1
|
Bayles A, Tian S, Zhou J, Yuan L, Yuan Y, Jacobson CR, Farr C, Zhang M, Swearer DF, Solti D, Lou M, Everitt HO, Nordlander P, Halas NJ. Al@TiO 2 Core-Shell Nanoparticles for Plasmonic Photocatalysis. ACS NANO 2022; 16:5839-5850. [PMID: 35293740 DOI: 10.1021/acsnano.1c10995] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmon-induced photocatalysis is a topic of rapidly increasing interest, due to its potential for substantially lowering reaction barriers and temperatures and for increasing the selectivity of chemical reactions. Of particular interest for plasmonic photocatalysis are antenna-reactor nanoparticles and nanostructures, which combine the strong light-coupling of plasmonic nanostructures with reactors that enhance chemical specificity. Here, we introduce Al@TiO2 core-shell nanoparticles, combining earth-abundant Al nanocrystalline cores with TiO2 layers of tunable thickness. We show that these nanoparticles are active photocatalysts for the hot electron-mediated H2 dissociation reaction as well as for hot hole-mediated methanol dehydration. The wavelength dependence of the reaction rates suggests that the photocatalytic mechanism is plasmonic hot carrier generation with subsequent transfer of the hot carriers into the TiO2 layer. The Al@TiO2 antenna-reactor provides an earth-abundant solution for the future design of visible-light-driven plasmonic photocatalysts.
Collapse
Affiliation(s)
- Aaron Bayles
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Shu Tian
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Jingyi Zhou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Lin Yuan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Yigao Yuan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Christian R Jacobson
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Corbin Farr
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Ming Zhang
- Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Dayne F Swearer
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - David Solti
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Minghe Lou
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Henry O Everitt
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- U.S. Army DEVCOM Army Research Laboratory - South, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Abstract
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China.,College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, Hunan, P.R. China
| | - Gang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
|
4
|
Zhao J, Xue S, Ji R, Li B, Li J. Localized surface plasmon resonance for enhanced electrocatalysis. Chem Soc Rev 2021; 50:12070-12097. [PMID: 34533143 DOI: 10.1039/d1cs00237f] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalysis plays a vital role in energy conversion and storage in modern society. Localized surface plasmon resonance (LSPR) is a highly attractive approach to enhance the electrocatalytic activity and selectivity with solar energy. LSPR excitation can induce the transfer of hot electrons and holes, electromagnetic field enhancement, lattice heating, resonant energy transfer and scattering, in turn boosting a variety of electrocatalytic reactions. Although the LSPR-mediated electrocatalysis has been investigated, the underlying mechanism has not been well explained. Moreover, the efficiency is strongly dependent on the structure and composition of plasmonic metals. In this review, the currently proposed mechanisms for plasmon-mediated electrocatalysis are introduced and the preparation methods to design supported plasmonic nanostructures and related electrodes are summarized. In addition, we focus on the characterization strategies used for verifying and differentiating LSPR mechanisms involved at the electrochemical interface. Following that are highlights of representative examples of direct plasmonic metal-driven and indirect plasmon-enhanced electrocatalytic reactions. Finally, this review concludes with a discussion on the remaining challenges and future opportunities for coupling LSPR with electrocatalysis.
Collapse
Affiliation(s)
- Jian Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Rongrong Ji
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Bing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jinghong Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Degeneracy of light scattering and absorption by a single nanowire. Sci Rep 2021; 11:18657. [PMID: 34545130 PMCID: PMC8452659 DOI: 10.1038/s41598-021-98011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/02/2021] [Indexed: 11/08/2022] Open
Abstract
We theoretically and numerically prove that under an electromagnetic plane wave with linear polarization incident normally to a single nanowire, there exists a power diagram that could indicate scattering properties for any system configurations, material parameters, and operating wavelength. We demonstrate the distinct power distribution boundary in absorption, scattering, and extinction for a generalized nanowire with any partial wave modes dominant. In the boundary, each dominant scattering coefficients remain constant, and its energy performance would display superabsorbers or superscatterers. Interestingly, for a system with larger partial wave modes dominant, the occupied domain in the power diagram could completely cover that with lower ones. Hence, a system with different levels of partial wave modes can display the same power results, reflecting the degeneracy. This degenerate property could release more degrees of freedom in design of energy harvesting devices and sensors. We demonstrate several systems based on realistic materials to support our findings.
Collapse
|
6
|
Tian L, Xin Q, Zhao C, Xie G, Akram MZ, Wang W, Ma R, Jia X, Guo B, Gong JR. Nanoarray Structures for Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006530. [PMID: 33896110 DOI: 10.1002/smll.202006530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/25/2021] [Indexed: 05/14/2023]
Abstract
Conversion and storage of solar energy into fuels and chemicals by artificial photosynthesis has been considered as one of the promising methods to address the global energy crisis. However, it is still far from the practical applications on a large scale. Nanoarray structures that combine the advantages of nanosize and array alignment have demonstrated great potential to improve solar energy conversion efficiency, stability, and selectivity. This article provides a comprehensive review on the utilization of nanoarray structures in artificial photosynthesis of renewable fuels and high value-added chemicals. First, basic principles of solar energy conversion and superiorities of using nanoarray structures in this field are described. Recent research progress on nanoarray structures in both abiotic and abiotic-biotic hybrid systems is then outlined, highlighting contributions to light absorption, charge transport and transfer, and catalytic reactions (including kinetics and selectivity). Finally, conclusions and outlooks on future research directions of nanoarray structures for artificial photosynthesis are presented.
Collapse
Affiliation(s)
- Liangqiu Tian
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Qi Xin
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Zhao
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Guancai Xie
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Muhammad Zain Akram
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Wenrong Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Renping Ma
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xinrui Jia
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Beidou Guo
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Jian Ru Gong
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Zhang H, Zhang P, Zhao J, Liu Y, Huang Y, Huang H, Yang C, Zhao Y, Wu K, Fu X, Jin S, Hou Y, Ding Z, Yuan R, Roeffaers MBJ, Zhong S, Long J. The Hole‐Tunneling Heterojunction of Hematite‐Based Photoanodes Accelerates Photosynthetic Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongwen Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Pu Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Yuan Liu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Yi Huang
- Laboratory of Optics, Terahertz and Nondestructive Testing College of Mechanical Engineering and Automation Fuzhou University Fuzhou 350116 P. R. China
| | - Haowei Huang
- Centre for Membrane Separation, Adsorption, Catalysis and Spectroscope for Sustainable Solutions (cMACS) KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Chen Yang
- College of Chemical Engineering Fuzhou University Fuzhou 350108 P. R. China
| | - Yibo Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Xianliang Fu
- College of Chemistry and Material Science Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Maarten B. J. Roeffaers
- Centre for Membrane Separation, Adsorption, Catalysis and Spectroscope for Sustainable Solutions (cMACS) KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Shuncong Zhong
- Laboratory of Optics, Terahertz and Nondestructive Testing College of Mechanical Engineering and Automation Fuzhou University Fuzhou 350116 P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| |
Collapse
|
8
|
Zhang H, Zhang P, Zhao J, Liu Y, Huang Y, Huang H, Yang C, Zhao Y, Wu K, Fu X, Jin S, Hou Y, Ding Z, Yuan R, Roeffaers MBJ, Zhong S, Long J. The Hole-Tunneling Heterojunction of Hematite-Based Photoanodes Accelerates Photosynthetic Reaction. Angew Chem Int Ed Engl 2021; 60:16009-16018. [PMID: 33908140 DOI: 10.1002/anie.202102983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Indexed: 11/11/2022]
Abstract
Single-atom metal-insulator-semiconductor (SMIS) heterojunctions based on Sn-doped Fe2 O3 nanorods (SF NRs) were designed by combining atomic deposition of an Al2 O3 overlayer with chemical grafting of a RuOx hole-collector for efficient CO2 -to-syngas conversion. The RuOx -Al2 O3 -SF photoanode with a 3.0 nm thick Al2 O3 overlayer gave a >5-fold-enhanced IPCE value of 52.0 % under 370 nm light irradiation at 1.2 V vs. Ag/AgCl, compared to the bare SF NRs. The dielectric field mediated the charge dynamics at the Al2 O3 /SF NRs interface. Accumulation of long-lived holes on the surface of the SF NRs photoabsorber aids fast tunneling transfer of hot holes to single-atom RuOx species, accelerating the O2 -evolving reaction kinetics. The maximal CO-evolution rate of 265.3 mmol g-1 h-1 was achieved by integration of double SIMS-3 photoanodes with a single-atom Ni-doped graphene CO2 -reduction-catalyst cathode; an overall quantum efficiency of 5.7 % was recorded under 450 nm light irradiation.
Collapse
Affiliation(s)
- Hongwen Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Pu Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuan Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Huang
- Laboratory of Optics, Terahertz and Nondestructive Testing, College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Haowei Huang
- Centre for Membrane Separation, Adsorption, Catalysis and Spectroscope for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Chen Yang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yibo Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Xianliang Fu
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Maarten B J Roeffaers
- Centre for Membrane Separation, Adsorption, Catalysis and Spectroscope for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Shuncong Zhong
- Laboratory of Optics, Terahertz and Nondestructive Testing, College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
9
|
Pandeya P, Aikens CM. Real-Time Electron Dynamics Study of Plasmon-Mediated Photocatalysis on an Icosahedral Al 13-1 Nanocluster. J Phys Chem A 2021; 125:4847-4860. [PMID: 34048246 DOI: 10.1021/acs.jpca.1c02924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitrogen bond dissociation is one of the important steps in the Haber-Bosch process, where N2 is catalytically converted to NH3; however, the dissociation of the nitrogen triple bond is difficult to achieve. In this study, we investigate the possibility of nitrogen activation using plasmonic excitation of an icosahedral aluminum nanocluster. Real-time time-dependent density functional theory is employed to study the electron dynamics of the Al13-1 and [Al13N2]-1 systems. Step and trapezoidal electric fields with field strengths of 0.001 and 0.01 au and different polarization directions are applied to the systems, and the electron dynamics are analyzed. Because the occupation of nitrogen antibonding orbitals could potentially activate the N-N bond, we investigated the single-particle electronic transitions corresponding to an excitation from an occupied (O) to virtual (V) molecular orbitals (POV) of [Al13N2]-1. We found that N2 antibonding orbitals are more likely to become populated with stronger fields and also by using off-resonance fields.
Collapse
Affiliation(s)
- Pratima Pandeya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
10
|
Abstract
Production of H2, O2, and some useful chemicals by solar water splitting is widely expected to be one of the ultimate technologies in solving energy and environmental problems worldwide. Plasmonic enhancement of photocatalytic water splitting is attracting much attention. However, the enhancement factors reported so far are not as high as expected. Hence, further investigation of the plasmonic photocatalysts for water splitting is now needed. In this paper, recent work demonstrating plasmonic photocatalytic water splitting is reviewed. Particular emphasis is given to the fabrication process and the morphological features of the plasmonic photocatalysts.
Collapse
|
11
|
Mascaretti L, Dutta A, Kment Š, Shalaev VM, Boltasseva A, Zbořil R, Naldoni A. Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805513. [PMID: 30773753 DOI: 10.1002/adma.201805513] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/23/2018] [Indexed: 05/07/2023]
Abstract
Photoelectrochemical (PEC) water splitting is a promising approach for producing hydrogen without greenhouse gas emissions. Despite decades of unceasing efforts, the efficiency of PEC devices based on earth-abundant semiconductors is still limited by their low light absorption, low charge mobility, high charge-carrier recombination, and reduced diffusion length. Plasmonics has recently emerged as an effective approach for overcoming these limitations, although a full understanding of the involved physical mechanisms remains elusive. Here, the reported plasmonic effects are outlined, such as resonant energy transfer, scattering, hot electron injection, guided modes, and photonic effects, as well as the less investigated catalytic and thermal effects used in PEC water splitting. In each section, the fundamentals are reviewed and the most representative examples are discussed, illustrating possible future developments for achieving improved efficiency of plasmonic photoelectrodes.
Collapse
Affiliation(s)
- Luca Mascaretti
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Aveek Dutta
- School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Vladimir M Shalaev
- School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Alexandra Boltasseva
- School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
12
|
Reddy IN, Reddy CV, Sreedhar A, Cho M, Kim D, Shim J. Effect of plasmonic Ag nanowires on the photocatalytic activity of Cu doped Fe2O3 nanostructures photoanodes for superior photoelectrochemical water splitting applications. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem Rev 2019; 119:3962-4179. [DOI: 10.1021/acs.chemrev.8b00400] [Citation(s) in RCA: 1094] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
14
|
Li L, Cai W, Du C, Guan Z, Xiang Y, Ma Z, Wu W, Ren M, Zhang X, Tang A, Xu J. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities. NANOSCALE 2018; 10:22357-22361. [PMID: 30474670 DOI: 10.1039/c8nr06545d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exact understanding of the plasmon response of aluminum (Al) nanostructures in deep subwavelengths is critical for the design of Al based plasmonic applications, such as the emission control of quantum dots and surface-enhanced resonance Raman scattering in the ultraviolet (UV) range. Here, the plasmonic properties of open triangle cavities patterned by a focused ion beam in single-crystal bulk Al were explored using cathodoluminescence. The resonant modes were determined by experimental spectra and deep subwavelength real-space mode patterns ranging from the visible to the UV, which agreed well with full-wave electromagnetic simulations. The dispersion relation of the cavity modes was consistent with that at the interface between Al and vacuum, showing strong electromagnetic field confinement in the cavities. Open Al triangle cavities provided room for the interaction between optical emitters and confined electromagnetic fields, paving the way for plasmonic devices for a variety of applications, such as plasmonic light-emitting devices or nanolasers in the UV range.
Collapse
Affiliation(s)
- Li Li
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300457, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jiang Q, Ji C, Riley DJ, Xie F. Boosting the Efficiency of Photoelectrolysis by the Addition of Non-Noble Plasmonic Metals: Al & Cu. NANOMATERIALS 2018; 9:nano9010001. [PMID: 30577444 PMCID: PMC6359664 DOI: 10.3390/nano9010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 01/29/2023]
Abstract
Solar water splitting by semiconductor based photoanodes and photocathodes is one of the most promising strategies to convert solar energy to chemical energy to meet the high demand for energy consumption in modern society. However, the state-of-the-art efficiency is too low to fulfill the demand. To overcome this challenge and thus enable the industrial realization of a solar water splitting device, different approaches have been taken to enhance the overall device efficiency, one of which is the incorporation of plasmonic nanostructures. Photoanodes and photocathodes coupled to the optimized plasmonic nanostructures, matching the absorption wavelength of the semiconductors, can exhibit a significantly increased efficiency. So far, gold and silver have been extensively explored to plasmonically enhance water splitting efficiency, with disadvantages of high cost and low enhancement. Instead, non-noble plasmonic metals such as aluminum and copper, are earth-abundant and low cost. In this article, we review their potentials in photoelectrolysis, towards scalable applications.
Collapse
Affiliation(s)
- Qianfan Jiang
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| | - Chengyu Ji
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| | - D Jason Riley
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
16
|
Kim S, Kim JM, Park JE, Nam JM. Nonnoble-Metal-Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704528. [PMID: 29572964 DOI: 10.1002/adma.201704528] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Indexed: 06/08/2023]
Abstract
The application scope of plasmonic nanostructures is rapidly expanding to keep pace with the ongoing development of various scientific findings and emerging technologies. However, most plasmonic nanostructures heavily depend on rare, expensive, and extensively studied noble metals such as Au and Ag, with the limited choice of elements hindering their broad and practical applications in a wide spectral range. Therefore, abundant and inexpensive nonnoble metals have attracted attention as new plasmonic nanomaterial components, allowing these nonnoble-metal-based materials to be used in areas such as photocatalysis, sensing, nanoantennas, metamaterials, and magnetoplasmonics with new compositions, structures, and properties. Furthermore, the use of nonnoble metal hybrids results in newly emerging or synergistic properties not observed from single-metal component systems. Here, the synthetic strategies and recent advances in nonnoble-metal-based plasmonic nanostructures comprising Cu, Al, Mg, In, Ga, Pb, Ni, Co, Fe, and related hybrids are highlighted, and a discussion and perspectives in their synthesis, properties, applications, and challenges are presented.
Collapse
Affiliation(s)
- Sungi Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
17
|
Zhao ZJ, Lee M, Kang H, Hwang S, Jeon S, Park N, Park SH, Jeong JH. Eight Inch Wafer-Scale Flexible Polarization-Dependent Color Filters with Ag-TiO 2 Composite Nanowires. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9188-9196. [PMID: 29460628 DOI: 10.1021/acsami.8b02128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this study, 8 in. wafer-scale flexible polarization-dependent color filters with Ag-TiO2 composite nanowires have been fabricated using nanoimprint and E-beam evaporation. The filters change their color via a simple rotation of the polarizer. In addition, the color of the filter can be controlled by altering the thickness of the Ag and TiO2 nanowires deposited on the polymer patterns. Polarization-dependent color filters were realized by selective inhibition of transmission using the plasmonic resonance at the insulator/metal/insulator nanostructure interface, which occurs at particular wavelengths for the transverse magnetic polarizations. Special colors, including purple, blue, green, yellow, and pink, could be obtained with high transmission beyond 65% by varying the thickness of the deposited Ag and TiO2 nanowires on the periodic polymer pattern under transverse magnetic polarization. In addition, a continuous color change was achieved by varying the polarization angle. Last, numerical simulations were implemented in comparison with the experimental results, and the mechanism was explained. We believe that this simple and cost-effective method can be applied to processes such as anticounterfeiting and holographic imaging as well as to color displays.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Mechanical Engineering , Pusan National University , Busandaehak-ro 63beon-gil , Geumjeong-gu, Busan 609-735 , Republic of Korea
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | | | - Hyeokjung Kang
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - SoonHyoung Hwang
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | - Sohee Jeon
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| | | | - Sang-Hu Park
- School of Mechanical Engineering , Pusan National University , Busandaehak-ro 63beon-gil , Geumjeong-gu, Busan 609-735 , Republic of Korea
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology , Korea Institute of Machinery and Materials , Daejeon 305-343 , South Korea
| |
Collapse
|
18
|
Lin T, Ramadurgam S, Yang C. Design of Contact Electrodes for Semiconductor Nanowire Solar Energy Harvesting Devices. NANO LETTERS 2017; 17:2118-2125. [PMID: 28230999 DOI: 10.1021/acs.nanolett.6b04046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transparent, low-resistive contacts are critical for efficient solar energy harvesting devices. It is important to reconsider the material choices and electrode design as devices move from 2D films to 1D nanostructures. In this paper, we study the effectiveness of indium tin oxide (ITO) and metals, such as Ag and Cu, as contacts in 2D and 1D systems. Although ITO has been studied extensively and developed into an effective transparent contact for 2D devices, our results show that effectiveness does not translate to 1D systems. Particularly with consideration of resistance requirement, nanowires with metal shells as contacts enable better absorption within the semiconductor as compared to ITO. Furthermore, there is a strong dependence of contact performance on the semiconductor band gap and diameter of nanowires. We found that metal contacts outperform ITO for nanowire devices, regardless of the sheet resistance constraint, in the regime of diameters less than 100 nm and band-gaps greater than 1 eV. These metal shells optimized for best absorption are significantly thinner than ITO, which enables for the design of devices with high nanowire number density and consequently higher device efficiencies.
Collapse
Affiliation(s)
- Tzuging Lin
- Department of Physics and Astronomy and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sarath Ramadurgam
- Department of Physics and Astronomy and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Chen Yang
- Department of Physics and Astronomy and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Encina ER, Passarelli N, Coronado EA. Plasmon enhanced light absorption in aluminium@Hematite core shell hybrid nanocylinders: the critical role of length. RSC Adv 2017. [DOI: 10.1039/c6ra27594j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The absorbed photon flux in cylindrical α-Fe2O3 shells can be enhanced by filling it with an Al core and tailoring its length.
Collapse
Affiliation(s)
- Ezequiel R. Encina
- INFIQC
- UNC
- CONICET
- Departamento de Fisicoquímica
- Facultad de Ciencias Químicas
| | - Nicolás Passarelli
- INFIQC
- UNC
- CONICET
- Departamento de Fisicoquímica
- Facultad de Ciencias Químicas
| | | |
Collapse
|
20
|
Kment S, Riboni F, Pausova S, Wang L, Wang L, Han H, Hubicka Z, Krysa J, Schmuki P, Zboril R. Photoanodes based on TiO2and α-Fe2O3for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 2017; 46:3716-3769. [DOI: 10.1039/c6cs00015k] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solar driven photoelectrochemical water splitting represents a promising approach for a sustainable and environmentally friendly production of renewable energy vectors and fuel sources, such as H2.
Collapse
|
21
|
Zhou X, Gossage ZT, Simpson BH, Hui J, Barton ZJ, Rodríguez-López J. Electrochemical Imaging of Photoanodic Water Oxidation Enhancements on TiO 2 Thin Films Modified by Subsurface Aluminum Nanodimers. ACS NANO 2016; 10:9346-9352. [PMID: 27623233 DOI: 10.1021/acsnano.6b04004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Detecting metal plasmonic enhancements on the activity of semiconducting photoanodes for water oxidation is often obscured by the inherent electroactivity and instability of the metal in electrolyte. Here, we show that thin TiO2 photoanodes modified by subsurface Al nanodimers (AlNDs) display enhancements that are consistent with plasmon modes. We directly observed enhancements by mapping the oxygen evolution rates on TiO2/AlND patterns using scanning electrochemical microscopy (SECM) while exciting the surface plasmons of the nanodimers. This study highlights the importance of sample configuration for the in situ characterization of metal/photoanode interactions and suggests a route for Al-based plasmonics applied to photoelectrochemistry.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zachary T Gossage
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Burton H Simpson
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jingshu Hui
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zachary J Barton
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Liu G, Du K, Haussener S, Wang K. Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels. CHEMSUSCHEM 2016; 9:2878-2904. [PMID: 27624337 DOI: 10.1002/cssc.201600773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 06/06/2023]
Abstract
Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron-hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying the two-photon concept to the field of solar fuels. A wide range of strategies including the indirect combination of two semiconductors by a redox couple, direct coupling of two semiconductors, multicomponent structures with a conductive mediator, related photoelectrodes, as well as two-photon cells are discussed for light energy harvesting and charge transport. Examples of charge extraction models from the literature are summarized to understand the mechanism of interfacial carrier dynamics and to rationalize experimental observations. We focus on a working principle of the constituent components and linking the photosynthetic activity with the proposed models. This work gives a new perspective on artificial photosynthesis by taking simultaneous advantages of photon absorption and charge transfer, outlining an encouraging roadmap towards solar fuels.
Collapse
Affiliation(s)
- Guohua Liu
- Department of Micro and Nano Systems Technology, University College of Southeast Norway, Horten, 3184, Norway
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, PR China
| | - Kang Du
- Department of Micro and Nano Systems Technology, University College of Southeast Norway, Horten, 3184, Norway
| | - Sophia Haussener
- Institute of Mechanical Engineering, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland
| | - Kaiying Wang
- Department of Micro and Nano Systems Technology, University College of Southeast Norway, Horten, 3184, Norway.
| |
Collapse
|
23
|
New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting. Sci Rep 2016; 6:32515. [PMID: 27582317 PMCID: PMC5007480 DOI: 10.1038/srep32515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023] Open
Abstract
Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.
Collapse
|
24
|
Ueno K, Oshikiri T, Misawa H. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes. Chemphyschem 2015; 17:199-215. [DOI: 10.1002/cphc.201500761] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Kosei Ueno
- Research Institute for Electronic Science; Hokkaido University; N21, W10, Kita-ku 001-0021 Sapporo Japan
| | - Tomoya Oshikiri
- Research Institute for Electronic Science; Hokkaido University; N21, W10, Kita-ku 001-0021 Sapporo Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science; Hokkaido University; N21, W10, Kita-ku 001-0021 Sapporo Japan
- Department of Applied Chemistry & Institute of Molecular Science; National Chiao Tung University; 1001 Ta Hsueh R. Hsinchu 30010 Taiwan
| |
Collapse
|
25
|
Mirzaei A, Shadrivov IV, Miroshnichenko AE, Kivshar YS. Superabsorption of light by multilayer nanowires. NANOSCALE 2015; 7:17658-17663. [PMID: 26462974 DOI: 10.1039/c5nr06268c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We suggest a new strategy for tailoring and enhancing the absorption of light by multilayered nanowires. We use the multipole expansion method and experimental data for dielectric and plasmonic materials and demonstrate that the absorption for one of the polarizations can be substantially enhanced due to an overlap of different resonant modes in nanowires. We show that our approach can be employed for a design of multiband tunable optical absorption across a wide spectral range for both TE and TM polarizations.
Collapse
Affiliation(s)
- Ali Mirzaei
- Nonlinear Physics Centre, Australian National University, Acton, ACT 2601, Australia.
| | | | | | | |
Collapse
|
26
|
Nesbitt NT, Merlo JM, Rose AH, Calm YM, Kempa K, Burns MJ, Naughton MJ. Aluminum Nanowire Arrays via Directed Assembly. NANO LETTERS 2015; 15:7294-7299. [PMID: 26505906 DOI: 10.1021/acs.nanolett.5b02408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Freestanding and vertically-oriented metal nanowire arrays have potential utility in a number of applications, but presently lack a route to fabrication. Template-based techniques, such as electrodeposition into lithographically defined nanopore arrays, have produced well-ordered nanowire arrays with a maximum pitch of about 2 μm; such nanowires, however, tend to cluster due to local attractive forces. Here, we modify this template fabrication method to produce well-ordered, vertically-oriented, freestanding Al nanowire arrays, etched from an underlying Al substrate, with highly tunable pitch. In addition, optical measurements demonstrated that the nanowires support the propagation of surface plasmon polaritons.
Collapse
Affiliation(s)
- Nathan T Nesbitt
- Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, United States
| | - Juan M Merlo
- Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, United States
| | - Aaron H Rose
- Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, United States
| | - Yitzi M Calm
- Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, United States
| | - Krzysztof Kempa
- Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, United States
| | - Michael J Burns
- Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, United States
| | - Michael J Naughton
- Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
27
|
Abstract
Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting.
Collapse
|
28
|
Ziashahabi A, Poursalehi R. The Effects of Surface Oxidation and Interparticle Coupling on Surface Plasmon Resonance Properties of Aluminum Nanoparticles as a UV Plasmonic Material. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.mspro.2015.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Danaei D, Saeidi R, Dabirian A. Light trapping in hematite-coated transparent particles for solar fuel generation. RSC Adv 2015. [DOI: 10.1039/c4ra15848b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We propose and theoretically evaluate transparent TiO2 particles coated with an extremely thin hematite layer as building blocks for hematite photoanodes using combined host–guest and Mie resonance concepts to achieve significant optical absorption.
Collapse
Affiliation(s)
- Davood Danaei
- Department of Physics
- Tarbiat Modares University
- Tehran
- Iran
| | - Raheleh Saeidi
- Department of Physics
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Dabirian
- Photovoltaics and Thin Film Electronics Laboratory
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Neuchatel 2000
- Switzerland
| |
Collapse
|