1
|
Zhou J, Ma S, Zhang Y, He Y, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Bacterium-mimicking sequentially targeted therapeutic nanocomplexes based on O-carboxymethyl chitosan and their cooperative therapy by dual-modality light manipulation. Carbohydr Polym 2021; 264:118030. [PMID: 33910720 DOI: 10.1016/j.carbpol.2021.118030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
An integrated gene nanovector capable of overcoming complicated physiological barriers in one vector is desirable to circumvent the challenges imposed by the intricate tumor microenvironment. Herein, a nuclear localization signals (NLS)-decorated element and an iRGD-functionalized element based on O-carboxymethyl chitosan were synthesized, mixed, and coated onto PEI/DNA to fabricate bacterium-mimicking sequentially targeted therapeutic nanocomplexes (STNPs) which were internalized through receptor-mediated endocytosis and other pathways and achieved nuclear translocation of DNA. The endo/lysosomal membrane disruption triggered by reactive oxygen species (ROS) after short-time illumination, together with the DNA nuclear translocation, evoked an enhanced gene expression. Alternatively, the excessive ROS from long-time irradiation induced apoptosis in tumor cells, bringing about greater anti-tumor efficacy owing to the integration of gene and photodynamic therapy. Overall, these results demonstrated bacterium-mimicking STNPs could be a potential candidate for tumor treatments.
Collapse
Affiliation(s)
- Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Shengnan Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Yuxin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Yiyan He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China.
| |
Collapse
|
2
|
Liang K, Liu Q, Kong Q. New technologies in developing recombinant-attenuated bacteria for cancer therapy. Biotechnol Bioeng 2020; 118:513-530. [PMID: 33038015 DOI: 10.1002/bit.27596] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Cancer has always been a global problem, with more cases of cancer patients being diagnosed every year. Conventional cancer treatments, including radiotherapy, chemotherapy, and surgery, are still unable to bypass their obvious limitations, and developing effective targeted therapies is still required. More than one century ago, the doctor William B. Coley discovered that cancer patients had tumor regression by injection of Streptococcus bacteria. The studies of cancer therapy using bacterial microorganisms are now very widespread. In particular, the facultative anaerobic bacteria Salmonella typhimurium is widely investigated as it can selectively colonize different types of tumors, locally deliver various antitumor drugs, and inhibit tumor growth. The exciting antitumor efficacy and safety observed in animal tumor models prompted the well-known attenuated Salmonella bacterial strain VNP20009 to be tested in human clinical trials in the early 21st century. Regrettably, no patients showed significant therapeutic effects and even bacterial colonization in tumor tissue was undetectable in most patients. Salmonella bacteria are still considered as a promising agent or vehicle for cancer therapy. Recent efforts have been focused on the generation of attenuated bacterial strains with higher targeting for tumor tissue, and optimization of the delivery of therapeutic antitumor cargoes into the tumor microenvironment. This review will summarize new technologies or approaches that may improve bacteria-mediated cancer therapy.
Collapse
Affiliation(s)
- Kang Liang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Beitelshees M, Hill A, Li Y, Chen M, Ahmadi MK, Smith RJ, Andreadis ST, Rostami P, Jones CH, Pfeifer BA. Antigen delivery format variation and formulation stability through use of a hybrid vector. Vaccine X 2019; 1:100012. [PMID: 31384734 PMCID: PMC6668244 DOI: 10.1016/j.jvacx.2019.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 02/04/2023] Open
Abstract
A hybrid biological-biomaterial antigen delivery vector comprised of a polymeric shell encapsulating an Escherichia coli core was previously developed for in situ antigen production and subsequent delivery. Due to the engineering capacity of the bacterial core, the hybrid vector provides unique opportunities for immunogenicity optimization through varying cellular localization (cytoplasm, periplasm, cellular surface) and type (protein or DNA) of antigen. In this work, three protein-based hybrid vector formats were compared in which the pneumococcal surface protein A (PspA) was localized to the cytoplasm, surface, and periplasmic space of the bacterial core for vaccination against pneumococcal disease. Furthermore, we tested the hybrid vector's capacity as a DNA vaccine against Streptococcus pneumoniae by introducing a plasmid into the bacterial core to facilitate PspA expression in antigen presenting cells (APCs). Through testing these various formulations, we determined that cytoplasmic accumulation of PspA elicited the strongest immune response (antibody production and protection against bacterial challenge) and enabled complete protection at substantially lower doses when compared to vaccination with PspA + adjuvant. We also improved the storage stability of the hybrid vector to retain complete activity after 1 month at 4 °C using an approach in which hybrid vectors suspended in a microbial freeze drying buffer were desiccated. These results demonstrate the flexibility and robustness of the hybrid vector formulation, which has the potential to be a potent vaccine against S. pneumoniae.
Collapse
Key Words
- APCs, antigen presenting cells
- AS, aqueous storage
- CDM, chemically defined bacterial growth medium
- CFA, Complete Freund's Adjuvant
- CHV, cytoplasmic hybrid vector
- CPSs, capsular polysaccharides
- ClyA, cytolysin A
- DNA vaccine
- DS, desiccated storage
- EHV, empty hybrid vector
- IN, intranasal
- IP, intraperitoneal
- LBVs, live bacterial vectors
- LLO, listeriolysin O
- NVT, non-vaccine type
- PAMPs, pathogen-associated molecular patterns
- PCVs, pneumococcal conjugate vaccines
- PHV, periplasmic hybrid vector
- PcpA, pneumococcal choline-binding protein A
- PhtD, histidine triad protein D
- Pneumococcal disease
- Pneumococcal surface protein A (PspA)
- PspA, pneumococcal surface protein A
- SC, subcutaneous
- SHV, surface hybrid vector
- Streptococcus pneumoniae
- Vaccine delivery
- pHV, plasmid hybrid vector
Collapse
Affiliation(s)
- Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Andrew Hill
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mahmoud Kamal Ahmadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Pooya Rostami
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | | | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Corresponding author at: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
4
|
Beitelshees M, Li Y, Pfeifer BA. Enhancing vaccine effectiveness with delivery technology. Curr Opin Biotechnol 2016; 42:24-29. [PMID: 26954947 DOI: 10.1016/j.copbio.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022]
Abstract
Vaccines stand as a very powerful means of disease prevention and treatment. Fundamental to the success of vaccination is the efficient delivery of antigenic cargo needed to trigger an effective immune response. In this article, we will review recent advances in delivery technology with a focus on devices designed to optimally maximize responses to antigen cargo. Included with the review is an overview of traditional vaccine applications and how these approaches can benefit by well-designed delivery methods.
Collapse
Affiliation(s)
- Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
5
|
Jones CH, Gollakota A, Chen M, Chung TC, Ravikrishnan A, Zhang G, Pfeifer BA. Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery. Biomaterials 2015; 58:103-11. [PMID: 25941787 DOI: 10.1016/j.biomaterials.2015.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/24/2022]
Abstract
Given the rise of antibiotic resistant microbes, genetic vaccination is a promising prophylactic strategy that enables rapid design and manufacture. Facilitating this process is the choice of vector, which is often situationally-specific and limited in engineering capacity. Furthermore, these shortcomings are usually tied to an incomplete understanding of the structure-function relationships driving vector-mediated gene delivery. Building upon our initial report of a hybrid bacterial-biomaterial gene delivery vector, a comprehensive structure-function assessment was completed using a class of mannosylated poly(beta-amino esters). Through a top-down screening methodology, an ideal polymer was selected on the basis of gene delivery efficacy and then used for the synthesis of a stratified molecular weight polymer library. By eliminating contributions of polymer chemical background, we were able to complete an in-depth assessment of gene delivery as a function of (1) polymer molecular weight, (2) relative mannose content, (3) polymer-membrane biophysical properties, (4) APC uptake specificity, and (5) serum inhibition. In summary, the flexibility and potential of the hybrid design featured in this work highlights the ability to systematically probe vector-associated properties for the development of translational gene delivery candidates.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Akhila Gollakota
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Tai-Chun Chung
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
6
|
Chung TC, Jones CH, Gollakota A, Ahmadi MK, Rane S, Zhang G, Pfeifer BA. Improved Escherichia coli Bactofection and Cytotoxicity by Heterologous Expression of Bacteriophage ΦX174 Lysis Gene E. Mol Pharm 2015; 12:1691-700. [PMID: 25849744 PMCID: PMC9896019 DOI: 10.1021/acs.molpharmaceut.5b00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.
Collapse
|
7
|
Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, Chu PK, Ping Y, Tang G. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. NANO LETTERS 2015; 15:2732-9. [PMID: 25806599 DOI: 10.1021/acs.nanolett.5b00570] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.
Collapse
MESH Headings
- Administration, Oral
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemistry
- Cell Line, Tumor
- Coated Materials, Biocompatible/chemical synthesis
- Humans
- Immunotherapy, Active/methods
- Nanocapsules/administration & dosage
- Nanocapsules/chemistry
- Nanocapsules/ultrastructure
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Neoplasms, Experimental/pathology
- Salmonella/physiology
- Transformation, Bacterial
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/chemistry
Collapse
Affiliation(s)
- Qinglian Hu
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Min Wu
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Chun Fang
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Changyong Cheng
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Mengmeng Zhao
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Weihuan Fang
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Paul K Chu
- §Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuan Ping
- ∥School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Guping Tang
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
8
|
Jones CH, Chen CK, Chen M, Ravikrishnan A, Zhang H, Gollakota A, Chung T, Cheng C, Pfeifer BA. PEGylated cationic polylactides for hybrid biosynthetic gene delivery. Mol Pharm 2015; 12:846-56. [PMID: 25625426 PMCID: PMC9893229 DOI: 10.1021/mp500683c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic vaccination is predicated on the underlying principle that diseases can be prevented by the controlled introduction of genetic material encoding antigenic proteins from pathogenic organisms to elicit the formation of protective immune responses. Driving this process is the choice of carrier that is responsible for navigating the obstacles associated with gene delivery. In this work, we expand upon a novel class of hybrid biosynthetic gene delivery vectors that are composed of a biomaterial outer coating and a bacterial (Escherichia coli) inner core. Specifically, a series of newly developed biodegradable cationic polylactides (CPLAs) and their PEGylated variants were selected to investigate the role of low polydispersity index (PDI), charge density, and PEGylation upon hybrid vector assembly and gene delivery efficacy. Upon assembly, hybrid vectors mediated increased gene delivery beyond that of the individual bacterial vector in isolation, including assays with increasing medium protein content to highlight shielding properties afforded by the PEG-functionalized CPLA component. Furthermore, after extensive characterization of surface deposition of the polymer, results prompted a new model for describing hybrid vector assembly that includes cellular coating and penetration of the CPLA component. In summary, these results provide new options and insight toward the assembly and application of next-generation hybrid biosynthetic gene delivery vectors.
Collapse
Affiliation(s)
- Charles H. Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Chih-Kuang Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States,Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan, ROC
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Hanguang Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Akhila Gollakota
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Taichun Chung
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States,Corresponding Author: Phone: 716-645-1198. Fax: 716-645-3822.
| |
Collapse
|
9
|
Jones CH, Ravikrishnan A, Chen M, Reddinger R, Kamal Ahmadi M, Rane S, Hakansson AP, Pfeifer BA. Hybrid biosynthetic gene therapy vector development and dual engineering capacity. Proc Natl Acad Sci U S A 2014; 111:12360-5. [PMID: 25114239 PMCID: PMC4151754 DOI: 10.1073/pnas.1411355111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.
Collapse
Affiliation(s)
| | | | - Mingfu Chen
- Departments of Chemical and Biological Engineering and
| | | | | | - Snehal Rane
- Departments of Chemical and Biological Engineering and
| | - Anders P Hakansson
- Microbiology and Immunology, and The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200
| | | |
Collapse
|
10
|
Fine-tuning synthesis of Yersinia pestis LcrV from runaway-like replication balanced-lethal plasmid in a Salmonella enterica serovar typhimurium vaccine induces protection against a lethal Y. pestis challenge in mice. Infect Immun 2010; 78:2529-43. [PMID: 20308296 DOI: 10.1128/iai.00005-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal DeltaasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/P(cro)) (P(R)), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC P(BAD) c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of beta-lactamase, and cloned into pYA4534 under the control of the P(trc) promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain chi9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.
Collapse
|
11
|
Rao SS, Styles D, Kong W, Andrews C, Gorres JP, Nabel GJ. A gene-based avian influenza vaccine in poultry. Poult Sci 2009; 88:860-6. [PMID: 19276436 PMCID: PMC7194532 DOI: 10.3382/ps.2008-00360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 08/29/2008] [Indexed: 12/23/2022] Open
Abstract
Highly pathogenic avian influenza A (HPAI) viruses, specifically H5N1 strains, cause widespread morbidity and mortality in domestic and wild bird populations, and recent outbreaks have resulted in severe economic losses. Although still largely confined to birds, more than 300 human cases resulting in deaths have been reported to the World Health Organization. These sporadic human cases result from direct transmission from infected birds; however, a sustained outbreak of HPAI H5N1 increases the potential for the emergence of a human pandemic strain. One approach to the containment of HPAI H5N1 is the development of vaccines for use in poultry. Currently, the majority of avian influenza vaccines for poultry are traditional whole-virus vaccines produced in eggs. Although highly efficacious, these vaccines are hindered by long production times, inflexibility in quickly altering antigenic composition, and limited breadth of protection. Newer vaccines with more efficient manufacturing processes, enhanced efficacy, and cross-protection against multiple strains would improve preparedness. Reverse genetics technology has provided one such method, and emerging gene-based vaccines offer another approach that reduces dependence on egg-based production and human exposure to pathogenic viruses. Gene-based vaccines also provide rapid manufacturing, enhanced precision and versatility, and the capacity to protect against a broad range of viral subtypes. Vectors for these vaccines include replication-defective viruses, bacterial vectors, and DNA. Here we review the features of gene-based vaccination that may facilitate the control of HPAI H5N1 in poultry, and highlight the development of a hemagglutinin-based multivalent DNA vaccine that confers protection in mice and chickens.
Collapse
Affiliation(s)
- S S Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Toward scalable parts families for predictable design of biological circuits. Curr Opin Microbiol 2008; 11:567-73. [PMID: 18983935 DOI: 10.1016/j.mib.2008.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 09/30/2008] [Accepted: 10/03/2008] [Indexed: 02/06/2023]
Abstract
Our current ability to engineer biological circuits is hindered by design cycles that are costly in terms of time and money, with constructs failing to operate as desired, or evolving away from the desired function once deployed. Synthetic biologists seek to understand biological design principles and use them to create technologies that increase the efficiency of the genetic engineering design cycle. Central to the approach is the creation of biological parts--encapsulated functions that can be composited together to create new pathways with predictable behaviors. We define five desirable characteristics of biological parts--independence, reliability, tunability, orthogonality and composability, and review studies of small natural and synthetic biological circuits that provide insights into each of these characteristics. We propose that the creation of appropriate sets of families of parts with these properties is a prerequisite for efficient, predictable engineering of new function in cells and will enable a large increase in the sophistication of genetic engineering applications.
Collapse
|
13
|
Parsa S, Wang Y, Fuller J, Langer R, Pfeifer BA. A comparison between polymeric microsphere and bacterial vectors for macrophage P388D1 gene delivery. Pharm Res 2008; 25:1202-8. [PMID: 18343983 DOI: 10.1007/s11095-008-9563-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE The purpose of this study was to compare bacterial and polymeric gene delivery devices for the ability to deliver plasmid DNA to a murine macrophage P388D1 cell line. METHODS An 85:15 ratio of poly(lactic-co-glycolic acid) (PLGA) and poly(beta-amino ester) polymers were formulated into microspheres that physically entrapped plasmid DNA encoding for the firefly luciferase reporter gene; whereas, the same plasmid was biologically transformed into a strain of Escherichia coli engineered to produce recombinant listeriolysin O. The two delivery devices were then tested for gene delivery and dosage effects using a macrophage cell line with both assays taking advantage of a 96-well high throughput format to quantify and compare each vector type. RESULTS Gene delivery was comparable for both vectors at higher vector dosages while lower dosages showed an improved delivery for the microsphere vectors. Delivery efficiency (defined as luciferase measurement/mg cellular protein/ng DNA delivered) was 881 luminescence mg(-1) ng(-1) for polymeric microspheres compared to 171 luminescence mg(-1) ng(-1) for the bacterial vectors. CONCLUSION A first head-to-head comparison between polymeric and bacterial gene delivery vectors shows a delivery advantage for polymeric microspheres that must also be evaluated in light of vector production, storage, and future potential.
Collapse
Affiliation(s)
- Saba Parsa
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | |
Collapse
|