1
|
Salam R, Bakker M, Krutáková M, Štefela A, Pávek P, Duintjer Tebbens J, Zitko J. The discovery of a new nonbile acid modulator of Takeda G protein-coupled receptor 5: An integrated computational approach. Arch Pharm (Weinheim) 2025; 358:e2400423. [PMID: 39801251 PMCID: PMC11726147 DOI: 10.1002/ardp.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5. However, TGR5 agonists with nonsteroidal structures have not been widely explored. This study aimed at discovering new TGR5 agonists using bile acid derivatives as a basis for a computational approach. We applied a combination of pharmacophore-based, molecular docking, and molecular dynamic (MD) simulation to identify potential compounds as new TGR5 agonists. Through pharmacophore screening and molecular docking, we identified 41 candidate compounds. From these, five candidates were selected based on criteria including pharmacophore features, a docking score of less than 9.2 kcal/mol, and similarity in essential interaction patterns with a reference ligand. Biological assays of the five hits confirmed that Hit-3 activates TGR5 similarly to the bile acid control. This was supported by MD simulation results, which indicated that a hydrogen bond interaction with Tyr240 is involved in TGR5 activation. Hit-3 (CSC089939231) represents a new nonsteroidal lead that can be further optimized to design potent TGR5 agonists.
Collapse
Affiliation(s)
- Rudy Salam
- Department of Biophysics and Physical Chemistry, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
- Department of Pharmacy, Faculty of MedicineUniversitas BrawijayaMalangIndonesia
| | - Michael Bakker
- Department of Biophysics and Physical Chemistry, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Mária Krutáková
- Department of Pharmacology and Toxicology, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Alžbeta Štefela
- Department of Pharmacology and Toxicology, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| |
Collapse
|
2
|
Wei X, Yao C, He X, Li J, Wang Y, Wang C, Chen Q, Ma X, Guo DA. Biotransformation of chenodeoxycholic acid by human intestinal fungi and the agonistic effects on FXR. PHYTOCHEMISTRY 2024; 224:114162. [PMID: 38797255 DOI: 10.1016/j.phytochem.2024.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Bile acids play a vital role in modulating host metabolism, with chenodeoxycholic acid (CDCA) standing out as a primary bile acid that naturally activates farnesoid X receptor (FXR). In this study, we investigated the microbial transformations of CDCA by seven human intestinal fungal species. Our findings revealed that hydroxylation and dehydrogenation were the most prevalent metabolic pathways. Incubation of CDCA with Rhizopus microspores (PT2906) afforded eight undescribed compounds (6-13) alongside five known analogs (1-5) which were elucidated by HRESI-MS and NMR data. Notably, compounds 8, 12 and 13 exhibited an inhibitory effect on FXR in contrast to the FXR activation observed with CDCA in vitro assays. This study shone a light on the diverse transformations of CDCA by intestinal fungi, unveiling potential modulators of FXR activity with implications for host metabolism.
Collapse
Affiliation(s)
- Xuemei Wei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Changliang Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiayuan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yulu Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chao Wang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Xiaochi Ma
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
3
|
Gioiello A, Rosatelli E, Cerra B. Patented Farnesoid X receptor modulators: a review (2019 - present). Expert Opin Ther Pat 2024; 34:547-564. [PMID: 38308658 DOI: 10.1080/13543776.2024.2314296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION The Farnesoid X receptor (FXR) is a key transcription factor that is involved in the bile acid signaling network. The modulation of the FXR activity influences glucose and lipid homeostasis, reduces obesity and insulin resistance, as well as it regulates the pathogenesis of inflammatory and metabolic disorders. FXR ligands have therefore emerged in drug discovery as promising therapeutic agents for the prevention and treatment of gastrointestinal and liver diseases, including cancer. AREAS COVERED Recent advances in the field of FXR modulators are reviewed, with a particular attention on patent applications filed in the past 5 years related to both the discovery and development of FXR targeting drugs. EXPERT OPINION FXR agonists have proven their efficacy and safety in humans and have shown a significant potential as clinical agents to treat metabolic and inflammatory associated conditions. However, several challenges, including adverse events such as pruritus, remain to be solved. Current studies aim to gain insights into the pathophysiological mechanisms by which FXR regulates metabolism and inflammation in terms of tissue/organ/isoform-specificity, post-translational modifications and coregulatory proteins, on the route of novel, improved FXR modulators.
Collapse
Affiliation(s)
- Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Jin W, Zheng M, Chen Y, Xiong H. Update on the development of TGR5 agonists for human diseases. Eur J Med Chem 2024; 271:116462. [PMID: 38691888 DOI: 10.1016/j.ejmech.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
The G protein-coupled bile acid receptor 1 (GPBAR1) or TGR5 is widely distributed across organs, including the small intestine, stomach, liver, spleen, and gallbladder. Many studies have established strong correlations between TGR5 and glucose homeostasis, energy metabolism, immune-inflammatory responses, and gastrointestinal functions. These results indicate that TGR5 has a significant impact on the progression of tumor development and metabolic disorders such as diabetes mellitus and obesity. Targeting TGR5 represents an encouraging therapeutic approach for treating associated human ailments. Notably, the GLP-1 receptor has shown exceptional efficacy in clinical settings for diabetes management and weight loss promotion. Currently, numerous TGR5 agonists have been identified through natural product-based approaches and virtual screening methods, with some successfully progressing to clinical trials. This review summarizes the intricate relationships between TGR5 and various diseases emphasizing recent advancements in research on TGR5 agonists, including their structural characteristics, design tactics, and biological activities. We anticipate that this meticulous review could facilitate the expedited discovery and optimization of novel TGR5 agonists.
Collapse
Affiliation(s)
- Wangrui Jin
- Institute for Advanced Study, and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yihua Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Hai Xiong
- Institute for Advanced Study, and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 PMCID: PMC11558780 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Rosatelli E, Carotti A, Cerra B, De Franco F, Passeri D, Pellicciari R, Gioiello A. Chemical exploration of TGR5 functional hot-spots: Synthesis and structure-activity relationships of C7- and C23-Substituted cholic acid derivatives. Eur J Med Chem 2023; 261:115851. [PMID: 37813065 DOI: 10.1016/j.ejmech.2023.115851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
The activation of TGR5 bestows on bile acids the ability to modulate nongenomic signaling pathways, which are responsible of physiological actions including immunosuppressive and anti-inflammatory properties as well as the regulation of glucose metabolism and energy homeostasis. TGR5 agonists have therefore emerged in drug discovery and preclinical appraisals as promising compounds for the treatment of liver diseases and metabolic syndrome. In this study, we have been devising site-selected chemical modifications of the bile acid scaffold to provide novel chemical tools able to modulate the functions of TGR5 in different tissues. Biological results of the tested collection of semisynthetic cholic acid derivatives were used to extend the structure-activity relationships of TGR5 agonists and to clarify the molecular basis and functional role of TGR5 hot-spots in the receptor activation and selectivity. Some unexpected properties deriving from the molecular structure of bile acids have been unveiled as relevant to the receptor activation and may hence be used to design novel, selective and potent TGR5 agonists.
Collapse
Affiliation(s)
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy
| | | | | | | | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122, Perugia, Italy.
| |
Collapse
|
7
|
Luxenburger A, Harris LD, Ure EM, Jiao W, Woolhouse AD, Cameron SA, Weymouth-Wilson A, Furneaux RH, Pitman JL, Hinkley SFR. The discovery of 12β-methyl-17-epi-18-nor-bile acids as potent and selective TGR5 agonists. Eur J Med Chem 2023; 250:115143. [PMID: 36841086 DOI: 10.1016/j.ejmech.2023.115143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Recent discoveries have demonstrated that the physiological function of bile acids extends to the regulation of diverse signaling processes through interactions with nuclear and G protein-coupled receptors, most notably the Farnesoid-X nuclear receptor (FXR) and the G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). Targeting such signaling pathways pharmacologically, i.e. with bile acid-derived therapeutics, presents great potential for the treatment of various metabolic, inflammatory immune, liver, and neurodegenerative diseases. Here we report the discovery of two potent and selective TGR5 agonists (NZP196 and 917). These compounds are the taurine conjugates of 6α-ethyl-substituted 12β-methyl-18-nor-bile acids with the side chain being located on the α-face of the steroid scaffold. The compounds emerged from a screening effort of a diverse library of 12β-methyl-18-nor-bile acids that were synthesized from 12β-methyl-18-nor-chenodeoxycholic acid and its C17-epimer. Upon testing for FXR activity, both compounds were found to be inactive, thus revealing selectivity for TGR5.
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand.
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Elizabeth M Ure
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Anthony D Woolhouse
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | | | - Richard H Furneaux
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| | - Simon F R Hinkley
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5040, New Zealand
| |
Collapse
|
8
|
Long X, Li J, Gao F, Wu H, Deng J. Bioinspired Synthesis of Spirochensilide A from Lanosterol. J Am Chem Soc 2022; 144:16292-16297. [PMID: 36054904 DOI: 10.1021/jacs.2c07198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A bioinspired synthesis of spirochensilide A from commercially available lanosterol is reported. The synthesis features a directed C-H oxidation, a Wagner-Meerwein-type double methyl migration, a Meinwald rearrangement, and a double-bond isomerization/spiroketal formation cascade. The proposed biosynthetic speculation was modified by this synthetic sequence, which also served as a platform for the synthesis of other lanostanes with migrating methyl groups.
Collapse
Affiliation(s)
- Xianwen Long
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hai Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Cerra B, Venturoni F, Souma M, Ceccarelli G, Lozza AM, Passeri D, De Franco F, Baxendale IR, Pellicciari R, Macchiarulo A, Gioiello A. Development of 3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-sulfate sodium salt (INT-767): Process optimization, synthesis and characterization of metabolites. Eur J Med Chem 2022; 242:114652. [PMID: 36049273 DOI: 10.1016/j.ejmech.2022.114652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Herein we report our synthetic efforts in supporting the development of the bile alcohol sulfate INT-767, a FXR/TGR5 dual agonist with remarkable therapeutic potential for liver disorders. We describe the process development to a final route for large scale preparation and analogues synthesis. Key sequences include Grignard addition, a one-pot two-step shortening-reduction of the carboxylic side chain, and the final sulfation reaction. The necessity for additional steps such as the protection/deprotection of hydroxyl groups at the steroidal body was also evaluated for step-economy and formation of side-products. Critical bottlenecks such as the side chain degradation have been tackled using flow technology before scaling-up individual steps. The final synthetic route may be successfully employed to produce the amount of INT-767 required to support late-stage clinical development of the compound. Furthermore, potential metabolites have been synthesized, characterized and evaluated for their ability to modulate FXR and TGR5 receptors providing key reference standards for future drug investigations, as well as offering further insights into the structure-activity relationships of this class of compounds.
Collapse
Affiliation(s)
- Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Francesco Venturoni
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Maria Souma
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Giada Ceccarelli
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Anna Maria Lozza
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Daniela Passeri
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Francesca De Franco
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Ian R Baxendale
- Department of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - Roberto Pellicciari
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Antonio Macchiarulo
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy.
| |
Collapse
|
10
|
Luxenburger A, Ure EM, Harris L, Cameron SA, Weymouth-Wilson A, Furneaux RH, Pitman J, Hinkley SF. The Synthesis of 12β-Methyl-18-nor-Avicholic Acid Analogues as Potential TGR5 Agonists†. Org Biomol Chem 2022; 20:3511-3527. [DOI: 10.1039/d1ob02401a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest for new modulators of the Farnesoid-X (FXR) and Takeda G-protein-coupled (TGR5) receptors, bile acids are a popular candidate for drug development. Recently, bile acids endowed with a...
Collapse
|
11
|
Luxenburger A, Harris LD, Ure EM, Landaeta Aponte RA, Woolhouse AD, Cameron SA, Ling CD, Piltz RO, Lewis AR, Gainsford GJ, Weymouth-Wilson A, Furneaux RH. Synthesis of 12β-Methyl-18- nor-bile Acids. ACS OMEGA 2021; 6:25019-25039. [PMID: 34604682 PMCID: PMC8482778 DOI: 10.1021/acsomega.1c04199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Decoupling the roles of the farnesoid X nuclear receptor and Takeda G-protein-coupled bile acid receptor 5 is essential for the development of novel bile acid therapeutics targeting metabolic and neurodegenerative diseases. Herein, we describe the synthesis of 12β-methyl-18-nor-bile acids which may serve as probes in the search for new bile acid analogues with clinical applicability. A Nametkin-type rearrangement was applied to protected cholic acid derivatives, giving rise to tetra-substituted Δ13,14- and Δ13,17-unsaturated 12β-methyl-18-nor-bile acid intermediates (24a and 25a). Subsequent catalytic hydrogenation and deprotection yielded 12β-methyl-18-nor-chenodeoxycholic acid (27a) and its 17-epi-epimer (28a) as the two major reaction products. Optimization of the synthetic sequence enabled a chromatography-free route to prepare these bile acids at a multi-gram scale. In addition, the first cis-C-D ring-junctured bile acid and a new 14(13 → 12)-abeo-bile acid are described. Furthermore, deuteration experiments were performed to provide mechanistic insights into the formation of the formal anti-hydrogenation product 12β-methyl-18-nor-chenodeoxycholic acid (27a).
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Lawrence D. Harris
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Elizabeth M. Ure
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Roselis A. Landaeta Aponte
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Anthony D. Woolhouse
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Scott A. Cameron
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Chris D. Ling
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ross O. Piltz
- Australian
Centre for Neutron Scattering, New Illawarra Rd, Lucas Heights, Sydney, New South Wales 2234, Australia
| | - Andrew R. Lewis
- Callaghan
Innovation, P.O. Box 31 310, Lower
Hutt 5040, New Zealand
| | - Graeme J. Gainsford
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Alex Weymouth-Wilson
- New
Zealand Pharmaceuticals Ltd, 68 Weld Street, RD2, Palmerston North 4472, New Zealand
| | - Richard H. Furneaux
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| |
Collapse
|
12
|
Stefela A, Kaspar M, Drastik M, Kronenberger T, Micuda S, Dracinsky M, Klepetarova B, Kudova E, Pavek P. (E)-7-Ethylidene-lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells. Front Pharmacol 2021; 12:713149. [PMID: 34483922 PMCID: PMC8414367 DOI: 10.3389/fphar.2021.713149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 μM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.
Collapse
Affiliation(s)
- Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Miroslav Kaspar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Sciences, Charles University, Prague, Czechia
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany.,School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, Finland
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Dracinsky
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Blanka Klepetarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
13
|
Watanabe B, Makino K, Mizutani M, Takaya H. Synthesis and structural confirmation of calibagenin and saxosterol. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021; 9:microorganisms9030469. [PMID: 33668351 PMCID: PMC7996314 DOI: 10.3390/microorganisms9030469] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases (HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids from α-hydroxy conformations to β-hydroxy, or β-hydroxy to ω-hydroxy in the case of ω-muricholic acid. These reactions often result in products with drastically different physicochemical properties than their precursors, which can result in steroids being activators or inhibitors of host receptors, can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may have therapeutic potential as steroid pool modulators or druggable targets in the future. In this review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by microbial HSDHs.
Collapse
|
15
|
Lamers C, Merk D. Discovery, Structural Refinement and Therapeutic Potential of Farnesoid X Receptor Activators. ANTI-FIBROTIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781788015783-00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Farnesoid X receptor acts as bile acid sensing transcription factor and has been identified as valuable molecular drug target to treat severe liver disorders, such as non-alcoholic steatohepatitis (NASH). Preclinical and clinical data indicate anti-fibrotic effects obtained with FXR activation that also appear promising for other fibrotic diseases beyond NASH. Strong efforts in FXR ligand discovery have yielded potent steroidal and non-steroidal FXR activators, some of which have been studied in clinical trials. While the structure–activity relationship of some FXR agonist frameworks have been studied extensively, the structural diversity of potent FXR activator chemotypes is still limited to a handful of well-studied compound classes. Together with safety concerns related to full therapeutic activation of FXR, this indicates the need for novel innovative FXR ligands with selective modulatory properties. This chapter evaluates FXR's value as drug target with emphasis on fibrotic diseases, analyses FXR ligand recognition and requirements and focuses on the discovery and structural refinement of leading FXR activator chemotypes.
Collapse
Affiliation(s)
- Christina Lamers
- University Basel, Molecular Pharmacy Klingelberstr. 50 CH-4056 Basel Switzerland
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry Max-von-Laue-Str. 9 D-60438 Frankfurt Germany
- Swiss Federal Institute of Technology (ETH) Zurich, Institute of Pharmaceutical Sciences Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| |
Collapse
|
16
|
De Marino S, Festa C, Sepe V, Zampella A. Chemistry and Pharmacology of GPBAR1 and FXR Selective Agonists, Dual Agonists, and Antagonists. Handb Exp Pharmacol 2019; 256:137-165. [PMID: 31201554 DOI: 10.1007/164_2019_237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the recent years, bile acid receptors FXR and GPBAR1 have attracted the interest of scientific community and companies, as they proved promising targets for the treatment of several diseases, ranging from liver cholestatic disorders to metabolic syndrome, inflammatory states, nonalcoholic steatohepatitis (NASH), and diabetes.Consequently, the development of dual FXR/GPBAR1 agonists, as well as selective targeting of one of these receptors, is considered a hopeful possibility in the treatment of these disorders. Because endogenous bile acids and steroidal ligands, which cover the same chemical space of bile acids, often target both receptor families, speculation on nonsteroidal ligands represents a promising and innovative strategy to selectively target GPBAR1 or FXR.In this review, we summarize the most recent acquisition on natural, semisynthetic, and synthetic steroidal and nonsteroidal ligands, able to interact with FXR and GPBAR1.
Collapse
Affiliation(s)
- Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
17
|
Stoltz KL, Erickson R, Staley C, Weingarden AR, Romens E, Steer CJ, Khoruts A, Sadowsky MJ, Dosa PI. Synthesis and Biological Evaluation of Bile Acid Analogues Inhibitory to Clostridium difficile Spore Germination. J Med Chem 2017; 60:3451-3471. [PMID: 28402634 DOI: 10.1021/acs.jmedchem.7b00295] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Standard antibiotic-based strategies for the treatment of Clostridium difficile infections disrupt indigenous microbiota and commonly fail to eradicate bacterial spores, two key factors that allow recurrence of infection. As an alternative approach to controlling C. difficile infection, a series of bile acid derivatives have been prepared that inhibit taurocholate-induced spore germination. These analogues have been evaluated in a highly virulent NAP1 strain using optical density and phase-contrast microscopy assays. Heterocycle substitutions at C24 were well-tolerated and several tetrazole-containing derivatives were highly potent inhibitors in both assays, with complete inhibition of spore germination observed at 10-25 μM. To limit intestinal absorption, C7-sulfated analogues designed to avoid active and passive transport pathways were prepared. One of these derivatives, compound 21b, was found to be a potent inhibitor of C. difficile spore germination and poorly permeable in a Caco-2 model of intestinal epithelial absorption, suggesting that it is likely to be gut-restricted.
Collapse
Affiliation(s)
- Kristen L Stoltz
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Raymond Erickson
- BioTechnology Institute, University of Minnesota , 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota , 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Alexa R Weingarden
- BioTechnology Institute, University of Minnesota , 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States.,Department of Microbiology and Immunology, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Erin Romens
- BioTechnology Institute, University of Minnesota , 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Clifford J Steer
- Departments of Medicine and Genetics, Cell Biology, and Development, University of Minnesota , VFW Cancer Research Center, 406 Harvard Street, Minneapolis, Minnesota, United States
| | - Alexander Khoruts
- BioTechnology Institute, University of Minnesota , 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States.,Department of Medicine, Division of Gastroenterology, University of Minnesota , Minneapolis, Minnesota 55414, United States.,Center for Immunology, University of Minnesota , Minneapolis, Minnesota 55414, United States
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota , 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States.,Department of Soil, Water & Climate, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Peter I Dosa
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota , 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
18
|
Pellicciari R, Passeri D, De Franco F, Mostarda S, Filipponi P, Colliva C, Gadaleta RM, Franco P, Carotti A, Macchiarulo A, Roda A, Moschetta A, Gioiello A. Discovery of 3α,7α,11β-Trihydroxy-6α-ethyl-5β-cholan-24-oic Acid (TC-100), a Novel Bile Acid as Potent and Highly Selective FXR Agonist for Enterohepatic Disorders. J Med Chem 2016; 59:9201-9214. [PMID: 27652492 DOI: 10.1021/acs.jmedchem.6b01126] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As a continuation of previous efforts in mapping functional hot spots on the bile acid scaffold, we here demonstrate that the introduction of a hydroxy group at the C11β position affords high selectivity for FXR. In particular, the synthesis and FXR/TGR5 activity of novel bile acids bearing different hydroxylation patterns at the C ring are reported and discussed from a structure-activity standpoint. The results obtained led us to discover the first bile acid derivative endowed with high potency and selectivity at the FXR receptor, 3α,7α,11β-trihydroxy-6α-ethyl-5β-cholan-24-oic acid (TC-100, 7) which also shows a remarkable physicochemical and pharmacological profile. Compound 7 combines the excellent physicochemical properties of hydrophilic bile acids such as ursodeoxycholic acid, with the distinct ability to specifically bind and regulate FXR activity in vivo, thus providing a bona fide novel therapeutic agent to treat enterohepatic disorders such as cholestasis, NASH, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Roberto Pellicciari
- TES Pharma S.r.l. , Via Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Perugia, Italy
| | - Daniela Passeri
- TES Pharma S.r.l. , Via Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Perugia, Italy
| | - Francesca De Franco
- TES Pharma S.r.l. , Via Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Perugia, Italy
| | - Serena Mostarda
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Paolo Filipponi
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Carolina Colliva
- TES Pharma S.r.l. , Via Palmiro Togliatti 22bis, I-06073 Loc. Terrioli, Corciano, Perugia, Italy
| | - Raffaella Maria Gadaleta
- Interdisciplinary Department of Medicine, University of Bari , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Placido Franco
- Department of Chemistry, University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | - Aldo Roda
- Department of Chemistry, University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Antonio Moschetta
- Interdisciplinary Department of Medicine, University of Bari , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia , Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
19
|
Xu Y. Recent Progress on Bile Acid Receptor Modulators for Treatment of Metabolic Diseases. J Med Chem 2016; 59:6553-79. [DOI: 10.1021/acs.jmedchem.5b00342] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanping Xu
- Lilly Research
Laboratories, Eli Lilly and Company, Lilly Corporate Center, DC 1910, Indianapolis, Indiana 46285, United States
| |
Collapse
|
20
|
Gertzen CGW, Spomer L, Smits SHJ, Häussinger D, Keitel V, Gohlke H. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur J Med Chem 2015; 104:57-72. [PMID: 26435512 DOI: 10.1016/j.ejmech.2015.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/06/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
TGR5 (Gpbar-1, M-Bar) is a class A G-protein coupled bile acid-sensing receptor predominately expressed in brain, liver and gastrointestinal tract, and a promising drug target for the treatment of metabolic disorders. Due to the lack of a crystal structure of TGR5, the development of TGR5 agonists has been guided by ligand-based approaches so far. Three binding mode models of bile acid derivatives have been presented recently. However, they differ from one another in terms of overall orientation or with respect to the location and interactions of the cholane scaffold, or cannot explain all results from mutagenesis experiments. Here, we present an extended binding mode model based on an iterative and integrated computational and biological approach. An alignment of 68 TGR5 agonists based on this binding mode leads to a significant and good structure-based 3D QSAR model, which constitutes the most comprehensive structure-based 3D-QSAR study of TGR5 agonists undertaken so far and suggests that the binding mode model is a close representation of the "true" binding mode. The binding mode model is further substantiated in that effects predicted for eight mutations in the binding site agree with experimental analyses on the impact of these TGR5 variants on receptor activity. In the binding mode, the hydrophobic cholane scaffold of taurolithocholate orients towards the interior of the orthosteric binding site such that rings A and B are in contact with TM5 and TM6, the taurine side chain orients towards the extracellular opening of the binding site and forms a salt bridge with R79(EL1), and the 3-hydroxyl group forms hydrogen bonds with E169(5.44) and Y240(6.51). The binding mode thus differs in important aspects from the ones recently presented. These results are highly relevant for the development of novel, more potent agonists of TGR5 and should be a valuable starting point for the development of TGR5 antagonists, which could show antiproliferative effects in tumor cells.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute for Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Med Chem 2015; 7:1109-35. [DOI: 10.4155/fmc.15.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bile acids (BAs) are experiencing a new life. Next to their ancestral roles in lipid digestion and solubilization, BAs are today recognized signaling molecules involved in many physiological functions. These signaling pathways involve the activation of metabolic nuclear receptors, mainly the BA sensor FXR, and the dedicated membrane G protein-coupled receptor, GPBAR1 (TGR5). As a consequence, the discovery of GPBAR1/FXR selective or dual modulators represents an important answer to the urgent demand of new pharmacological opportunity for several human diseases including dyslipidemia, cholestasis, nonalcoholic steatohepatitis, Type 2 diabetes and inflammation. Targeted oriented discovery of natural compounds and medicinal chemistry manipulation have allowed the development of promising drug candidates.
Collapse
|
22
|
Yu DD, Sousa KM, Mattern DL, Wagner J, Fu X, Vaidehi N, Forman BM, Huang W. Stereoselective synthesis, biological evaluation, and modeling of novel bile acid-derived G-protein coupled Bile acid receptor 1 (GP-BAR1, TGR5) agonists. Bioorg Med Chem 2015; 23:1613-28. [DOI: 10.1016/j.bmc.2015.01.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 12/31/2022]
|
23
|
Sindhu T, Srinivasan P. Identification of potential dual agonists of FXR and TGR5 using e-pharmacophore based virtual screening. MOLECULAR BIOSYSTEMS 2015; 11:1305-18. [DOI: 10.1039/c5mb00137d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Farnesoid X receptor and Takeda G-protein-coupled receptor-5 are well known bile acid receptors and act as promising targets for the drug development and treatment of diabetes.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Molecular Biology Lab
- Department of Bioinformatics
- Alagappa University
- Karaikudi
- India
| | - Pappu Srinivasan
- Molecular Biology Lab
- Department of Bioinformatics
- Alagappa University
- Karaikudi
- India
| |
Collapse
|
24
|
Sindhu T, Srinivasan P. Exploring the binding properties of agonists interacting with human TGR5 using structural modeling, molecular docking and dynamics simulations. RSC Adv 2015. [DOI: 10.1039/c4ra16617e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
TGR5, act as a potential pharmacological target in the treatment of type II diabetes. In the computational study, structural modeling and binding site prediction of TGR5 receptor was performed. Two well-known agonists of TGR5 used to investigate the mode and mechanism of binding.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Molecular Biology Lab
- Department of Bioinformatics
- Alagappa University
- Karaikudi-630004
- India
| | - Pappu Srinivasan
- Molecular Biology Lab
- Department of Bioinformatics
- Alagappa University
- Karaikudi-630004
- India
| |
Collapse
|
25
|
Natalini B, Sardella R, Gioiello A, Ianni F, Di Michele A, Marinozzi M. Determination of bile salt critical micellization concentration on the road to drug discovery. J Pharm Biomed Anal 2014; 87:62-81. [DOI: 10.1016/j.jpba.2013.06.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/14/2013] [Indexed: 01/22/2023]
|
26
|
Macchiarulo A, Gioiello A, Thomas C, Pols TWH, Nuti R, Ferrari C, Giacchè N, De Franco F, Pruzanski M, Auwerx J, Schoonjans K, Pellicciari R. Probing the Binding Site of Bile Acids in TGR5. ACS Med Chem Lett 2013; 4:1158-62. [PMID: 24900622 DOI: 10.1021/ml400247k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Antimo Gioiello
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Charles Thomas
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Thijs W. H. Pols
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Roberto Nuti
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Cristina Ferrari
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Nicola Giacchè
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Francesca De Franco
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Mark Pruzanski
- Intercept Pharmaceuticals, 18 Desbrosses
Street, New York, New York 10013, United States
| | - Johan Auwerx
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Roberto Pellicciari
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| |
Collapse
|
27
|
Synthesis and quantitative structure-property relationships of side chain-modified hyodeoxycholic acid derivatives. Molecules 2013; 18:10497-513. [PMID: 23999724 PMCID: PMC6270434 DOI: 10.3390/molecules180910497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/21/2013] [Accepted: 08/27/2013] [Indexed: 11/26/2022] Open
Abstract
Bile acids have emerged as versatile signalling compounds of a complex network of nuclear and membrane receptors regulating various endocrine and paracrine functions. The elucidation of the interconnection between the biological pathways under the bile acid control and manifestations of hepatic and metabolic diseases have extended the scope of this class of steroids for in vivo investigations. In this framework, the design and synthesis of novel biliary derivatives able to modulate a specific receptor requires a deep understanding of both structure-activity and structure-property relationships of bile acids. In this paper, we report the preparation and the critical micellization concentration evaluation of a series of hyodeoxycholic acid derivatives characterized by a diverse side chain length and by the presence of a methyl group at the alpha position with respect to the terminal carboxylic acid moiety. The data collected are instrumental to extend on a quantitative basis, the knowledge of the current structure-property relationships of bile acids and will be fruitful, in combination with models of receptor activity, to design and prioritize the synthesis of novel pharmacokinetically suitable ligands useful in the validation of bile acid-responsive receptors as therapeutic targets.
Collapse
|
28
|
Design, Synthesis, and Structure-Activity Relationships of 3,4,5-Trisubstituted 4,5-Dihydro-1,2,4-oxadiazoles as TGR5 Agonists. ChemMedChem 2013; 8:1210-23. [DOI: 10.1002/cmdc.201300144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/07/2013] [Indexed: 01/22/2023]
|
29
|
Gioiello A, Rosatelli E, Nuti R, Macchiarulo A, Pellicciari R. Patented TGR5 modulators: a review (2006 - present). Expert Opin Ther Pat 2012; 22:1399-414. [PMID: 23039746 DOI: 10.1517/13543776.2012.733000] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The G protein-coupled receptor TGR5 is a key player of the bile acid signaling network, and its activation has been proved to increase the glycemic control, to enhance energy expenditure and to exert anti-inflammatory actions. Accordingly, TGR5 ligands have emerged in drug discovery and preclinical appraisals as promising agents for the treatment of liver diseases, metabolic syndrome and related disorders. AREAS COVERED Recent advances in the field of TGR5 modulators are reviewed, with a particular attention on patent applications and peer-reviewed publications in the past 6 years. EXPERT OPINION Activation of TGR5 showed to protect mice from diabesity and insulin resistance, to improve liver functions, as well as to attenuate the development of atherosclerosis. However, although the efficacy of TGR5 agonists in mice is encouraging, further studies are needed to determine their potential in humans and to evaluate carefully the balance between the therapeutic benefits and adverse effects associated with the target. The development of new TGR5 selective ligands to support studies in animal models will surely facilitate the understanding of the complexity of TGR5 signaling network.
Collapse
Affiliation(s)
- Antimo Gioiello
- Dipartimento di Chimica e Tecnologia del Farmaco, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | |
Collapse
|
30
|
Sardella R, Gioiello A, Ianni F, Venturoni F, Natalini B. HPLC/ELSD analysis of amidated bile acids: An effective and rapid way to assist continuous flow chemistry processes. Talanta 2012; 100:364-71. [DOI: 10.1016/j.talanta.2012.07.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 01/31/2023]
|
31
|
Venturoni F, Gioiello A, Sardella R, Natalini B, Pellicciari R. Continuous flow synthesis and scale-up of glycine- and taurine-conjugated bile salts. Org Biomol Chem 2012; 10:4109-15. [DOI: 10.1039/c2ob25528f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|