1
|
Pineiro-Alonso L, Rubio-Prego I, Lobyntseva A, González-Freire E, Langer R, Alonso MJ. Nanomedicine for targeting brain Neurodegeneration: Critical barriers and circadian rhythm Considerations. Adv Drug Deliv Rev 2025; 222:115606. [PMID: 40383234 DOI: 10.1016/j.addr.2025.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
The development of novel therapies for central nervous system (CNS) diseases, particularly neurodegenerative disorders like Alzheimer's disease (AD), is a critical global health priority. Biotherapeutics, such as monoclonal antibodies (mAbs) and RNA-based therapies, have shown potential for treating brain disorders. However, their clinical progress is limited by their difficult access to their brain targets. At the preclinical level, nanotechnology has been shown, to help these molecules overcome the biological barriers that imped their adequate brain delivery. This review highlights advances in this area and the challenges for the translation to the clinic. Key nanotechnology-based strategies, such as surface modifications utilizing endogenous protein corona, functionalization with targeting ligands, therapeutic ultrasound-mediated microbubble oscillation were particularly analyzed. Additionally, in line with the focus of the Special Issue, this review integrates the concept of chronotherapy, with a focus on AD treatment, highlighting the idea that, by aligning nanoparticle (NP)-based drug delivery with circadian rhythms, it may be possible to improve therapeutic outcomes. Finally, the article analyzes current strategies in CNS drug delivery in clinical trials and provides future directions within this frame, notably in the area of AD.
Collapse
Affiliation(s)
- Laura Pineiro-Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Inés Rubio-Prego
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Alexandra Lobyntseva
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Eva González-Freire
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - María José Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain.
| |
Collapse
|
2
|
Andrianov AK. Delivery of protein therapeutics and vaccines using their multivalent complexes with synthetic polyelectrolytes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:235-259. [PMID: 40122646 DOI: 10.1016/bs.pmbts.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Clinical applications of protein and peptide-based therapeutics and vaccines are rapidly expanding. However, the development of promising new product candidates is often hindered by unfavorable pharmacokinetic profiles, which necessitate the implementation of drug delivery systems to improve protein stability and bioavailability. Non-covalent modification of proteins with synthetic polyelectrolytes, which relies on the strength of cooperative multivalent interactions, may offer potential advantages. In contrast to commonly employed covalent conjugation or microencapsulation methodologies, this technology offers dynamic protection of the protein thereby minimizing the loss of its biological activity, enabling "mix-and-match" formulation approaches, reducing manufacturing costs and simplifying regulatory processes. The range of potential life sciences applications ranges from immunopotentiation and vaccine delivery systems to long-circulating stealth biotherapeutics. This review analyses current technology in the context of intended clinical indications and discusses various synthetic and formulation approaches leading to supramolecular complexation. It evaluates dynamic interactions of complexes with constituents of physiological compartments and attempts to identify critical factors that can affect future advancement of this paradigm-shifting protein delivery technology.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.
| |
Collapse
|
3
|
Bae KH, Shunmuganathan B, Zhang L, Lim A, Gupta R, Wang Y, Chua BL, Wang Y, Gu Y, Qian X, Tan ISL, Purushotorman K, MacAry PA, White KP, Yang YY. Durable cross-protective neutralizing antibody responses elicited by lipid nanoparticle-formulated SARS-CoV-2 mRNA vaccines. NPJ Vaccines 2024; 9:43. [PMID: 38396073 PMCID: PMC10891077 DOI: 10.1038/s41541-024-00835-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses. The mRNA-LNP vaccines have desirable physicochemical characteristics, such as small size (~78 nm), low polydispersity index (<0.13), and high encapsulation efficiency (>90%). We employ in vivo bioluminescence imaging to illustrate the capacity of our LNPs to induce robust mRNA expression in secondary lymphoid organs. In a BALB/c mouse model, a three-dose subcutaneous immunization of mRNA-LNPs vaccines achieved remarkably high levels of cross-neutralization against the Omicron B1.1.529 and BA.2 variants for extended periods of time (28 weeks) with good safety profiles for all constructs when used in a booster regime, including the YN2016C bat virus sequences. These findings have important implications for the design of mRNA-LNP vaccines that aim to trigger durable cross-protective immunity against the current and newly emerging variants.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Bhuvaneshwari Shunmuganathan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Li Zhang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Andrew Lim
- Provaxus, Inc, Dover, Delaware, 19901, USA
| | - Rashi Gupta
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Yanming Wang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Boon Lin Chua
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Yang Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Republic of Singapore
| | - Yue Gu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Xinlei Qian
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Isabelle Siang Ling Tan
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Kiren Purushotorman
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Republic of Singapore.
- NUS-Cambridge Immune Phenotyping Centre (NCIPC), Life Sciences Institute, National University of Singapore, Singapore, 117456, Republic of Singapore.
| | - Kevin P White
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Republic of Singapore.
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Republic of Singapore.
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.
| |
Collapse
|
4
|
Mohammad-Rafiei F, Khojini JY, Ghazvinian F, Alimardan S, Norioun H, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Cell membrane biomimetic nanoparticles in drug delivery. Biotechnol Appl Biochem 2023; 70:1843-1859. [PMID: 37387120 DOI: 10.1002/bab.2487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Despite the efficiency of nanoparticle (NP) therapy, in vivo investigations have shown that it does not perform as well as in vitro. In this case, NP confronts many defensive hurdles once they enter the body. The delivery of NP to sick tissue is inhibited by these immune-mediated clearance mechanisms. Hence, using a cell membrane to hide NP for active distribution offers up a new path for focused treatment. These NPs are better able to reach the disease's target location, leading to enhanced therapeutic efficacy. In this emerging class of drug delivery vehicles, the inherent relation between the NPs and the biological components obtained from the human body was utilized, which mimic the properties and activities of native cells. This new technology has shown the viability of using biomimicry to evade immune system-provided biological barriers, with an emphasis on restricting clearance from the body before reaching its intended target. Furthermore, by providing signaling cues and transplanted biological components that favorably change the intrinsic immune response at the disease site, the NPs would be capable interacting with immune cells regarding the biomimetic method. Thus, we aimed to provide a current landscape and future trends of biomimetic NPs in drug delivery.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Ghazvinian
- Department of Life science and biotechnology, Faculty of Natural Sciences, University of Shahid Beheshti, Tehran, Iran
| | - Sajad Alimardan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
5
|
Banerjee A, Kajol, Bajaj G, Singhal NK, Pathak RK. Synthetically Tunable Suprahybrid Nanoparticle Platform for the Efficacious Delivery of Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37927061 DOI: 10.1021/acsami.3c11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The discovery of lipid-hybrid nanosystems has offered potential solutions to various drug delivery and theranostic challenges. However, in many instances, the commonly used lipids and other components in these systems often pose challenges related to their solubility, physicochemical properties, immune compatibility, and limited synthetic tunability. In this work, we introduce a synthetically tunable supramolecular scaffold with amphiphilic characteristics based on the calix[4]arene macrocyclic system. We designed and synthesized two novel calix[4]arene-polyethylene glycol (PEG) conjugates, termed Cal-P1 and Cal-P2, and these were characterized utilizing a wide range of spectroscopic and analytical methods. The rational design of Cal-P1 and Cal-P2 demonstrates their utility in forming stable blended nanospheres with sustained drug release characteristics. The synergistic blending of PLGA and the calixarene scaffold (Cal-P1 and Cal-P2) in constructing long-lasting and controlled-release nanoparticles (NPs), which are optimized for encapsulating Nile Red dye, and their successful internalization and retention in HeLa cancer cells are demonstrated through in vitro assays. The potential of these NPs as sustained therapeutic carriers is investigated in vivo, showing improved retention compared to free dye with negligible toxicity. The successful design and construction of Cal-P1 and Cal-P2 nanosystems represent a new paradigm for addressing drug loading challenges, opening up opportunities for the development of highly efficient, synthetically tunable alternative adjuvants for drug encapsulation and delivery.
Collapse
Affiliation(s)
- Arka Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| | - Kajol
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| | - Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
- Department of Biotechnology, Punjab University, Sector 25, Chandigarh 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Rakesh Kumar Pathak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| |
Collapse
|
6
|
Andrianov AK. Noncovalent PEGylation of protein and peptide therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1897. [PMID: 37138514 DOI: 10.1002/wnan.1897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Clinical applications of protein therapeutics-an advanced generation of drugs characterized by high biological specificity-are rapidly expanding. However, their development is often impeded by unfavorable pharmacokinetic profiles and largely relies on the use of drug delivery systems to prolong their in vivo half-life and suppress undesirable immunogenicity. Although a commercially established PEGylation technology based on protein conjugation with poly(ethylene glycol) (PEG)-protective steric shield resolves some of the challenges, the search for alternatives continues. Noncovalent PEGylation, which mainly relies on multivalent (cooperative) interactions and high affinity (host-guest) complexes formed between protein and PEG offers a number of potential advantages. Among them are dynamic or reversible protection of the protein with minimal loss of biological activity, drastically lower manufacturing costs, "mix-and-match" formulations approaches, and expanded scope of PEGylation targets. While a great number of innovative chemical approaches have been proposed in recent years, the ability to effectively control the stability of noncovalently assembled protein-PEG complexes under physiological conditions presents a serious challenge for the commercial development of the technology. In an attempt to identify critical factors affecting pharmacological behavior of noncovalently linked complexes, this Review follows a hierarchical analysis of various experimental techniques and resulting supramolecular architectures. The importance of in vivo administration routes, degradation patterns of PEGylating agents, and a multitude of potential exchange reactions with constituents of physiological compartments are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
7
|
Hilton KLF, Tolley H, Ortega-Roldan JL, Thompson GS, Sutton JM, Hind CK, Hiscock JR. Phospholipid headgroup composition modulates the molecular interactions and antimicrobial effects of sulfobetaine zwitterionic detergents against the "ESKAPE" pathogen Pseudomonas aeruginosa. Chem Commun (Camb) 2023; 59:10504-10507. [PMID: 37644759 DOI: 10.1039/d3cc02320f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We determine the efficacy for three known structurally related, membrane active detergents against multidrug resistant and wild type strains of Pseudomonas aeruginosa. Accessible solution state NMR experiments are used to quantify phospholipid headgroup composition of the microbial membranes and to gain molecular level insight into antimicrobial mode of action.
Collapse
Affiliation(s)
- Kira L F Hilton
- Division of Natural Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| | - Howard Tolley
- UKHSA, Science Group, Manor Farm Road, Salisbury, SP4 0JG, UK.
| | | | - Gary S Thompson
- Division of Natural Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| | - J Mark Sutton
- UKHSA, Science Group, Manor Farm Road, Salisbury, SP4 0JG, UK.
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences King's College London, SE1 9NQ, UK
| | | | - Jennifer R Hiscock
- Division of Natural Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
8
|
Hilton KLF, Manwani C, Boles JE, White LJ, Ozturk S, Garrett MD, Hiscock JR. The phospholipid membrane compositions of bacterial cells, cancer cell lines and biological samples from cancer patients. Chem Sci 2021; 12:13273-13282. [PMID: 34777745 PMCID: PMC8529332 DOI: 10.1039/d1sc03597e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
While cancer now impacts the health and well-being of more of the human population than ever before, the exponential rise in antimicrobial resistant (AMR) bacterial infections means AMR is predicted to become one of the greatest future threats to human health. It is therefore vital that novel therapeutic strategies are developed that can be used in the treatment of both cancer and AMR infections. Whether the target of a therapeutic agent be inside the cell or in the cell membrane, it must either interact with or cross this phospholipid barrier to elicit the desired cellular effect. Here we summarise findings from published research into the phospholipid membrane composition of bacterial and cancer cell lines and biological samples from cancer patients. These data not only highlight key differences in the membrane composition of these biological samples, but also the methods used to elucidate and report the results of this analogous research between the microbial and cancer fields.
Collapse
Affiliation(s)
- Kira L F Hilton
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Chandni Manwani
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
- School of Biosciences, University of Kent Canterbury Kent CT2 7NJ UK
| | - Jessica E Boles
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Lisa J White
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Sena Ozturk
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | | | - Jennifer R Hiscock
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| |
Collapse
|
9
|
Rabadán AT. Neurochips: Considerations from a neurosurgeon's standpoint. Surg Neurol Int 2021; 12:173. [PMID: 34084601 PMCID: PMC8168797 DOI: 10.25259/sni_591_2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/26/2021] [Indexed: 11/04/2022] Open
Abstract
A neurochip comprises a small device based on the brain-machine interfaces that emulate the functioning synapses. Its implant in the human body allows the interaction of the brain with a computer. Although the data-processing speed is still slower than that of the human brain, they are being developed. There is no ethical conflict as long as it is used for neural rehabilitation or to supply impaired or missing neurological functions. However, other applications emerge as controversial. To the best of our knowledge, there have no been publications about the neurosurgical role in the application of this neurotechnological advance. Deliberation on neurochips is primarily limited to a small circle of scholars such as neurotechnological engineers, artists, philosophers, and bioethicists. Why do we address neurosurgeons? They will be directly involved as they could be required to perform invasive procedures. Future neurosurgeons will have to be a different type of neurosurgeon. They will be part of interdisciplinary teams interacting with computer engineers, neurobiologist, and ethicists. Although a neurosurgeon is not expected to be an expert in all areas, they have to be familiar with them; they have to be prepared to determine indications, contraindications and risks of the procedures, participating in the decision-making processes, and even collaborating in the design of devices to preserve anatomic structures. Social, economic, and legal aspects are also inherent to the neurosurgical activity; therefore, these aspects should also be considered.
Collapse
Affiliation(s)
- Alejandra T Rabadán
- Division of Neurosurgery, Institute of Medical Research Dr Alfredo Lanari, University of Buenos Aires and Academic Council on Ethics in Medicine, Buenos Aires, Argentina
| |
Collapse
|
10
|
Pappuru S, Ramkumar V, Chakraborty D. Benzoxazole phenoxide ligand supported group
IV
catalysts and their application for the ring‐opening polymerization of
rac
‐lactide and
ε
‐caprolactone. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sreenath Pappuru
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | | | | |
Collapse
|
11
|
Stewart S, Domínguez-Robles J, McIlorum VJ, Gonzalez Z, Utomo E, Mancuso E, Lamprou DA, Donnelly RF, Larrañeta E. Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Mol Pharm 2020; 17:3487-3500. [PMID: 32672976 PMCID: PMC7482401 DOI: 10.1021/acs.molpharmaceut.0c00515] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/18/2023]
Abstract
Implantable devices are versatile and promising drug delivery systems, and their advantages are well established. Of these advantages, long-acting drug delivery is perhaps the most valuable. Hydrophilic compounds are particularly difficult to deliver for prolonged times. This work investigates the use of poly(caprolactone) (PCL)-based implant coatings as a novel strategy to prolong the delivery of hydrophilic compounds from implantable devices that have been prepared by additive manufacturing (AM). Hollow implants were prepared from poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) using fused filament fabrication (FFF) AM and subsequently coated in a PCL-based coating. Coatings were prepared by solution-casting mixtures of differing molecular weights of PCL and poly(ethylene glycol) (PEG). Increasing the proportion of low-molecular-weight PCL up to 60% in the formulations decreased the crystallinity by over 20%, melting temperature by over 4 °C, and water contact angle by over 40°, resulting in an increased degradation rate when compared to pure high-molecular-weight PCL. Addition of 30% PEG to the formulation increased the porosity of the formulation by over 50% when compared to an equivalent PCL-only formulation. These implants demonstrated in vitro release rates for hydrophilic model compounds (methylene blue and ibuprofen sodium) ranging from 0.01 to 34.09 mg/day, depending on the drug used. The versatility of the devices produced in this work and the range of release rates achievable show great potential. Implants could be specifically developed in order to match the specific release rate required for a number of drugs for a wide range of conditions.
Collapse
Affiliation(s)
- Sarah
A. Stewart
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Juan Domínguez-Robles
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Victoria J. McIlorum
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Zoilo Gonzalez
- Instituto
De Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049 Madrid, Spain
| | - Emilia Utomo
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Elena Mancuso
- Nanotechnology
and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown BT37 0QB, U.K.
| | - Dimitrios A. Lamprou
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Eneko Larrañeta
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
12
|
Ashton MD, Appen IC, Firlak M, Stanhope NE, Schmidt CE, Eisenstadt WR, Hur B, Hardy JG. Wirelessly triggered bioactive molecule delivery from degradable electroactive polymer films. POLYM INT 2020. [DOI: 10.1002/pi.6089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mark D Ashton
- Department of Chemistry Lancaster University Lancaster UK
| | - Isabel C Appen
- Department of Chemistry Lancaster University Lancaster UK
| | - Melike Firlak
- Department of Chemistry Lancaster University Lancaster UK
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
| | - William R Eisenstadt
- Department of Electrical and Computer Engineering University of Florida, New Engineering Building Gainesville FL USA
| | - Byul Hur
- Department of Engineering Technology and Industrial Distribution Texas A&M University College Station TX USA
| | - John G Hardy
- Department of Chemistry Lancaster University Lancaster UK
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
- Materials Science Institute, Lancaster University Lancaster UK
| |
Collapse
|
13
|
Andrianov AK, Marin A, Deng J, Fuerst TR. Protein-loaded soluble and nanoparticulate formulations of ionic polyphosphazenes and their interactions on molecular and cellular levels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110179. [PMID: 31753403 PMCID: PMC6903416 DOI: 10.1016/j.msec.2019.110179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/09/2019] [Accepted: 09/08/2019] [Indexed: 11/21/2022]
Abstract
Nanoparticulate and water-soluble formulations of ionic polyphosphazenes and protein cargo - lysozyme (LYZ) were prepared by their self-assembly in aqueous solutions at near physiological pH (pH 7.4) in the presence and absence of an ionic cross-linker - spermine tetrahydrochloride. Efficiency of LYZ encapsulation, physico-chemical characteristics of formulations, and the effect of reaction parameters were investigated using asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) methods. The effect of both polymer formulations on encapsulated LYZ was evaluated using soluble oligosaccharide substrate, whereas their ability to present the protein to cellular surfaces was assessed by measuring enzymatic activity of encapsulated LYZ against Micrococcus lysodeikticus cells. It was found that both soluble and cross-linked polymer matrices reduce lysis of bacterial cells by LYZ, whereas activity of encapsulated protein against oligosaccharide substrate remained practically unchanged indicating no adverse effect of polyphosphazene on protein integrity. Moreover, nanoparticulate formulations display distinctly different behavior in cellular assays when compared to their soluble counterparts. LYZ encapsulated in polyphosphazene nanoparticles shows approximately 2.5-fold higher activity in its ability to lyse cells as compared with water-soluble LYZ-PCPP formulations. A new approach to PEGylation of polyphosphazene nanoparticles was also developed. The method utilizes a new ionic polyphosphazene derivative, which contains graft (polyethylene glycol) chains. PEGylation allows for an improved control over the size of nanoparticles and broader modulation of their cross-linking density, while still permitting for protein presentation to cellular substrates.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States.
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States
| | - Joseph Deng
- Department of Biology, College of Computer, Mathematical, and Natural Sciences, 1210 Biology - Psychology Building, 4094 Campus Drive, College Park, MD 20742, United States
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States; Department of Cell Biology and Molecular Genetics, 1109 Microbiology Building, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
14
|
Razavi S, Lin B, Lee KYC, Tu RS, Kretzschmar I. Impact of Surface Amphiphilicity on the Interfacial Behavior of Janus Particle Layers under Compression. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15813-15824. [PMID: 31269790 DOI: 10.1021/acs.langmuir.9b01664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Langmuir monolayers of silica/gold Janus particles with two different degrees of amphiphilicity have been examined to study the significance of particle surface amphiphilicity on the structure and mechanical properties of the interfacial layers. The response of the layers to the applied compression provides insight into the nature and strength of the interparticle interactions. Different collapse modes observed for the interfacial layers are linked to the amphiphilicity of Janus particles and their configuration at the interface. Molecular dynamics simulations on nanoparticles with similar contact angles provide insight on the arrangement of particles at the interface and support our conclusion that the interfacial configuration and collapse of anisotropic particles at the air/water interface are controlled by particle amphiphilicity.
Collapse
Affiliation(s)
- Sepideh Razavi
- Chemical, Biological, and Materials Engineering , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | | | | | - Raymond S Tu
- Department of Chemical Engineering , City College of the City University of New York , New York , New York 10031 , United States
| | - Ilona Kretzschmar
- Department of Chemical Engineering , City College of the City University of New York , New York , New York 10031 , United States
| |
Collapse
|
15
|
Hakkou K, Molina-Pinilla I, Rangel-Núñez C, Suárez-Cruz A, Pajuelo E, Bueno-Martínez M. Synthesis of novel (bio) degradable linear azo polymers conjugated with olsalazine. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Javanbakht S, Shaabani A. Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int J Biol Macromol 2019; 123:389-397. [DOI: 10.1016/j.ijbiomac.2018.11.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/28/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023]
|
17
|
Li X, Zhang Y, Ma Z, He C, Wu Y, An Q. Designing cancer nanodrugs that are highly loaded, pH-responsive, photothermal, and possess a favored morphology: A hierarchical assembly of DOX and layer-by-layer modified rGO. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Bratek-Skicki A, Cristaudo V, Savocco J, Nootens S, Morsomme P, Delcorte A, Dupont-Gillain C. Mixed Polymer Brushes for the Selective Capture and Release of Proteins. Biomacromolecules 2019; 20:778-789. [PMID: 30605604 DOI: 10.1021/acs.biomac.8b01353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Selective protein adsorption is a key challenge for the development of biosensors, separation technologies, and smart materials for medicine and biotechnologies. In this work, a strategy was developed for selective protein adsorption, based on the use of mixed polymer brushes composed of poly(ethylene oxide) (PEO), a protein-repellent polymer, and poly(acrylic acid) (PAA), a weak polyacid whose conformation changes according to the pH and ionic strength of the surrounding medium. A mixture of lysozyme (Lyz), human serum albumin (HSA), and human fibrinogen (Fb) was used to demonstrate the success of this strategy. Polymer brush formation and protein adsorption were monitored by quartz crystal microbalance, whereas protein identification after adsorption from the mixture was performed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) with principal component analysis and gel electrophoresis with silver staining. For the ToF-SIMS measurements, adsorption was first performed from single-protein solutions in order to identify characteristic peaks of each protein. Next, adsorption was performed from the mixture of the three proteins. Proteins were also desorbed from the brushes and analyzed by gel electrophoresis with silver staining for further identification. Selective adsorption of Lyz from a mixture of Lyz/HSA/Fb was successfully achieved at pH 9.0 and ionic strength of 10-3 M, while Lyz and HSA, but not Fb, were adsorbed at ionic strength 10-2 M and pH 9.0. The results demonstrate that by controlling the ionic strength, selective adsorption can be achieved from protein mixtures on PEO/PAA mixed brushes, predominantly because of the resulting control on electrostatic interactions. In well-chosen conditions, the selectively adsorbed proteins can also be fully recovered from the brushes by a simple ionic strength stimulus. The developed systems will find applications as responsive biointerfaces in the fields of separation technologies, biosensing, drug delivery, and nanomedicine.
Collapse
Affiliation(s)
- Anna Bratek-Skicki
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium.,Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , PL30239 Krakow , Poland
| | - Vanina Cristaudo
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| | - Jérôme Savocco
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud 4-5 (L7.07.14) , 1348 Louvain-la-Neuve , Belgium
| | - Sylvain Nootens
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud 4-5 (L7.07.14) , 1348 Louvain-la-Neuve , Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud 4-5 (L7.07.14) , 1348 Louvain-la-Neuve , Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| |
Collapse
|
19
|
Chen S, Huang B, Pei W, Xu Y, Jiang Z, Li J, Wang L, Niu C. Magnetically targeted nanoparticles for imaging-guided photothermal therapy of cancer. RSC Adv 2019; 9:38154-38164. [PMID: 35541810 PMCID: PMC9075904 DOI: 10.1039/c9ra08281f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 01/16/2023] Open
Abstract
Over the past several decades, nanocarriers have constituted a vital research area for accurate tumor therapy. Herein, magnetically targeted nanoparticles (IRFes) for photothermal therapy were generated by integrating IR780, a molecule with strong emission and absorption in the NIR spectrum and the ability to produce heat after laser irradiation, with Fe3O4 nanoparticles (NPs). These IRFes were guided to the tumor site by the application of an external magnetic field. In particular, the strong NIR absorption of IR780 was used for NIRF imaging, and we also demonstrated effective magnetic targeting for the photothermal ablation of tumors. In vitro cell viability and in vivo antitumor experiments showed that these IRFes can ablate 4T1 cells or transplanted 4T1 cell tumors when exposed to 808 nm laser irradiation and a magnetic field. In vivo experiments showed that IRFes only act on tumors, do not damage other organs and can be used to image tumors. These results demonstrate the enormous potential of local photothermal therapy for cancer under the guidance of external magnetic fields and reveal the prospect for the use of multifunctional nanoparticles in tumor therapy. Magnetically targeted nanoparticles (IRFes) for photothermal therapy were generated by integrating IR780, a molecule with strong emission and absorption in the NIR spectrum and the ability to produce heat after laser irradiation, with Fe3O4 nanoparticles.![]()
Collapse
Affiliation(s)
- Sijie Chen
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Biying Huang
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Wenjing Pei
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Yan Xu
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Zichao Jiang
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Jingyi Li
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Long Wang
- Department of Orthopedics
- Xiangya Hospital
- Central South University
- Changsha
- China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| |
Collapse
|
20
|
Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res 2018; 6:25. [PMID: 30181921 PMCID: PMC6115422 DOI: 10.1038/s41413-018-0025-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation. Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
21
|
Selvam R, Ramasamy S, Mohiyuddin S, Enoch IVMV, Gopinath P, Filimonov D. Molecular encapsulator-appended poly(vinyl alcohol) shroud on ferrite nanoparticles. Augmented cancer-drug loading and anticancer property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:125-133. [PMID: 30274045 DOI: 10.1016/j.msec.2018.07.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 07/13/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles (MNPs) have the potency to deliver cancer drugs assisted by the application of a magnetic field. In this paper, we present the design of magnesium ferrite nanoparticles of size suitable for drug delivery. A coating polymer, poly(vinyl alcohol), tethered with a tapered cone-shaped cyclic oligosachcharide, β-cyclodextrin (β-CD) is synthesized and used to wrap and disperse the MNPs. The magnetic properties are explored using vibrating sample magnetometry and Mössbauer spectroscopy. The ∑130 nm MNPs, shrouded with the PVA-CD conjugate allows a high amount of the cancer drug, camptothecin, to be loaded on the nanocarrier. Cytotoxicity studies reveal that the loaded drug retains its potency against HEK 293 cells and the cells are sensitive to the treatment by the drug-loaded nanocarrier.
Collapse
Affiliation(s)
- Rajakar Selvam
- Nanotoxicology Research Lab, Department of Nanosciences, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India
| | - Sivaraj Ramasamy
- Chemistry Research Lab, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India
| | - Shanid Mohiyuddin
- Department of Biotechnology/Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Israel V M V Enoch
- Nanotoxicology Research Lab, Department of Nanosciences, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India; Chemistry Research Lab, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India.
| | - Packirisamy Gopinath
- Department of Biotechnology/Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Dmitry Filimonov
- Radiochemistry branch, Department of Chemistry, GSP-1 Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
22
|
Andrianov AK, Marin A, Martinez AP, Weidman JL, Fuerst TR. Hydrolytically Degradable PEGylated Polyelectrolyte Nanocomplexes for Protein Delivery. Biomacromolecules 2018; 19:3467-3478. [PMID: 29953203 DOI: 10.1021/acs.biomac.8b00785] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel oppositely charged polyphosphazene polyelectrolytes containing grafted poly(ethylene glycol) (PEG) chains were synthesized as modular components for the assembly of biodegradable PEGylated protein delivery vehicles. These macromolecular counterparts, which contained either carboxylic acid or tertiary amino groups, were then formulated at near physiological conditions into supramolecular assemblies of nanoscale level, below 100 nm. Nanocomplexes with electroneutral surface charge, as assessed by zeta potential measurements, were stable in aqueous solutions, which suggests their compact polyelectrolyte complex "core"-hydrophilic PEG "shell" structure. Investigation of PEGylated polyphosphazene nanocomplexes as agents for noncovalent PEGylation of the therapeutic protein l-asparaginase (L-ASP) in vitro demonstrated their ability to dramatically reduce protein antigenicity, as measured by antibody binding using enzyme linked immunosorbent assay (ELISA). Encapsulation in nanocomplexes did not affect enzymatic activity of L-ASP, but improved its thermal stability and proteolytic resistance. Gel permeation chromatography (GPC) experiments revealed that all synthesized polyphosphazenes exhibited composition controlled hydrolytic degradability in aqueous solutions at neutral pH and showed greater stability at lower temperatures. Overall, novel hydrolytically degradable polyphosphazene polyelectrolytes capable of spontaneous self-assembly into PEGylated nanoparticulates in aqueous solutions can potentially enable a simple and effective approach to modifying therapeutic proteins without the need for their covalent modification.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Andre P Martinez
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Jacob L Weidman
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States.,Department of Cell Biology and Molecular Genetics , 1109 Microbiology Building , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
23
|
Xia Y, Wang N, Qin Z, Wu J, Wang F, Zhang L, Xia X, Li J, Lu Y. Polycarbonate-based core-crosslinked redox-responsive nanoparticles for targeted delivery of anticancer drug. J Mater Chem B 2018; 6:3348-3357. [PMID: 32254392 DOI: 10.1039/c8tb00346g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We reported a facile and efficient strategy for the construction of polycarbonate-based core-crosslinked redox-responsive nanoparticles (CC-RRNs), which can efficiently regulate the drug loading content and redox-responsive drug release. A series of CC-RRNs for delivery of doxorubicin (DOX) were synthesized by the click reaction between alkyne-bearing amphiphilic block copolymer PEG-b-poly(MPC)n (PMPC) and azide-terminated α-lipoic acid derivative (LA) and 6-bromohexanoic acid derivative (AHE) at different ratios, followed by introduction of crosslinked networks under a catalytic amount of dithiothreitol (DTT). Dynamic light scattering (DLS) experiments showed that the CC-RRNs presented more excellent stability over non-crosslinked unresponsive nanoparticles (NC-URNs) under physiological conditions. Interestingly, the DOX loading content of nanoparticles (NPs) increased as the proportion of LA moieties increased, and the maximum value was up to 20.0 ± 0.6%, close to the theoretical value of 23.1%. The in vitro redox-responsive release of DOX and MTT assays confirmed that the ratio of LA-to-AHE of PMPC-based polymers not only determined the ultimate drug release of DOX-loaded CC-RRNs in a reductive environment, but also dominated the cytotoxicity towards HepG2 cells. Confocal laser scanning microscopy (CLMS) and flow cytometry further proved the enhancement of cellular uptake and tumor accumulation. This facile strategy overcomes tedious fabrication procedures for drug nanocarriers, offers an opportunity for regulating the functionality of NPs, and thus paves the pathway for scale-up production of biodegradable drug carriers with biocompatibility, stability and targetability.
Collapse
Affiliation(s)
- Yingchun Xia
- Institute of Polymer Science, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ahn J, Ko J, Lee S, Yu J, Kim Y, Jeon NL. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv Drug Deliv Rev 2018; 128:29-53. [PMID: 29626551 DOI: 10.1016/j.addr.2018.04.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 01/03/2023]
Abstract
Microfluidic technologies employ nano and microscale fabrication techniques to develop highly controllable and reproducible fluidic microenvironments. Utilizing microfluidics, lead compounds can be produced with the controlled physicochemical properties, characterized in a high-throughput fashion, and evaluated in in vitro biomimetic models of human organs; organ-on-a-chip. As a step forward from conventional in vitro culture methods, microfluidics shows promise in effective preclinical testing of nanoparticle-based drug delivery. This review presents a curated selection of state-of-the-art microfluidic platforms focusing on the fabrication, characterization, and assessment of nanoparticles for drug delivery applications. We also discuss the current challenges and future prospects of nanoparticle drug delivery development using microfluidics.
Collapse
|
25
|
Timin AS, Litvak MM, Gorin DA, Atochina-Vasserman EN, Atochin DN, Sukhorukov GB. Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization. Adv Healthc Mater 2018; 7. [PMID: 29193876 DOI: 10.1002/adhm.201700818] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/18/2017] [Indexed: 12/27/2022]
Abstract
Cell functionalization with recently developed various nano- and microcarriers for therapeutics has significantly expanded the application of cell therapy and targeted drug delivery for the effective treatment of a number of diseases. The aim of this progress report is to review the most recent advances in cell-based drug vehicles designed as biological transporter platforms for the targeted delivery of different drugs. For the design of cell-based drug vehicles, different pathways of cell functionalization, such as covalent and noncovalent surface modifications, internalization of carriers are considered in greater detail together with approaches for cell visualization in vivo. In addition, several animal models for the study of cell-assisted drug delivery are discussed. Finally, possible future developments and applications of cell-assisted drug vehicles toward targeted transport of drugs to a designated location with no or minimal immune response and toxicity are addressed in light of new pathways in the field of nanomedicine.
Collapse
Affiliation(s)
- Alexander S. Timin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Maxim M. Litvak
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Dmitry A. Gorin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- Skoltech Center of Photonics & Quantum Materials; Skolkovo Institute of Science and Technology; Skolkovo Innovation Center; Building 3 Moscow 143026 Russian Federation
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- RASA Center; Kazan Federal University; 18 Kremlyovskaya Street Kazan 42008 Russian Federation
- Pulmonary; Allergy and Critical Care Division; University of Pennsylvania Perelman School of Medicine; Philadelphia PA 19104 USA
| | - Dmitriy N. Atochin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Cardiovascular Research Center; Massachusetts General Hospital; 149 East, 13 Street Charlestown MA 02129 USA
| | - Gleb B. Sukhorukov
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
26
|
Ramasamy S, Samathanam B, Reuther H, Adyanpuram MNMS, Enoch IVMV, Potzger K. Molecular encapsulator on the surface of magnetic nanoparticles. Controlled drug release from calcium Ferrite/Cyclodextrin–tethered polymer hybrid. Colloids Surf B Biointerfaces 2018; 161:347-355. [DOI: 10.1016/j.colsurfb.2017.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
|
27
|
Kummari A, Pappuru S, Chakraborty D. Fully alternating and regioselective ring-opening copolymerization of phthalic anhydride with epoxides using highly active metal-free Lewis pairs as a catalyst. Polym Chem 2018. [DOI: 10.1039/c8py00715b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cooperative metal-free Lewis pairs effectively catalysed controlled ring-opening copolymerization of phthalic anhydride (PA) with epoxides.
Collapse
Affiliation(s)
- Anjaneyulu Kummari
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Sreenath Pappuru
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Debashis Chakraborty
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
28
|
Layer-by-layer assembly of hyaluronic acid/carboxymethylchitosan polyelectrolytes on the surface of aminated mesoporous silica for the oral delivery of 5-fluorouracil. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, Yu H, Li Y. Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics 2017; 7:2575-2592. [PMID: 28819448 PMCID: PMC5558554 DOI: 10.7150/thno.20118] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Many treatments have been developed so far, although effective, suffer from severe side effects due to low selectivity. Nanoparticles can improve the therapeutic index of their delivered drugs by specifically transporting them to tumors. However, their exogenous nature usually leads to fast clearance by mononuclear phagocytic system. Recently, cell membrane-camouflaged nanoparticles have been investigated for cancer therapy, taking advantages of excellent biocompatibility and versatile functionality of cell membranes. In this review, we summarized source materials and procedures that have been used for constructing and characterizing biomimetic nanoparticles with a focus on their application in cancer therapy.
Collapse
Affiliation(s)
- Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghan Su
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Ran
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
30
|
Martinez AP, Qamar B, Fuerst TR, Muro S, Andrianov AK. Biodegradable "Smart" Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles. Biomacromolecules 2017; 18:2000-2011. [PMID: 28525259 PMCID: PMC7206414 DOI: 10.1021/acs.biomac.7b00537] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing a polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to an inorganic phosphorus-nitrogen backbone, were characterized by a suite of physicochemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition-dependent hydrolytic degradability in aqueous solutions at neutral pH. Their formulations were stable at lower temperatures, potentially indicating adequate shelf life, but were characterized by accelerated degradation kinetics at elevated temperatures, including 37 °C. It was found that synthesized polyphosphazenes are capable of environmentally triggered self-assembly to produce nanoparticles with narrow polydispersity in the size range of 150-700 nm. Protein loading capacity of copolymers has been validated via their ability to noncovalently bind avidin without altering biological functionality. Acid-induced membrane-disruptive activity of polyphosphazenes has been established with an onset corresponding to the endosomal pH range and being dependent on polymer composition. The synthesized polyphosphazenes facilitated cell-surface interactions followed by time-dependent, vesicular-mediated, and saturable internalization of a model protein cargo into cancer cells, demonstrating the potential for intracellular delivery.
Collapse
Affiliation(s)
- Andre P. Martinez
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States
| | - Bareera Qamar
- Neurobiology and Physiology Program of the Department of Biology, 1210 Biology-Psychology Building, University of Maryland, College Park, MD 20742, United States
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States
- Department of Cell Biology and Molecular Genetics, 1109 Microbiology Building, University of Maryland, College Park, MD 20742, United States
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States
- Fischell Department of Bioengineering, 2330 Jeong Kim Building, University of Maryland, College Park, MD 20742, United States
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States
| |
Collapse
|
31
|
Wang Y, Zinonos I, Zysk A, Panagopoulos V, Kaur G, Santos A, Losic D, Evdokiou A. In vivo toxicological assessment of electrochemically engineered anodic alumina nanotubes: a study of biodistribution, subcutaneous implantation and intravenous injection. J Mater Chem B 2017; 5:2511-2523. [PMID: 32264557 DOI: 10.1039/c7tb00222j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrochemically engineered anodic alumina nanotubes (AANTs) have recently shown good in vitro biocompatibility. However, in vivo toxicological and pathological studies are required to clarify the bio-safety of this novel nanomaterial. Herein, we present a pioneering pilot toxicity study on AANTs in immune-competent murine models (Balb/c mice, 8 weeks). AANTs were administered by intravenous (IV) injection and subcutaneous (SC) implantation routes considering the future toxicological implications associated with this nanomaterial for potential biomedical applications. AANTs, 736 nm long and 90 nm in outer diameter, were chosen as a nanomaterial model. We demonstrate that IV injected AANTs do not have any effect on the mortality or body weight of these animal models within 28 days at three different doses (20, 50, 100 mg kg-1). The biodistribution of AANTs characterized by fluorescence imaging and inductively coupled plasma revealed the accumulation of AANTs in the liver and spleen after IV injection. When AANTs were injected intravenously, the highest dose of 100 mg kg-1 caused moderate hepatotoxicity, identified by histopathological analysis. The implantation of AANTs subcutaneously and directly under the skin leads to an inflammatory response, which is a typical foreign body reaction. Taken together, this work provides new insights into the toxicity patterns of new nanomaterials such as AANTs and establishes a rationale for the design of functional AANTs for future biomedical applications.
Collapse
Affiliation(s)
- Ye Wang
- School of Chemical Engineering, The University of Adelaide, Engineering North Building, 5005 Adelaide, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dang M, Koh AJ, Danciu T, McCauley LK, Ma PX. Preprogrammed Long-Term Systemic Pulsatile Delivery of Parathyroid Hormone to Strengthen Bone. Adv Healthc Mater 2017; 6:10.1002/adhm.201600901. [PMID: 27930873 PMCID: PMC5299037 DOI: 10.1002/adhm.201600901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) is the only US Food and Drug Administration (FDA)-approved anabolic agent for the treatment of osteoporosis. The anabolic action of PTH depends on the mode of PTH administration. Pulsatile administration promotes bone formation, however continuous PTH exposure results in bone resorption. In addition, the therapeutic effect of PTH is optimal when the dose and duration fit the therapeutic window. Current PTH treatment requires daily injection, which is neither a convenient nor a favorable choice of patients. Here, an implantable and biodegradable device capable of long-term pulsatile delivery of PTH is developed as a patient-friendly alternative. The advanced materials and fabrication techniques developed in this work enable us to preprogram a pulsatile delivery device to systemically deliver 21 daily pulses of PTH that build bone in vivo. In addition, the device is biodegradable and absorbable in vivo so that no retraction procedure is needed. Therefore, this implantable and biodegradable pulsatile device holds promise to promote bone growth and treat various conditions of bone loss without the burden of daily injections or secondary surgeries.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy J. Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Theodora Danciu
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Abstract
Principles rooted in supramolecular chemistry have empowered new and highly functional therapeutics and drug delivery devices. This general approach offers elegant tools rooted in molecular and materials engineered to address the many challenges faced in treating disease.
Collapse
Affiliation(s)
- Matthew J. Webber
- Department of Chemical & Biomolecular Engineering
- University of Notre Dame
- Notre Dame IN 46556
- USA
- Department of Chemistry & Biochemistry
| | - Robert Langer
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- David H. Koch Institute for Integrative Cancer Research
| |
Collapse
|
34
|
Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1:109-121. [PMID: 29744399 PMCID: PMC5883972 DOI: 10.1016/j.bioactmat.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of HIV has long faced the challenge of high mutation rates leading to rapid development of resistance, with ongoing need to develop new methods to effectively fight the infection. Traditionally, early HIV medications were designed to inhibit RNA replication and protein production through small molecular drugs. Peptide based therapeutics are a versatile, promising field in HIV therapy, which continues to develop as we expand our understanding of key protein-protein interactions that occur in HIV replication and infection. This review begins with an introduction to HIV, followed by the biological basis of disease, current clinical management of the disease, therapeutics on the market, and finally potential avenues for improved drug development.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- ART, antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Drug development
- FDA, US Food and Drug Administration
- FY, fiscal year
- HAART, highly active antiretroviral therapy
- HCV, hepatitis C Virus
- HIV
- HIV treatment
- HIV, human immunodeficiency virus
- INSTI, Integrase strand transfer inhibitors
- LEDGF, lens epithelium-derived growth factor
- NNRTI, Non-nucleoside reverse transcriptase inhibitors
- NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors
- Peptide inhibitor
- Peptide therapeutic
- R&D, research and development
- RT, reverse transcriptase
Collapse
Affiliation(s)
- Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Henry J. Cabral
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | - Paul J. Derry
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | | | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
35
|
Abstract
The covalent modification of therapeutic biomolecules has been broadly explored, leading to a number of clinically approved modified protein drugs. These modifications are typically intended to address challenges arising in biopharmaceutical practice by promoting improved stability and shelf life of therapeutic proteins in formulation, or modifying pharmacokinetics in the body. Toward these objectives, covalent modification with poly(ethylene glycol) (PEG) has been a common direction. Here, a platform approach to biopharmaceutical modification is described that relies on noncovalent, supramolecular host-guest interactions to endow proteins with prosthetic functionality. Specifically, a series of cucurbit[7]uril (CB[7])-PEG conjugates are shown to substantially increase the stability of three distinct protein drugs in formulation. Leveraging the known and high-affinity interaction between CB[7] and an N-terminal aromatic residue on one specific protein drug, insulin, further results in altering of its pharmacological properties in vivo by extending activity in a manner dependent on molecular weight of the attached PEG chain. Supramolecular modification of therapeutic proteins affords a noncovalent route to modify its properties, improving protein stability and activity as a formulation excipient. Furthermore, this offers a modular approach to append functionality to biopharmaceuticals by noncovalent modification with other molecules or polymers, for applications in formulation or therapy.
Collapse
|
36
|
Group 4 complexes of salicylbenzoxazole ligands as effective catalysts for the ring-opening polymerization of lactides, epoxides and copolymerization of ε-caprolactone with L-lactide. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Webber MJ. Engineering responsive supramolecular biomaterials: Toward smart therapeutics. Bioeng Transl Med 2016; 1:252-266. [PMID: 29313016 PMCID: PMC5689538 DOI: 10.1002/btm2.10031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.
Collapse
Affiliation(s)
- Matthew J. Webber
- Dept. of Chemical & Biomolecular EngineeringUniversity of Notre DameNotre DameIN46556
| |
Collapse
|
38
|
Abstract
A grand challenge in the field of "smart" drug delivery has been the quest to create formulations that can sense glucose and respond by delivering an appropriate dose of insulin. This approach, referred to as the "fully synthetic pancreas", envisions closed-loop insulin therapy. The strategies for incorporating glucose sensing into formulations can be broadly categorized into three subsets: enzymatic sensing, natural glucose-binding proteins and synthetic molecular recognition. Here, we highlight some examples of each of these approaches. The challenges remaining en route to the realization of closed-loop insulin therapy are substantial, and include improved response time, more authentic fidelity in glycemic control, improved biocompatibility for delivery materials and assurance of both safety and efficacy. The ubiquitous existence of glucose, combined with the unstable and toxic properties of insulin, further compound efforts towards the generation of a fully synthetic pancreas. However, given the growing incidence of both type-1 and type-2 diabetes, there is significant potential impact from the realization of such an approach on improving therapeutic management of the disease.
Collapse
Affiliation(s)
- Matthew J Webber
- a David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , USA .,b Department of Anesthesiology , Boston Children's Hospital , Boston , MA , USA
| | - Daniel G Anderson
- a David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , USA .,b Department of Anesthesiology , Boston Children's Hospital , Boston , MA , USA .,c Department of Chemical Engineering .,d Institute for Medical Engineering and Science , and.,e Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
39
|
Abstract
Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.
Collapse
Affiliation(s)
- Weiwei Gao
- a Department of NanoEngineering and Moores Cancer Center , University of California , San Diego , La Jolla , CA , USA
| | - Liangfang Zhang
- a Department of NanoEngineering and Moores Cancer Center , University of California , San Diego , La Jolla , CA , USA
| |
Collapse
|
40
|
Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol In Vitro 2016; 33:45-53. [DOI: 10.1016/j.tiv.2016.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/29/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023]
|
41
|
Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:681-7. [DOI: 10.1016/j.msec.2015.12.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022]
|
42
|
Gao Y, Wong KY, Ahiabu A, Serpe MJ. Sequential and controlled release of small molecules from poly(N-isopropylacrylamide) microgel-based reservoir devices. J Mater Chem B 2016; 4:5144-5150. [DOI: 10.1039/c6tb00864j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Devices capable of releasing two different small molecules independently, at defined release kinetics, were prepared and their behavior characterized.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Ka Yee Wong
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Andrews Ahiabu
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Michael J. Serpe
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| |
Collapse
|
43
|
Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, Karp JM, Kataoka K, Mirkin CA, Petrosko SH, Shi J, Stevens MM, Sun S, Teoh S, Venkatraman SS, Xia Y, Wang S, Gu Z, Xu C. Accelerating the Translation of Nanomaterials in Biomedicine. ACS NANO 2015; 9:6644-54. [PMID: 26115196 PMCID: PMC5227554 DOI: 10.1021/acsnano.5b03569] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Due to their size and tailorable physicochemical properties, nanomaterials are an emerging class of structures utilized in biomedical applications. There are now many prominent examples of nanomaterials being used to improve human health, in areas ranging from imaging and diagnostics to therapeutics and regenerative medicine. An overview of these examples reveals several common areas of synergy and future challenges. This Nano Focus discusses the current status and future potential of promising nanomaterials and their translation from the laboratory to the clinic, by highlighting a handful of successful examples.
Collapse
Affiliation(s)
- Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Address correspondence to: , ,
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyuan Chen
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Edward K. Chow
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077
| | - Dean Ho
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Alexander V. Kabanov
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey M. Karp
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kazunori Kataoka
- Departments of Materials Engineering and Bioengineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jinjun Shi
- Laboratory for Nanoengineering & Drug Delivery, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sweehin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
| | - Subbu S. Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Shutao Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27695, United States
- Address correspondence to: , ,
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
- Address correspondence to: , ,
| |
Collapse
|
44
|
Hakkou K, Bueno-Martínez M, Molina-Pinilla I, Galbis JA. Degradable poly(ester triazole)s based on renewable resources. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Khalid Hakkou
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia; Universidad de Sevilla; 41012 Sevilla Spain
| | - Manuel Bueno-Martínez
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia; Universidad de Sevilla; 41012 Sevilla Spain
| | - Inmaculada Molina-Pinilla
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia; Universidad de Sevilla; 41012 Sevilla Spain
| | - Juan A. Galbis
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia; Universidad de Sevilla; 41012 Sevilla Spain
| |
Collapse
|
45
|
Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics 2015; 5:863-81. [PMID: 26000058 PMCID: PMC4440443 DOI: 10.7150/thno.11852] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 01/14/2023] Open
Abstract
Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications.
Collapse
Affiliation(s)
- Songwei Tan
- 1. Tongji School of Pharmacy
- 2. National Engineering Research Center for Nanomedicine
- 3. Hubei Engineering Research Center for Novel DDS, Huazhong University of Science and Technology, Wuhan 430030, P R China
| | | | | | - Zhiping Zhang
- 1. Tongji School of Pharmacy
- 2. National Engineering Research Center for Nanomedicine
- 3. Hubei Engineering Research Center for Novel DDS, Huazhong University of Science and Technology, Wuhan 430030, P R China
| |
Collapse
|
46
|
Feng M, Tian Y, Chang S, Xu D, Shi H. Polyethylene-oxide improves microcirculatory blood flow in a murine hemorrhagic shock model. Int J Clin Exp Med 2015; 8:5931-5936. [PMID: 26131187 PMCID: PMC4483962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Polyethylene oxide (PEO) is a synthetic polymer commonly used in medicine production to reduce toxicity. In the present study, we assessed whether PEO can have a functional effect on improving microcirculatory blood flow after hemorrhagic shock in an animal model. METHODS Hemorrhagic shock (HS) was introduced in 78 C57BL/6 mice, which were then equally divided into two groups. One group of mice was intravenously injected with PEO (diluted in Ringer's solution (RS), PH = 7.4), and the other with RS only. The parameters of microcirculatory hemodynamics, arterial blood gas analysis and multi-organ functions were compared between two groups, 0, 3, 12 and 24 hours after resuscitation. RESULTS After HS, the hemodynamics, including microvascular diameter, red blood cell velocity, and blood flow rates were significantly improved in time-dependent manners in PEO treated mice. Most parameters of arterial blood gas analysis, except PCO2, were also significantly improved by PEO. Multi-organ immunohistochemistry demonstrated that congestions and inflammatory responses in liver and lung were markedly ameliorated by PEO. CONCLUSIONS Our results demonstrated that PEO infusion could effectively improve microcirculation after hemorrhagic shock and increase the chance of survival in animal models.
Collapse
Affiliation(s)
- Min Feng
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Yuan Tian
- Department of Ultrasonography, Zhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhou, Henan 450000, China
| | - Siyuan Chang
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Daqian Xu
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Huijuan Shi
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| |
Collapse
|
47
|
Wang Y, Kaur G, Zysk A, Liapis V, Hay S, Santos A, Losic D, Evdokiou A. Systematic in vitro nanotoxicity study on anodic alumina nanotubes with engineered aspect ratio: Understanding nanotoxicity by a nanomaterial model. Biomaterials 2015; 46:117-30. [DOI: 10.1016/j.biomaterials.2014.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/25/2014] [Accepted: 12/16/2014] [Indexed: 01/13/2023]
|
48
|
Cui J, De Rose R, Alt K, Alcantara S, Paterson BM, Liang K, Hu M, Richardson JJ, Yan Y, Jeffery CM, Price RI, Peter K, Hagemeyer CE, Donnelly PS, Kent SJ, Caruso F. Engineering poly(ethylene glycol) particles for improved biodistribution. ACS NANO 2015; 9:1571-1580. [PMID: 25712853 DOI: 10.1021/nn5061578] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the engineering of poly(ethylene glycol) (PEG) hydrogel particles using a mesoporous silica (MS) templating method via tuning the PEG molecular weight, particle size, and the presence or absence of the template and investigate the cell association and biodistribution of these particles. An ex vivo assay based on human whole blood that is more sensitive and relevant than traditional cell-line based assays for predicting in vivo circulation behavior is introduced. The association of MS@PEG particles (template present) with granulocytes and monocytes is higher compared with PEG particles (template absent). Increasing the PEG molecular weight (from 10 to 40 kDa) or decreasing the PEG particle size (from 1400 to 150 nm) reduces phagocytic blood cell association of the PEG particles. Mice biodistribution studies show that the PEG particles exhibit extended circulation times (>12 h) compared with the MS@PEG particles and that the retention of smaller PEG particles (150 nm) in blood, when compared with larger PEG particles (>400 nm), is increased at least 4-fold at 12 h after injection. Our findings highlight the influence of unique aspects of polymer hydrogel particles on biological interactions. The reported PEG hydrogel particles represent a new class of polymer carriers with potential biomedical applications.
Collapse
Affiliation(s)
- Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chiarelli PA, Kievit FM, Zhang M, Ellenbogen RG. Bionanotechnology and the future of glioma. Surg Neurol Int 2015; 6:S45-58. [PMID: 25722933 PMCID: PMC4338483 DOI: 10.4103/2152-7806.151334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023] Open
Abstract
Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the "ideal" nanoparticle for glioma, a concept that may soon be realized.
Collapse
Affiliation(s)
- Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
50
|
Tsud N, Bercha S, Acres RG, Vorokhta M, Khalakhan I, Prince KC, Matolín V. Functionalization of nanostructured cerium oxide films with histidine. Phys Chem Chem Phys 2015; 17:2770-7. [PMID: 25500980 DOI: 10.1039/c4cp03780d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The surfaces of polycrystalline cerium oxide films were modified by histidine adsorption under vacuum and characterized by the synchrotron based techniques of core and valence level photoemission, resonant photoemission and near edge X-ray absorption spectroscopy, as well as atomic force microscopy. Histidine is strongly bound to the oxide surface in the anionic form through the deprotonated carboxylate group, and forms a disordered molecular adlayer. The imidazole ring and the amino side group do not form bonds with the substrate but are involved in the intermolecular hydrogen bonding which stabilizes the molecular adlayer. The surface reaction with histidine results in water desorption accompanied by oxide reduction, which is propagated into the bulk of the film. Previously studied, well-characterized surfaces are a guide to the chemistry of the present polycrystalline surface and histidine bonds via the carboxylate group in both cases. In contrast, bonding via the imidazole group occurs on the well-ordered surface but not in the present case. The morphology and structure of the cerium oxide are decisive factors which define the adsorption geometry of the histidine adlayer.
Collapse
Affiliation(s)
- Nataliya Tsud
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, Prague, 18000, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|