1
|
Choi KR, Honig ML, Bühlmann P. Ion-Selective Potentiometry with Plasma-Initiated Covalent Attachment of Sensing Membranes onto Inert Polymeric Substrates and Carbon Solid Contacts. Anal Chem 2024; 96:4702-4708. [PMID: 38451778 DOI: 10.1021/acs.analchem.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The physical delamination of the sensing membrane from underlying electrode bodies and electron conductors limits sensor lifetimes and long-term monitoring with ion-selective electrodes (ISEs). To address this problem, we developed two plasma-initiated graft polymerization methods that attach ionophore-doped polymethacrylate sensing membranes covalently to high-surface-area carbons that serve as the conducting solid contact as well as to polypropylene, poly(ethylene-co-tetrafluoroethylene), and polyurethane as the inert polymeric electrode body materials. The first strategy consists of depositing the precursor solution for the preparation of the sensing membranes onto the platform substrates with the solid contact carbon, followed by exposure to an argon plasma, which results in surface-grafting of the in situ polymerized sensing membrane. Using the second strategy, the polymeric platform substrate is pretreated with argon plasma and subsequently exposed to ambient oxygen, forming hydroperoxide groups on the surface. Those functionalities are then used for the initiation of photoinitiated graft polymerization of the sensing membrane. Attenuated total reflection-Fourier transform infrared spectroscopy, water contact angle measurements, and delamination tests confirm the covalent attachment of the in situ polymerized sensing membranes onto the polymeric substrates. Using membrane precursor solutions comprising, in addition to decyl methacrylate and a cross-linker, also 2-(diisopropylamino)ethyl methacrylate as a covalently attachable H+ ionophore and tetrakis(pentafluorophenyl)borate as ionic sites, both plasma-based fabrication methods produced electrodes that responded to pH in a Nernstian fashion, with the high selectivity expected for ionophore-based ISEs.
Collapse
Affiliation(s)
- Kwangrok R Choi
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Madeline L Honig
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Barkhordari A, Karimian S, Shahsavari S, Krawczyk D, Rodero A. Influence of the argon admixture on the reactive oxide species formation inside an atmospheric pressure oxygen plasma jet. Sci Rep 2024; 14:3425. [PMID: 38341524 DOI: 10.1038/s41598-024-54111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
In this work, a new atmospheric pressure plasma generated in a wire-to-multiwire dielectric barrier discharge on pure oxygen is introduced. This special geometry of 13 wires (one central wire and 12 ones on the external tube) is feeding by a radio frequency (RF) power (13.56 MHz, 1 kW) and produces a stable discharge. The capacity of this device to produce oxygen reactive species and the influence of Ar gas mixture (1-3%) on this production are investigated. The main characteristics of this DBD plasma are measured using optical emission spectroscopy techniques. The rotational, vibrational, and excitation temperatures along with the electron density are determined from OH (A2Σ → X2Π) band and the Stark broadening of the hydrogen atomic line at 486.1 nm, respectively. The temporal evolution and spatial distribution of charged and reactive species in this plasma are also numerically studied by a Global scheme and a two-dimension fluid model based on drift-diffusion approximation. A kinetic dominated by electron collisions is obtained for this plasma. The generation and movement of electrons, positive and negative ions in the wire-to-multiwire configuration are analyzed and discussed according to changes the electric field and plasma frequency. It is shown that the density of both charged and reactive species increases by adding a small amount of argon to the oxygen plasma while the electron temperature reduces in this configuration. A high level of agreement is observed between the experimental and simulation results for the electron density and temperature in this DBD plasma.
Collapse
Affiliation(s)
- Ali Barkhordari
- Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Saeed Karimian
- Department of Physics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Sajedeh Shahsavari
- Photonics Institute, Kerman Graduate University of Technology, Kerman, Iran
| | - Dorota Krawczyk
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Antonio Rodero
- Department of Physics, School of Engineering Sciences of Belmez, University of Cordoba, Cordoba, Spain
| |
Collapse
|
3
|
Rao X, Zhou Q, Wen Q, Ou Z, Fu L, Gong Y, Du X, Huo C. High-Performance and Water Resistant PVA-Based Films Modified by Air Plasma Treatment. MEMBRANES 2022; 12:membranes12030249. [PMID: 35323724 PMCID: PMC8951830 DOI: 10.3390/membranes12030249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/11/2022]
Abstract
Plasma treatment is considered a straightforward, cost-effective, and environmental-friendly technique for surface modification of film materials. In this study, air plasma treatment was applied for performance improvement of pure PVA, cellulose nanocrystal (CNC)/PVA, and CNC/oxalic acid (OA)/PVA films. Compared with the original performance of pure PVA, the mechanical properties and water resistance of air plasma treated films were greatly improved. Among them, the CNC/OA/PVA film treated by three minutes of air plasma irradiation exhibits the most remarkable performance in mechanical properties (tensile strength: 132.7 MPa; Young’s modulus: 5379.9 MPa) and water resistance (degree of swelling: 47.5%; solubility: 6.0%). By means of various modern characterization methods, the wettability, surface chemical structure, surface roughness, and thermal stability of different films before and after air plasma treatment were further revealed. Based on the results obtained, the air plasma treatment only changed the surface chemical structure, surface roughness, and hydrophobicity, while keeping the inner structure of films intact.
Collapse
Affiliation(s)
- Xin Rao
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (X.R.); (Q.Z.); (Q.W.); (Z.O.); (L.F.); (Y.G.)
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou 570228, China
| | - Qi Zhou
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (X.R.); (Q.Z.); (Q.W.); (Z.O.); (L.F.); (Y.G.)
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou 570228, China
| | - Qin Wen
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (X.R.); (Q.Z.); (Q.W.); (Z.O.); (L.F.); (Y.G.)
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou 570228, China
| | - Zhiqiang Ou
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (X.R.); (Q.Z.); (Q.W.); (Z.O.); (L.F.); (Y.G.)
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou 570228, China
| | - Lingying Fu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (X.R.); (Q.Z.); (Q.W.); (Z.O.); (L.F.); (Y.G.)
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou 570228, China
| | - Yue Gong
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (X.R.); (Q.Z.); (Q.W.); (Z.O.); (L.F.); (Y.G.)
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou 570228, China
| | - Xueyu Du
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (X.R.); (Q.Z.); (Q.W.); (Z.O.); (L.F.); (Y.G.)
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou 570228, China
- Correspondence: (X.D.); (C.H.)
| | - Chunqing Huo
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
- Correspondence: (X.D.); (C.H.)
| |
Collapse
|
4
|
Surface Modification of Poly(lactic acid) Film via Cold Plasma Assisted Grafting of Fumaric and Ascorbic Acid. Polymers (Basel) 2021; 13:polym13213717. [PMID: 34771274 PMCID: PMC8588400 DOI: 10.3390/polym13213717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Plant-based materials have found their application in the packaging with a yearly growing production rate. These naturally biodegradable polymers are obtained from renewable and sustainable natural resources with reduced environmental impact and affordable cost. These materials have found their utilization in fully-renewable plant-based packaging products, such as Tetra Pak®-like containers, by replacing commonly-used polyethylene as the polymer component. Poly(lactic acid) (PLA) is one of the representative plant-based polymers because of its eco-friendliness and excellent chemical and mechanical properties. In this work, a PLA surface was modified by various food additives, namely ascorbic acid (ASA) and fumaric acid (FA), using plasma-initiated grafting reactions in order to improve the surface and adhesion properties of PLA. Various analytical and microscopic techniques were employed to prove the grafting process. Moreover, the improved adhesion of the modified PLA foil to aluminum (Al) foil in a laminate configuration was proven by peel resistance measurements. The peel resistance of modified PLA increased by 74% and 184% for samples modified by ASA and FA, respectively, compared with untreated PLA.
Collapse
|
5
|
Bahrami R, Zibaei R, Hashami Z, Hasanvand S, Garavand F, Rouhi M, Jafari SM, Mohammadi R. Modification and improvement of biodegradable packaging films by cold plasma; a critical review. Crit Rev Food Sci Nutr 2020; 62:1936-1950. [PMID: 33207940 DOI: 10.1080/10408398.2020.1848790] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cold plasma is one of the techniques used in recent years to improve the functionality and interfacial attributes of biopolymers. Employing cold plasma for the treatment and modification of biopolymers possesses several advantages including its biocompatibility, elimination of toxic solvents usage, treatment consistency, and appropriateness for heat-sensitive ingredients. Most studies have presented the efficacious use of cold plasma treatment in improving structural, mechanical and thermal properties of film composites. In addition, cold plasma improves the film surface characteristics, particularly in protein-based films, through bringing up the polar functional groups onto the bio-composite surface, consequently increasing roughness, improving printability, increasing adhesion, and reducing contact angle; while it is not effective in the improvement of water vapor permeability of edible films. Cold plasma-treated edible packaging films experienced significant improvement where exposed to microbial contaminations, mainly due to the non-thermal nature of cold plasma technology leading to the protection of antimicrobial potency of bioactive compounds and antimicrobial constitutes. Therefore, it can be concluded that cold plasma treatment is an innovative strategy to strengthen the edible film characteristics as a promising alternative to the currently used chemical and physical modification approaches.
Collapse
Affiliation(s)
- Roya Bahrami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Zibaei
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Hasanvand
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Garavand
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Moosavi MH, Khani MR, Shokri B, Hosseini SM, Shojaee-Aliabadi S, Mirmoghtadaie L. Modifications of protein-based films using cold plasma. Int J Biol Macromol 2020; 142:769-777. [DOI: 10.1016/j.ijbiomac.2019.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/09/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|
7
|
Kliewer S, Wicha SG, Bröker A, Naundorf T, Catmadim T, Oellingrath EK, Rohnke M, Streit WR, Vollstedt C, Kipphardt H, Maison W. Contact-active antibacterial polyethylene foils via atmospheric air plasma induced polymerisation of quaternary ammonium salts. Colloids Surf B Biointerfaces 2019; 186:110679. [PMID: 31810045 DOI: 10.1016/j.colsurfb.2019.110679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Polyethylene (PE) foils were modified with potent contact-active antibacterial quaternary ammonium salts (QAS) by an atmospheric air plasma activation step, followed by graft-polymerisation of vinylbenzyltrimethylammonium chloride (VBTAC) monomers. The presented approach uses a cost efficient air plasma activation and subsequent radical polymerisation in highly concentrated aqueous monomer solutions to generate efficient antibacterial materials. The obtained contact-active poly-VBTAC modified PE foils feature a homogeneous and 300 nm thick polymer layer with a high charge density of approximately 1016 N+/cm2. The antibacterial properties were evaluated against Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, S. epidermidis) bacteria. The materials showed strong antibacterial activity by eradicating all the inoculated bacteria with bacterial challenges of 104 to 105 CFU/cm2 and good reductions even at maximum challenge (108 CFU/cm2). We have confirmed contact-activity by an agar diffusion assay. The obtained materials are therefore highly attractive for applications, for example, in packaging and are a contribution to an ecomic and green antimicrobial management without release of biocides to the environment.
Collapse
Affiliation(s)
- Serge Kliewer
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Sebastian G Wicha
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Astrid Bröker
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Tim Naundorf
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Tugba Catmadim
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eva Katharina Oellingrath
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Marcus Rohnke
- Justus-Liebig-Universität Giessen, Center for Materials Science, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - Wolfgang R Streit
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Christel Vollstedt
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Helmut Kipphardt
- Metall-Chemie Technologies GmbH, Kaiser-Wilhelm-Strasse 93, 20355 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
8
|
Meng X, Ma Z, Ma G, Sheng J. Preparation and rheological study of pentaerythritol triacrylate grafted onto polypropylene induced by air plasma. J Appl Polym Sci 2019. [DOI: 10.1002/app.48054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao‐Mei Meng
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300072 China
| | - Zhe Ma
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300072 China
| | - Gui‐Qiu Ma
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300072 China
| | - Jing Sheng
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300072 China
| |
Collapse
|
9
|
Habib S, Lehocky M, Vesela D, Humpolíček P, Krupa I, Popelka A. Preparation of Progressive Antibacterial LDPE Surface via Active Biomolecule Deposition Approach. Polymers (Basel) 2019; 11:polym11101704. [PMID: 31627328 PMCID: PMC6835596 DOI: 10.3390/polym11101704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polymers in all aspects of daily life is increasing considerably, so there is high demand for polymers with specific properties. Polymers with antibacterial properties are highly needed in the food and medical industries. Low-density polyethylene (LDPE) is widely used in various industries, especially in food packaging, because it has suitable mechanical and safety properties. Nevertheless, the hydrophobicity of its surface makes it vulnerable to microbial attack and culturing. To enhance antimicrobial activity, a progressive surface modification of LDPE using the antimicrobial agent grafting process was applied. LDPE was first exposed to nonthermal radio-frequency (RF) plasma treatment to activate its surface. This led to the creation of reactive species on the LDPE surface, resulting in the ability to graft antibacterial agents, such as ascorbic acid (ASA), commonly known as vitamin C. ASA is a well-known antioxidant that is used as a food preservative, is essential to biological systems, and is found to be reactive against a number of microorganisms and bacteria. The antimicrobial effect of grafted LDPE with ASA was tested against two strong kinds of bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), with positive results. Surface analyses were performed thoroughly using contact angle measurements and peel tests to measure the wettability or surface free energy and adhesion properties after each modification step. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the surface morphology or topography changes of LDPE caused by plasma treatment and ASA grafting. Surface chemistry was studied by measuring the functional groups and elements introduced to the surface after plasma treatment and ASA grafting, using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). These results showed wettability, adhesion, and roughness changes in the LDPE surface after plasma treatment, as well as after ASA grafting. This is a positive indicator of the ability of ASA to be grafted onto polymeric materials using plasma pretreatment, resulting in enhanced antibacterial activity.
Collapse
Affiliation(s)
- Salma Habib
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Marian Lehocky
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic.
| | - Daniela Vesela
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic.
| | - Igor Krupa
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Anton Popelka
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
10
|
Liu Y, Munisso MC, Mahara A, Kambe Y, Fukazawa K, Ishihara K, Yamaoka T. A surface graft polymerization process on chemically stable medical ePTFE for suppressing platelet adhesion and activation. Biomater Sci 2018; 6:1908-1915. [PMID: 29877532 DOI: 10.1039/c8bm00364e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An effective surface grafting method for chemically inert and elaborately porous medical expanded-polytetrafluoroethylene (ePTFE) was developed. Although surface graft polymerization onto basic polymeric biomaterials has been widely studied, successful modification of the ePTFE surface has been lacking due to its high chemical resistance. Herein, we succeeded in surface graft polymerization onto ePTFE through glycidyl methacrylate (GMA) as a bridge linkage following argon (Ar) plasma treatment. The epoxy group of GMA was expected to react with the peroxide groups produced on ePTFE by Ar plasma exposure, and its methacrylic groups can copolymerize with various monomers. In the present study, we selected 2-methacryloyloxyethyl phosphorylcholine (MPC) as a model monomer and the blood compatibility of modified ePTFE was evaluated. Two sequences of surface grafting were compared. In a two-step graft polymerization, GMA was first immobilized onto Ar plasma treated ePTFE, and then MPC was polymerized. In a one-step graft copolymerization, MPC and GMA were mixed and copolymerized simultaneously onto Ar plasma treated ePTFE, resulting in a poly(MPC-co-GMA) (PMG) graft surface. The roughness of the node-and-fibril structure of ePTFE was reduced by the uniform polymer layer, and the modified ePTFE had a good hydrophilic nature even after being stored in an aqueous environment for 30 days. The indispensable GMA in graft polymerization improved the surface grafting on ePTFE. The one-step and two-step graft polymerization methods could decrease the number of adhered platelets, and almost inhibit platelet activation. We concluded that graft polymerization with the GMA linker provides a novel strategy to modify the chemically inert ePTFE surfaces for functionalizing as new medical devices.
Collapse
Affiliation(s)
- Yihua Liu
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Tardajos MG, Cama G, Dash M, Misseeuw L, Gheysens T, Gorzelanny C, Coenye T, Dubruel P. Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications. Carbohydr Polym 2018; 191:127-135. [DOI: 10.1016/j.carbpol.2018.02.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/13/2023]
|
12
|
Tsou CH, Yao WH, Hung WS, Suen MC, De Guzman M, Chen J, Tsou CY, Wang RY, Chen JC, Wu CS. Innovative Plasma Process of Grafting Methyl Diallyl Ammonium Salt onto Polypropylene to Impart Antibacterial and Hydrophilic Surface Properties. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04693] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi-Hui Tsou
- Material
Corrosion and Protection Key Laboratory of Sichuan Province, College
of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Wei-Hua Yao
- Department
of Materials and Textiles, Oriental Institute of Technology, Pan-Chiao 22064, Taiwan (R.O.C)
| | - Wei-Song Hung
- Graduate
Institute of Applied Science and Technology, Department of Materials
Science and Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan (R.O.C)
| | - Maw-Cherng Suen
- Department
of Fashion Business Administration, Taishan, Lee-Ming Institute of Technology, New Taipei City 24305, Taiwan (R.O.C.)
| | - Manuel De Guzman
- Material
Corrosion and Protection Key Laboratory of Sichuan Province, College
of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jian Chen
- Material
Corrosion and Protection Key Laboratory of Sichuan Province, College
of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Chih-Yuan Tsou
- Graduate
Institute of Applied Science and Technology, Department of Materials
Science and Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan (R.O.C)
| | - Ruo Yao Wang
- Graduate
Institute of Applied Science and Technology, Department of Materials
Science and Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 10607, Taiwan (R.O.C)
| | - Jui-Chin Chen
- Department
of Materials and Textiles, Oriental Institute of Technology, Pan-Chiao 22064, Taiwan (R.O.C)
| | - Chin-San Wu
- Department
of Applied Cosmetology, Kao Yuan University, Kaohsiung 82101, Taiwan (R.O.C.)
| |
Collapse
|
13
|
Lu KY, Lo TY, Georgopanos P, Avgeropoulos A, Shi AC, Ho RM. Orienting Silicon-Containing Block Copolymer Films with Perpendicular Cylinders via Entropy and Surface Plasma Treatment. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02218] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kai-Yuan Lu
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Ting-Ya Lo
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Prokopios Georgopanos
- Department
of Materials Science Engineering, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - Apostolos Avgeropoulos
- Department
of Materials Science Engineering, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - An-Chang Shi
- Department
of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rong-Ming Ho
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
14
|
Su Y, Zhi Z, Gao Q, Xie M, Yu M, Lei B, Li P, Ma PX. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies. Adv Healthc Mater 2017; 6. [PMID: 28128893 DOI: 10.1002/adhm.201601173] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/25/2016] [Indexed: 12/12/2022]
Abstract
Biomedical device-associated infections which engender severe threat to public health require feasible solutions. In this study, block copolymers consisting of antimicrobial, antifouling, and surface-tethering segments in one molecule are synthesized and grafted on polymeric substrates by a facile plasma/autoclave-assisted method. Hetero-bifunctional polyethylene glycol (PEG) with allyl and tosyl groups (APEG-OTs) is first prepared. PEGs with different molecular weights (1200 and 2400 Da) are employed. Polyhexamethylene guanidine (PHMG) which has excellent broad-spectrum antimicrobial activity and thermal/chemical stability, is conjugated with APEG-OTs to generate the block copolymer (APEG-PHMG). Allyl terminated PHMG (A-PHMG) without PEG segments is also synthesized by reacting PHMG with allyl glycidyl ether. The synthesized copolymers are thermal initiated by autoclaving and grafted on plasma pretreated silicone surface, forming permanently bonded bottlebrush-like coatings. Both A-PHMG and APEG1200/2400 -PHMG coatings exhibit potent antimicrobial activity against gram-positive/negative bacteria and fungus, whereas APEG1200/2400 -PHMG coatings show superior antifouling activity and long-term reusability to A-PHMG coating. APEG2400 -PHMG coating demonstrates the most effective in vitro antibiofilm and protein/platelet-resistant properties, as well as excellent hemo/biocompatibility. Furthermore, APEG2400 -PHMG greatly reduces the bacteria number with 5-log reduction in a rodent subcutaneous infection model. This rationally designed dual-functional antimicrobial and antifouling coating has great potential in combating biomedical devices/implant-associated infections.
Collapse
Affiliation(s)
- Yajuan Su
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Zelun Zhi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 China
| | - Qiang Gao
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Meihua Xie
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Meng Yu
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Bo Lei
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
| | - Peng Li
- Center for Biomedical Engineering and Regenerative Medicine; Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710054 China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 China
| | - Peter X. Ma
- Department of Biomedical Engineering; University of Michigan; Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109 USA
- Macromolecular Science and Engineering Center; University of Michigan; Ann Arbor MI 48109 USA
- Department of Materials Science and Engineering; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
15
|
Yalcinkaya F, Siekierka A, Bryjak M. Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv 2017. [DOI: 10.1039/c7ra11904f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper presents a method for producing nanofibrous composite membranes for the separation of a vegetable oil–water mixture. The microwave plasma technique, followed by a chemical post-treatment, was used to hydrophilise the membrane surfaces.
Collapse
Affiliation(s)
- Fatma Yalcinkaya
- Technical University of Liberec
- Institute for Nanomaterials
- Advanced Technology and Innovation
- 46117 Liberec
- Czech Republic
| | - Anna Siekierka
- Wroclaw University of Science and Technology
- Faculty of Chemistry
- 50-370 Wroclaw
- Poland
| | - Marek Bryjak
- Wroclaw University of Science and Technology
- Faculty of Chemistry
- 50-370 Wroclaw
- Poland
| |
Collapse
|
16
|
Qu C, Kaitainen S, Kröger H, Lappalainen R, Lammi MJ. Behavior of Human Bone Marrow-Derived Mesenchymal Stem Cells on Various Titanium-Based Coatings. MATERIALS 2016; 9:ma9100827. [PMID: 28773947 PMCID: PMC5456604 DOI: 10.3390/ma9100827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022]
Abstract
The chemical composition and texture of titanium coatings can influence the growth characteristics of the adhered cells. An enhanced proliferation of the human mesenchymal stem cells (hMSCs) would be beneficial. The present study was aimed to investigate whether titanium deposited at different atmospheres would affect the cell growth properties, cellular morphology, and expression of surface markers of hMSCs. Titanium-based coatings were deposited on silicon wafers under oxygen, nitrogen, or argon atmospheres by ultra-short pulsed laser deposition using two different gas pressures followed by heating at 400 °C for 2 h. The characteristics of the coated surfaces were determined via contact angle, zeta potential, and scanning electron microscopy (SEM) techniques. Human MSCs were cultivated on differently coated silicon wafers for 48 h. Subsequently, the cell proliferation rates were analyzed with an MTT assay. The phenotype of hMSCs was checked via immunocytochemical stainings of MSC-associated markers CD73, CD90, and CD105, and the adhesion, spreading, and morphology of hMSCs on coated materials via SEM. The cell proliferation rates of the hMSCs were similar on all coated silicon wafers. The hMSCs retained the MSC phenotype by expressing MSC-associated markers and fibroblast-like morphology with cellular projections. Furthermore, no significant differences could be found in the size of the cells when cultured on all various coated surfaces. In conclusion, despite certain differences in the contact angles and the zeta potentials of various titanium-based coatings, no single coating markedly improved the growth characteristics of hMSCs.
Collapse
Affiliation(s)
- Chengjuan Qu
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio 70210, Finland.
- Department of Integrative Medical Biology, Umeå University, Umeå 90187, Sweden.
| | - Salla Kaitainen
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | - Heikki Kröger
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio 70210, Finland.
| | - Reijo Lappalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | - Mikko J Lammi
- Department of Integrative Medical Biology, Umeå University, Umeå 90187, Sweden.
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
17
|
Han M, Kim DW, Kim YC. Charged Polymer-Coated Separators by Atmospheric Plasma-Induced Grafting for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26073-26081. [PMID: 27622726 DOI: 10.1021/acsami.6b08781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A simple and fast method of atmospheric plasma-induced grafting was applied over a polyethylene membrane to enhance its performance as a separator for lithium-ion batteries. The process of grafting has formed a thin, durable, and uniform layer on the surface of the porous membrane. The charges of grafted polymers affected the performance of batteries in many ways besides the change of hydrophilicity. Negative charges in polymers improve the capacity retention of batteries and the uniformity of the SEI layer. On the other hand, the electrostatic attraction between different charges contributed to small increases of thermal stability and mechanical strength of separators. Polyampholyte was grafted by using the mixtures of monomers, and the composition of the grafted layer was optimized. The formation of stable uniform SEI layers and the marked improvement in capacity retention were observed in the full cell tests of the lithium battery with the polyampholyte-grafted separators when the polyampholyte has a negative net charge.
Collapse
Affiliation(s)
- Mina Han
- Green Chemical Process Division, Korea Research Institute of Chemical Technology , Daejeon 34114, Republic of Korea
- Department of Chemical Engineering, Hanyang University , Seoul 04763, Republic of Korea
| | - Dong-Won Kim
- Department of Chemical Engineering, Hanyang University , Seoul 04763, Republic of Korea
| | - Yeong-Cheol Kim
- Green Chemical Process Division, Korea Research Institute of Chemical Technology , Daejeon 34114, Republic of Korea
| |
Collapse
|
18
|
Rymuszka D, Terpiłowski K, Borowski P, Holysz L. Time-dependent changes of surface properties of polyether ether ketone caused by air plasma treatment. POLYM INT 2016. [DOI: 10.1002/pi.5141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diana Rymuszka
- Department of Physical Chemistry - Interfacial Phenomena; Faculty of Chemistry, Maria Curie-Sklodowska University; Maria Curie-Skłodowska Sq. 3 20-031 Lublin Poland
| | - Konrad Terpiłowski
- Department of Physical Chemistry - Interfacial Phenomena; Faculty of Chemistry, Maria Curie-Sklodowska University; Maria Curie-Skłodowska Sq. 3 20-031 Lublin Poland
| | - Piotr Borowski
- Faculty of Chemistry; Maria Curie-Sklodowska University; Maria Curie-Skłodowska Sq. 3 20-031 Lublin Poland
| | - Lucyna Holysz
- Department of Physical Chemistry - Interfacial Phenomena; Faculty of Chemistry, Maria Curie-Sklodowska University; Maria Curie-Skłodowska Sq. 3 20-031 Lublin Poland
| |
Collapse
|
19
|
Funano SI, Tanaka N, Tanaka Y. Vapor-based micro/nano-partitioning of fluoro-functional group immobilization for long-term stable cell patterning. RSC Adv 2016. [DOI: 10.1039/c6ra16906f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study developed a simple vapor-based immobilization method using a compound with fluoro-functional-group on a cell culture surface with micro/nano scale patterns.
Collapse
Affiliation(s)
| | | | - Yo Tanaka
- Quantitative Biology Center (QBiC)
- RIKEN
- Suita
- Japan
| |
Collapse
|
20
|
Effect of CO2 plasma exposure on physico-chemical properties of porous polycaprolactone scaffold. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1582-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Das S, Banik M, Chen G, Sinha S, Mukherjee R. Polyelectrolyte brushes: theory, modelling, synthesis and applications. SOFT MATTER 2015; 11:8550-83. [PMID: 26399305 DOI: 10.1039/c5sm01962a] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte (PE) brushes are a special class of polymer brushes (PBs) containing charges. Polymer chains attain "brush"-like configuration when they are grafted or get localized at an interface (solid-fluid or liquid-fluid) with sufficiently close proximity between two-adjacent grafted polymer chains - such a proximity triggers a particular nature of interaction between the adjacent polymer molecules forcing them to stretch orthogonally to the grafting interface, instead of random-coil arrangement. In this review, we discuss the theory, synthesis, and applications of PE brushes. The theoretical discussion starts with the standard scaling concepts for polymer and PE brushes; following that, we shed light on the state of the art in continuum modelling approaches for polymer and PE brushes directed towards analysis beyond the scaling calculations. A special emphasis is laid in pinpointing the cases for which the PE electrostatic effects can be de-coupled from the PE entropic and excluded volume effects; such de-coupling is necessary to appropriately probe the complicated electrostatic effects arising from pH-dependent charging of the PE brushes and the use of these effects for driving liquid and ion transport at the interfaces covered with PE brushes. We also discuss the atomistic simulation approaches for polymer and PE brushes. Next we provide a detailed review of the existing approaches for the synthesis of polymer and PE brushes on interfaces, nanoparticles, and nanochannels, including mixed brushes and patterned brushes. Finally, we discuss some of the possible applications and future developments of polymer and PE brushes grafted on a variety of interfaces.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Meneka Banik
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin - 721302, Kharagpur, West Bengal, India
| | - Guang Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Shayandev Sinha
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin - 721302, Kharagpur, West Bengal, India
| |
Collapse
|
22
|
Park S. Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure. KOREAN CHEMICAL ENGINEERING RESEARCH 2015. [DOI: 10.9713/kcer.2015.53.5.614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Development of an aptamer-functionalized molecular recognition gating membrane targeting a specific protein on the basis of the aggregation phenomena of DNA–PNIPAM. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Vanangamudi A, Hamzah S, Singh G. Synthesis of hybrid hydrophobic composite air filtration membranes for antibacterial activity and chemical detoxification with high particulate filtration efficiency (PFE). CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2015; 260:801-808. [PMID: 32288624 PMCID: PMC7108431 DOI: 10.1016/j.cej.2014.08.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/06/2014] [Accepted: 08/15/2014] [Indexed: 05/05/2023]
Abstract
Hybrid hydrophobic composite PVDF-Ag-Al2O3 nanofibrous air filtration membranes are synthesized by the electrospinning method with different concentrations of Al2O3 and fixed concentration of Ag to study their antibacterial, particulate filtration efficiencies, and their detoxification ability. All the membranes were characterized for their physical and chemical properties before being tested. It was also found that at Al2O3 concentrations higher than 8%, nanofibers could not be formed by the pure blending and electrospinning technique. The antibacterial activity of the membranes proved that silver incorporation provided suitable disinfection with greater than 99.5% antibacterial efficiency for all membranes. The antibacterial efficiency of the membranes was maintained even as the concentration of Al2O3 was increased. The hydrolysis of paraoxon, a nerve agent simulant, for the prepared membranes was also studied. The removal of paraoxon was found to increase as the loaded concentration of Al2O3 in the membrane increased. The particulate filtration efficiency of the prepared membranes was tested using particles of diameter 0.36 μm. Compared to the nascent PVDF nanofiber membranes with particle filtration efficiency of 94%, the Ag and Al2O3 loaded membranes all had a higher particle filtration efficiency. Interestingly, it was found that as the concentration of Al2O3 loaded in the membranes increased so did the particle filtration efficiency. Membrane characterization data revealed that as the concentration of the Al2O3 was increased, the average pore size of the membrane was reduced and the thickness of the filter mat increased. This would explain the higher retention of the particles by these filters. Correspondingly, the resistance of the filters also increased as more Al2O3 was loaded in the nanofiber membranes. The synthesized nanofibrous membranes have the potential to be used as 3 in 1 highly efficient air filters.
Collapse
Affiliation(s)
| | | | - Gurdev Singh
- Corresponding author at: Environmental & Water Technology Centre of Innovation, Ngee Ann Polytechnic, Singapore, Blk 39, #01-06, 535 Clementi Road, Singapore 599489, Singapore. Tel.: +65 6460 7511; fax: +65 6467 4185.
| |
Collapse
|
25
|
Minardi ER, Chakraborty S, Calabrò V, Curcio S, Drioli E. Membrane applications for biogas production and purification processes: an overview on a smart alternative for process intensification. RSC Adv 2015. [DOI: 10.1039/c4ra11819g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biogas is the result of a complex conversion process that takes place because of the metabolic activity of various types of bacteria.
Collapse
Affiliation(s)
- Eros Rosalbino Minardi
- Department of Informatics, Modeling, Electronics and Systems Engineering (D.I.M.E.S.)
- Laboratory of Transport Phenomena and Biotechnology
- University of Calabria
- Rende (CS)
- Italy
| | - Sudip Chakraborty
- Department of Informatics, Modeling, Electronics and Systems Engineering (D.I.M.E.S.)
- Laboratory of Transport Phenomena and Biotechnology
- University of Calabria
- Rende (CS)
- Italy
| | - Vincenza Calabrò
- Department of Informatics, Modeling, Electronics and Systems Engineering (D.I.M.E.S.)
- Laboratory of Transport Phenomena and Biotechnology
- University of Calabria
- Rende (CS)
- Italy
| | - Stefano Curcio
- Department of Informatics, Modeling, Electronics and Systems Engineering (D.I.M.E.S.)
- Laboratory of Transport Phenomena and Biotechnology
- University of Calabria
- Rende (CS)
- Italy
| | - Enrico Drioli
- Hanyang University
- WCU Energy Engineering Department
- Seoul
- South Korea
| |
Collapse
|
26
|
Traba C, Liang JF. Bacteria responsive antibacterial surfaces for indwelling device infections. J Control Release 2014; 198:18-25. [PMID: 25481445 DOI: 10.1016/j.jconrel.2014.11.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022]
Abstract
Indwelling device infections now represent life-threatening circumstances as a result of the biofilms' tolerance to antibiotic treatments. Current antibiotic impregnation approaches through sustained antibiotic release have some unsolved problems which include short life-span, narrowed antibacterial spectrum, ineffectiveness towards resistant mutants, and the potential to hasten the antibiotic resistance process. In this study, bacteria responsive anti-biofilm surfaces were developed using bioactive peptides with proved activity to antibiotic resistant bacteria and biofilms. Resulting surfaces were stable under physiological conditions and in the presence of high concentrations of salts (0.5M NaCl) and biomacromolcules (1.0% DNA and 2.0% alginate), and thus showed good biocompatibility to various tissue cells. However, lytic peptide immobilized surfaces could sense bacteria adhesion and kill attached bacteria effectively and specifically, so biofilms were unable to develop on the lytic peptide immobilized surfaces. Bacteria responsive catheters remained biofilm free for up to a week. Therefore, the bacteria responsive antibacterial surfaces developed in this study represent new opportunities for indwelling device infections.
Collapse
Affiliation(s)
- Christian Traba
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jun F Liang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
27
|
Zhuo J, Sun G. Light-induced surface graft polymerizations initiated by an anthraquinone dye on cotton fibers. Carbohydr Polym 2014; 112:158-64. [DOI: 10.1016/j.carbpol.2014.05.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 11/28/2022]
|
28
|
Cho Y, Vu BQ, Bedair TM, Park BJ, Joung YK, Han DK. Crack prevention of biodegradable polymer coating on metal facilitated by a nano-coupled interlayer. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514547094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Crack prevention of biodegradable polymer coatings on drug-eluting stents was investigated by introducing a nano-coupled layer at the interface between the metal surface and the polymer coating layer using surface-initiated ring-opening polymerization of ε-caprolactone. Poly(d,l-lactide-co-glycolide) coating on cobalt-chromium control and ricinoleic acid-poly(caprolactone)–grafted cobalt-chromium was carried out using electrospraying. The cracking of the biodegradable polymer coating on drug-eluting stents during ballooning was addressed by introducing a nano-coupled interlayer on the cobalt-chromium surface. The ricinoleic acid-poly(caprolactone) nano-coupled interlayer and poly(d,l-lactide-co-glycolide)-coated top layer were characterized using attenuated total reflection Fourier transform infrared, contact angle, ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy. Based on scratch tests, the nano-coupled samples had stronger interfacial adhesion compared to the control sample without the nano-coupled layer. Scanning electron microscope images indicated that the cracking on the poly(d,l-lactide-co-glycolide) coating was addressed. Introducing a nano-coupling interlayer may be an important strategy to preventing polymer coating cracking on drug-eluting stents.
Collapse
Affiliation(s)
- Youngjin Cho
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bach Quang Vu
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Tarek M Bedair
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Bang Ju Park
- Department of Electronic Engineering and Institute of Gachon Fusion Technology, Gachon University, Seongnam, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Nam K, Iwata T, Kimura T, Ikake H, Shimizu S, Masuzawa T, Kishida A. Adhesion between polymer surface modified by graft polymerization and tissue during surgery using an ultrasonically activated scalpel device. J Appl Polym Sci 2014. [DOI: 10.1002/app.40885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kwangwoo Nam
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Chiyoda-ku Tokyo 101-0062 Japan
| | - Takuya Iwata
- Department of Materials and Applied Chemistry, College of Science and Technology; Nihon University; Chiyoda-ku Tokyo 101-8308 Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Chiyoda-ku Tokyo 101-0062 Japan
| | - Hiroki Ikake
- Department of Materials and Applied Chemistry, College of Science and Technology; Nihon University; Chiyoda-ku Tokyo 101-8308 Japan
| | - Shigeru Shimizu
- Department of Materials and Applied Chemistry, College of Science and Technology; Nihon University; Chiyoda-ku Tokyo 101-8308 Japan
| | - Toru Masuzawa
- Faculty of Engineering; Ibaraki University; Hitachi-shi Ibaraki 306-8511 Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University; Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
30
|
Voronov S, Kohut A, Tarnavchyk I, Voronov A. Advances in reactive polymeric surfactants for interface modification. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Wen F, Wong HK, Tay CY, Yu H, Li H, Yu T, Tijore A, Boey FYC, Venkatraman SS, Tan LP. Induction of myogenic differentiation of human mesenchymal stem cells cultured on Notch agonist (Jagged-1) modified biodegradable scaffold surface. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1652-61. [PMID: 24405311 DOI: 10.1021/am4045635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineered scaffold surface provides stem cells with vital cues that could determine the eventual fate of stem cells. In this work, biodegradable poly(L-lactide-co-ε-caprolactone) (PLCL) scaffold conjugated with Notch agonist-Jagged-1(JAG) peptide (2.1 kDa) was prepared to initiate myogenic differentiation of human mesenchymal stem cells (hMSCs). The scaffold surface was activated with oxygen plasma and acrylic acid was engrafted via UV polymerization to form a surface bearing carboxylic groups. JAG peptide was subsequently immobilized onto the carboxylated scaffold surface. Surface chemistry and topography were examined using attenuated total reflection Fourier transform infrared, X-ray photoelectron spectroscopy, and atomic force microscopy. Quantitative real time polymerase chain reaction analysis revealed activation of the Notch pathway; furthermore, several specific markers associated with myogenic but not osteogenic differentiation were shown to be up-regulated in hMSCs cultured on the engineered surface. The pro-myocardial effect of surface bound JAG peptide was further affirmed via immunodetection of the distinct myocardial marker, cardiac troponin T. Collectively, our results suggest that PLCL conjugated JAG peptide is a viable strategy to enhance the functional potential of scaffolds to be used as a bioengineered cardiac patch in myocardial infarction repair.
Collapse
Affiliation(s)
- Feng Wen
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ding L, Shao L, Bai Y. Deciphering the mechanism of corona discharge treatment of BOPET film. RSC Adv 2014. [DOI: 10.1039/c4ra02289k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Mohd Hidzir N, Hill DJ, Taran E, Martin D, Grøndahl L. Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Han N, Bradley PA, Johnson J, Parikh KS, Hissong A, Calhoun MA, Lannutti JJ, Winter JO. Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:2018-30. [DOI: 10.1080/09205063.2013.822246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ning Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 West 19th Ave., Columbus, OH, 43210, USA
| | - Patrick A. Bradley
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jed Johnson
- Department of Materials and Science Engineering, The Ohio State University, Columbus, OH, USA,
| | - Kunal S. Parikh
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 West 19th Ave., Columbus, OH, 43210, USA
| | - Alex Hissong
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Mark A. Calhoun
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - John J. Lannutti
- Department of Materials and Science Engineering, The Ohio State University, Columbus, OH, USA,
| | - Jessica O. Winter
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 West 19th Ave., Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Baumann L, de Courten D, Wolf M, Rossi RM, Scherer LJ. Light-responsive caffeine transfer through porous polycarbonate. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5894-5897. [PMID: 23790045 DOI: 10.1021/am401218e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Light-responsive membranes based on a porous polycarbonate (PC) matrix were developed by surface functionalization with spirobenzopyran (SP)-containing polymers. The surface modification was generated by plasma-induced surface graft polymerization. Mass transfer rates of caffeine through these membranes were found to be up to eight times higher under UV irradiation than at daylight.
Collapse
|
36
|
Ohashi H, Ebina S, Yamaguchi T. Fabrication of Functional Membrane with Activated Ester via Plasma-Induced Graft Polymerization. J PHOTOPOLYM SCI TEC 2013. [DOI: 10.2494/photopolymer.26.503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
|
38
|
Widodo M, El-Shafei A, Hauser PJ. Surface nanostructuring of kevlar fibers by atmospheric pressure plasma-induced graft polymerization for multifunctional protective clothing. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/polb.23098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Gupta B, Krishnanand K, Deopura BL, Atthoff B. Surface modification of polycaprolactone monofilament by low pressure oxygen plasma. J Appl Polym Sci 2012. [DOI: 10.1002/app.37760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Wood TJ, Badyal JPS. Pulsed plasmachemical deposition of highly proton conducting composite sulfonic acid-carboxylic acid films. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1675-1682. [PMID: 22409149 DOI: 10.1021/am2018207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Graft polymerization of sulfonic acid monomers onto structurally well-defined pulsed plasma poly(maleic anhydride) layers yields a composite carboxylic acid-sulfonic acid network. These bifunctional films are shown to exhibit high proton conductivity (125 mS cm(-1)) as well as good stability in water.
Collapse
Affiliation(s)
- T J Wood
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, England, United propylKingdom
| | | |
Collapse
|
41
|
Yoon HJ, Kim SE, Kwon YK, Kim EJ, Lee JC, Lee YS. Synthesis of silver nanostructures on polytetrafluoroethylene (PTFE) using electron beam irradiation for antimicrobacterial effect. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2011.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Ma GQ, Zhai JJ, Liu B, Huang DH, Sheng J. Plasma modification of polypropylene surfaces and grafting copolymerization of styrene onto polypropylene. CHINESE JOURNAL OF POLYMER SCIENCE 2012. [DOI: 10.1007/s10118-012-1130-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Desmet T, Poleunis C, Delcorte A, Dubruel P. Double protein functionalized poly-ε-caprolactone surfaces: in depth ToF-SIMS and XPS characterization. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:293-305. [PMID: 22203514 DOI: 10.1007/s10856-011-4527-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/09/2011] [Indexed: 05/31/2023]
Abstract
In biomaterial research, great attention has focussed on the immobilization of biomolecules with the aim to increase cell-adhesive properties of materials. Many different strategies can be applied. In previously published work, our group focussed on the treatment of poly-ε-caprolactone (PCL) films by an Ar-plasma, followed by the grafting of 2-aminoethyl methacrylate (AEMA) under UV-irradiation. The functional groups introduced, enabled the subsequent covalent immobilisation of gelatin. The obtained coating was finally applied for the physisorption of fibronectin. The successful PCL surface functionalization was preliminary confirmed using XPS, wettability studies, AFM and SEM. In the present article, we report on an in-depth characterization of the materials developed using ToF-SIMS and XPS analysis. The homogeneous AEMA grafting and the subsequent protein coating steps could be confirmed by both XPS and ToF-SIMS. Using ToF-SIMS, it was possible to demonstrate the presence of polymethacrylates on the surface. From peak deconvoluted XPS results (C- and N-peak), the presence of proteins could be confirmed. Using ToF-SIMS, different positive ions, correlating to specific amino-acids could be identified. Importantly, the gelatin and the fibronectin coatings could be qualitatively distinguished. Interestingly for biomedical applications, ethylene oxide sterilization did not affect the surface chemical composition. This research clearly demonstrates the complementarities of XPS and ToF-SIMS in biomedical surface modification research.
Collapse
Affiliation(s)
- T Desmet
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
44
|
Gu M, Kilduff JE, Belfort G. High throughput atmospheric pressure plasma-induced graft polymerization for identifying protein-resistant surfaces. Biomaterials 2012; 33:1261-70. [DOI: 10.1016/j.biomaterials.2011.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/03/2011] [Indexed: 11/30/2022]
|
45
|
Ohashi H, Xueqin C, Shimada T, Tamaki T, Yamaguchi T. Fabrication of Precursor Membrane with Reactive Groups via Plasma-Induced Graft Polymerization. J PHOTOPOLYM SCI TEC 2012. [DOI: 10.2494/photopolymer.25.555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Wang JJ, Liu F. Imparting antifouling properties of silicone hydrogels by grafting poly(ethylene glycol) methyl ether acrylate initiated by UV light. J Appl Polym Sci 2011. [DOI: 10.1002/app.35687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Choi J, Cho SB, Lee BS, Joung YK, Park K, Han DK. Improvement of interfacial adhesion of biodegradable polymers coated on metal surface by nanocoupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14232-14239. [PMID: 22017569 DOI: 10.1021/la2030318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A method of securing the adhesion of biodegradable polymer coating was investigated for drug-eluting metal stents, using surface-initiated ring-opening polymerization (SI-ROP) of L-lactide. Introduction of oligolactide on the stainless steel (SS) surface was successful and the thickness of the oligolactide grafts remained on the nanometer scale, as determined by ellipsometry. The presence of an oligolactide graft was also identified using attenuated total reflection-Fourier transform infrared (ATR-FTIR) and electron spectroscopy for chemical analysis (ESCA). On top of the grafts, poly(D,L-lactide-co-glycolide) (PLGA) coating was carried out on different substrates such as SS control, plasma-treated SS, and lactide-grafted (referred to as a nanocoupled) SS using electrospraying. When the adhesion forces were measured with a scratch tester, the nanocoupled SS showed the strongest interfacial adhesion between polymer coating layer and metal substrate. The outcome of the peel-off test was also consistent with the result of the scratch test. When degradation behavior of the polymer coating in vitro was examined for up to 4 weeks in a continuous fluid flow, the SEM images demonstrated that polymer degradation was obvious due to hydration and swelling of the polymer matrix. Although the matrix completely disappeared after 4 weeks for SS control and plasma-treated substrates, the nanocoupled SS was persistent with some polymer matrix. In addition, the release profiles of SRL-loaded PLGA coating appeared slightly different between control and nanocoupled groups. This work suggested that the concept of nanocoupling remarkably improved the interfacial adhesion stability between metal surface and polymer layer and controlled drug release, and showed the feasibility of drug-eluting stents.
Collapse
Affiliation(s)
- Jiyeon Choi
- Center for Biomaterials, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Wang JJ, Liu F. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone hydrogels for reducing protein adsorption. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2651-2657. [PMID: 22020548 DOI: 10.1007/s10856-011-4452-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
The biomimetic synthetic methacrylate monomer containing a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC), has been widely used to improve the surface property of biomaterials. In the current report, both hydrophilic and antifouling surfaces were prepared on silicone hydrogels with MPC grafted by UV-induced free radical polymerization. The MPC-grafted silicone hydrogels were characterized by graft yield and static water contact angle (SCA) measurements. According to the results, the graft yield reached a maximum at 5 min of UV exposure time and 8 wt% MPC concentration. The modified silicone hydrogels possessed hydrophilic surfaces with the lowest water contact angle of 20º. The oxygen permeability of the MPC-grafted silicone hydrogels was as high as the unmodified silicone hydrogel. The mechanical property of silicone hydrogels was maintained at about 95% of the tensile strength and elastic modulus after the MPC grafting. The results of the in vitro single protein adsorption on the MPC-grafted silicone hydrogels were in agreement with the SCA measurements. The smaller the water contact angle, the greater was the protein repelling ability. The MPC-grafted silicone hydrogel is expected to be a novel biomaterial which possesses excellent surface hydrophilicity, antifouling property, oxygen permeability and mechanical property.
Collapse
Affiliation(s)
- Jing Jing Wang
- Department of Polymer Materials and Engineering, School of Material Engineering, Yancheng Institute of Technology, Yancheng, People's Republic of China.
| | | |
Collapse
|
49
|
Blanchemain N, Aguilar MR, Chai F, Jimenez M, Jean-Baptiste E, El-Achari A, Martel B, Hildebrand HF, Roman JS. Selective biological response of human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells on cold-plasma-modified polyester vascular prostheses. Biomed Mater 2011; 6:065003. [DOI: 10.1088/1748-6041/6/6/065003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Liu F, Chen Y, Wei Y, Li L, Shang S. Surface modification of polythiophene and poly(3-methyl thiophene) films by graft copolymerization. J Appl Polym Sci 2011. [DOI: 10.1002/app.33771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|