1
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
2
|
Abeysekera GS, Love MJ, Manners SH, Billington C, Dobson RCJ. Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Front Microbiol 2022; 13:1044143. [PMID: 36345304 PMCID: PMC9636201 DOI: 10.3389/fmicb.2022.1044143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 09/09/2023] Open
Abstract
Holins and spanins are bacteriophage-encoded membrane proteins that control bacterial cell lysis in the final stage of the bacteriophage reproductive cycle. Due to their efficient mechanisms for lethal membrane disruption, these proteins are gaining interest in many fields, including the medical, food, biotechnological, and pharmaceutical fields. However, investigating these lethal proteins is challenging due to their toxicity in bacterial expression systems and the resultant low protein yields have hindered their analysis compared to other cell lytic proteins. Therefore, the structural and dynamic properties of holins and spanins in their native environment are not well-understood. In this article we describe recent advances in the classification, purification, and analysis of holin and spanin proteins, which are beginning to overcome the technical barriers to understanding these lethal membrane disrupting proteins, and through this, unlock many potential biotechnological applications.
Collapse
Affiliation(s)
- Gayan S. Abeysekera
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J. Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Sarah H. Manners
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Craig Billington
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Guo T, Cui Y, Zhang L, Xu X, Xu Z, Kong J. Holin-assisted bacterial recombinant protein export. Biotechnol Bioeng 2022; 119:2908-2918. [PMID: 35822237 DOI: 10.1002/bit.28179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/05/2022]
Abstract
A simple generic method for enhancing extracellular protein yields in engineered bacteria is still lacking. Here, we demonstrated that phage-encoded holin can be used to export proteins to the extracellular medium in both Gram-negative Escherichia coli and -positive Lactococcus lactis. When a putative holin gene LLNZ_RS10380 annotated in the genome of L. lactis NZ9000 (hol380) was recombinantly expressed in E. coli BL21(DE3), the Hol380 oligomerized up to hexamer in the cytoplasmic membrane, yielding membrane pore to allow the passage of cytosolic β-galatosidase (116 kDa), whose extracellular production reached 54.59 U/μL, accounting for 76.37% of the total activity. However, the overexpressed Hol380 could not release cytosolic proteins across the membrane in L. lactis NZ9000, but increased the secretory production of staphylococcal nuclease to 2.55-fold and fimbrial adhesin FaeG to 2.40-fold compared with those guided by signal peptide Usp45 alone. By using a combination of proteomics and transcriptional level analysis, we found that overexpression of the Hol380 raised the accumulation of Ffh and YidC involved in the signal recognition particle pathway in L. lactis, suggesting an alternative road participating in protein secretion. This study proposed a new approach by expressing holin in bacterial cell factories to export target proteins of economic or medical interest. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yue Cui
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Lingwen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Xiaoning Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhenxiang Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| |
Collapse
|
4
|
A Potent and Effective Suicidal Listeria Vaccine Platform. Infect Immun 2019; 87:IAI.00144-19. [PMID: 31235641 PMCID: PMC6652770 DOI: 10.1128/iai.00144-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Live-attenuated Listeria monocytogenes has shown encouraging potential as an immunotherapy platform in preclinical and clinical settings. However, additional safety measures will enable application across malignant and infectious diseases. Here, we describe a new vaccine platform, termed Lm-RIID (L. monocytogenes recombinase-induced intracellular death), that induces the deletion of genes required for bacterial viability yet maintains potent T cell responses to encoded antigens. Live-attenuated Listeria monocytogenes has shown encouraging potential as an immunotherapy platform in preclinical and clinical settings. However, additional safety measures will enable application across malignant and infectious diseases. Here, we describe a new vaccine platform, termed Lm-RIID (L. monocytogenes recombinase-induced intracellular death), that induces the deletion of genes required for bacterial viability yet maintains potent T cell responses to encoded antigens. Lm-RIID grows normally in broth but commits suicide inside host cells by inducing Cre recombinase and deleting essential genes flanked by loxP sites, resulting in a self-limiting infection even in immunocompromised mice. Lm-RIID vaccination of mice induces potent CD8+ T cells and protects against virulent challenges, similar to live L. monocytogenes vaccines. When combined with α-PD-1, Lm-RIID is as effective as live-attenuated L. monocytogenes in a therapeutic tumor model. This impressive efficacy, together with the increased clearance rate, makes Lm-RIID ideal for prophylactic immunization against diseases that require T cells for protection.
Collapse
|
5
|
Santos SB, Costa AR, Carvalho C, Nóbrega FL, Azeredo J. Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential. Trends Biotechnol 2018; 36:966-984. [DOI: 10.1016/j.tibtech.2018.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
6
|
Sinha S, Kuo CY, Ho JK, White PJ, Jazayeri JA, Pouton CW. A suicidal strain of Listeria monocytogenes is effective as a DNA vaccine delivery system for oral administration. Vaccine 2017; 35:5115-5122. [PMID: 28822642 DOI: 10.1016/j.vaccine.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 01/24/2023]
Abstract
In this study we determined the in vivo activity of model ovalbumin vaccines delivered by direct intramuscular delivery of plasmid DNA or oral delivery using a recombinant suicidal Listeria monocytogenes strain (rsΔ2). In a previous report we described how rsΔ2 is capable of delivering luciferase, as protein or DNA, in vitro, into non-dividing intestinal epithelial cells (Kuo et al., 2009). This is achieved by engineering a dual expression shuttle vector, pDuLX-Luc, that replicates in E. coli and rsΔ2 and drives gene expression from the Listeria promoter (Phly) as well as the eukaryotic cytomegalovirus promoter (CMV), thereby delivering both protein and plasmid DNA to the cell cytoplasm. For the current in vivo study rsΔ2 containing pDuLX-OVA was used to deliver both ovalbumin protein and the mammalian expression plasmid by the oral route. Controls were used to investigate the activity of this system versus positive and negative controls, as well as quantifying activity against direct intramuscular injection of expression plasmids. Oral administration of rsΔ2(pDuLX-OVA) produced significant titres of antibody and was effective at inducing targeted T-cell lysis (approximately 30% lysis relative to an experimental positive control, intravenous OVA-coated splenocytes+lipopolysaccharide). Intramuscular injection of plasmids pDuLX-OVA or p3L-OVA (which lacks the prokaryotic promoter) also produced significant CTL-mediated cell lysis. The delivery of the negative control rsΔ2 (pDuLX-Luc) confirmed that the observed activity was induced specifically by the ovalbumin vaccination. The data suggest that the oral activity of rsΔ2(pDuLX-OVA) is explained by delivery of OVA protein, expressed in rsΔ2 from the prokaryotic promoter present in pDuLX-OVA, but transfection of mammalian cells in vivo may also play a role. Antibody titres were also produced by oral delivery (in rsΔ2) of the p3L-OVA plasmid in which does not include a prokaryotic promoter.
Collapse
Affiliation(s)
- Shubhra Sinha
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Victoria, Australia
| | - Cheng-Yi Kuo
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Victoria, Australia
| | - Joan K Ho
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Victoria, Australia
| | - Paul J White
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Victoria, Australia
| | - Jalal A Jazayeri
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Victoria, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. Curr Top Microbiol Immunol 2017; 404:267-308. [PMID: 27885530 DOI: 10.1007/82_2016_49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.
Collapse
|
8
|
Chang KW, Kuo CY. 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation. Food Funct 2015; 6:3334-3341. [PMID: 26263169 DOI: 10.1039/c5fo00513b] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
BACKGROUND 6-gingerol has been reported to have anti-inflammatory effects in different experimental settings. The present study aimed at evaluating the effect of 6-gingerol on dextran sodium sulfate (DSS)-induced barrier impairment and inflammation in vitro and in vivo. METHODS a differentiated Caco-2 monolayer was exposed to DSS and treated with different concentrations of 6-gingerol (0, 1, 5, 10, 50, and 100 μM). Changes in intestinal barrier function were determined using transepithelial electrical resistance (TEER). The anti-inflammatory activity of 6-gingerol was examined as changes in the expression of proinflammatory cytokine using quantitative real-time PCR. Western blotting was employed to determine the activation of adenosine monophosphate-activated protein kinase (AMPK). Mice with DSS-induced colitis were given different oral dosages of 6-gingerol daily for 14 days. Body weight and colon inflammation were evaluated, and level of proinflammatory cytokines in colon tissues was measured. RESULTS 6-gingerol treatment was shown to restore impaired intestinal barrier function and to suppress proinflammatory responses in DSS-treated Caco-2 monolayers. We found that AMPK was activated on 6-gingerol treatment in vitro. In animal studies, 6-gingerol significantly ameliorated DSS-induced colitis by restoration of body weight loss, reduction in intestinal bleeding, and prevention of colon length shortening. In addition, 6-gingerol suppressed DSS-elevated production of proinflammatory cytokines (IL-1β, TNFα, and IL-12). CONCLUSION our findings highlight the protective effects of 6-gingerol against DSS-induced colitis. We concluded that 6-gingerol exerts anti-inflammatory effects through AMPK activation. It is suggested that 6-gingerol has a promising role in treatment of IBD.
Collapse
Affiliation(s)
- Kuei-Wen Chang
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | |
Collapse
|
9
|
Ortega AD, Quereda JJ, Pucciarelli MG, García-del Portillo F. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells. Front Cell Infect Microbiol 2014; 4:162. [PMID: 25429360 PMCID: PMC4228915 DOI: 10.3389/fcimb.2014.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation, and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of “intact” intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - Juan J Quereda
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - M Graciela Pucciarelli
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain ; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC) Madrid, Spain
| | | |
Collapse
|
10
|
Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol 2014; 197:7-17. [PMID: 25157079 DOI: 10.1128/jb.02046-14] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Holins form pores in the cytoplasmic membranes of bacteria for the primary purpose of releasing endolysins that hydrolyze the cell wall and induce cell death. Holins are encoded within bacteriophage genomes, where they promote cell lysis for virion release, and within bacterial genomes, where they serve a diversity of potential or established functions. These include (i) release of gene transfer agents, (ii) facilitation of programs of differentiation such as those that allow sporulation and spore germination, (iii) contribution to biofilm formation, (iv) promotion of responses to stress conditions, and (v) release of toxins and other proteins. There are currently 58 recognized families of holins and putative holins with members exhibiting between 1 and 4 transmembrane α-helical spanners, but many more families have yet to be discovered. Programmed cell death in animals involves holin-like proteins such as Bax and Bak that may have evolved from bacterial holins. Holin homologues have also been identified in archaea, suggesting that these proteins are ubiquitous throughout the three domains of life. Phage-mediated cell lysis of dual-membrane Gram-negative bacteria also depends on outer membrane-disrupting "spanins" that function independently of, but in conjunction with, holins and endolysins. In this minireview, we provide an overview of their modes of action and the first comprehensive summary of the many currently recognized and postulated functions and uses of these cell lysis systems. It is anticipated that future studies will result in the elucidation of many more such functions and the development of additional applications.
Collapse
|
11
|
Iron-regulated lysis of recombinant Escherichia coli in host releases protective antigen and confers biological containment. Infect Immun 2011; 79:2608-18. [PMID: 21536797 DOI: 10.1128/iai.01219-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The use of a recombinant bacterial vector vaccine is an attractive vaccination strategy to induce an immune response to a carried protective antigen. The superiorities of live bacterial vectors include mimicry of a natural infection, intrinsic adjuvant properties, and the potential for administration by mucosal routes. Escherichia coli is a simple and efficient vector system for production of exogenous proteins. In addition, many strains are nonpathogenic and avirulent, making it a good candidate for use in recombinant vaccine design. In this study, we screened 23 different iron-regulated promoters in an E. coli BL21(DE3) vector and found one, P(viuB), with characteristics suitable for our use. We fused P(viuB) with lysis gene E, establishing an in vivo inducible lysis circuit. The resulting in vivo lysis circuit was introduced into a strain also carrying an IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible P(T7)-controlled protein synthesis circuit, forming a novel E. coli-based protein delivery system. The recombinant E. coli produced a large amount of antigen in vitro and could deliver the antigen into zebrafish after vaccination via injection. The strain subsequently lysed in response to the iron-limiting signal in vivo, implementing antigen release and biological containment. The gapA gene, encoding the protective antigen GAPDH (glyceraldehyde-3-phosphate dehydrogenase) from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the E. coli-based protein delivery system, and the resultant recombinant vector vaccine was evaluated in turbot (Scophtalmus maximus). Over 80% of the vaccinated fish survived challenge with A. hydrophila LSA34, suggesting that the E. coli-based antigen delivery system has great potential in bacterial vector vaccine applications.
Collapse
|
12
|
O'Neill MJ, Bourre L, Melgar S, O'Driscoll CM. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 2011; 16:203-18. [PMID: 21262379 DOI: 10.1016/j.drudis.2011.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/18/2010] [Accepted: 01/14/2011] [Indexed: 01/12/2023]
Abstract
The future of nucleic acid-based therapeutics is dependent on achieving successful delivery. Recently, there has been an increasing interest in delivery via the gastrointestinal tract. Gene therapy via this route has many advantages, including non-invasive access and the versatility to treat local diseases, such as inflammatory bowel disease, as well as systemic diseases, such as haemophilia. However, the intestine presents several distinct barriers and, therefore, the design of robust non-viral delivery systems is key to future success. Several non-viral delivery strategies have provided evidence of activity in vivo. To facilitate the design of more efficient and safe gene medicines, more physiologically relevant models, at both the in vitro and in vivo levels, are essential.
Collapse
Affiliation(s)
- Martin J O'Neill
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|