1
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2025; 14:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
2
|
Kim H, Hwang J, Park C, Park R. Redox system and ROS-related disorders in peroxisomes. Free Radic Res 2024; 58:662-675. [PMID: 39550761 DOI: 10.1080/10715762.2024.2427088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Peroxisomes are essential organelles that help mitigate the oxidative damage caused by reactive oxygen species (ROS) through their antioxidant systems. They perform functions such as α-oxidation, β-oxidation, and the synthesis of cholesterol and ether phospholipids. During the breakdown of specific metabolites, peroxisomes generate ROS as byproducts, which can either be neutralized or contribute to oxidative stress. The relationship between peroxisomal metabolism and ROS-related disorders, including neurodegenerative diseases and cancers, has been studied for decades; however, the exact mechanisms remain unclear. Our review will provide recent insights into the peroxisomal redox system and its association with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaetaek Hwang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Channy Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
4
|
Wolf KMP, Maffeis V, Schoenenberger CA, Zünd T, Bar-Peled L, Palivan CG, Vogel V. Tweaking the NRF2 signaling cascade in human myelogenous leukemia cells by artificial nano-organelles. Proc Natl Acad Sci U S A 2024; 121:e2219470121. [PMID: 38776365 PMCID: PMC11145192 DOI: 10.1073/pnas.2219470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.
Collapse
Affiliation(s)
- Konstantin M. P. Wolf
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| | - Viviana Maffeis
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Tamara Zünd
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital/Department of Medicine, Harvard Medical School, Boston, MA02129, USA
| | - Cornelia G. Palivan
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| |
Collapse
|
5
|
Maffeis V, Skowicki M, Wolf KMP, Chami M, Schoenenberger CA, Vogel V, Palivan CG. Advancing the Design of Artificial Nano-organelles for Targeted Cellular Detoxification of Reactive Oxygen Species. NANO LETTERS 2024; 24:2698-2704. [PMID: 38408754 PMCID: PMC10921454 DOI: 10.1021/acs.nanolett.3c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/28/2024]
Abstract
Artificial organelles (AnOs) are in the spotlight as systems to supplement biochemical pathways in cells. While polymersome-based artificial organelles containing enzymes to reduce reactive oxygen species (ROS) are known, applications requiring control of their enzymatic activity and cell-targeting to promote intracellular ROS detoxification are underexplored. Here, we introduce advanced AnOs where the chemical composition of the membrane supports the insertion of pore-forming melittin, enabling molecular exchange between the AnO cavity and the environment, while the encapsulated lactoperoxidase (LPO) maintains its catalytic function. We show that H2O2 outside AnOs penetrates through the melittin pores and is rapidly degraded by the encapsulated enzyme. As surface attachment of cell-penetrating peptides facilitates AnOs uptake by cells, electron spin resonance revealed a remarkable enhancement in intracellular ROS detoxification by these cell-targeted AnOs compared to nontargeted AnOs, thereby opening new avenues for a significant reduction of oxidative stress in cells.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Michal Skowicki
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Konstantin M. P. Wolf
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohamed Chami
- BioEM
lab, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Viola Vogel
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
6
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
7
|
Powers J, Jang Y. Advancing Biomimetic Functions of Synthetic Cells through Compartmentalized Cell-Free Protein Synthesis. Biomacromolecules 2023; 24:5539-5550. [PMID: 37962115 DOI: 10.1021/acs.biomac.3c00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synthetic cells are artificial constructs that mimic the structures and functions of living cells. They are attractive for studying diverse biochemical processes and elucidating the origins of life. While creating a living synthetic cell remains a grand challenge, researchers have successfully synthesized hundreds of unique synthetic cell platforms. One promising approach to developing more sophisticated synthetic cells is to integrate cell-free protein synthesis (CFPS) mechanisms into vesicle platforms. This makes it possible to create synthetic cells with complex biomimetic functions such as genetic circuits, autonomous membrane modifications, sensing and communication, and artificial organelles. This Review explores recent advances in the use of CFPS to impart advanced biomimetic structures and functions to bottom-up synthetic cell platforms. We also discuss the potential applications of synthetic cells in biomedicine as well as the future directions of synthetic cell research.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Oerlemans RAJF, Shao J, Huisman SGAM, Li Y, Abdelmohsen LKEA, van Hest JCM. Compartmentalized Intracellular Click Chemistry with Biodegradable Polymersomes. Macromol Rapid Commun 2023; 44:e2200904. [PMID: 36607841 DOI: 10.1002/marc.202200904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Polymersome nanoreactors that can be employed as artificial organelles have gained much interest over the past decades. Such systems often include biological catalysts (i.e., enzymes) so that they can undertake chemical reactions in cellulo. Examples of nanoreactor artificial organelles that acquire metal catalysts in their structure are limited, and their application in living cells remains fairly restricted. In part, this shortfall is due to difficulties associated with constructing systems that maintain their stability in vitro, let alone the toxicity they impose on cells. This study demonstrates a biodegradable and biocompatible polymersome nanoreactor platform, which can be applied as an artificial organelle in living cells. The ability of the artificial organelles to covalently and non-covalently incorporate tris(triazolylmethyl)amine-Cu(I) complexes in their membrane is shown. Such artificial organelles are capable of effectively catalyzing a copper-catalyzed azide-alkyne cycloaddition intracellularly, without compromising the cells' integrity. The platform represents a step forward in the application of polymersome-based nanoreactors as artificial organelles.
Collapse
Affiliation(s)
- Roy A J F Oerlemans
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jingxin Shao
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sander G A M Huisman
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yudong Li
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Xu X, Moreno S, Boye S, Wang P, Voit B, Appelhans D. Artificial Organelles with Digesting Characteristics: Imitating Simplified Lysosome- and Macrophage-Like Functions by Trypsin-Loaded Polymersomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207214. [PMID: 37076948 PMCID: PMC10265080 DOI: 10.1002/advs.202207214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/12/2023] [Indexed: 05/03/2023]
Abstract
Defects in cellular protein/enzyme encoding or even in organelles are responsible for many diseases. For instance, dysfunctional lysosome or macrophage activity results in the unwanted accumulation of biomolecules and pathogens implicated in autoimmune, neurodegenerative, and metabolic disorders. Enzyme replacement therapy (ERT) is a medical treatment that replaces an enzyme that is deficient or absent in the body but suffers from short lifetime of the enzymes. Here, this work proposes the fabrication of two different pH-responsive and crosslinked trypsin-loaded polymersomes as protecting enzyme carriers mimicking artificial organelles (AOs). They allow the enzymatic degradation of biomolecules to mimic simplified lysosomal function at acidic pH and macrophage functions at physiological pH. For optimal working of digesting AOs in different environments, pH and salt composition are considered the key parameters, since they define the permeability of the membrane of the polymersomes and the access of model pathogens to the loaded trypsin. Thus, this work demonstrates environmentally controlled biomolecule digestion by trypsin-loaded polymersomes also under simulated physiological fluids, allowing a prolonged therapeutic window due to protection of the enzyme in the AOs. This enables the application of AOs in the fields of biomimetic therapeutics, specifically in ERT for dysfunctional lysosomal diseases.
Collapse
Affiliation(s)
- Xiaoying Xu
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Organic Chemistry of PolymersTechnische Universität DresdenD‐01062DresdenGermany
| | - Silvia Moreno
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Susanne Boye
- Center Macromolecular Structure AnalysisLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Peng Wang
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Brigitte Voit
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Organic Chemistry of PolymersTechnische Universität DresdenD‐01062DresdenGermany
| | - Dietmar Appelhans
- Deaprtment Bioactive and Responsive PolymersLeibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| |
Collapse
|
10
|
Yang D, Tang Y, Zhu B, Pang H, Rong X, Gao Y, Du F, Cheng C, Qiu L, Ma L. Engineering Cell Membrane-Cloaked Catalysts as Multifaceted Artificial Peroxisomes for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206181. [PMID: 37096840 PMCID: PMC10265064 DOI: 10.1002/advs.202206181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Indexed: 05/03/2023]
Abstract
Artificial peroxisomes (APEXs) or peroxisome mimics have caught a lot of attention in nanomedicine and biomaterial science in the last decade, which have great potential in clinically diagnosing and treating diseases. APEXs are typically constructed from a semipermeable membrane that encloses natural enzymes or enzyme-mimetic catalysts to perform peroxisome-/enzyme-mimetic activities. The recent rapid progress regarding their biocatalytic stability, adjustable activity, and surface functionality has significantly promoted APEXs systems in real-life applications. In addition, developing a facile and versatile system that can simulate multiple biocatalytic tasks is advantageous. Here, the recent advances in engineering cell membrane-cloaked catalysts as multifaceted APEXs for diverse biomedical applications are highlighted and commented. First, various catalysts with single or multiple enzyme activities have been introduced as cores of APEXs. Subsequently, the extraction and function of cell membranes that are used as the shell are summarized. After that, the applications of these APEXs are discussed in detail, such as cancer therapy, antioxidant, anti-inflammation, and neuron protection. Finally, the future perspectives and challenges of APEXs are proposed and outlined. This progress review is anticipated to provide new and unique insights into cell membrane-cloaked catalysts and to offer significant new inspiration for designing future artificial organelles.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yuanjiao Tang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Bihui Zhu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Houqing Pang
- Department of UltrasoundWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiao Rong
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yang Gao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fangxue Du
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Li Qiu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Lang Ma
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| |
Collapse
|
11
|
Yang U, Kang B, Yong MJ, Yang DH, Choi SY, Je JH, Oh SS. Type-Independent 3D Writing and Nano-Patterning of Confined Biopolymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207403. [PMID: 36825681 PMCID: PMC10161081 DOI: 10.1002/advs.202207403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Indexed: 05/06/2023]
Abstract
Biopolymers are essential building blocks that constitute cells and tissues with well-defined molecular structures and diverse biological functions. Their three-dimensional (3D) complex architectures are used to analyze, control, and mimic various cells and their ensembles. However, the free-form and high-resolution structuring of various biopolymers remain challenging because their structural and rheological control depend critically on their polymeric types at the submicron scale. Here, direct 3D writing of intact biopolymers is demonstrated using a systemic combination of nanoscale confinement, evaporation, and solidification of a biopolymer-containing solution. A femtoliter solution is confined in an ultra-shallow liquid interface between a fine-tuned nanopipette and a chosen substrate surface to achieve directional growth of biopolymer nanowires via solvent-exclusive evaporation and concurrent solution supply. The evaporation-dependent printing is biopolymer type-independent, therefore, the 3D motor-operated precise nanopipette positioning allows in situ printing of nucleic acids, polysaccharides, and proteins with submicron resolution. By controlling concentrations and molecular weights, several different biopolymers are reproducibly patterned with desired size and geometry, and their 3D architectures are biologically active in various solvents with no structural deformation. Notably, protein-based nanowire patterns exhibit pin-point localization of spatiotemporal biofunctions, including target recognition and catalytic peroxidation, indicating their application potential in organ-on-chips and micro-tissue engineering.
Collapse
Affiliation(s)
- Un Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Moon-Jung Yong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dong-Hwan Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jung Ho Je
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
- Nanoblesse, 85-11 (4th fl.) Namwon-Ro, Pohang, Gyeongbuk, 37883, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| |
Collapse
|
12
|
Zhang Y, Wang S, Yan Y, He X, Wang Z, Zhou S, Yang X, Wang K, Liu J. Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Wang Y, Zhao Q, Haag R, Wu C. Biocatalytic Synthesis Using Self-Assembled Polymeric Nano- and Microreactors. Angew Chem Int Ed Engl 2022; 61:e202213974. [PMID: 36260531 PMCID: PMC10100074 DOI: 10.1002/anie.202213974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Biocatalysis is increasingly being explored for the sustainable development of green industry. Though enzymes show great industrial potential with their high efficiency, specificity, and selectivity, they suffer from poor usability and stability under abiological conditions. To solve these problems, researchers have fabricated nano- and micro-sized biocatalytic reactors based on the self-assembly of various polymers, leading to highly stable, functional, and reusable biocatalytic systems. This Review highlights recent progress in self-assembled polymeric nano- and microreactors for biocatalytic synthesis, including polymersomes, reverse micelles, polymer emulsions, Pickering emulsions, and static emulsions. We categorize these reactors into monophasic and biphasic systems and discuss their structural characteristics and latest successes with representative examples. We also consider the challenges and potential solutions associated with the future development of this field.
Collapse
Affiliation(s)
- Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, P.R. China
| | - Qingcai Zhao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
14
|
Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome. Nat Commun 2022; 13:7739. [PMID: 36517520 PMCID: PMC9751304 DOI: 10.1038/s41467-022-35472-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular accumulation of reactive oxygen species (ROS) leads to oxidative stress, which is closely associated with many diseases. Introducing artificial organelles to ROS-imbalanced cells is a promising solution, but this route requires nanoscale particles for efficient cell uptake and micro-scale particles for long-term cell retention, which meets a dilemma. Herein, we report a deoxyribonucleic acid (DNA)-ceria nanocomplex-based dynamic assembly system to realize the intracellular in-situ construction of artificial peroxisomes (AP). The DNA-ceria nanocomplex is synthesized from branched DNA with i-motif structure that responds to the acidic lysosomal environment, triggering transformation from the nanoscale into bulk-scale AP. The initial nanoscale of the nanocomplex facilitates cellular uptake, and the bulk-scale of AP supports cellular retention. AP exhibits enzyme-like catalysis activities, serving as ROS eliminator, scavenging ROS by decomposing H2O2 into O2 and H2O. In living cells, AP efficiently regulates intracellular ROS level and resists GSH consumption, preventing cells from redox dyshomeostasis. With the protection of AP, cytoskeleton integrity, mitochondrial membrane potential, calcium concentration and ATPase activity are maintained under oxidative stress, and thus the energy of cell migration is preserved. As a result, AP inhibits cell apoptosis, reducing cell mortality through ROS elimination.
Collapse
|
15
|
Kim H, Yeow J, Najer A, Kit‐Anan W, Wang R, Rifaie‐Graham O, Thanapongpibul C, Stevens MM. Microliter Scale Synthesis of Luciferase-Encapsulated Polymersomes as Artificial Organelles for Optogenetic Modulation of Cardiomyocyte Beating. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200239. [PMID: 35901502 PMCID: PMC9507352 DOI: 10.1002/advs.202200239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Constructing artificial systems that effectively replace or supplement natural biological machinery within cells is one of the fundamental challenges underpinning bioengineering. At the sub-cellular scale, artificial organelles (AOs) have significant potential as long-acting biomedical implants, mimicking native organelles by conducting intracellularly compartmentalized enzymatic actions. The potency of these AOs can be heightened when judiciously combined with genetic engineering, producing highly tailorable biohybrid cellular systems. Here, the authors present a cost-effective, microliter scale (10 µL) polymersome (PSome) synthesis based on polymerization-induced self-assembly for the in situ encapsulation of Gaussia luciferase (GLuc), as a model luminescent enzyme. These GLuc-loaded PSomes present ideal features of AOs including enhanced enzymatic resistance to thermal, proteolytic, and intracellular stresses. To demonstrate their biomodulation potential, the intracellular luminescence of GLuc-loaded PSomes is coupled to optogenetically engineered cardiomyocytes, allowing modulation of cardiac beating frequency through treatment with coelenterazine (CTZ) as the substrate for GLuc. The long-term intracellular stability of the luminescent AOs allows this cardiostimulatory phenomenon to be reinitiated with fresh CTZ even after 7 days in culture. This synergistic combination of organelle-mimicking synthetic materials with genetic engineering is therefore envisioned as a highly universal strategy for the generation of new biohybrid cellular systems displaying unique triggerable properties.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Jonathan Yeow
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Adrian Najer
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Worrapong Kit‐Anan
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Richard Wang
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Omar Rifaie‐Graham
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Chalaisorn Thanapongpibul
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
16
|
Lin YF, Lin YS, Huang TY, Wei SC, Wu RS, Huang CC, Huang YF, Chang HT. Photoswitchable carbon-dot liposomes mediate catalytic cascade reactions for amplified dynamic treatment of tumor cells. J Colloid Interface Sci 2022; 628:717-725. [PMID: 35944302 DOI: 10.1016/j.jcis.2022.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Most biochemical reactions that occur in living organisms are catalyzed by a series of enzymes and proceed in a tightly controlled manner. The development of artificial enzyme cascades that resemble multienzyme complexes in nature is of current interest due to their potential in various applications. In this study, a nanozyme based on photoswitchable carbon-dot liposomes (CDsomes) was developed for use in programmable catalytic cascade reactions. These CDsomes prepared from triolein are amphiphilic and self-assemble into liposome-like structures in an aqueous environment. CDsomes feature excitation-dependent photoluminescence and, notably, can undergo reversible switching between a fluorescent on-state and nonfluorescent off-state under different wavelengths of light irradiation. This switching ability enables the CDsomes to exert photocatalytic oxidase- and peroxidase-like activities in their on- (bright) and off- (dark) states, respectively, resulting in the conversion of oxygen molecules into hydrogen peroxide (H2O2), followed by the generation of active hydroxyl radicals (OH). The two steps of oxygen activation can be precisely controlled in a sequential manner by photoirradiation at different wavelengths. Catalytic reversibility also enables the CDsomes to produce sufficient reactive oxygen species (ROS) to effectively kill tumor cells. Our results reveal that CDsomes is a promising photo-cycling nanozyme for precise tumor phototherapy through regulated programmable cascade reactions.
Collapse
Affiliation(s)
- Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yun Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ren-Siang Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
17
|
Bachhuka A, Chand Yadav T, Santos A, Marsal LF, Ergün S, Karnati S. Emerging nanomaterials for targeting peroxisomes. MATERIALS TODAY ADVANCES 2022; 15:100265. [DOI: 10.1016/j.mtadv.2022.100265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Zhang S, Zhang R, Yan X, Fan K. Nanozyme-Based Artificial Organelles: An Emerging Direction for Artificial Organelles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202294. [PMID: 35869033 DOI: 10.1002/smll.202202294] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Artificial organelles are compartmentalized nanoreactors, in which enzymes or enzyme-mimic catalysts exhibit cascade catalytic activities to mimic the functions of natural organelles. Importantly, research on artificial organelles paves the way for the bottom-up design of synthetic cells. Due to the separation effect of microcompartments, the catalytic reactions of enzymes are performed without the influence of the surrounding medium. The current techniques for synthesizing artificial organelles rely on the strategies of encapsulating enzymes into vesicle-structured materials or reconstituting enzymes onto the microcompartment materials. However, there are still some problems including limited functions, unregulated activities, and difficulty in targeting delivery that hamper the applications of artificial organelles. The emergence of nanozymes (nanomaterials with enzyme-like activities) provides novel ideas for the fabrication of artificial organelles. Compared with natural enzymes, nanozymes are featured with multiple enzymatic activities, higher stability, easier to synthesize, lower cost, and excellent recyclability. Herein, the most recent advances in nanozyme-based artificial organelles are summarized. Moreover, the benefits of compartmental structures for the applications of nanozymes, as well as the functional requirements of microcompartment materials are also introduced. Finally, the potential applications of nanozyme-based artificial organelles in biomedicine and the related challenges are discussed.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
19
|
Shin J, Cole BD, Shan T, Jang Y. Heterogeneous Synthetic Vesicles toward Artificial Cells: Engineering Structure and Composition of Membranes for Multimodal Functionalities. Biomacromolecules 2022; 23:1505-1518. [PMID: 35266692 DOI: 10.1021/acs.biomac.1c01504] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The desire to develop artificial cells to imitate living cells in synthetic vesicle platforms has continuously increased over the past few decades. In particular, heterogeneous synthetic vesicles made from two or more building blocks have attracted attention for artificial cell applications based on their multifunctional modules with asymmetric structures. In addition to the traditional liposomes or polymersomes, polypeptides and proteins have recently been highlighted as potential building blocks to construct artificial cells owing to their specific biological functionalities. Incorporating one or more functionally folded, globular protein into synthetic vesicles enables more cell-like functions mediated by proteins. This Review highlights the recent research about synthetic vesicles toward artificial cell models, from traditional synthetic vesicles to protein-assembled vesicles with asymmetric structures. We aim to provide fundamental and practical insights into applying knowledge on molecular self-assembly to the bottom-up construction of artificial cell platforms with heterogeneous building blocks.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Blair D Cole
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ting Shan
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
20
|
Ade C, Qian X, Brodszkij E, De Dios Andres P, Spanjers J, Westensee IN, Städler B. Polymer Micelles vs Polymer-Lipid Hybrid Vesicles: A Comparison Using RAW 264.7 Cells. Biomacromolecules 2022; 23:1052-1064. [PMID: 35020375 PMCID: PMC8924860 DOI: 10.1021/acs.biomac.1c01403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bottom-up synthetic biology aims to integrate artificial moieties with living cells and tissues. Here, two types of structural scaffolds for artificial organelles were compared in terms of their ability to interact with macrophage-like murine RAW 264.7 cells. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) was used to assemble micelles and polymer-lipid hybrid vesicles together with 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids in the latter case. In addition, the pH-sensitive fusogenic peptide GALA was conjugated to the carriers to improve their lysosomal escape ability. All assemblies had low short-term toxicity toward macrophage-like murine RAW 264.7 cells, and the cells internalized both the micelles and hybrid vesicles within 24 h. Assemblies containing DOPE lipids or GALA in their building blocks could escape the lysosomes. However, the intracellular retention of the building blocks was only a few hours in all the cases. Taken together, the provided comparison between two types of potential scaffolds for artificial organelles lays out the fundamental understanding required to advance soft material-based assemblies as intracellular nanoreactors.
Collapse
Affiliation(s)
- Carina Ade
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Järvi Spanjers
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
21
|
Yan R, Ren J, Wen J, Cao Z, Wu D, Qin M, Xu D, Castillo R, Li F, Wang F, Gan Z, Liu C, Wei P, Lu Y. Enzyme Therapeutic for Ischemia and Reperfusion Injury in Organ Transplantation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105670. [PMID: 34617335 DOI: 10.1002/adma.202105670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Ischemia-reperfusion injury (IRI) remains as a critical challenge for organ transplantation. Herein, an enzyme therapeutic based on superoxide dismutase and catalase for effective mitigation of IRI and pathogen-induced liver injury is reported, providing a therapeutic for organ transplantation and other diseases.
Collapse
Affiliation(s)
- Ran Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jie Ren
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Duo Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Roxanne Castillo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Feifei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
22
|
Chen Y, Yuan M, Zhang YW, Zhou S, Wang K, Wu Z, Liu J. Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging. Biomater Sci 2022; 10:4588-4595. [DOI: 10.1039/d2bm00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial organelles are microcompartments capable of performing catalytic reactions in living cells to replace absent or lost cellular functions. Coacervate microdroplets, formed via liquid-liquid phase separation, have been developed as...
Collapse
|
23
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
24
|
Chemical communication at the synthetic cell/living cell interface. Commun Chem 2021; 4:161. [PMID: 36697795 PMCID: PMC9814394 DOI: 10.1038/s42004-021-00597-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Although the complexity of synthetic cells has continued to increase in recent years, chemical communication between protocell models and living organisms remains a key challenge in bottom-up synthetic biology and bioengineering. In this Review, we discuss how communication channels and modes of signal processing can be established between living cells and cytomimetic agents such as giant unilamellar lipid vesicles, proteinosomes, polysaccharidosomes, polymer-based giant vesicles and membrane-less coacervate micro-droplets. We describe three potential modes of chemical communication in consortia of synthetic and living cells based on mechanisms of distributed communication and signal processing, physical embodiment and nested communication, and network-based contact-dependent communication. We survey the potential for applying synthetic cell/living cell communication systems in biomedicine, including the in situ production of therapeutics and development of new bioreactors. Finally, we present a short summary of our findings.
Collapse
|
25
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
26
|
Maffeis V, Belluati A, Craciun I, Wu D, Novak S, Schoenenberger CA, Palivan CG. Clustering of catalytic nanocompartments for enhancing an extracellular non-native cascade reaction. Chem Sci 2021; 12:12274-12285. [PMID: 34603657 PMCID: PMC8480338 DOI: 10.1039/d1sc04267j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 01/10/2023] Open
Abstract
Compartmentalization is fundamental in nature, where the spatial segregation of biochemical reactions within and between cells ensures optimal conditions for the regulation of cascade reactions. While the distance between compartments or their interaction are essential parameters supporting the efficiency of bio-reactions, so far they have not been exploited to regulate cascade reactions between bioinspired catalytic nanocompartments. Here, we generate individual catalytic nanocompartments (CNCs) by encapsulating within polymersomes or attaching to their surface enzymes involved in a cascade reaction and then, tether the polymersomes together into clusters. By conjugating complementary DNA strands to the polymersomes' surface, DNA hybridization drove the clusterization process of enzyme-loaded polymersomes and controlled the distance between the respective catalytic nanocompartments. Owing to the close proximity of CNCs within clusters and the overall stability of the cluster architecture, the cascade reaction between spatially segregated enzymes was significantly more efficient than when the catalytic nanocompartments were not linked together by DNA duplexes. Additionally, residual DNA single strands that were not engaged in clustering, allowed for an interaction of the clusters with the cell surface as evidenced by A549 cells, where clusters decorating the surface endowed the cells with a non-native enzymatic cascade. The self-organization into clusters of catalytic nanocompartments confining different enzymes of a cascade reaction allows for a distance control of the reaction spaces which opens new avenues for highly efficient applications in domains such as catalysis or nanomedicine.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Samantha Novak
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| |
Collapse
|
27
|
Iwasaki M, Yoshimoto M. Confinement of Metalloenzymes in PEGylated Liposomes to Formulate Colloidal Catalysts for Antioxidant Cascade. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10624-10635. [PMID: 34431680 DOI: 10.1021/acs.langmuir.1c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antioxidant cascade reactions detoxifying reactive oxygen species are of significance to control oxidative stresses-triggered diseases. In the present work, the antioxidant catalysts were prepared through the confinement of dual metalloenzymes in liposomes. The amino groups of superoxide dismutase (SOD) were conjugated to the carboxyl groups-bearing liposomes encapsulated with the catalase (CAT) to formulate a spatially organized antioxidant reaction network. The activity of SOD and CAT in the liposomal system was evaluated in detail on the basis of the prolonged xanthine oxidase/xanthine reaction producing superoxide anion radicals (O2̇-) and hydrogen peroxide (H2O2) coupled with redox reactions of cytochrome c. The liposome-confined SOD and CAT molecules were clearly demonstrated to catalyze the sequential disproportionation of O2̇- and H2O2 at 25 °C in a potassium phosphate buffer solution (pH = 7.8) under moderate transfer resistance with respect to the intermediate product (H2O2) within the liposomes. Furthermore, the liposomal catalysts were modified with the poly(ethylene glycol) (PEG)-conjugated lipids with the molecular mass of the PEG moiety of about 5000 through the post-PEGylation approach. The mean hydrodynamic diameter of the PEGylated liposomal catalysts was 140-150 nm. The dual enzyme activity in liposomes and the thermal stability of the encapsulated CAT were practically unaffected by the PEGylation. The above liposome-based antioxidant catalysts are highly biocompatible, PEG-modifiable, and reactive, thereby making the catalysts potentially applicable to therapeutic materials exhibiting functionality similar to cellular peroxisomes.
Collapse
Affiliation(s)
- Masataka Iwasaki
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|
28
|
Ma X, Zhi Z, Zhang S, Zhou C, Mechler A, Liu P. Validating an artificial organelle: Studies of lipid droplet-specific proteins on adiposome platform. iScience 2021; 24:102834. [PMID: 34368652 PMCID: PMC8326204 DOI: 10.1016/j.isci.2021.102834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 10/25/2022] Open
Abstract
New strategies are urgently needed to characterize the functions of the lipid droplet (LD). Here, adiposome, an artificial LD mimetic platform, was validated by comparative in vitro bioassays. Scatchard analysis found that the binding of perilipin 2 (PLIN2) to the adiposome surface was saturable. Phosphatidylinositol (PtdIns) was found to inhibit PLIN2 binding while it did not impede perilipin 3 (PLIN3). Structural analysis combined with mutagenesis revealed that the 73rd glutamic acid of PLIN2 is significant for the effect of PtdIns on the PLIN2 binding. Furthermore, adiposome was also found to be an ideal platform for in situ enzymatic activity measurement of adipose triglyceride lipase (ATGL). The significant serine mutants of ATGL were found to cause the loss of lipase activity. Our study demonstrates the adiposome as a powerful, manipulatable model system that mimics the function of LD for binding and enzymatic activity studies of LD proteins in vitro.
Collapse
Affiliation(s)
- Xuejing Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zelun Zhi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Okuno Y, Nishimura T, Sasaki Y, Akiyoshi K. Thermoresponsive Carbohydrate- b-Polypeptoid Polymer Vesicles with Selective Solute Permeability and Permeable Factors for Solutes. Biomacromolecules 2021; 22:3099-3106. [PMID: 34165283 DOI: 10.1021/acs.biomac.1c00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solute-permeable polymer vesicles are structural compartments for nanoreactors/nanofactories in the context of drug delivery and artificial cells. We previously proposed design guidelines for polymers that form solute-permeable vesicles, yet we did not provide enough experimental verification. In addition, the fact that there is no clear factor for identifying permeable solutes necessitates extensive trial and error. Herein, we report solute-permeable polymer vesicles based on an amphiphilic copolymer, thermoresponsive oligosaccharide-block-poly(N-n-propylglycine). The introduction of a thermoresponsive polymer as a hydrophobic segment into amphiphilic polymers is a viable approach to construct solute-permeable polymer vesicles. We also demonstrate that the polymer vesicles are preferentially permeable to cationic and neutral fluorophores and are hardly permeable to anionic fluorophores due to the electrostatic repulsion between the bilayer and anionic fluorophores. In addition, the permeability of neutral fluorophores increases with the increasing log P value of the fluorophores. Thus, the electrical charge and log P value are important factors for membrane permeability. These findings will help researchers develop advanced nanoreactors based on permeable vesicles for a broad range of fundamental and biomedical applications.
Collapse
Affiliation(s)
- Yota Okuno
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Nagano 386-8567, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
30
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
31
|
Liu Y, Qin Y, Zhang Q, Zou W, Jin L, Guo R. Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: A single nanozyme mimicking multi-enzymatic cascade systems in peroxisome. J Colloid Interface Sci 2021; 600:37-48. [PMID: 34010774 DOI: 10.1016/j.jcis.2021.05.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022]
Abstract
Recently, nanozymes have attracted sustained attention for facilitating next generation of artificial enzymatic cascade systems (ECSs). However, the fabrication of integrated multi-ECSs based on a single nanozyme remains a great challenge. Here, inspired by the biological function and self-assembling ability of arginine (R), we synthesized arginine-rich peptide-Pt nanoparticle cluster (ARP-PtNC) nanozymes that mimic two typical enzymatic cascade systems of uricase/catalase and superoxide dismutase/catalase in natural peroxisome. ARPs containing at least 10 arginine residues contribute to the cluster formation based on hydrogen bonding and coordination. The well-designed peptide-Pt hybrid nanozyme not only possesses excellent uricase-mimicking activity to degrade uric acid effectively, but also serves as a desired scavenger for reactive oxygen species (ROS) harnessing two efficient enzyme cascade catalysis of uricase/catalase and superoxide dismutase/catalase. The surface microenvironment of the hybrid nanozymes provided by arginine-rich peptides and the cluster structure contribute to the efficient multiply enzyme-like activities. Fascinatingly, the hybrid nanozyme can inhibit the formation of monosodium urate monohydrate effectively based on the architecture of ARP-PtNCs. Thus, ARP-PtNC nanozyme has the potential in gout and hyperuricemia therapy. Rational design of ingenious peptide-metal hybrid nanozyme with unique physicochemical surface properties provides a versatile and designed strategy to fabricate multi-enzymatic cascade systems, which opens new avenues to broaden the application of nanozymes in practice.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China.
| | - Yuling Qin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Qianya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Wenting Zou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Lingcen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China.
| |
Collapse
|
32
|
Marin E, Tiwari N, Calderón M, Sarasua JR, Larrañaga A. Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular Oxidative Stress as Prospective Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18511-18524. [PMID: 33861060 PMCID: PMC9161222 DOI: 10.1021/acsami.1c01450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have emerged as promising biomedical systems for the release of a wide variety of therapeutic agents, owing to their tunable and controllable structure and the possibility to include several functionalities in the polymeric membrane during the fabrication process. However, the limitation of the capsules with a single functionality to overcome the challenges involved in the treatment of complex pathologies denotes the need to develop multifunctional capsules capable of targeting several mediators and/or mechanisms. Oxidative stress is caused by the accumulation of reactive oxygen species [e.g., hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-)] in the cellular microenvironment and is a key modulator in the pathology of a broad range of inflammatory diseases. The disease microenvironment is also characterized by the presence of proinflammatory cytokines, increased levels of matrix metalloproteinases, and acidic pH, all of which could be exploited to trigger the release of therapeutic agents. In the present work, multifunctional capsules were fabricated via the LbL approach. Capsules were loaded with an antioxidant enzyme (catalase) and functionalized with a model drug (doxorubicin), which was conjugated to an amine-containing dendritic polyglycerol through a pH-responsive linker. These capsules efficiently scavenge H2O2 from solution, protecting cells from oxidative stress, and release the model drug in acidic microenvironments. Accordingly, in this work, a polymeric microplatform is presented as an unexplored combinatorial approach applicable for multiple targets of inflammatory diseases, in order to perform controlled spatiotemporal enzymatic reactions and drug release in response to biologically relevant stimuli.
Collapse
Affiliation(s)
- Edurne Marin
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Neha Tiwari
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jose-Ramon Sarasua
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
33
|
Pavlovic M, Muráth S, Katona X, Alsharif NB, Rouster P, Maléth J, Szilagyi I. Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species. Sci Rep 2021; 11:4321. [PMID: 33619308 PMCID: PMC7900168 DOI: 10.1038/s41598-021-83819-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
A broad-spectrum reactive oxygen species (ROS)-scavenging hybrid material (CASCADE) was developed by sequential adsorption of heparin (HEP) and poly(L-lysine) (PLL) polyelectrolytes together with superoxide dismutase (SOD) and horseradish peroxidase (HRP) antioxidant enzymes on layered double hydroxide (LDH) nanoclay support. The synthetic conditions were optimized so that CASCADE possessed remarkable structural (no enzyme leakage) and colloidal (excellent resistance against salt-induced aggregation) stability. The obtained composite was active in decomposition of both superoxide radical anions and hydrogen peroxide in biochemical assays revealing that the strong electrostatic interaction with the functionalized support led to high enzyme loadings, nevertheless, it did not interfere with the native enzyme conformation. In vitro tests demonstrated that ROS generated in human cervical adenocarcinoma cells were successfully consumed by the hybrid material. The cellular uptake was not accompanied with any toxicity effects, which makes the developed CASCADE a promising candidate for treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Szabolcs Muráth
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, 6720, Szeged, Hungary
| | - Xénia Katona
- MTA-SZTE Lendület Epithelial Cell Signaling and Secretion Research Group, Interdisciplinary Excellence Centre, University of Szeged, 6720, Szeged, Hungary
| | - Nizar B Alsharif
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, 6720, Szeged, Hungary
| | - Paul Rouster
- Institute of Condensed Matter and Nanosciences-Bio and Soft Matter, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - József Maléth
- MTA-SZTE Lendület Epithelial Cell Signaling and Secretion Research Group, Interdisciplinary Excellence Centre, University of Szeged, 6720, Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, 6720, Szeged, Hungary.
| |
Collapse
|
34
|
Chaperonins: Nanocarriers with Biotechnological Applications. NANOMATERIALS 2021; 11:nano11020503. [PMID: 33671209 PMCID: PMC7922521 DOI: 10.3390/nano11020503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Chaperonins are molecular chaperones found in all kingdoms of life, and as such they assist in the folding of other proteins. Structurally, chaperonins are cylinders composed of two back-to-back rings, each of which is an oligomer of ~60-kDa proteins. Chaperonins are found in two main conformations, one in which the cavity is open and ready to recognise and trap unfolded client proteins, and a "closed" form in which folding takes place. The conspicuous properties of this structure (a cylinder containing a cavity that allows confinement) and the potential to control its closure and aperture have inspired a number of nanotechnological applications that will be described in this review.
Collapse
|
35
|
Dubey NC, Tripathi BP. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS APPLIED BIO MATERIALS 2021; 4:1077-1114. [PMID: 35014469 DOI: 10.1021/acsabm.0c01293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a biological system, the spatiotemporal arrangement of enzymes in a dense cellular milieu, subcellular compartments, membrane-associated enzyme complexes on cell surfaces, scaffold-organized proteins, protein clusters, and modular enzymes have presented many paradigms for possible multienzyme immobilization designs that were adapted artificially. In metabolic channeling, the catalytic sites of participating enzymes are close enough to channelize the transient compound, creating a high local concentration of the metabolite and minimizing the interference of a competing pathway for the same precursor. Over the years, these phenomena had motivated researchers to make their immobilization approach naturally realistic by generating multienzyme fusion, cluster formation via affinity domain-ligand binding, cross-linking, conjugation on/in the biomolecular scaffold of the protein and nucleic acids, and self-assembly of amphiphilic molecules. This review begins with the discussion of substrate channeling strategies and recent empirical efforts to build it synthetically. After that, an elaborate discussion covering prevalent concepts related to the enhancement of immobilized enzymes' catalytic performance is presented. Further, the central part of the review summarizes the progress in nature motivated multienzyme assembly over the past decade. In this section, special attention has been rendered by classifying the nature-inspired strategies into three main categories: (i) multienzyme/domain complex mimic (scaffold-free), (ii) immobilization on the biomolecular scaffold, and (iii) compartmentalization. In particular, a detailed overview is correlated to the natural counterpart with advances made in the field. We have then discussed the beneficial account of coassembly of multienzymes and provided a synopsis of the essential parameters in the rational coimmobilization design.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
36
|
Potter M, Najer A, Klöckner A, Zhang S, Holme MN, Nele V, Che J, Massi L, Penders J, Saunders C, Doutch JJ, Edwards AM, Ces O, Stevens MM. Controlled Dendrimersome Nanoreactor System for Localized Hypochlorite-Induced Killing of Bacteria. ACS NANO 2020; 14:17333-17353. [PMID: 33290039 PMCID: PMC7760217 DOI: 10.1021/acsnano.0c07459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy. Inspired by the localized antimicrobial function of neutrophil phagosomes and the versatility of DSs, a simple three-component DS-based nanoreactor with broad-spectrum bactericidal activity is presented. This was achieved by encapsulation of glucose oxidase (GOX) and myeloperoxidase (MPO) within DSs (GOX-MPO-DSs), self-assembled from an amphiphilic Janus dendrimer, that possesses a semipermeable membrane. By external addition of glucose to GOX-MPO-DS, the production of hypochlorite (-OCl), a highly potent antimicrobial, by the enzymatic cascade was demonstrated. This cascade nanoreactor yielded a potent bactericidal effect against two important multidrug resistant pathogens, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), not observed for H2O2 producing nanoreactors, GOX-DS. The production of highly reactive species such as -OCl represents a harsh bactericidal approach that could also be cytotoxic to mammalian cells. This necessitates the development of strategies for activating -OCl production in a localized manner in response to a bacterial stimulus. One option of locally releasing sufficient amounts of substrate using a bacterial trigger (released toxins) was demonstrated with lipidic glucose-loaded giant unilamellar vesicles (GUVs), envisioning, e.g., implant surface modification with nanoreactors and GUVs for localized production of bactericidal agents in the presence of bacterial growth.
Collapse
Affiliation(s)
- Michael Potter
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Chemistry and Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K.
| | - Adrian Najer
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Anna Klöckner
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- MRC
Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Shaodong Zhang
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Margaret N. Holme
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Valeria Nele
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Junyi Che
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Lucia Massi
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Jelle Penders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Catherine Saunders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - James J. Doutch
- Rutherford
Appleton Laboratory, ISIS Neutron and Muon
Source, STFC, Didcot OX11 ODE, U.K.
| | - Andrew M. Edwards
- MRC
Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Oscar Ces
- Department
of Chemistry and Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
37
|
Dos Santos EC, Belluati A, Necula D, Scherrer D, Meyer CE, Wehr RP, Lörtscher E, Palivan CG, Meier W. Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004804. [PMID: 33107187 DOI: 10.1002/adma.202004804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Indexed: 05/16/2023]
Abstract
Cells rely upon producing enzymes at precise rates and stoichiometry for maximizing functionalities. The reasons for this optimal control are unknown, primarily because of the interconnectivity of the enzymatic cascade effects within multi-step pathways. Here, an elegant strategy for studying such behavior, by controlling segregation/combination of enzymes/metabolites in synthetic cell-sized compartments, while preserving vital cellular elements is presented. Therefore, compartments shaped into polymer GUVs are developed, producing via high-precision double-emulsion microfluidics that enable: i) tight control over the absolute and relative enzymatic contents inside the GUVs, reaching nearly 100% encapsulation and co-encapsulation efficiencies, and ii) functional reconstitution of biopores and membrane proteins in the GUVs polymeric membrane, thus supporting in situ reactions. GUVs equipped with biopores/membrane proteins and loaded with one or more enzymes are arranged in a variety of combinations that allow the study of a three-step cascade in multiple topologies. Due to the spatiotemporal control provided, optimum conditions for decreasing the accumulation of inhibitors are unveiled, and benefited from reactive intermediates to maximize the overall cascade efficiency in compartments. The non-system-specific feature of the novel strategy makes this system an ideal candidate for the development of new synthetic routes as well as for screening natural and more complex pathways.
Collapse
Affiliation(s)
- Elena C Dos Santos
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Dominik Scherrer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Claire E Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Riccardo P Wehr
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| |
Collapse
|
38
|
Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat Chem 2020; 12:1165-1173. [DOI: 10.1038/s41557-020-00585-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
|
39
|
Belluati A, Craciun I, Palivan CG. Bioactive Catalytic Nanocompartments Integrated into Cell Physiology and Their Amplification of a Native Signaling Cascade. ACS NANO 2020; 14:12101-12112. [PMID: 32869973 DOI: 10.1021/acsnano.0c05574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioactive nanomaterials have the potential to overcome the limitations of classical pharmacological approaches by taking advantage of native pathways to influence cell behavior, interacting with them and eliciting responses. Herein, we propose a cascade system mediated by two catalytic nanocompartments (CNC) with biological activity. Activated by nitric oxide (NO) produced by inducible nitric oxidase synthase (iNOS), soluble guanylyl cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), a second messenger that modulates a broad range of physiological functions. As alterations in cGMP signaling are implicated in a multitude of pathologies, its signaling cascade represents a viable target for therapeutic intervention. Following along this line, we encapsulated iNOS and sGC in two separate polymeric compartments that function in unison to produce NO and cGMP. Their action was tested in vitro by monitoring the derived changes in cytoplasmic calcium concentrations of HeLa and differentiated C2C12 myocytes, where the produced second messenger influenced the cellular homeostasis.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
40
|
Rahikkala A, Fontana F, Bauleth-Ramos T, Correia A, Kemell M, Seitsonen J, Mäkilä E, Sarmento B, Salonen J, Ruokolainen J, Hirvonen J, Santos HA. Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Adv 2020; 10:35198-35205. [PMID: 35515680 PMCID: PMC9056825 DOI: 10.1039/d0ra05900e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Erythrocyte-based drug delivery systems have been investigated for their biocompatibility, long circulation time, and capability to transport cargo all around the body, thus presenting enormous potential in medical applications. In this study, we investigated hybrid nanoparticles consisting of nano-sized autologous or allogeneic red blood cell (RBC) membranes encapsulating porous silicon nanoparticles (PSi NPs). These NPs were functionalized with a model cancer antigen TRP2, which was either expressed on the surface of the RBCs by a cell membrane-mimicking block copolymer polydimethylsiloxane-b-poly-2-methyl-2-oxazoline, or attached on the PSi NPs, thus hidden within the encapsulation. When in the presence of peripheral blood immune cells, these NPs resulted in apoptotic cell death of T cells, where the NPs having TRP2 within the encapsulation led to a stronger T cell deletion. The deletion of the T cells did not change the relative proportion of CD4+ and cytotoxic CD8+ T cells. Overall, this work shows the combination of nano-sized RBCs, PSi, and antigenic peptides may have use in the treatment of autoimmune diseases. We report a study on the effect of red blood cell membrane based cancer antigen-functionalized nanoparticles on peripheral blood T cells. These nanoparticles induce apoptosis of T cells and they may have use in treating autoimmune diseases.![]()
Collapse
Affiliation(s)
- Antti Rahikkala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI-00014 Helsinki Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI-00014 Helsinki Finland
| | - Tomás Bauleth-Ramos
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto Rua Alfredo Allen, 208 4200-135 Porto Portugal.,Instituto de Engenharia Biomédica (INEB), University of Porto Rua Alfredo Allen, 208 4200-135 Porto Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto Rua Jorge Viterbo 228 4150-180 Porto Portugal
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI-00014 Helsinki Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki FI-00014 Helsinki Finland
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University FI-02150 Espoo Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku FI-20014 Turku Finland
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde 4585-116 Gandra Portugal
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku FI-20014 Turku Finland
| | | | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI-00014 Helsinki Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI-00014 Helsinki Finland .,Helsinki Institute of Life Science (HiLIFE), University of Helsinki FI-00014 Helsinki Finland
| |
Collapse
|
41
|
Chen Y, Tan J, Zhang Q, Xin T, Yu Y, Nie Y, Zhang S. Artificial Organelles Based on Cross-Linked Zwitterionic Vesicles. NANO LETTERS 2020; 20:6548-6555. [PMID: 32787159 DOI: 10.1021/acs.nanolett.0c02298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Artificial organelles (AOs) are typical microcompartments with intracellular biocatalytic activity aimed to replace missing or lost cellular functions. Currently, liposomes or polymersomes are popular microcompartments to build AOs by embedding channel proteins in their hydrophobic domain and entrapping natural enzymes in their cavity. Herein, a new microcompartment is established by using monolayer cross-linked zwitterionic vesicles (cZVs) with a carboxylic acid saturated cavity. The monolayer structure endows the cZVs with intrinsic permeability; the cavity supplies the cZVs ability of in situ synthesis of artificial enzymes, and the pH-dependent charge-change property makes it possible to overcome the biological barriers. Typically, nanozymes of CeO2 and Pt NPs were synthesized in the cZVs to mimic peroxisome. In vitro experiments confirmed that the resulting artificial peroxisome (AP) could resist protein adsorption, endocytose efficiently, and escape from the lysosome. In vivo experiments demonstrated that the APs held a good therapeutic effect in ROS-induced ear-inflammation.
Collapse
Affiliation(s)
- Yun Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Jiangbing Tan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qian Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Tuo Xin
- College of Materials Science and Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yunlong Yu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
42
|
Brodszkij E, Westensee IN, Bertelsen M, Gal N, Boesen T, Städler B. Polymer-Lipid Hybrid Vesicles and Their Interaction with HepG2 Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906493. [PMID: 32468702 DOI: 10.1002/smll.201906493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Polymer-lipid hybrid vesicles are an emerging type of nano-assemblies that show potential as artificial organelles among others. Phospholipids and poly(cholesteryl methacrylate)-block-poly(methionine methacryloyloxyethyl ester (METMA)-random-2-carboxyethyl acrylate (CEA)) labeled with a Förster resonance energy transfer (FRET) reporter pair are used for the assembly of small and giant hybrid vesicles with homogenous distribution of both building blocks in the membrane as confirmed by the FRET effect. These hybrid vesicles have no inherent cytotoxicity when incubated with HepG2 cells up to 1.1 × 1011 hybrid vesicles per mL, and they are internalized by the cells. In contrast to the fluorescent signal originating from the block copolymer, the fluorescent signal coming from the lipids is barely detectable in cells incubated with hybrid vesicles for 6 h followed by 24 h in cell media, suggesting that the two building blocks have a different intracellular fate. These findings provide important insight into the design criteria of artificial organelles with potential structural integrity.
Collapse
Affiliation(s)
- Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Mathias Bertelsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Noga Gal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
43
|
Meyer CE, Liu J, Craciun I, Wu D, Wang H, Xie M, Fussenegger M, Palivan CG. Segregated Nanocompartments Containing Therapeutic Enzymes and Imaging Compounds within DNA-Zipped Polymersome Clusters for Advanced Nanotheranostic Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906492. [PMID: 32130785 DOI: 10.1002/smll.201906492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Nanotheranostics is an emerging field that brings together nanoscale-engineered materials with biological systems providing a combination of therapeutic and diagnostic strategies. However, current theranostic nanoplatforms have serious limitations, mainly due to a mismatch between the physical properties of the selected nanomaterials and their functionalization ease, loading ability, or overall compatibility with bioactive molecules. Herein, a nanotheranostic system is proposed based on nanocompartment clusters composed of two different polymersomes linked together by DNA. Careful design and procedure optimization result in clusters segregating the therapeutic enzyme human Dopa decarboxylase (DDC) and fluorescent probes for the detection unit in distinct but colocalized nanocompartments. The diagnostic compartment provides a twofold function: trackability via dye loading as the imaging component and the ability to attach the cluster construct to the surface of cells. The therapeutic compartment, loaded with active DDC, triggers the cellular expression of a secreted reporter enzyme via production of dopamine and activation of dopaminergic receptors implicated in atherosclerosis. This two-compartment nanotheranostic platform is expected to provide the basis of a new treatment strategy for atherosclerosis, to expand versatility and diversify the types of utilizable active molecules, and thus by extension expand the breadth of attainable applications.
Collapse
Affiliation(s)
- Claire E Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Juan Liu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Hui Wang
- Department of Biosystems Science Engineering, ETHZ, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science Engineering, ETHZ, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science Engineering, ETHZ, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| |
Collapse
|
44
|
The chemistry of cross-linked polymeric vesicles and their functionalization towards biocatalytic nanoreactors. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractSelf-assembly of amphiphilic block copolymers into polymersomes continues to be a hot topic in modern research on biomimetics. Their well-known and valued mechanical strength can be increased even further if they are cross-linked. These additional bonds prevent a collapse or disassembly of the polymersomes and open the way towards smart nanoreactors. A variety of chemistries have been applied to obtain the desired cross-linked polymersomes, and therefore, the chemical approaches performed over time will be highlighted in this mini-review. Due to the large number of studies, a selected set of photo-cross-linked and pH-sensitive polymersomes will be specifically highlighted. This system has proven to be a very potent candidate for the formation of nanoreactors and drug delivery systems, and even for the formation of functional multicompartment cell mimics.
Collapse
|
45
|
Nishimura T, Shishi S, Sasaki Y, Akiyoshi K. Thermoresponsive Polysaccharide Graft Polymer Vesicles with Tunable Size and Structural Memory. J Am Chem Soc 2020; 142:11784-11790. [PMID: 32506909 DOI: 10.1021/jacs.0c02290] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Controlling polymer vesicle size is difficult and a major obstacle for their potential use in biomedical applications, such as drug-delivery carriers and nanoreactors. Herein, we report size-tunable polymer vesicles based on self-assembly of a thermoresponsive amphiphilic graft copolymer. Unilamellar polymer vesicles form upon heating chilled polymer solutions, and vesicle size can be tuned in the range of 40-70 nm by adjusting the initial polymer concentration. Notably, the polymer can reversibly switch between a monomer state and a vesicle state in accordance with a cooling/heating cycle, which changes neither the size nor the size distribution of the vesicles. This lack of change suggests that the polymer memorizes a particular vesicle conformation. Given our vesicles' size tunability and structural memory, our research considerably expands the fundamental and practical scope of thermoresponsive amphiphilic graft copolymers and renders amphiphilic graft copolymers useful tools for synthesizing functional self-assembled materials.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shen Shishi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
46
|
Wang X, Liu X, Huang X. Bioinspired Protein-Based Assembling: Toward Advanced Life-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001436. [PMID: 32374501 DOI: 10.1002/adma.202001436] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The ability of living organisms to perform structure, energy, and information-related processes for molecular self-assembly through compartmentalization and chemical transformation can possibly be mimicked via artificial cell models. Recent progress in the development of various types of functional microcompartmentalized ensembles that can imitate rudimentary aspects of living cells has refocused attention on the important question of how inanimate systems can transition into living matter. Hence, herein, the most recent advances in the construction of protein-bounded microcompartments (proteinosomes), which have been exploited as a versatile synthetic chassis for integrating a wide range of functional components and biochemical machineries, are critically summarized. The techniques developed for fabricating various types of proteinosomes are discussed, focusing on the significance of how chemical information, substance transportation, enzymatic-reaction-based metabolism, and self-organization can be integrated and recursively exploited in constructed ensembles. Therefore, proteinosomes capable of exhibiting gene-directed protein synthesis, modulated membrane permeability, spatially confined membrane-gated catalytic reaction, internalized cytoskeletal-like matrix assembly, on-demand compartmentalization, and predatory-like chemical communication in artificial cell communities are specially highlighted. These developments are expected to bridge the gap between materials science and life science, and offer a theoretical foundation for developing life-inspired assembled materials toward various applications.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
47
|
Zartner L, Muthwill MS, Dinu IA, Schoenenberger CA, Palivan CG. The rise of bio-inspired polymer compartments responding to pathology-related signals. J Mater Chem B 2020; 8:6252-6270. [PMID: 32452509 DOI: 10.1039/d0tb00475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-organized nano- and microscale polymer compartments such as polymersomes, giant unilamellar vesicles (GUVs), polyion complex vesicles (PICsomes) and layer-by-layer (LbL) capsules have increasing potential in many sensing applications. Besides modifying the physicochemical properties of the corresponding polymer building blocks, the versatility of these compartments can be markedly expanded by biomolecules that endow the nanomaterials with specific molecular and cellular functions. In this review, we focus on polymer-based compartments that preserve their structure, and highlight the key role they play in the field of medical diagnostics: first, the self-assembling abilities that result in preferred architectures are presented for a broad range of polymers. In the following, we describe different strategies for sensing disease-related signals (pH-change, reductive conditions, and presence of ions or biomolecules) by polymer compartments that exhibit stimuli-responsiveness. In particular, we distinguish between the stimulus-sensitivity contributed by the polymer itself or by additional compounds embedded in the compartments in different sensing systems. We then address necessary properties of sensing polymeric compartments, such as the enhancement of their stability and biocompatibility, or the targeting ability, that open up new perspectives for diagnostic applications.
Collapse
Affiliation(s)
- Luisa Zartner
- Chemistry Department, University of Basel, Mattenstr. 24a, BPR1096, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Abstract
In nature, various specific reactions only occur in spatially controlled environments. Cell compartment and subcompartments act as the support required to preserve the bio-specificity and functionality of the biological content, by affording absolute segregation. Inspired by this natural perfect behavior, bottom-up approaches are on focus to develop artificial cell-like structures, crucial for understanding relevant bioprocesses and interactions or to produce tailored solutions in the field of therapeutics and diagnostics. In this review, we discuss the benefits of constructing polymer-based single and multicompartments (capsules and giant unilamellar vesicles (GUVs)), equipped with biomolecules as to mimic cells. In this respect, we outline key examples of how such structures have been designed from scratch, namely, starting from the application-oriented selection and synthesis of the amphiphilic block copolymer. We then present the state-of-the-art techniques for assembling the supramolecular structure while permitting the encapsulation of active compounds and the incorporation of peptides/membrane proteins, essential to support in situ reactions, e.g., to replicate intracellular signaling cascades. Finally, we briefly discuss important features that these compartments offer and how they could be applied to engineer the next generation of microreactors, therapeutic solutions, and cell models.
Collapse
|
49
|
Di Leone S, Avsar SY, Belluati A, Wehr R, Palivan CG, Meier W. Polymer–Lipid Hybrid Membranes as a Model Platform to Drive Membrane–Cytochrome c Interaction and Peroxidase-like Activity. J Phys Chem B 2020; 124:4454-4465. [DOI: 10.1021/acs.jpcb.0c02727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stefano Di Leone
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland
| | - Saziye Yorulmaz Avsar
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andrea Belluati
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Riccardo Wehr
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
50
|
Sahar S, Zeb A, Ling C, Raja A, Wang G, Ullah N, Lin XM, Xu AW. A Hybrid VO x Incorporated Hexacyanoferrate Nanostructured Hydrogel as a Multienzyme Mimetic via Cascade Reactions. ACS NANO 2020; 14:3017-3031. [PMID: 32105066 DOI: 10.1021/acsnano.9b07886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inspired by the cascade reactions occurring in micro-organelles of living systems, we have developed a hybrid hydrogel, a nanozyme that mimics three key enzymes including peroxidase, superoxide dismutase, and catalase. The organic/inorganic nanostructured hydrogel constituting VOx incorporated hexacyanoferrate Berlin green analogue complex (VOxBG) is prepared by a simple one-step hydrothermal process, and its composition, structure, and properties are thoroughly investigated. Polyvinylpyrrolidone, a low-cost and biocompatible polymer, was utilized as a scaffold to increase the surface area and dispersion of the highly active catalytic centers of the nanozyme. Compared to the widely used horseradish peroxidase in enzyme-linked immunosorbent assay, our VOxBG analogue hydrogel displays an excellent affinity toward the chromogenic substrate that is used in these peroxidase-based assays. This higher affinity makes it a competent nanozyme for detection and oxidation of biomolecules, including glucose, in a cascade-like system which can be further used for hydrogel photolithography. The VOxBG analogue hydrogel also holds a good ability for the rapid and efficient oxidative degradation of environmentally unfriendly recalcitrant substrates under light irradiation. Detailed mechanistic studies of this multifaceted material suggest that different complex catalytic processes and routes are involved in these photo-Fenton and Fenton reactions that are responsible for the generation as well as consumption of reactive oxygen species, which are effectively activated by a multienzyme mimetic of the VOxBG analogue hydrogel.
Collapse
Affiliation(s)
- Shafaq Sahar
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Akif Zeb
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Cong Ling
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Amna Raja
- Department of Environmental Medicine, New York University, New York, New York 10010, United States
| | - Gang Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Naseeb Ullah
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiao-Ming Lin
- Key Laboratory for Energy Conversion and Storage, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|