1
|
Valero M, Mayoral-Astorga LA, Northfield H, Choi HW, De Leon I, Ray M, Berini P. Selective modal excitation in a multimode nanoslit by interference of surface plasmon waves. NANOSCALE ADVANCES 2025; 7:1305-1317. [PMID: 39802334 PMCID: PMC11718371 DOI: 10.1039/d4na00862f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere. A key innovation lies in the ability to tune the interference pattern by altering the geometrical properties of the gold nanoslit such that one, two or more resonance modes are supported in the nanoslit. Our experimental results validate the approach of our design and modelling process, demonstrating the potential to fine-tune geometrical parameters such as grating coupler pitch, depth, duty cycle, and nanoslit dimensions to alter the transmitted radiation pattern and the transmittance. We demonstrate the ability of a grating coupler to induce focusing of SPP waves to an arbitrary location on chip by illuminating with a converging Gaussian beam. Additionally, we observed far-field interference patterns linked to the multimodal operation of the nanoslit.
Collapse
Affiliation(s)
- Marcos Valero
- School of Engineering and Sciences, Tecnológico de Monterrey Monterrey Nuevo León 64849 Mexico
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Luis-Angel Mayoral-Astorga
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Howard Northfield
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Hyung Woo Choi
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Israel De Leon
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
- ASML Netherlands B.V. De Run 6501, 5504 DR Veldhoven The Netherlands
| | - Mallar Ray
- School of Engineering and Sciences, Tecnológico de Monterrey Monterrey Nuevo León 64849 Mexico
| | - Pierre Berini
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
- Department of Physics, University of Ottawa Ottawa Ontario K1N 6N5 Canada
- Nexus for Quantum Technologies Institute, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
2
|
Lei X, Wang R, Liu L, Xu C, Wu A, Zhan Q. Multifunctional on-chip directional coupler for spectral and polarimetric routing of Bloch surface wave. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4627-4636. [PMID: 39634740 PMCID: PMC11501675 DOI: 10.1515/nanoph-2022-0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/07/2024]
Abstract
Integration of multiple diversified functionalities into an ultracompact platform is crucial for the development of on-chip photonic devices. Recently, a promising all-dielectric two-dimensional platform based on Bloch surface waves (BSWs) sustained by dielectric multilayer has been proposed to enable various functionalities and provide novel approach to photonic devices. Here, we design and fabricate a multifunctional directional coupler to achieve both spectral and polarimetric routing by employing asymmetric nanoslits in a dielectric multilayer platform. Due to the dispersion property of BSWs, the directional coupling behavior is sensitive to wavelength and polarization. We demonstrate numerically and experimentally the wavelength selective directional coupling of TE BSW mode with an intensity ratio of the BSW excitation in opposite directions reaching 10 dB. Polarization selective directional coupling is also achieved at specific operating wavelength due to different response to a nanoantenna for TE and TM BSWs. The proposed two-dimensional photonic device opens new pathway for a wide range of practical applications such as molecular sensing, imaging with different polarization, and spectral requirements.
Collapse
Affiliation(s)
- Xinrui Lei
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201204, P. R. China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai200093, China
| | - Ruxue Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengjie Xu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aimin Wu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiwen Zhan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201204, P. R. China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai200093, China
| |
Collapse
|
3
|
Zhou L, Zhang N, Hsu CC, Singer M, Zeng X, Li Y, Song H, Jornet J, Wu Y, Gan Q. Super-Resolution Displacement Spectroscopic Sensing over a Surface "Rainbow". ENGINEERING (BEIJING, CHINA) 2022; 17:75-81. [PMID: 38149108 PMCID: PMC10751035 DOI: 10.1016/j.eng.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Subwavelength manipulation of light waves with high precision can enable new and exciting applications in spectroscopy, sensing, and medical imaging. For these applications, miniaturized spectrometers are desirable to enable the on-chip analysis of spectral information. In particular, for imaging-based spectroscopic sensing mechanisms, the key challenge is to determine the spatial-shift information accurately (i.e., the spatial displacement introduced by wavelength shift or biological or chemical surface binding), which is similar to the challenge presented by super-resolution imaging. Here, we report a unique "rainbow" trapping metasurface for on-chip spectrometers and sensors. Combined with super-resolution image processing, the low-setting 4× optical microscope system resolves a displacement of the resonant position within 35 nm on the plasmonic rainbow trapping metasurface with a tiny area as small as 0.002 mm2. This unique feature of the spatial manipulation of efficiently coupled rainbow plasmonic resonances reveals a new platform for miniaturized on-chip spectroscopic analysis with a spectral resolution of 0.032 nm in wavelength shift. Using this low-setting 4× microscope imaging system, we demonstrate a biosensing resolution of 1.92 × 109 exosomes per milliliter for A549-derived exosomes and distinguish between patient samples and healthy controls using exosomal epidermal growth factor receptor (EGFR) expression values, thereby demonstrating a new on-chip sensing system for personalized accurate bio/chemical sensing applications.
Collapse
Affiliation(s)
- Lyu Zhou
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Nan Zhang
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Chang Chieh Hsu
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Matthew Singer
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Xie Zeng
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Yizheng Li
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Haomin Song
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Josep Jornet
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yun Wu
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Qiaoqiang Gan
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
- Material Science Engineering Program, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Hu X, Zhao X, Lu C, Bai Y, Gu Y, Lu M, Zhu Z. Compact plasmon modulator with a high extinction ratio. APPLIED OPTICS 2022; 61:7301-7306. [PMID: 36256026 DOI: 10.1364/ao.462443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
To keep pace with the demands in optical communications, electro-optic modulators should feature a high extinction ratio, offer a small footprint, and allow for practical detection. Herein, we demonstrate a compact plasmon modulator with a high extinction ratio where a compact modulation region composed of indium tin oxide (ITO) is embedded to the arms of the Mach-Zehnder (M-Z) interferometer. The modulator has a footprint of 20µm×12µm with a modulation region of 4µm×0.5µm. The numerical results show that the extinction ratio is 15.2 dB when the electron concentration of ITO is changed 4×1020cm-3. This type of modulator paves the way for future compact optoelectronic integration and has potential application in the fields of optical communication, photodetection, and sensing.
Collapse
|
5
|
Qin J, Jiang S, Wang Z, Cheng X, Li B, Shi Y, Tsai DP, Liu AQ, Huang W, Zhu W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS NANO 2022; 16:11598-11618. [PMID: 35960685 DOI: 10.1021/acsnano.2c03310] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metasurfaces are 2D artificial materials consisting of arrays of metamolecules, which are exquisitely designed to manipulate light in terms of amplitude, phase, and polarization state with spatial resolutions at the subwavelength scale. Traditional micro/nano-optical sensors (MNOSs) pursue high sensitivity through strongly localized optical fields based on diffractive and refractive optics, microcavities, and interferometers. Although detections of ultra-low concentrations of analytes have already been demonstrated, the label-free sensing and recognition of complex and unknown samples remain challenging, requiring multiple readouts from sensors, e.g., refractive index, absorption/emission spectrum, chirality, etc. Additionally, the reliability of detecting large, inhomogeneous biosamples may be compromised by the limited near-field sensing area from the localization of light. Here, we review recent advances in metasurface-based MNOSs and compare them with counterparts using micro-optics from aspects of physics, working principles, and applications. By virtue of underlying the physics and design flexibilities of metasurfaces, MNOSs have now been endowed with superb performances and advanced functionalities, leading toward highly integrated smart sensing platforms.
Collapse
Affiliation(s)
- Jin Qin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shibin Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Huang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
6
|
El Shamy RS, Swillam MA, Li X. On-chip complex refractive index detection at multiple wavelengths for selective sensing. Sci Rep 2022; 12:9343. [PMID: 35660767 PMCID: PMC9167297 DOI: 10.1038/s41598-022-13033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
In this work we propose a method for on-chip detection of the complex refractive index of the sensing medium at multiple wavelengths for selective sensing. For the optical sensor to be selective, i.e. able to determine the substance present in the medium, either surface functionalization or absorption spectroscopy is often used. Surface functionalization is a complex process and is mainly limited to biological media. On the other hand, absorption spectroscopy is not suitable for on-chip sensing with micrometer dimensions as this will result in poor sensitivity, especially when working far from the substance absorption peaks. Here, we detect the dispersion of both the real n and imaginary k parts of the refractive index which are unique for each substance. This is done using a single micro-ring resonator (MRR) that exhibits multiple resonances over the operating wavelength range. The real and imaginary parts of the medium refractive index are determined at each resonance using the resonance wavelength and the absorption coefficient, respectively. In addition, using this technique the concentration composition of a multi-element medium can be determined by solving a system of linear equations that corresponds to the different wavelengths (resonances). We designed a silicon-on-insulator (SOI) ring-resonator operating in the near-infrared region from λ = 1.46 µm to λ = 1.6 µm. The ring exhibits 11 resonances over the 140 nm operating wavelength range where the corresponding medium refractive index is obtained. This design can detect four different substances namely, methanol, ethanol, propanol, and water. An average error of less than 0.0047% and 1.65% in the detection of the real and imaginary parts, respectively were obtained. Finally, the concentration composition of different multi-element media were successfully determined using the least square method with 97.4% detection accuracy.
Collapse
Affiliation(s)
- Raghi S El Shamy
- Faculty of Engineering, Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohamed A Swillam
- Department of Physics, School of Science and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Xun Li
- Faculty of Engineering, Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
7
|
Kim S, Jeong TI, Park J, Ciappina MF, Kim S. Recent advances in ultrafast plasmonics: from strong field physics to ultraprecision spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2393-2431. [PMID: 39635686 PMCID: PMC11502069 DOI: 10.1515/nanoph-2021-0694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 12/07/2024]
Abstract
Surface plasmons, the collective oscillation of electrons, enable the manipulation of optical fields with unprecedented spatial and time resolutions. They are the workhorse of a large set of applications, such as chemical/biological sensors or Raman scattering spectroscopy, to name only a few. In particular, the ultrafast optical response configures one of the most fundamental characteristics of surface plasmons. Thus, the rich physics about photon-electron interactions could be retrieved and studied in detail. The associated plasmon-enhanced electric fields, generated by focusing the surface plasmons far beyond the diffraction limit, allow reaching the strong field regime with relatively low input laser intensities. This is in clear contrast to conventional optical methods, where their intrinsic limitations demand the use of large and costly laser amplifiers, to attain high electric fields, able to manipulate the electron dynamics in the non-linear regime. Moreover, the coherent plasmonic field excited by the optical field inherits an ultrahigh precision that could be properly exploited in, for instance, ultraprecision spectroscopy. In this review, we summarize the research achievements and developments in ultrafast plasmonics over the last decade. We particularly emphasize the strong-field physics aspects and the ultraprecision spectroscopy using optical frequency combs.
Collapse
Affiliation(s)
- San Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
| | - Tae-In Jeong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
| | - Jongkyoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
| | - Marcelo F. Ciappina
- Physics Program, Guangdong Technion – Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
- Technion –Israel Institute of Technology, Haifa, 32000, Israel
- Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 182 21Prague, Czech Republic
| | - Seungchul Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
| |
Collapse
|
8
|
Quynh LT, Cheng CW, Huang CT, Raja SS, Mishra R, Yu MJ, Lu YJ, Gwo S. Flexible Plasmonics Using Aluminum and Copper Epitaxial Films on Mica. ACS NANO 2022; 16:5975-5983. [PMID: 35333048 DOI: 10.1021/acsnano.1c11191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate here the growth of aluminum (Al), copper (Cu), gold (Au), and silver (Ag) epitaxial films on two-dimensional, layered muscovite mica (Mica) substrates via van der Waals (vdW) heteroepitaxy with controllable film thicknesses from a few to hundreds of nanometers. In this approach, the mica thin sheet acts as a flexible and transparent substrate for vdW heteroepitaxy, which allows for large-area formation of atomically smooth, single-crystalline, and ultrathin plasmonic metals without the issue of film dewetting. The high-quality plasmonic metal films grown on mica enable us to design and fabricate well-controlled Al and Cu plasmonic nanostructures with tunable surface plasmon resonances ranging from visible to the near-infrared spectral region. Using these films, two kinds of plasmonic device applications are reported, including (1) plasmonic sensors with high effective index sensitivities based on surface plasmon interferometers fabricated on the Al/Mica film and (2) Cu/Mica nanoslit arrays for plasmonic color filters in the visible and near-infrared regions. Furthermore, we show that the responses of plasmonic nanostructures fabricated on the Mica substrates remain unaltered under large substrate bending conditions. Therefore, the metal-on-mica vdW heteroepitaxy platform is suitable for flexible plasmonics based on their bendable properties.
Collapse
Affiliation(s)
- Le Thi Quynh
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chang-Wei Cheng
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chiao-Tzu Huang
- Department of Electrophysics, National Yang-Ming Chaio-Tung University, Hsinchu 30010, Taiwan
| | - Soniya Suganthi Raja
- Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Ragini Mishra
- Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Meng-Ju Yu
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Yu-Jung Lu
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Shangjr Gwo
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Electrophysics, National Yang-Ming Chaio-Tung University, Hsinchu 30010, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Hamza ME, Othman MA, Swillam MA. Plasmonic Biosensors: Review. BIOLOGY 2022; 11:621. [PMID: 35625349 PMCID: PMC9138269 DOI: 10.3390/biology11050621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 04/26/2023]
Abstract
Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in biosensing applications. In this review, a thorough discussion regarding the most recent techniques used in the design, fabrication, and characterization of plasmonic biosensors is conducted in addition to a comparison between those techniques with regard to their advantages and possible drawbacks when applied in different fields.
Collapse
Affiliation(s)
| | | | - Mohamed A. Swillam
- Nanophotonics Research Laboratory, Department of Physics, The American University in Cairo, Cairo 11835, Egypt; (M.E.H.); (M.A.O.)
| |
Collapse
|
10
|
A plasmon modulator by directly controlling the couple of photon and electron. Sci Rep 2022; 12:5229. [PMID: 35347176 PMCID: PMC8960793 DOI: 10.1038/s41598-022-09176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
The manipulation of surface plasmon polaritons plays a pivotal role in plasmonic science and technology, however, the modulation efficiency of the traditional method suffers from the weak light-matter interaction. Herein, we propose a new method to overcome this obstacle by directly controlling the couple of photon and electron. In this paper, a hybrid graphene-dielectric- interdigital electrode structure is numerically and experimentally investigated. The plasmon is excited due to the confined carrier which is regulated by the potential wells. The frequency of plasmon can be tuned over a range of ~ 33 cm−1, and the obtained maximum extinction ratio is 8% via changing the confined area and the density of carrier. These findings may open up a new path to design the high efficiency all-optical modulator because the electrons can also be driven optically.
Collapse
|
11
|
Herrera F, Litinskaya M. Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials. J Chem Phys 2022; 156:114702. [DOI: 10.1063/5.0080063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose to use molecular picocavity ensembles as macroscopic coherent nonlinear optical devices enabled by nanoscale strong coupling. For a generic picocavity model that includes molecular and photonic disorder, we derive theoretical performance bounds for coherent cross-phase modulation signals using weak classical fields of different frequencies. We show that strong coupling of the picocavity vacua with a specific vibronic sideband in the molecular emission spectrum results in a significant variation of the effective refractive index of the metamaterial relative to a molecule-free scenario due to a vacuum-induced Autler–Townes effect. For a realistic molecular disorder model, we demonstrate that cross-phase modulation of optical fields as weak as 10 kW/cm2 is feasible using dilute ensembles of molecular picocavities at room temperature, provided that the confined vacuum is not resonantly driven by the external probe field. Our work paves the way for the development of plasmonic metamaterials that exploit strong coupling for optical state preparation and quantum control.
Collapse
Affiliation(s)
- Felipe Herrera
- Department of Physics, Universidad de Santiago de Chile, Av. Ecuador, 3493 Santiago, Chile
- ANID-Millennium Institute for Research in Optics, Concepción, Chile
| | - Marina Litinskaya
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
12
|
El Shamy RS, Afifi AE, Badr MM, Swillam MA. Modelling, characterization, and applications of silicon on insulator loop terminated asymmetric Mach Zehnder interferometer. Sci Rep 2022; 12:3598. [PMID: 35246570 PMCID: PMC8897405 DOI: 10.1038/s41598-022-07449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 01/12/2023] Open
Abstract
This work presents a loop terminated asymmetric Mach-Zehnder interferometer (LT-aMZI) structure based on the widespread silicon-on-insulator (SOI) platform. Four different path length differences of the LT-aMZI, which correspond to free spectral ranges (FSR) from 0.8 to 6.4 nm, are designed. These designs are compared to the common asymmetric Mach-Zehnder interferometer (C-aMZI) and are shown to be more compact. These devices are suitable for optical filtering as well as wavelength demultiplexing (WDM) applications. A compact analytical model is derived that accurately describe the operation of the LT-MZI devices. The designs are then fabricated using Electron Beam Lithography (EBL) and characterized. The experimental data show good agreement when compared to the simulation results. To our knowledge, this is the first time LT-aMZI fabrication and characterization. Moreover, the LT-MZI spectrum can be tuned not only by the interferometer arms phase difference like C-MZI, but also by using its directional couplers coefficients, forming a spectral tunable filter. Finally, we determine the performance parameters of optical sensors and modulators and show that our proposed LT-MZI structure will enhance the sensor figure of merit (FOM) and modulator speed, power consumption and Vπ × L compared to C-MZI. A comparison between symmetric and asymmetric MZI sensors and the advantage of the latter is also mentioned.
Collapse
Affiliation(s)
- Raghi S. El Shamy
- grid.252119.c0000 0004 0513 1456Department of Physics, The American University in Cairo, New Cairo, 11835 Egypt
| | - Abdelrahman E. Afifi
- grid.17091.3e0000 0001 2288 9830Electrical and Computer Engineering Department, The University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Mohamed M. Badr
- grid.252119.c0000 0004 0513 1456Department of Physics, The American University in Cairo, New Cairo, 11835 Egypt
| | - Mohamed A. Swillam
- grid.252119.c0000 0004 0513 1456Department of Physics, The American University in Cairo, New Cairo, 11835 Egypt
| |
Collapse
|
13
|
Compact Gas Sensor Using Silicon-on-Insulator Loop-Terminated Mach–Zehnder Interferometer. PHOTONICS 2021. [DOI: 10.3390/photonics9010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this paper, we propose a compact optical gas sensor based on the widespread silicon-on-insulator (SOI) technology, operating in the near-infrared (NIR) region around the 1.55 µm wavelength. The sensor employs a loop-terminated Mach–Zehnder interferometer (LT-MZI) with a slot waveguide and a strip waveguide for the sensing arm and the reference arm, respectively. For the same arm length, the LT-MZI can achieve a detection limit two times lower than that of the conventional MZI. Different sensor components were designed, and the optimum dimensions were obtained using finite-difference eigenmode (FDE) and finite-difference time-domain (FDTD) solvers. With a sensing arm length of only 150 μm, our sensor achieves a device sensitivity of 1070 nm/RIU and a figure-of-merit (FOM) as high as 280.8 RIU−1 at the 1.55 μm wavelength. Higher values of FOM can be attained by employing a longer sensing arm. The whole sensor is subjected to air cladding; thus, there is no need for oxide deposition and a further lithography step for sensing-area patterning. The sensor is well suited for low-cost fabrication and large-scale production. Finally, the same LT-MZI device with strip and slot arms but with oxide cladding was fabricated and characterized. The measurements were in good agreement with the electromagnetic (EM) simulation results, ensuring the reliability of our proposed design.
Collapse
|
14
|
Torrijos-Morán L, García-Rupérez J. Design of slow-light-enhanced bimodal interferometers using dimensionality reduction techniques. OPTICS EXPRESS 2021; 29:33962-33975. [PMID: 34809196 DOI: 10.1364/oe.425865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Interferometers usually require long paths for the ever-increasing requirements of high-performance operation, which hinders the miniaturization and integration of photonic circuits into very compact devices. Slow-light based interferometers provide interesting advantages in terms of both compactness and sensitivity, although their optimization is computationally costly and inefficient, due to the large number of parameters to be simultaneously designed. Here we propose the design of slow-light-enhanced bimodal interferometers by using principal component analysis to reduce the high-dimensional design space. A low-dimensional hyperplane containing all optimized designs is provided and investigated for changes in the silicon core and cladding refractive index. As a result, all-dielectric single-channel interferometers as modulators of only 33 µm2 footprint and sensors with 19.2 × 103 2πrad/RIU·cm sensitivity values are reported and validated by 2 different simulation methods. This work allows the design and optimization of slow light interferometers for different applications by considering several performance criteria, which can be extended to other photonic structures.
Collapse
|
15
|
Li D, Odessey R, Li D, Pacifici D. Plasmonic Interferometers as TREM2 Sensors for Alzheimer's Disease. BIOSENSORS 2021; 11:217. [PMID: 34356688 PMCID: PMC8301914 DOI: 10.3390/bios11070217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022]
Abstract
We report an effective surface immobilization protocol for capture of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a receptor whose elevated concentration in cerebrospinal fluid has recently been associated with Alzheimer's disease (AD). We employ the proposed surface functionalization scheme to design, fabricate, and assess a biochemical sensing platform based on plasmonic interferometry that is able to detect physiological concentrations of TREM2 in solution. These findings open up opportunities for label-free biosensing of TREM2 in its soluble form in various bodily fluids as an early indicator of the onset of clinical dementia in AD. We also show that plasmonic interferometry can be a powerful tool to monitor and optimize surface immobilization schemes, which could be applied to develop other relevant antibody tests.
Collapse
Affiliation(s)
- Dingdong Li
- School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, USA; (D.L.); (R.O.); (D.L.)
| | - Rachel Odessey
- School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, USA; (D.L.); (R.O.); (D.L.)
| | - Dongfang Li
- School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, USA; (D.L.); (R.O.); (D.L.)
| | - Domenico Pacifici
- School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, USA; (D.L.); (R.O.); (D.L.)
- Department of Physics, Brown University, 182 Hope St, Providence, RI 02912, USA
| |
Collapse
|
16
|
Felix-Rendon U, Berini P, De Leon I. Ultrasensitive nanoplasmonic biosensor based on interferometric excitation of multipolar plasmonic modes. OPTICS EXPRESS 2021; 29:17365-17374. [PMID: 34154281 DOI: 10.1364/oe.425123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
We propose a nanoplasmonic interferometric biosensor, which exploits the selective excitation of multipolar plasmonic modes in a nanoslit to provide a novel scheme for highly-sensitive biosensing. In this design, two counter-propagating surface plasmon polaritons interfere at the location of the nanoslit, selectively exciting the dipolar and quadrupolar modes of the structure depending on the phase relationship induced by the analyte. The contrasting radiation patterns produced by these modes result in large changes in the angular distribution of the transmitted light that depends on the analyte concentration. The resultant far-field is numerically modeled and the sensing performance of the structure is assessed, resulting in maximum bulk and surface sensitivities of SB = 1.12 × 105 deg/RIU and SS = 302 deg/RIU, respectively, and a bulk-sensing resolution of the order of 10-8 RIU. The design allows ample control over the trade-off between operating range and resolution through the slit's width, making this platform suitable for a broad range of sensing requirements.
Collapse
|
17
|
Yoo D, Barik A, de León-Pérez F, Mohr DA, Pelton M, Martín-Moreno L, Oh SH. Plasmonic Split-Trench Resonator for Trapping and Sensing. ACS NANO 2021; 15:6669-6677. [PMID: 33789040 DOI: 10.1021/acsnano.0c10014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
On-chip integration of plasmonics and electronics can benefit a broad range of applications in biosensing, signal processing, and optoelectronics. A key requirement is a chip-scale manufacturing method. Here, we demonstrate a split-trench resonator platform that combines a high-quality-factor resonant plasmonic biosensor with radio frequency (RF) nanogap tweezers. The split-trench resonator can simultaneously serve as a dielectrophoretic trap and a nanoplasmonic sensor. Trapping is accomplished by applying an RF electrical bias across a 10 nm gap, thereby either attracting or repelling analytes. Trapped analytes are detected in a label-free manner using refractive-index sensing, enabled by interference between surface-plasmon standing waves in the trench and light transmitted through the gap. This active sample concentration mechanism enables detection of nanoparticles and proteins at a concentration as low as 10 pM. We can manufacture centimeter-long split-trench cavity resonators with high throughput via photolithography and atomic layer deposition, toward practical applications in biosensing, spectroscopy, and optoelectronics.
Collapse
Affiliation(s)
- Daehan Yoo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Avijit Barik
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fernando de León-Pérez
- Centro Universitario de la Defensa de Zaragoza, E-50009 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA) and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Daniel A Mohr
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Pelton
- Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Luis Martín-Moreno
- Instituto de Nanociencia y Materiales de Aragón (INMA) and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Abstract
The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of light-known as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as "quantum plasmonic sensing", and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and it shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.
Collapse
Affiliation(s)
- Changhyoup Lee
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Benjamin Lawrie
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Raphael Pooser
- Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kwang-Geol Lee
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021Karlsruhe, Germany.,Max Planck School of Photonics, 07745 Jena, Germany
| | - Mark Tame
- Department of Physics, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
19
|
Torrijos-Morán L, Griol A, García-Rupérez J. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides. LIGHT, SCIENCE & APPLICATIONS 2021; 10:16. [PMID: 33446632 PMCID: PMC7809049 DOI: 10.1038/s41377-020-00460-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 05/20/2023]
Abstract
Strongly influenced by the advances in the semiconductor industry, the miniaturization and integration of optical circuits into smaller devices has stimulated considerable research efforts in recent decades. Among other structures, integrated interferometers play a prominent role in the development of photonic devices for on-chip applications ranging from optical communication networks to point-of-care analysis instruments. However, it has been a long-standing challenge to design extremely short interferometer schemes, as long interaction lengths are typically required for a complete modulation transition. Several approaches, including novel materials or sophisticated configurations, have been proposed to overcome some of these size limitations but at the expense of increasing fabrication complexity and cost. Here, we demonstrate for the first time slow light bimodal interferometric behaviour in an integrated single-channel one-dimensional photonic crystal. The proposed structure supports two electromagnetic modes of the same polarization that exhibit a large group velocity difference. Specifically, an over 20-fold reduction in the higher-order-mode group velocity is experimentally shown on a straightforward all-dielectric bimodal structure, leading to a remarkable optical path reduction compared to other conventional interferometers. Moreover, we experimentally demonstrate the significant performance improvement provided by the proposed bimodal photonic crystal interferometer in the creation of an ultra-compact optical modulator and a highly sensitive photonic sensor.
Collapse
Affiliation(s)
- Luis Torrijos-Morán
- Nanophotonics Technology Center, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Jaime García-Rupérez
- Nanophotonics Technology Center, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
20
|
Sousa RPCL, Figueira RB, Costa SPG, M. Raposo MM. Optical Fiber Sensors for Biocide Monitoring: Examples, Transduction Materials, and Prospects. ACS Sens 2020; 5:3678-3709. [PMID: 33226221 DOI: 10.1021/acssensors.0c01615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antifouling biocides are toxic to the marine environment impacting negatively on the aquatic ecosystems. These biocides, namely, tributyltin (TBT) and Cu(I) compounds, are used to avoid biofouling; however, their toxicity turns TBT and Cu(I) monitoring an important health issue. Current monitoring methods are expensive and time-consuming. This review provides an overview of the actual state of the art of antifouling paints' biocides, including their impact and toxicity, as well as the reported methods for TBT and Cu(I) detection over the past decade. The principles of optical fiber sensors (OFS) applications, with focus on environmental applications, and the use of organic chemosensors in this type of sensors are debated. The multiplexing ability of OFS and their application on aquatic environments are also discussed.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rita B. Figueira
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana P. G. Costa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Manuela M. Raposo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
21
|
El Shamy RS, Khalil D, Swillam MA. Mid Infrared Optical Gas Sensor Using Plasmonic Mach-Zehnder Interferometer. Sci Rep 2020; 10:1293. [PMID: 31992726 PMCID: PMC6987126 DOI: 10.1038/s41598-020-57538-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022] Open
Abstract
In this work, we propose an optimized design for on-chip gas sensor using metal-insulator (MI) plasmonic waveguide in the mid infrared range and utilizing a Mach-Zehnder Inetrferometer (MZI). The MI waveguide utilizes a high index dielectric layer on top of the metal to enhance the sensitivity of the sensor. The thickness and the refractive index of this layer are optimized to achieve high sensitivity. Using this layer, a design that exhibits high performance for both wavelength and intensity interrogation schemes is achieved. In addition, another one that furtherly enhances the sensor performance for intensity interrogation is also proposed. This design also minimizes the sensor sensitivity to wavelength variations. Intensity interrogation scheme has the advantage of eliminating the size and cost needed by wide wavelength band measurements including either spectrometer or tunable laser in wavelength interrogation. The first design sensitivity has reached 10000 nm/RIU with wavelength interrogation figure of merit (FOMλ) of 133RIU−1 and intensity interrogation FOMI of 239RIU−1. While the second one exhibit FOMI of 363RIU−1, both with length of 250 µm around 4.6 µm wavelength. Finally, these structures are cheap, compact, and easy to fabricate.
Collapse
Affiliation(s)
- Raghi S El Shamy
- Department of Physics, School of Science and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.,Department of Electronics and Communication, Faculty of Engineesring, Ain Shams University, Abassia, Cairo, 11517, Egypt
| | - Diaa Khalil
- Department of Electronics and Communication, Faculty of Engineesring, Ain Shams University, Abassia, Cairo, 11517, Egypt
| | - Mohamed A Swillam
- Department of Physics, School of Science and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
22
|
Yesilkoy F. Optical Interrogation Techniques for Nanophotonic Biochemical Sensors. SENSORS 2019; 19:s19194287. [PMID: 31623315 PMCID: PMC6806184 DOI: 10.3390/s19194287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
The manipulation of light via nanoengineered surfaces has excited the optical community in the past few decades. Among the many applications enabled by nanophotonic devices, sensing has stood out due to their capability of identifying miniscule refractive index changes. In particular, when free-space propagating light effectively couples into subwavelength volumes created by nanostructures, the strongly-localized near-fields can enhance light’s interaction with matter at the nanoscale. As a result, nanophotonic sensors can non-destructively detect chemical species in real-time without the need of exogenous labels. The impact of such nanophotonic devices on biochemical sensor development became evident as the ever-growing research efforts in the field started addressing many critical needs in biomedical sciences, such as low-cost analytical platforms, simple quantitative bioassays, time-resolved sensing, rapid and multiplexed detection, single-molecule analytics, among others. In this review, the optical transduction methods used to interrogate optical resonances of nanophotonic sensors will be highlighted. Specifically, the optical methodologies used thus far will be evaluated based on their capability of addressing key requirements of the future sensor technologies, including miniaturization, multiplexing, spatial and temporal resolution, cost and sensitivity.
Collapse
Affiliation(s)
- Filiz Yesilkoy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Trimodal Waveguide Demonstration and Its Implementation as a High Order Mode Interferometer for Sensing Application. SENSORS 2019; 19:s19122821. [PMID: 31238583 PMCID: PMC6630700 DOI: 10.3390/s19122821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023]
Abstract
This work implements and demonstrates an interferometric transducer based on a trimodal optical waveguide concept. The readout signal is generated from the interference between the fundamental and second-order modes propagating on a straight polymer waveguide. Intuitively, the higher the mode order, the larger the fraction of power (evanescent field) propagating outside the waveguide core, hence the higher the sensitivity that can be achieved when interfering against the strongly confined fundamental mode. The device is fabricated using the polymer SU-8 over a SiO2 substrate and shows a free spectral range of 20.2 nm and signal visibility of 5.7 dB, reaching a sensitivity to temperature variations of 0.0586 dB/°C. The results indicate that the proposed interferometer is a promising candidate for highly sensitive, compact and low-cost photonic transducer for implementation in different types of sensing applications, among these, point-of-care.
Collapse
|
24
|
Manolis A, Chatzianagnostou E, Dabos G, Pleros N, Chmielak B, Giesecke AL, Porschatis C, Cegielski PJ, Markey L, Weeber JC, Dereux A, Tsiokos D. Plasmonics co-integrated with silicon nitride photonics for high-sensitivity interferometric biosensing. OPTICS EXPRESS 2019; 27:17102-17111. [PMID: 31252927 DOI: 10.1364/oe.27.017102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate a photonic integrated Mach-Zehnder interferometric sensor, utilizing a plasmonic stripe waveguide in the sensing branch and a photonic variable optical attenuator and a phase shifter in the reference arm to optimize the interferometer operation. The plasmonic sensor is used to detect changes in the refractive index of the surrounding medium exploiting the accumulated phase change of the propagating Surface-Plasmon-Polariton (SPP) mode that is fully exposed in an aqueous buffer solution. The variable optical attenuation stage is incorporated in the reference Si3N4 branch, as the means to counter-balance the optical losses introduced by the plasmonic branch and optimize interference at the sensor output. Bulk sensitivity values of 1930 nm/RIU were experimentally measured for a Mach Zehnder Interferometer (MZI) with a Free Spectral Range of 24.8 nm, along with extinction ratio of more than 35 dB, demonstrating the functional benefits of the co-integration of plasmonic and photonic waveguides.
Collapse
|
25
|
Hernandez AL, Dortu F, Veenstra T, Ciaurriz P, Casquel R, Cornago I, Horsten HV, Tellechea E, Maigler MV, Fernández F, Holgado M. Automated Chemical Sensing Unit Integration for Parallel Optical Interrogation. SENSORS 2019; 19:s19040878. [PMID: 30791592 PMCID: PMC6412770 DOI: 10.3390/s19040878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
We report the integration of an automated chemical optical sensing unit for the parallel interrogation of 12 BICELLs in a sensing chip. The work was accomplished under the European Project Enviguard (FP7-OCEAN-2013-614057) with the aim of demonstrating an optical nano-biosensing unit for the in-situ detection of various chemical pollutants simultaneously in oceanic waters. In this context, we designed an optical sensing chip based on resonant nanopillars (R-NPs) transducers organized in a layout of twelve biophotonic sensing cells (BICELLs). The sensing chip is interrogated in reflection with a 12-channels optical spectrometer equipped with an embedded computer-on-chip performing image processing for the simultaneous acquisition and analysis (resonant mode fitting) of the 12 spectra. A microfluidic chip and an automated flow control system composed of four pumps and a multi-path micro-valve makes it possible to drive different complex protocols. A rack was designed ad-hoc for the integration of all the modules. As a proof of concept, fluids of different refractive index (RI) were flowed in the system in order to measure the time response (sensogram) of the R-NPs under optical reflectance, and assess the sensors’ bulk sensitivity (285.9 ± 16.4 nm/RIU) and Limit of Detection (LoD) (2.95 × 10−6 RIUS). The real-time response under continuous flow of a sensor chip based on R-NP is showed for the first time, obtaining 12 sensograms simultaneously, featuring the unit as a potential excellent multiplexed detection system. These results indicate the high potential of the developed chemical sensing unit to be used for in-situ, multiplex and automatic optical biosensing.
Collapse
Affiliation(s)
- Ana L Hernandez
- Centre for Biomedical Technology, Optics, Photonics and Biophotonics Laboratory, Campus Montegancedo, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| | - Fabian Dortu
- Multitel, Parc Initialis 2, Rue Pierre et Marie Curie, 7000 Mons, Belgium.
| | - Theo Veenstra
- LioniX International BV, Hengelosestraat 500, 7521AN Enschede, The Netherlands.
| | - Paula Ciaurriz
- Naitec, Polígono Mocholí, Plaza Cein, 4, 31110 Noain, Spain.
| | - Rafael Casquel
- Centre for Biomedical Technology, Optics, Photonics and Biophotonics Laboratory, Campus Montegancedo, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| | - Iñaki Cornago
- Naitec, Polígono Mocholí, Plaza Cein, 4, 31110 Noain, Spain.
| | - Hendrik V Horsten
- Multitel, Parc Initialis 2, Rue Pierre et Marie Curie, 7000 Mons, Belgium.
| | | | - María V Maigler
- Bio Optical Detection, Centro de empresas de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | | | - Miguel Holgado
- Centre for Biomedical Technology, Optics, Photonics and Biophotonics Laboratory, Campus Montegancedo, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|
26
|
Rectangular plasmonic interferometer for high sensitive glycerol sensor. Sci Rep 2019; 9:1378. [PMID: 30718632 PMCID: PMC6361946 DOI: 10.1038/s41598-018-37499-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
A novel plasmonic interferometric sensor intended for application to biochemical sensing has been investigated experimentally and theoretically. The sensor was included a slit surrounded by rectangular grooves using a thick gold film. A three-dimensional finite difference time-domain commercial software package was applied to simulate the structure. The Focused ion beam milling has been used as a mean to fabricate series of rectangular plasmonic interferometer with varying slit-groove distance L. Oscillation behavior is shown by transmission spectra in a broadband wavelength range between 400 nm and 800 nm in the distance between slit and grooves. Red-shifted interference spectrum is the result of increasing refractive indices. The proposed structure is functional from visible to near-infrared wavelength range and yields a sensitivity of 4923 nm/RIU and a figure of merit as high as 214 at 729 nm wavelength. In conclusion, this study indicates the possibility of fabricating a low cost, compact, and real-time high-throughput plasmonic interferometer.
Collapse
|
27
|
Zeng X, Yang Y, Zhang N, Ji D, Gu X, Jornet J, Wu Y, Gan Q. Plasmonic Interferometer Array Biochip as a New Mobile Medical Device for Cancer Detection. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:7201707. [PMID: 30983848 PMCID: PMC6456910 DOI: 10.1109/jstqe.2018.2865418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a plasmonic interferometer array (PIA) sensor and demonstrate its ability to detect circulating exosomal proteins in real-time with high sensitivity and low cost to enable the early detection of cancer. Specifically, a surface plasmon wave launched by the nano-groove rings interferes with the free-space light at the output of central nano-aperture and results in an intensity interference pattern. Under the single-wavelength illumination, when the target exosomal proteins are captured by antibodies bound on the surface, the biomediated change in the refractive index between the central aperture and groove rings causes the intensity change in transmitted light. By recording the intensity changes in real-time, one can effectively screen biomolecular binding events and analyze the binding kinetics. By integrating signals from multiple sensor pairs to enhance the signal-to-noise ratio, superior sensing resolutions of 1.63×10-6 refractive index unit (RIU) in refractive index change and 3.86×108 exosomes/mL in exosome detection were realized, respectively. Importantly, this PIA sensor can be imaged by a miniaturized microscope system coupled with a smart phone to realize a portable and highly sensitive healthcare device. The sensing resolution of 9.72×109 exosomes/mL in exosome detection was realized using the portable sensing system building upon a commercial smartphone.
Collapse
Affiliation(s)
- Xie Zeng
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Yunchen Yang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Nan Zhang
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Dengxin Ji
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Xiaodong Gu
- Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Josep Jornet
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| | - Qiaoqiang Gan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY
14260, USA
| |
Collapse
|
28
|
Augenstein Y, Vetter A, Lahijani BV, Herzig HP, Rockstuhl C, Kim MS. Inverse photonic design of functional elements that focus Bloch surface waves. LIGHT, SCIENCE & APPLICATIONS 2018; 7:104. [PMID: 30564310 PMCID: PMC6289961 DOI: 10.1038/s41377-018-0106-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 05/03/2023]
Abstract
Bloch surface waves (BSWs) are sustained at the interface of a suitably designed one-dimensional (1D) dielectric photonic crystal and an ambient material. The elements that control the propagation of BSWs are defined by a spatially structured device layer on top of the 1D photonic crystal that locally changes the effective index of the BSW. An example of such an element is a focusing device that squeezes an incident BSW into a tiny space. However, the ability to focus BSWs is limited since the index contrast achievable with the device layer is usually only on the order of Δn≈0.1 for practical reasons. Conventional elements, e.g., discs or triangles, which rely on a photonic nanojet to focus BSWs, operate insufficiently at such a low index contrast. To solve this problem, we utilize an inverse photonic design strategy to attain functional elements that focus BSWs efficiently into spatial domains slightly smaller than half the wavelength. Selected examples of such functional elements are fabricated. Their ability to focus BSWs is experimentally verified by measuring the field distributions with a scanning near-field optical microscope. Our focusing elements are promising ingredients for a future generation of integrated photonic devices that rely on BSWs, e.g., to carry information, or lab-on-chip devices for specific sensing applications.
Collapse
Affiliation(s)
- Yannick Augenstein
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andreas Vetter
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- SUSS MicroOptics SA, Rogues-Terres 61, Hauterive, 2068 Switzerland
| | - Babak Vosoughi Lahijani
- Optics & Photonics Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Hans Peter Herzig
- Optics & Photonics Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Myun-Sik Kim
- Optics & Photonics Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
29
|
Stebunov YV, Yakubovsky DI, Fedyanin DY, Arsenin AV, Volkov VS. Superior Sensitivity of Copper-Based Plasmonic Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4681-4687. [PMID: 29578717 DOI: 10.1021/acs.langmuir.8b00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO2 and Al2O3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO2 (25 nm) and Al2O3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.
Collapse
Affiliation(s)
- Yury V Stebunov
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
- GrapheneTek, 7 Nobel Street , Skolkovo Innovation Center, Moscow 143026 , Russia
| | - Dmitry I Yakubovsky
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
| | - Dmitry Yu Fedyanin
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
| | - Aleksey V Arsenin
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
- GrapheneTek, 7 Nobel Street , Skolkovo Innovation Center, Moscow 143026 , Russia
| | - Valentyn S Volkov
- Laboratory of Nanooptics and Plasmonics , Moscow Institute of Physics and Technology , 9 Institutsky Lane , Dolgoprudny 141700 , Russia
- SDU Nano Optics, Mads Clausen Institute , University of Southern Denmark , Campusvej 55 , DK-5230 , Odense , Denmark
| |
Collapse
|
30
|
Chen S, Li Q, Wang X, Yang YW, Gao H. Multifunctional bacterial imaging and therapy systems. J Mater Chem B 2018; 6:5198-5214. [DOI: 10.1039/c8tb01519h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced antibacterial materials are classified and introduced, and their applications in multimodal imaging and therapy are reviewed.
Collapse
Affiliation(s)
- Shuai Chen
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Qiaoying Li
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xin Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying-Wei Yang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
31
|
Chen C, Hou X, Si J. Protein analysis by Mach-Zehnder interferometers with a hybrid plasmonic waveguide with nano-slots. OPTICS EXPRESS 2017; 25:31294-31308. [PMID: 29245806 DOI: 10.1364/oe.25.031294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Optical biosensing devices for the affinity analysis of molecular binding events could offer significant advantages over current analytical methods. However, most of those excited with a single optical mode are "blind" to the conformational change of bound molecules. We succeeded in designing Mach-Zehnder interferometers (MZI) with a hybrid plasmonic (HP) waveguide with nano-slots. By addressing the structure with dual polarizations, the optogeometrical properties (density and thickness) of protein layers have been determined without ambiguity. Differences in the hybrid mode dispersion between the transverse electric (TE) and transverse magnetic (TM) modes separately allow the determination of the thickness and the density at all stages during the molecular interaction. Moreover, nano-slots can be equated with an effective optical capacitance resulting in strong field confinement and low propagation loss. A proof of concept is conducted by analyzing the conformational change of HepV, a recombinant fragment of collagen V, during complicated molecular interaction. Instead of wavelength interrogation, a cost-effective method with output intensity variation at particular wavelengths due to "resonance phenomena" was employed to monitor the biological event.
Collapse
|
32
|
Mach-Zehnder Interferometer Refractive Index Sensor Based on a Plasmonic Channel Waveguide. SENSORS 2017; 17:s17112584. [PMID: 29120381 PMCID: PMC5713100 DOI: 10.3390/s17112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022]
Abstract
A Mach-Zehnder interferometer based on a plasmonic channel waveguide is proposed for refractive index sensing. The structure, with a small physical footprint of 20 × 120 μm², achieved a high figure of merit of 294. The cut-off frequency behaviour in the plasmonic channel waveguide resulted in a flat dispersion curve, which induces a 1.8 times larger change of the propagation constant for the given refractive index change compared with previously reported results.
Collapse
|
33
|
Kwon SH. Plasmonic Waveguide Coupled Ring Cavity for a Non-Resonant Type Refractive Index Sensor. SENSORS 2017; 17:s17112526. [PMID: 29099740 PMCID: PMC5713189 DOI: 10.3390/s17112526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022]
Abstract
Sensitive refractive index sensors with small footprints have been studied to allow the integration of a large number of sensors into a tiny chip for bio/chemical applications. In particular, resonant-type index sensors based on various micro/nanocavities, which use a resonant wavelength dependence on the refractive index of the analyte, have been developed. However, the spectral linewidth of the resonance, which becomes the resolution limit, is considerably large in plasmonic cavities due to the large absorption loss of metals. Therefore, there is demand for a new type of plasmonic refractive index sensor that is not limited by the linewidth of the cavity. We propose a new type of plasmonic index sensors consisting of a channel waveguide and a ring cavity. Two emissions from the ring cavity in both directions of the waveguide couple with a reflection phase difference depending on the length of a closed right arm with a reflecting boundary. Therefore, the output power dramatically and sensitively changes as a function of the refractive index of the analyte filling the waveguide.
Collapse
Affiliation(s)
- Soon-Hong Kwon
- Department of Physics, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
34
|
Wei M, Yang Q, Xu Q, Zhang X, Li Y, Gu J, Han J, Zhang W. Multi-wavelength lenses for terahertz surface wave. OPTICS EXPRESS 2017; 25:24872-24879. [PMID: 29041160 DOI: 10.1364/oe.25.024872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Metasurface-based surface wave (SW) devices working at multi-wavelength has been continuously arousing enormous curiosity recently, especially in the terahertz community. In this work, we propose a multi-layer metasurface structure composed of metallic slit pairs to build terahertz SW devices. The slit pair has a narrow bandwidth and its response frequency can be altered by its geometric parameter, thereby suppressing the frequency crosstalk and reducing the difficulty of design. By elaborately tailoring the distribution of the slit pairs, a series of achromatic SW lenses (SWLs) working at 0.6, 0.75 and 1 THz are experimentally demonstrated by the near field scanning terahertz microscope (NSTM) system. In addition, a wavelength-division-multiplexer (WDM) is further designed and implemented, which is promising in building multiplexed devices for plasmonic circuits. The structure proposed here cannot only couple the terahertz wave from free space to SWs, but also control its propagation. Moreover, our findings demonstrate the great potential to design multi-wavelength plasmonic metasurface devices, which can be extended to microwave and visible frequencies as well.
Collapse
|
35
|
Jo Y, Choi W, Seo E, Ahn J, Park QH, Jhon YM, Choi W. Maximizing energy coupling to complex plasmonic devices by injecting light into eigenchannels. Sci Rep 2017; 7:9779. [PMID: 28852055 PMCID: PMC5574893 DOI: 10.1038/s41598-017-10148-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 11/09/2022] Open
Abstract
Surface plasmon polaritons have attracted broad attention in the optoelectronics field due to their ability to merge nanoscale electronics with high-speed optical communication. As the complexity of optoelectronic devices increases to meet various needs, this integration has been hampered by the low coupling efficiency of light to plasmonic modes. Here we present a method to maximize the coupling of far-field optical waves to plasmonic waves for arbitrarily complex devices. The method consists of experimentally identifying the eigenchannels of a given nanostructure and shaping the wavefront of incident light to a particular eigenchannel that maximizes the generation of plasmonic waves. Our proposed approach increases the coupling efficiency almost four-fold with respect to the uncontrolled input. Our study will help to facilitate the integration of electronics and photonics.
Collapse
Affiliation(s)
- Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02841, Korea
| | - Wonjun Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02841, Korea
| | - Eunsung Seo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02841, Korea
| | - Junmo Ahn
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02841, Korea.,Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Q-Han Park
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Young Min Jhon
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea. .,Department of Physics, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
36
|
Baquedano E, González MU, Paniagua-Domínguez R, Sánchez-Gil JA, Postigo PA. Low-cost and large-size nanoplasmonic sensor based on Fano resonances with fast response and high sensitivity. OPTICS EXPRESS 2017; 25:15967-15976. [PMID: 28789107 DOI: 10.1364/oe.25.015967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
We have developed a low-cost, fast and sensitive plasmonic sensor with a large-size for easy handling. The sensor is formed by a Au nanobelt grating fabricated by soft lithography with a period of 780 nm and a width of 355 nm in an even and uniform area of ~2 × 2 cm2. The sensor uses the Fano-shaped third order mode localized plasmon resonance of the Au nanobelts, which appears in the visible part of the transmission spectrum. We have found a detection resolution of 1.56 × 10-5 refractive index units with a temporal resolution of 1 s in a sensing area of 0.75 × 0.75 mm2. The high uniformity and size of the sensor permit the detection using a simple optical system, which provides the device with the potential to be used as an easy to handle, portable and disposable sensor.
Collapse
|
37
|
Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci Rep 2017; 7:45210. [PMID: 28332629 PMCID: PMC5362893 DOI: 10.1038/srep45210] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023] Open
Abstract
In this work, using finite-difference time-domain method, we propose and numerically demonstrate a novel way to achieve electromagnetically induced transparency (EIT) phenomenon in the reflection spectrum by stacking two different types of coupling effect among different elements of the designed metamaterial. Compared with the conventional EIT-like analogues coming from only one type of coupling effect between bright and dark meta-atoms on the same plane, to our knowledge the novel approach is the first to realize the optically active and precise control of the wavelength position of EIT-like phenomenon using optical metamaterials. An on-to-off dynamic control of the EIT-like phenomenon also can be achieved by changing the refractive index of the dielectric substrate via adjusting an optical pump pulse. Furthermore, in near infrared region, the metamaterial structure can be operated as an ultra-high resolution refractive index sensor with an ultra-high figure of merit (FOM) reaching 3200, which remarkably improve the FOM value of plasmonic refractive index sensors. The novel approach realizing EIT-like spectral shape with easy adjustment to the working wavelengths will open up new avenues for future research and practical application of active plasmonic switch, ultra-high resolution sensors and active slow-light devices.
Collapse
|
38
|
Choi W, Jo Y, Ahn J, Seo E, Park QH, Jhon YM, Choi W. Control of randomly scattered surface plasmon polaritons for multiple-input and multiple-output plasmonic switching devices. Nat Commun 2017; 8:14636. [PMID: 28262721 PMCID: PMC5343438 DOI: 10.1038/ncomms14636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022] Open
Abstract
Merging multiple microprocessors with high-speed optical networks has been considered a promising strategy for the improvement of overall computation power. However, the loss of the optical communication bandwidth is inevitable when interfacing between optical and electronic components. Here we present an on-chip plasmonic switching device consisting of a two-dimensional (2D) disordered array of nanoholes on a thin metal film that can provide multiple-input and multiple-output channels for transferring information from a photonic to an electronic platform. In this device, the surface plasmon polaritons (SPPs) generated at individual nanoholes become uncorrelated on their way to the detection channel due to random multiple scattering. We exploit this decorrelation effect to use individual nanoholes as independent antennas, and demonstrated that more than 40 far-field incident channels can be delivered simultaneously to the SPP channels, an order of magnitude improvement over conventional 2D patterned devices. Losses of bandwidth are inevitable when interfacing between optical and electronic components. Here the authors present a switching device consisting of a two-dimensional disordered array of nanoholes that can potentially transfer information about 40 times faster than conventional switching devices.
Collapse
Affiliation(s)
- Wonjun Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02855, Korea
| | - Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02855, Korea
| | - Joonmo Ahn
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02855, Korea.,Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Eunsung Seo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02855, Korea
| | - Q-Han Park
- Department of Physics, Korea University, Seoul 02855, Korea
| | - Young Min Jhon
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02855, Korea
| |
Collapse
|
39
|
Wu D, Liu Y, Li R, Chen L, Ma R, Liu C, Ye H. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. NANOSCALE RESEARCH LETTERS 2016; 11:483. [PMID: 27807825 PMCID: PMC5093105 DOI: 10.1186/s11671-016-1705-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/25/2016] [Indexed: 05/20/2023]
Abstract
We propose and numerically investigate a novel perfect ultra-narrow band absorber based on a metal-dielectric-metal-dielectric-metal periodic structure working at near-infrared region, which consists of a dielectric layer sandwiched by a metallic nanobar array and a thin gold film over a dielectric layer supported by a metallic film. The absorption efficiency and ultra-narrow band of the absorber are about 98 % and 0.5 nm, respectively. The high absorption is contributed to localized surface plasmon resonance, which can be influenced by the structure parameters and the refractive index of dielectric layer. Importantly, the ultra-narrow band absorber shows an excellent sensing performance with a high sensitivity of 2400 nm/RIU and an ultra-high figure of merit of 4800. The FOM of refractive index sensor is significantly improved, compared with any previously reported plasmonic sensor. The influences of structure parameters on the sensing performance are also investigated, which will have a great guiding role to design high-performance refractive index sensors. The designed structure has huge potential in sensing application.
Collapse
Affiliation(s)
- Dong Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Yumin Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Ruifang Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Lei Chen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Rui Ma
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Chang Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| |
Collapse
|
40
|
Perera C, Vernon K, Cheng E, Sathian J, Jaatinen E, Davis T. Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:751-757. [PMID: 27335763 PMCID: PMC4901982 DOI: 10.3762/bjnano.7.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
In this paper we report the design and experimental realisation of a novel refractive index sensor based on coupling between three nanoscale stripe waveguides. The sensor is highly compact and designed to operate at a single wavelength. We demonstrate that the sensor exhibits linear response with a resolution of 6 × 10(-4) RIU (refractive index unit) for a change in relative output intensity of 1%. Authors expect that the outcome of this paper will prove beneficial in highly compact, label-free and highly sensitive refractive index analysis.
Collapse
Affiliation(s)
- Chamanei Perera
- Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Kristy Vernon
- Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Elliot Cheng
- Australian National Nanofabrication Facility QLD node, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Juna Sathian
- Department of Materials, Imperial College, London SW7 2AZ, UK
| | - Esa Jaatinen
- Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Timothy Davis
- School of Physics, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
41
|
Wang Y, Chen J, Sun C, Rong K, Li H, Gong Q. An ultrahigh-contrast and broadband on-chip refractive index sensor based on a surface-plasmon-polariton interferometer. Analyst 2016; 140:7263-70. [PMID: 26273704 DOI: 10.1039/c5an00935a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a double-slit structure fabricated on a gold film or a subwavelength (300 nm) plasmonic waveguide, high-contrast and broadband plasmonic sensors based on the interference of surface plasmon polaritons (SPPs) are experimentally demonstrated on chips. By adjusting the focused spot position of the p-polarized incident light on the double-slit structure to compensate for the propagation loss of the SPPs, the interfering SPPs from the two slits have nearly equal intensities. As a result, nearly completely destructive interference can be experimentally achieved in a broad bandwidth (>200 nm), revealing the robust design and fabrication of the double-slit structure. More importantly, a high sensing figure of merit (FOM*) of >1 × 10(4) RIU(-1) (refractive index unit), which is much greater than the previous experimental results, is obtained at the destructive wavelength because of a high contrast ratio (C = 0.96). The high-contrast and broadband on-chip sensor fabricated on the subwavelength plasmonic waveguide may find important applications in the real-time sensing of particles and molecules.
Collapse
Affiliation(s)
- Yujia Wang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
42
|
Makarona E, Petrou P, Kakabakos S, Misiakos K, Raptis I. Point-of-Need bioanalytics based on planar optical interferometry. Biotechnol Adv 2016; 34:209-33. [PMID: 26876018 DOI: 10.1016/j.biotechadv.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 02/02/2023]
Abstract
This review brings about a comprehensive presentation of the research on interferometric transducers, which have emerged as extremely promising candidates for viable, truly-marketable solutions for PoN applications due to the attested performance that has reached down to 10(-8) in term of effective refractive index changes. The review explores the operation of the various interferometric architectures along with their design, fabrication, and analytical performance aspects. The issues of biosensor functionalization and immobilization of receptors are also addressed. As a conclusion, the comparison among them is attempted in order to delve into and acknowledge their current limitations, and define the future trends.
Collapse
Affiliation(s)
- E Makarona
- Optical Biosensors Lab, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Athens, Greece
| | - P Petrou
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", 15310 Athens, Greece
| | - S Kakabakos
- Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", 15310 Athens, Greece
| | - K Misiakos
- Optical Biosensors Lab, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Athens, Greece
| | - I Raptis
- Optical Biosensors Lab, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Athens, Greece.
| |
Collapse
|
43
|
Echtermeyer TJ, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari AC. Surface Plasmon Polariton Graphene Photodetectors. NANO LETTERS 2016; 16:8-20. [PMID: 26666842 DOI: 10.1021/acs.nanolett.5b02051] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The combination of plasmonic nanoparticles and graphene enhances the responsivity and spectral selectivity of graphene-based photodetectors. However, the small area of the metal-graphene junction, where the induced electron-hole pairs separate, limits the photoactive region to submicron length scales. Here, we couple graphene with a plasmonic grating and exploit the resulting surface plasmon polaritons to deliver the collected photons to the junction region of a metal-graphene-metal photodetector. This gives a 400% enhancement of responsivity and a 1000% increase in photoactive length, combined with tunable spectral selectivity. The interference between surface plasmon polaritons and the incident wave introduces new functionalities, such as light flux attraction or repulsion from the contact edges, enabling the tailored design of the photodetector's spectral response. This architecture can also be used for surface plasmon biosensing with direct-electric-redout, eliminating the need of bulky optics.
Collapse
Affiliation(s)
- T J Echtermeyer
- Cambridge Graphene Centre, University of Cambridge , Cambridge CB3 0FA, United Kingdom
- School of Electrical & Electronic Engineering, University of Manchester , Manchester M13 9PL, United Kingdom
| | - S Milana
- Cambridge Graphene Centre, University of Cambridge , Cambridge CB3 0FA, United Kingdom
| | - U Sassi
- Cambridge Graphene Centre, University of Cambridge , Cambridge CB3 0FA, United Kingdom
| | - A Eiden
- Cambridge Graphene Centre, University of Cambridge , Cambridge CB3 0FA, United Kingdom
| | - M Wu
- Cambridge Graphene Centre, University of Cambridge , Cambridge CB3 0FA, United Kingdom
| | - E Lidorikis
- Department of Materials Science & Engineering, University of Ioannina , Ioannina 45110, Greece
| | - A C Ferrari
- Cambridge Graphene Centre, University of Cambridge , Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
44
|
Liu SD, Qi X, Zhai WC, Chen ZH, Wang WJ, Han JB. Polarization state-based refractive index sensing with plasmonic nanostructures. NANOSCALE 2015; 7:20171-20179. [PMID: 26607673 DOI: 10.1039/c5nr06336a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spectral-based methods are often used for label-free biosensing. However, practical implementations with plasmonic nanostructures suffer from a broad line width caused by strong radiative and nonradiative losses, and the sensing performance characterized by figure of merit is poor for these spectral-based methods. This study provides a polarization state-based method using plasmonic nanostructures to improve the sensing performance. Instead of the intensity spectrum, the polarization state of the transmitted field is monitored to analyze variations of the surrounding medium. The polarization state of incidence is strongly modified due to the excitation of surface plasmons, and the ellipticity of the transmitted field changes dramatically around plasmon resonances. Sharp resonances with line widths down to sub-nanometer are achieved by plotting the spectra of the reciprocal of ellipticity. Therefore, the sensing performance can be significantly improved, and a theoretical value of the figure of merit exceeding 1700 is achieved by using the polarization state-based sensing approach.
Collapse
Affiliation(s)
- Shao-Ding Liu
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Biomedical Engineering, University of California, Davis, California 95616;
| | - Kyungjin Son
- Department of Biomedical Engineering, University of California, Davis, California 95616;
| | - Ying Liu
- Department of Biomedical Engineering, University of California, Davis, California 95616;
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California, Davis, California 95616;
| |
Collapse
|
47
|
Abstract
Phase is an inherent and important feature for coherent processes, which, unfortunately, has not been completely understood for surface plasmon polariton (SPP) and matter interactions. Here we propose a practical approach to extract the phase change dispersion during the interaction between free-space light, SPPs and nanogroove/slit based on far-field information only. Numerical simulation and experimental validation were both presented using nanoslit-groove plasmonic interferometers, agreeing well with theoretical near-field analysis. This approach is generally feasible to extract the intrinsic phase dispersion of other plasmonic nanostructures and can reveal more fundamental features of SPP-matter interactions.
Collapse
|
48
|
Weber de Menezes J, Thesing A, Valsecchi C, Armas LEG, Brolo AG. Improving the performance of gold nanohole array biosensors by controlling the optical collimation conditions. APPLIED OPTICS 2015; 54:6502-6507. [PMID: 26367835 DOI: 10.1364/ao.54.006502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An experimental investigation on how the bulk and surface sensitivities of gold nanohole arrays fabricated by interference lithography affect the degree of white light beam collimation is presented. The optical transmission response of nanohole arrays has been recorded by focused and collimated beam transmission spectra. The results show that both the bulk and surface sensitivities for the collimated case are much larger than for the focused case. In particular, the shape of the spectra was dependent on the degree of beam collimation. The results showed that improved sensing performance (around 3.5 times) and higher figure of merit (around 4.4 times) can be obtained by simply adjusting the incident/collection experimental conditions in transmission measurements.
Collapse
|
49
|
Huang Y, Min C, Dastmalchi P, Veronis G. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. OPTICS EXPRESS 2015; 23:14922-14936. [PMID: 26072849 DOI: 10.1364/oe.23.014922] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.
Collapse
|
50
|
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. NANOSCALE 2015; 7:4598-810. [PMID: 25707682 DOI: 10.1039/c4nr01600a] [Citation(s) in RCA: 1018] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
Collapse
Affiliation(s)
- Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|