dynamics simulations reproduce the experimental behavior and validate the electrostatic-based model of the disassembly and reassembly processes.
Collapse
Affiliation(s)
- Clara Garcia-Sacristan
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Victor G. Gisbert
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Kevin Klein
- Institute
of Science and Technology Austria, Klosterneuburg 3400, Austria
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Anđela Šarić
- Institute
of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Ricardo Garcia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
4
|
Arvelo DM, Garcia-Sacristan C, Chacón E, Tarazona P, Garcia R. Interfacial water on collagen nanoribbons by 3D AFM. J Chem Phys 2024; 160:164714. [PMID: 38656444 DOI: 10.1063/5.0205611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Collagen is the most abundant structural protein in mammals. Type I collagen in its fibril form has a characteristic pattern structure that alternates two regions called gap and overlap. The structure and properties of collagens are highly dependent on the water and mineral content of the environment. Here, we apply 3D AFM to characterize at angstrom-scale resolution the interfacial water structure of collagen nanoribbons. For a neutral tip, the interfacial water structure is characterized by the oscillation of the water particle density distribution with a value of 0.3 nm (hydration layers). The interfacial structure does not depend on the collagen region. For a negatively charged tip, the interfacial structure might depend on the collagen region. Hydration layers are observed in overlap regions, while in gap regions, the interfacial solvent structure is dominated by electrostatic interactions. These interactions generate interlayer distances of 0.2 nm.
Collapse
Affiliation(s)
- Diana M Arvelo
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | | | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| |
Collapse
|
5
|
Dutta D, Graupner N, Müssig J, Brüggemann D. Assembly of Rolled-Up Collagen Constructs on Porous Alumina Textiles. ACS NANOSCIENCE AU 2023; 3:286-294. [PMID: 37601922 PMCID: PMC10436369 DOI: 10.1021/acsnanoscienceau.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 08/22/2023]
Abstract
Developing new techniques to prepare free-standing tubular scaffolds has always been a challenge in the field of regenerative medicine. Here, we report a new and simple way to prepare free-standing collagen constructs with rolled-up architecture by self-assembling nanofibers on porous alumina (Al2O3) textiles modified with different silanes, carbon or gold. Following self-assembly and cross-linking with glutaraldehyde, collagen nanofibers spontaneously rolled up on the modified Al2O3 textiles and detached. The resulting collagen constructs had an inner diameter of approximately 2 to 4 mm in a rolled-up state and could be easily detached from the underlying textiles. Mechanical testing of wet collagen scaffolds following detachment yielded mean values of 3.5 ± 1.9 MPa for the tensile strength, 41.0 ± 20.8 MPa for the Young's modulus and 8.1 ± 3.7% for the elongation at break. No roll-up was observed on Al2O3 textiles without any modification, where collagen did not assemble into fibers, either. Blends of collagen and chitosan were also found to roll into fibrous constructs on silanized Al2O3 textiles, while fibrinogen nanofibers or blends of collagen and elastin did not yield such structures. Based on these differences, we hypothesize that textile surface charge and protein charge, in combination with the porous architecture of protein nanofibers and differences in mechanical strain, are key factors in inducing a scaffold roll-up. Further studies are required to develop the observed roll-up effect into a reproducible biofabrication process that can enable the controlled production of free-standing collagen-based tubes for soft tissue engineering.
Collapse
Affiliation(s)
- Deepanjalee Dutta
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Nina Graupner
- The Biological Materials Group, Biomimetics, Faculty 5, HSB - City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - Jörg Müssig
- The Biological Materials Group, Biomimetics, Faculty 5, HSB - City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
6
|
Yurtsever A, Sun L, Hirata K, Fukuma T, Rath S, Zareie H, Watanabe S, Sarikaya M. Molecular Scale Structure and Kinetics of Layer-by-Layer Peptide Self-Organization at Atomically Flat Solid Surfaces. ACS NANO 2023; 17:7311-7325. [PMID: 36857412 DOI: 10.1021/acsnano.2c10673] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the mechanisms of self-organization of short peptides into two- and three-dimensional architectures are of great interest in the formation of crystalline biomolecular systems and their practical applications. Since the assembly is a dynamic process, the study of structural development is challenging at the submolecular dimensions continuously across an adequate time scale in the natural biological environment, in addition to the complexities stemming from the labile molecular structures of short peptides. Self-organization of solid binding peptides on surfaces offers prospects to overcome these challenges. Here we use a graphite binding dodecapeptide, GrBP5, and record its self-organization process of the first two layers on highly oriented pyrolytic graphite surface in an aqueous solution by using frequency modulation atomic force microscopy in situ. The observations suggest that the first layer forms homogeneously, generating self-organized crystals with a lattice structure in contact with the underlying graphite. The second layer formation is mostly heterogeneous, triggered by the crystalline defects on the first layer, growing row-by-row establishing nominally diverse biomolecular self-organized structures with transient crystalline phases. The assembly is highly dependent on the peptide concentration, with the nucleation being high in high molecular concentrations, e.g., >100 μM, while the domain size is small, with an increase in the growth rate that gradually slows down. Self-assembled peptide crystals are composed of either singlets or doublets establishing P1 and P2 oblique lattices, respectively, each commensurate with the underlying graphite lattice with chiral crystal relations. This work provides insights into the surface behavior of short peptides on solids and offers quantitative guidance toward elucidating molecular mechanisms of self-assembly helping in the scientific understanding and construction of coherent bio/nano hybrid interfaces.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kaito Hirata
- Institute for Frontier Science and Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Siddharth Rath
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, University of Washington, Seattle, Washington 98195, United States
| | - Hadi Zareie
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, University of Washington, Seattle, Washington 98195, United States
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mehmet Sarikaya
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Yue C, Ding C, Su J, Cheng B. Effect of copper and zinc ions on type I collagen self-assembly. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2093569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Chengfei Yue
- School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Changkun Ding
- School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Jieliang Su
- School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Bowen Cheng
- School of Materials Science and Engineering, Tiangong University, Tianjin, China
| |
Collapse
|
8
|
Gisbert V, Benaglia S, Uhlig MR, Proksch R, Garcia R. High-Speed Nanomechanical Mapping of the Early Stages of Collagen Growth by Bimodal Force Microscopy. ACS NANO 2021; 15:1850-1857. [PMID: 33412008 PMCID: PMC8477367 DOI: 10.1021/acsnano.0c10159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 05/07/2023]
Abstract
High-speed atomic force microscopy (AFM) enabled the imaging of protein interactions with millisecond time resolutions (10 fps). However, the acquisition of nanomechanical maps of proteins is about 100 times slower. Here, we developed a high-speed bimodal AFM that provided high-spatial resolution maps of the elastic modulus, the loss tangent, and the topography at imaging rates of 5 fps. The microscope was applied to identify the initial stages of the self-assembly of the collagen structures. By following the changes in the physical properties, we identified four stages, nucleation and growth of collagen precursors, formation of tropocollagen molecules, assembly of tropocollagens into microfibrils, and alignment of microfibrils to generate microribbons. Some emerging collagen structures never matured, and after an existence of several seconds, they disappeared into the solution. The elastic modulus of a microfibril (∼4 MPa) implied very small stiffness (∼3 × 10-6 N/m). Those values amplified the amplitude of the collagen thermal fluctuations on the mica plane, which facilitated microribbon build-up.
Collapse
Affiliation(s)
- Victor
G. Gisbert
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Simone Benaglia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Manuel R. Uhlig
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Roger Proksch
- Asylum
Research an Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Ricardo Garcia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
9
|
Hafner AE, Gyori NG, Bench CA, Davis LK, Šarić A. Modeling Fibrillogenesis of Collagen-Mimetic Molecules. Biophys J 2020; 119:1791-1799. [PMID: 33049216 DOI: 10.1016/j.bpj.2020.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022] Open
Abstract
One of the most robust examples of self-assembly in living organisms is the formation of collagen architectures. Collagen type I molecules are a crucial component of the extracellular matrix, where they self-assemble into fibrils of well-defined axial striped patterns. This striped fibrillar pattern is preserved across the animal kingdom and is important for the determination of cell phenotype, cell adhesion, and tissue regulation and signaling. The understanding of the physical processes that determine such a robust morphology of self-assembled collagen fibrils is currently almost completely missing. Here, we develop a minimal coarse-grained computational model to identify the physical principles of the assembly of collagen-mimetic molecules. We find that screened electrostatic interactions can drive the formation of collagen-like filaments of well-defined striped morphologies. The fibril axial pattern is determined solely by the distribution of charges on the molecule and is robust to the changes in protein concentration, monomer rigidity, and environmental conditions. We show that the striped fibrillar pattern cannot be easily predicted from the interactions between two monomers but is an emergent result of multibody interactions. Our results can help address collagen remodeling in diseases and aging and guide the design of collagen scaffolds for biotechnological applications.
Collapse
Affiliation(s)
- Anne E Hafner
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Noemi G Gyori
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Ciaran A Bench
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Luke K Davis
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
10
|
McCluskey AR, Hung KSW, Marzec B, Sindt JO, Sommerdijk NAJM, Camp PJ, Nudelman F. Disordered Filaments Mediate the Fibrillogenesis of Type I Collagen in Solution. Biomacromolecules 2020; 21:3631-3643. [DOI: 10.1021/acs.biomac.0c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew R. McCluskey
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Kennes S. W. Hung
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Bartosz Marzec
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Julien O. Sindt
- EPCC, University of Edinburgh, Bayes Centre, 47 Potterrow, Edinburgh EH8 9BT, U.K
| | - Nico A. J. M. Sommerdijk
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein, 6525 GA Nijmegen, The Netherlands
| | - Philip J. Camp
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Fabio Nudelman
- EaStCHEM, School of Chemistry, The King’s Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
11
|
Tang J, Gu Y, Zhang H, Wu L, Xu Y, Mao J, Xin T, Ye T, Deng L, Cui W, Santos HA, Chen L. Outer-inner dual reinforced micro/nano hierarchical scaffolds for promoting osteogenesis. NANOSCALE 2019; 11:15794-15803. [PMID: 31432854 DOI: 10.1039/c9nr03264a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomimetic scaffolds have been extensively studied for guiding osteogenesis through structural cues. Inspired by the natural bone growth process, we have employed a hierarchical outer-inner dual reinforcing strategy, which relies on the interfacial ionic bond interaction between amine/calcium and carboxyl groups, to build a nanofiber/particle dual strengthened hierarchical silk fibroin scaffold. This scaffold can provide an applicable form of osteogenic structural cue and mimic the natural bone forming process. Owing to the active interaction between compositions located in the outer pore space and the inner pore wall, the scaffold has over 4 times improvement in the mechanical properties, followed by a significant alteration of the cell-scaffold interaction pattern, demonstrated by over 2 times elevation in the spreading area and enhanced osteogenic activity potentially involving the activities of integrin, vinculin and Yes-associated protein (YAP). The in vivo performance of the scaffold identified the inherent osteogenic effect of the structural cue, which promotes rapid and uniform regeneration. Overall, the hierarchical scaffold is promising in promoting uniform bone regeneration through its specific structural cue endowed by its micro-nano construction.
Collapse
Affiliation(s)
- Jincheng Tang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eryilmaz E, Teizer W, Hwang W. Macromolecular and nanoscale investigation of intermolecular interactions driving the self-assembly of collagen. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1ee6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Stel B, Gunkel I, Gu X, Russell TP, De Yoreo JJ, Lingenfelder M. Contrasting Chemistry of Block Copolymer Films Controls the Dynamics of Protein Self-Assembly at the Nanoscale. ACS NANO 2019; 13:4018-4027. [PMID: 30917283 DOI: 10.1021/acsnano.8b08013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biological systems are able to control the assembly and positioning of proteins with nanoscale precision, as exemplified by the intricate molecular structures within cell membranes, virus capsids, and collagen matrices. Controlling the assembly of biomolecules is critical for the use of biomaterials in artificial systems such as antibacterial coatings, engineered tissue samples, and implanted medical devices. Furthermore, understanding the dynamics of protein assembly on heterogeneous templates will ultimately enable the control of protein crystallization in general. Here, we show a biomimetic, hierarchical bottom-up approach to direct the self-assembly of crystalline S-layers through nonspecific interactions with nanostructured block copolymer (BCP) thin-film templates. A comparison between physically and chemically patterned BCP substrates shows that chemical heterogeneity is required to confine the adhesion and self-assembly of S-layers to specific BCP domains. Furthermore, we show that this mechanism can be extended to direct the formation of collagen fibers along the principal direction of the underlying BCP substrate. The dynamics of protein self-assembly at the solid-liquid interface are followed using in situ high-resolution atomic force microscopy under continuous flow conditions, allowing the determination of the rate constants of the self-assembly. A pattern of alternating, chemically distinct nanoscale domains drastically increases the rate of self-assembly compared to non-patterned chemically homogeneous substrates.
Collapse
Affiliation(s)
- Bart Stel
- Max Planck-EPFL Lab for Molecular Nanoscience and Technology and Institute of Physics, EPFL , CH-1015 Lausanne , Switzerland
| | - Ilja Gunkel
- Polymer Science and Engineering Department , University of Massachusetts at Amherst , Amherst , Massachusetts 01003 , United States
| | - Xiaodan Gu
- Polymer Science and Engineering Department , University of Massachusetts at Amherst , Amherst , Massachusetts 01003 , United States
| | - Thomas P Russell
- Polymer Science and Engineering Department , University of Massachusetts at Amherst , Amherst , Massachusetts 01003 , United States
| | | | - Magalí Lingenfelder
- Max Planck-EPFL Lab for Molecular Nanoscience and Technology and Institute of Physics, EPFL , CH-1015 Lausanne , Switzerland
| |
Collapse
|
14
|
Ding C, Du J, Cao Y, Yue C, Cheng B. Effects of the aspect ratio of multi-walled carbon nanotubes on the structure and properties of regenerated collagen fibers. Int J Biol Macromol 2019; 126:595-602. [PMID: 30576737 DOI: 10.1016/j.ijbiomac.2018.12.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
Collagen is a natural one-dimensional nanomaterial. Multi-walled carbon nanotubes (MWNTs) have been previously shown to interact with biomolecules and to have promising applications in reinforced biopolymers for tissue engineering and regenerative medicine. In this work, collagen/MWNT composite fibers are prepared using dry-jet wet-spinning technology. Three types of MWNTs with aspect ratios of 40, 150, and 4000 are used to investigate the effects of the MWNT aspect ratio on the properties of the composite fibers. There results show that there are strong molecular interactions between the MWNTs and collagen molecules. The mechanical properties and thermal stability of the composite fibers are significantly improved compared to those of the collagen fibers. The diameter and aspect ratio of the MWNTs are the main factors affecting the self-assembled structure of the collagen molecules, the alignment of the microfibrils, and the mechanical and thermal performance of the composite fibers.
Collapse
Affiliation(s)
- Changkun Ding
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China.
| | - Jianhua Du
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yuemiao Cao
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Chengfei Yue
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Bowen Cheng
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| |
Collapse
|
15
|
Tuladhar A, Chase ZA, Baer MD, Legg BA, Tao J, Zhang S, Winkelman AD, Wang Z, Mundy CJ, De Yoreo JJ, Wang HF. Direct Observation of the Orientational Anisotropy of Buried Hydroxyl Groups inside Muscovite Mica. J Am Chem Soc 2019; 141:2135-2142. [PMID: 30615440 DOI: 10.1021/jacs.8b12483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Muscovite mica (001) is a widely used model surface for controlling molecular assembly and a common substrate for environmental adsorption processes. The mica (001) surface displays near-trigonal symmetry, but many molecular adsorbates-including water-exhibit unequal probabilities of alignment along its three nominally equivalent lattice directions. Buried hydroxyl groups within the muscovite structure are speculated to be responsible, but direct evidence is lacking. Here, we utilize vibrational sum frequency generation spectroscopy (vSFG) to characterize the orientation and hydrogen-bonding environment of near-surface hydroxyls inside mica. Multiple distinct peaks are detected in the O-H stretch region, which we attribute to Si/Al substitution in the SiO4 tetrahedron and K+ ion adsorption above the hydroxyls based on density functional theory simulations. Our findings demonstrate that vSFG can identify the absolute orientation of -OH groups and, hence, the surface termination at a mica surface, providing a means to investigate how -OH groups influence molecular adsorption and better understand mica stacking-sequences and physical behavior.
Collapse
Affiliation(s)
- Aashish Tuladhar
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Zizwe A Chase
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.,School of Chemical and Biological Engineering , Washington State University , Pullman , Washington 99364 , United States
| | - Marcel D Baer
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Benjamin A Legg
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.,Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Jinhui Tao
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Shuai Zhang
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Austin D Winkelman
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.,School of Chemical and Biological Engineering , Washington State University , Pullman , Washington 99364 , United States
| | - Zheming Wang
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Christopher J Mundy
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.,Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - James J De Yoreo
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.,Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Hong-Fei Wang
- Physical Sciences Division, Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.,Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China
| |
Collapse
|
16
|
Wang J, Boddupalli A, Koelbl J, Nam DH, Ge X, Bratlie KM, Schneider IC. Degradation and Remodeling of Epitaxially Grown Collagen Fibrils. Cell Mol Bioeng 2019; 12:69-84. [PMID: 31007771 PMCID: PMC6472930 DOI: 10.1007/s12195-018-0547-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION— The extracellular matrix (ECM) in the tumor microenvironment contains high densities of collagen that are highly aligned, resulting in directional migration called contact guidance that facilitates efficient migration out of the tumor. Cancer cells can remodel the ECM through traction force controlled by myosin contractility or proteolytic activity controlled by matrix metalloproteinase (MMP) activity, leading to either enhanced or diminished contact guidance. METHODS— Recently, we have leveraged the ability of mica to epitaxially grow aligned collagen fibrils in order to assess contact guidance. In this article, we probe the mechanisms of remodeling of aligned collagen fibrils on mica by breast cancer cells. RESULTS— We show that cells that contact guide with high fidelity (MDA-MB-231 cells) exert more force on the underlying collagen fibrils than do cells that contact guide with low fidelity (MTLn3 cells). These high traction cells (MDA-MB-231 cells) remodel collagen fibrils over hours, pulling so hard that the collagen fibrils detach from the surface, effectively delaminating the entire contact guidance cue. Myosin or MMP inhibition decreases this effect. Interestingly, blocking MMP appears to increase the alignment of cells on these substrates, potentially allowing the alignment through myosin contractility to be uninhibited. Finally, amplification or dampening of contact guidance with respect to a particular collagen fibril organization is seen under different conditions. CONCLUSIONS— Both myosin II contractility and MMP activity allow MDA-MB-231 cells to remodel and eventually destroy epitaxially grown aligned collagen fibrils.
Collapse
Affiliation(s)
- Juan Wang
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Anuraag Boddupalli
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Joseph Koelbl
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
| | - Dong Hyun Nam
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Xin Ge
- Department of Chemical Engineering, University of California Riverside, Riverside, CA USA
| | - Kaitlin M. Bratlie
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Materials Science and Engineering, Iowa State University, Ames, IA USA
| | - Ian C. Schneider
- Present Address: Department of Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011-2230 USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA USA
| |
Collapse
|
17
|
Wang J, Koelbl J, Boddupalli A, Yao Z, Bratlie KM, Schneider IC. Transfer of assembled collagen fibrils to flexible substrates for mechanically tunable contact guidance cues. Integr Biol (Camb) 2018; 10:705-718. [PMID: 30320857 PMCID: PMC6267882 DOI: 10.1039/c8ib00127h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Contact guidance or bidirectional migration along aligned fibers modulates many physiological and pathological processes such as wound healing and cancer invasion. Aligned 2D collagen fibrils epitaxially grown on mica substrates replicate many features of contact guidance seen in aligned 3D collagen fiber networks. However, these 2D collagen self-assembled substrates are difficult to image through, do not have known or tunable mechanical properties and cells degrade and mechanically detach collagen fibrils from the surface, leading to an inability to assess contact guidance over long times. Here, we describe the transfer of aligned collagen fibrils from mica substrates to three different functionalized target substrates: glass, polydimethylsiloxane (PDMS) and polyacrylamide (PA). Aligned collagen fibrils can be efficiently transferred to all three substrates. This transfer resulted in substrates that were to varying degrees resistant to cell-mediated collagen fibril deformation that resulted in detachment of the collagen fibril field, allowing for contact guidance to be observed over longer time periods. On these transferred substrates, cell speed is lowest on softer contact guidance cues for both MDA-MB-231 and MTLn3 cells. Intermediate stiffness resulted in the fastest migration. MTLn3 cell directionality was low on soft contact guidance cues, whereas MDA-MB-231 cell directionality marginally increased. It appears that the stiffness of the contact guidance cue regulates contact guidance differently between cell types. The development of this collagen fibril transfer method allows for the attachment of aligned collagen fibrils on substrates, particularly flexible substrates, that do not normally promote aligned collagen fibril growth, increasing the utility of this collagen self-assembly system for the fundamental examination of mechanical regulation of contact guidance.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Biological Engineering, Iowa State University, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Rezaei N, Lyons A, Forde NR. Environmentally Controlled Curvature of Single Collagen Proteins. Biophys J 2018; 115:1457-1469. [PMID: 30269884 PMCID: PMC6260212 DOI: 10.1016/j.bpj.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/01/2022] Open
Abstract
The predominant structural protein in vertebrates is collagen, which plays a key role in extracellular matrix and connective tissue mechanics. Despite its prevalence and physical importance in biology, the mechanical properties of molecular collagen are far from established. The flexibility of its triple helix is unresolved, with descriptions from different experimental techniques ranging from flexible to semirigid. Furthermore, it is unknown how collagen type (homo- versus heterotrimeric) and source (tissue derived versus recombinant) influence flexibility. Using SmarTrace, a chain-tracing algorithm we devised, we performed statistical analysis of collagen conformations collected with atomic force microscopy to determine the protein's mechanical properties. Our results show that types I, II, and III collagens-the key fibrillar varieties-exhibit similar molecular flexibilities. However, collagen conformations are strongly modulated by salt, transitioning from compact to extended as KCl concentration increases in both neutral and acidic pH. Although analysis with a standard worm-like chain model suggests that the persistence length of collagen can attain a wide range of values within the literature range, closer inspection reveals that this modulation of collagen's conformational behavior is not due to changes in flexibility but rather arises from the induction of curvature (either intrinsic or induced by interactions with the mica surface). By modifying standard polymer theory to include innate curvature, we show that collagen behaves as an equilibrated curved worm-like chain in two dimensions. Analysis within the curved worm-like chain model shows that collagen's curvature depends strongly on pH and salt, whereas its persistence length does not. Thus, we find that triple-helical collagen is well described as semiflexible irrespective of source, type, pH, and salt environment. These results demonstrate that collagen is more flexible than its conventional description as a rigid rod, which may have implications for its cellular processing and secretion.
Collapse
Affiliation(s)
- Nagmeh Rezaei
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Aaron Lyons
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
19
|
Phooplub K, Meesane J, Muensit N. Development of Young’s modulus for collagen thin films reinforced with ZnO nanorods probed by Atomic force microscopy. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aada23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Biomaterial surface energy-driven ligand assembly strongly regulates stem cell mechanosensitivity and fate on very soft substrates. Proc Natl Acad Sci U S A 2018; 115:4631-4636. [PMID: 29666253 PMCID: PMC5939054 DOI: 10.1073/pnas.1704543115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cell instructive biomaterial cues are a major topic of interest in both basic and applied research. In this work, we clarify how surface energy of soft biomaterials can dramatically affect mesenchymal stem cell receptor recruitment and downstream signaling related to cell fate. We elucidate how surface protein self-assembly and the resulting surface topology can act to steer mechanotransduction and related biological response of attached cells. These findings fill a critical gap in our basic understanding of cell–biomaterial interaction and highlight soft biomaterial surface energy as a dominant design factor that should not be neglected. Although mechanisms of cell–material interaction and cellular mechanotransduction are increasingly understood, the mechanical insensitivity of mesenchymal cells to certain soft amorphous biomaterial substrates has remained largely unexplained. We reveal that surface energy-driven supramolecular ligand assembly can regulate mesenchymal stem cell (MSC) sensing of substrate mechanical compliance and subsequent cell fate. Human MSCs were cultured on collagen-coated hydrophobic polydimethylsiloxane (PDMS) and hydrophilic polyethylene-oxide-PDMS (PEO-PDMS) of a range of stiffnesses. Although cell contractility was similarly diminished on soft substrates of both types, cell spreading and osteogenic differentiation occurred only on soft PDMS and not hydrophilic PEO-PDMS (elastic modulus <1 kPa). Substrate surface energy yields distinct ligand topologies with accordingly distinct profiles of recruited transmembrane cell receptors and related focal adhesion signaling. These differences did not differentially regulate Rho-associated kinase activity, but nonetheless regulated both cell spreading and downstream differentiation.
Collapse
|
21
|
Chen J, Ahn T, Colón-Bernal ID, Kim J, Banaszak Holl MM. The Relationship of Collagen Structural and Compositional Heterogeneity to Tissue Mechanical Properties: A Chemical Perspective. ACS NANO 2017; 11:10665-10671. [PMID: 29112404 DOI: 10.1021/acsnano.7b06826] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Collagen is the primary protein component in mammalian connective tissues. Over the last 20 years, evidence has mounted that collagen matrices exhibit substantial heterogeneity in their hierarchical structures and that this heterogeneity plays important roles in both structure and function. Herein, an overview of studies addressing the nanoscale compositional and structural heterogeneity is provided and connected to work exploring the mechanical implications for a number of tissues.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Taeyong Ahn
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Isabel D Colón-Bernal
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jinhee Kim
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mark M Banaszak Holl
- Department of Chemistry, ‡Macromolecular Science and Engineering, and §Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Chien YC, Tao J, Saeki K, Chin AF, Lau JL, Chen CL, Zuckermann RN, Marshall SJ, Marshall GW, De Yoreo JJ. Using biomimetic polymers in place of noncollagenous proteins to achieve functional remineralization of dentin tissues. ACS Biomater Sci Eng 2017; 3:3469-3479. [PMID: 29479561 DOI: 10.1021/acsbiomaterials.7b00378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In calcified tissues such as bones and teeth, mineralization is regulated by an extracellular matrix, which includes non-collagenous proteins (NCP). This natural process has been adapted or mimicked to restore tissues following physical damage or demineralization by using polyanionic acids in place of NCPs, but the remineralized tissues fail to fully recover their mechanical properties. Here we show that pre-treatment with certain amphiphilic peptoids, a class of peptide-like polymers consisting of N-substituted glycines that have defined monomer sequences, enhances ordering and mineralization of collagen and induces functional remineralization of dentin lesions in vitro. In the vicinity of dentin tubules, the newly formed apatite nano-crystals are co-aligned with the c-axis parallel to the tubular periphery and recovery of tissue ultrastructure is accompanied by development of high mechanical strength. The observed effects are highly sequence-dependent with alternating polar and non-polar groups leading to positive outcomes while diblock sequences have no effect. The observations suggest aromatic groups interact with the collagen while the hydrophilic side chains bind the mineralizing constituents and highlight the potential of synthetic sequence-defined biomimetic polymers to serve as NCP mimics in tissue remineralization.
Collapse
Affiliation(s)
- Yung-Ching Chien
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720.,Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, 94143
| | - Jinhui Tao
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720.,Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Kuniko Saeki
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, 94143
| | - Alexander F Chin
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, 94143
| | - Jolene L Lau
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
| | - Chun-Long Chen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720.,Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Ronald N Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
| | - Sally J Marshall
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, 94143
| | - Grayson W Marshall
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, 94143
| | - James J De Yoreo
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720.,Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352.,Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195
| |
Collapse
|
23
|
Comparative surface energetic study of Matrigel ® and collagen I interactions with endothelial cells. Colloids Surf B Biointerfaces 2017; 155:71-82. [PMID: 28411477 DOI: 10.1016/j.colsurfb.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 11/21/2022]
Abstract
Understanding of the surface energetic aspects of the spontaneously deposited proteins on biomaterial surfaces and how this influences cell adhesion and differentiation is an area of regenerative medicine that has not received adequate attention. Current controversies surround the role of the biomaterial substratum surface chemistry, the range of influence of said substratum, and the effects of different surface energy components of the protein interface. Endothelial cells (ECs) are a highly important cell type for regenerative medicine applications, such as tissue engineering, and In-vivo they interact with collagen I based stromal tissue and basement membranes producing different behavioral outcomes. The surface energetic properties of these tissue types and how they control EC behavior is not well known. In this work we studied the surface energetic properties of collagen I and Matrigel® on various previously characterized substratum polyurethanes (PU) via contact angle analysis and examined the subsequent EC network forming characteristics. A combinatorial surface energy approach was utilized that compared Zisman's critical surface tension, Kaelble's numerical method, and van Oss-Good-Chaudhury theory (vOGCT). We found that the unique, rapid network forming characteristics of ECs on Matrigel® could be attributed to the apolar or monopolar basic interfacial characteristics according to Zisman/Kaelble or vOGCT, respectively. We also found a lack of significant substratum influence on EC network forming characteristics for Matrigel® but collagen I showed a distinct influence where more apolar PU substrata tended to produce higher Lewis acid character collagen I interfaces which led to a greater interaction with ECs. Collagen I interfaces on more polar PU substrata lacked Lewis acid character and led to similar EC network characteristics as Matrigel®. We hypothesized that bipolar character of the protein film favored cell-substratum over cell-cell adhesive interactions which resulted in less rapidly forming but more stable networks.
Collapse
|
24
|
Eryilmaz E, Teizer W, Hwang W. In Vitro Analysis of the Co-Assembly of Type-I and Type-III Collagen. Cell Mol Bioeng 2016; 10:41-53. [PMID: 31719849 DOI: 10.1007/s12195-016-0466-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022] Open
Abstract
An important step towards achieving functional diversity of biomimetic surfaces is to better understand the co-assembly of the extracellular matrix components. For this, we study type-I and type-III collagen, the two major collagen types in the extracellular matrix. By using atomic force microscopy, custom image analysis, and kinetic modeling, we study their homotypic and heterotypic assembly. We find that the growth rate and thickness of heterotypic fibrils decrease as the fraction of type-III collagen increases, but the fibril nucleation rate is maximal at an intermediate fraction of type-III. This is because the more hydrophobic type-I collagen nucleates fast and grows in both longitudinal and lateral directions, whereas more hydrophilic type-III limits lateral growth of fibrils, driving more monomers to nucleate additional fibrils. This demonstrates that subtle differences in physico-chemical properties of similar molecules can be used to fine-tune their assembly behavior.
Collapse
Affiliation(s)
- Esma Eryilmaz
- 1Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843 USA
- 2Department of Biotechnology, College of Science, Selcuk University, Konya, 42003 Turkey
| | - Winfried Teizer
- 3Departments of Physics and Astronomy and Materials Science & Engineering, Texas A&M University, College Station, TX 77843 USA
- 4WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577 Japan
| | - Wonmuk Hwang
- 5Department of Biomedical Engineering and Materials Science & Engineering, Texas A&M University, College Station, TX 77843 USA
- 6School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 02455 Korea
| |
Collapse
|
25
|
Razafiarison T, Silván U, Meier D, Snedeker JG. Surface-Driven Collagen Self-Assembly Affects Early Osteogenic Stem Cell Signaling. Adv Healthc Mater 2016; 5:1481-92. [PMID: 27125602 DOI: 10.1002/adhm.201600128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/18/2016] [Indexed: 11/10/2022]
Abstract
This study reports how extracellular matrix (ECM) ligand self-assembly on biomaterial surfaces and the resulting nanoscale architecture can drive stem cell behavior. To isolate the biological effects of surface wettability on protein deposition, folding, and ligand activity, a polydimethylsiloxane (PDMS)-based platform was developed and characterized with the ability to tune wettability of elastomeric substrates with otherwise equivalent topology, ligand loading, and mechanical properties. Using this platform, markedly different assembly of covalently bound type I collagen monomers was observed depending on wettability, with hydrophobic substrates yielding a relatively rough layer of collagen aggregates compared to a smooth collagen layer on more hydrophilic substrates. Cellular and molecular investigations with human bone marrow stromal cells revealed higher osteogenic differentiation and upregulation of focal adhesion-related components on the resulting smooth collagen layer coated substrates. The initial collagen assembly driven by the PDMS surface directly affected α1β1 integrin/discoidin domain receptor 1 signaling, activation of the extracellular signal-regulated kinase/mitogen activated protein kinase pathway, and ultimately markers of osteogenic stem cell differentiation. We demonstrate for the first time that surface-driven ligand assembly on material surfaces, even on materials with otherwise identical starting topographies and mechanical properties, can dominate the biomaterial surface-driven cell response.
Collapse
Affiliation(s)
- Tojo Razafiarison
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Unai Silván
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Daniela Meier
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| |
Collapse
|
26
|
Schön JC, Oligschleger C, Cortes J. Prediction and clarification of structures of (bio)molecules on surfaces. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/znb-2015-0222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The design of future materials for biotechnological applications via deposition of molecules on surfaces will require not only exquisite control of the deposition procedure, but of equal importance will be our ability to predict the shapes and stability of individual molecules on various surfaces. Furthermore, one will need to be able to predict the structure patterns generated during the self-organization of whole layers of (bio)molecules on the surface. In this review, we present an overview over the current state of the art regarding the prediction and clarification of structures of biomolecules on surfaces using theoretical and computational methods.
Collapse
Affiliation(s)
- J. Christian Schön
- Max-Planck-Institute for Solid State Research , Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Christina Oligschleger
- University of Applied Sciences Bonn-Rhein-Sieg , Von-Liebigstr. 20, D-53359 Rheinbach, Germany
| | | |
Collapse
|
27
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
28
|
Wen J, Li W, Chen S, Ma J. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions. Phys Chem Chem Phys 2016; 18:22757-71. [DOI: 10.1039/c6cp01049k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simulations using QM and MM methods guide the rational design of functionalized SAMs on surfaces.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Wei Li
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shuang Chen
- Kuang Yaming Honors School
- Nanjing University
- Nanjing
- P. R. China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
29
|
Hendley CT, Tao J, Kunitake JAMR, De Yoreo JJ, Estroff LA. Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS BULLETIN 2015; 40:480-489. [PMID: 27358507 PMCID: PMC4922639 DOI: 10.1557/mrs.2015.98] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article addresses recent advances in the application of microscopy techniques to characterize crystallization processes as they relate to biomineralization and bio-inspired materials synthesis. In particular, we focus on studies aimed at revealing the role organic macromolecules and functionalized surfaces play in modulating the mechanisms of nucleation and growth. In nucleation studies, we explore the use of methods such as in situ transmission electron microscopy, atomic force microscopy, and cryogenic electron microscopy to delineate formation pathways, phase stabilization, and the competing effects of free energy and kinetic barriers. In growth studies, emphasis is placed on understanding the interactions of macromolecular constituents with growing crystals and characterization of the internal structures of the resulting composite crystals using techniques such as electron tomography, atom probe tomography, and vibrational spectromicroscopy. Examples are drawn from both biological and bio-inspired synthetic systems.
Collapse
|
30
|
Sorkio AE, Vuorimaa-Laukkanen EP, Hakola HM, Liang H, Ujula TA, Valle-Delgado JJ, Österberg M, Yliperttula ML, Skottman H. Biomimetic collagen I and IV double layer Langmuir-Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells. Biomaterials 2015; 51:257-269. [PMID: 25771016 DOI: 10.1016/j.biomaterials.2015.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 12/11/2022]
Abstract
The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls.
Collapse
Affiliation(s)
- Anni E Sorkio
- BioMediTech, University of Tampere FM5/BMT, 33014 University of Tampere, Finland.
| | - Elina P Vuorimaa-Laukkanen
- Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Hanna M Hakola
- Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Huamin Liang
- Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Tiina A Ujula
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Juan José Valle-Delgado
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Monika Österberg
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Marjo L Yliperttula
- Division of Biopharmaceutical Sciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland
| | - Heli Skottman
- BioMediTech, University of Tampere FM5/BMT, 33014 University of Tampere, Finland
| |
Collapse
|
31
|
McGuinness K, Khan IJ, Nanda V. Morphological diversity and polymorphism of self-assembling collagen peptides controlled by length of hydrophobic domains. ACS NANO 2014; 8:12514-12523. [PMID: 25390880 PMCID: PMC4278691 DOI: 10.1021/nn505369d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/12/2014] [Indexed: 06/01/2023]
Abstract
Synthetic collagen mimetic peptides are used to probe the role of hydrophobic forces in mediating protein self-assembly. Higher order association is an integral property of natural collagens, which assemble into fibers and meshes that comprise the extracellular matrix of connective tissues. The unique triple-helix fold fully exposes two-thirds of positions in the protein to solvent, providing ample opportunities for engineering interaction sites. Inclusion of just a few hydrophobic groups in a minimal peptide promotes a rich variety of self-assembly behaviors, resulting in hundred-nanometer to micron size nanodiscs and nanofibers. Morphology depends primarily on the length of hydrophobic domains. Peptide discs contain lipophilic domains capable of sequestering small hydrophobic dyes. Combining multiple peptide types result in composite structures of discs and fibers ranging from stars to plates-on-a-string. These systems provide valuable tools to shed insight into the fundamental principles underlying hydrophobicity-driven higher order protein association that will facilitate the design of self-assembling systems in biomaterials and nanomedical applications.
Collapse
Affiliation(s)
| | | | - Vikas Nanda
- Address correspondence to . Phone: 732-235-5328
| |
Collapse
|
32
|
Wang J, Petefish J, Hillier AC, Schneider IC. Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:307-14. [PMID: 25531276 PMCID: PMC4295811 DOI: 10.1021/la503254x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Collapse
Affiliation(s)
- Juan Wang
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Joseph
W. Petefish
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Andrew C. Hillier
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Ian C. Schneider
- Department
of Chemical and Biological Engineering and Department of Genetics, Development
and Cell Biology, Iowa State University, Ames, Iowa 50011-2230, United States
| |
Collapse
|
33
|
Zhao N, Zhu D. Collagen self-assembly on orthopedic magnesium biomaterials surface and subsequent bone cell attachment. PLoS One 2014; 9:e110420. [PMID: 25303459 PMCID: PMC4193861 DOI: 10.1371/journal.pone.0110420] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Chemical, Biological and Bio-Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Donghui Zhu
- Department of Chemical, Biological and Bio-Engineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
In vitro calcite crystal morphology is modulated by otoconial proteins otolin-1 and otoconin-90. PLoS One 2014; 9:e95333. [PMID: 24748133 PMCID: PMC3991680 DOI: 10.1371/journal.pone.0095333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/25/2014] [Indexed: 11/19/2022] Open
Abstract
Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia.
Collapse
|