1
|
Lin CC, Chiu LH, Chang WH, Lin CAJ, Chen RM, Ho YS, Zuo CS, Changou A, Cheng YF, Lai WFT. A Non-Invasive Method for Monitoring Osteogenesis and Osseointegration Using Near-Infrared Fluorescent Imaging: A Model of Maxilla Implantation in Rats. Int J Mol Sci 2023; 24:ijms24055032. [PMID: 36902462 PMCID: PMC10003657 DOI: 10.3390/ijms24055032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Currently, computed tomography and conventional X-ray radiography usually generate a micro-artifact around metal implants. This metal artifact frequently causes false positive or negative diagnoses of bone maturation or pathological peri-implantitis around implants. In an attempt to repair the artifacts, a highly specific nanoprobe, an osteogenic biomarker, and nano-Au-Pamidronate were designed to monitor the osteogenesis. In total, 12 Sprague Dawley rats were included in the study and could be chategorized in 3 groups: 4 rats in the X-ray and CT group, 4 rats in the NIRF group, and 4 rats in the sham group. A titanium alloy screw was implanted in the anterior hard palate. The X-ray, CT, and NIRF images were taken 28 days after implantation. The X-ray showed that the tissue surrounded the implant tightly; however, a gap of metal artifacts was noted around the interface between dental implants and palatal bone. Compared to the CT image, a fluorescence image was noted around the implant site in the NIRF group. Furthermore, the histological implant-bone tissue also exhibited a significant NIRF signal. In conclusion, this novel NIRF molecular imaging system precisely identifies the image loss caused by metal artifacts and can be applied to monitoring bone maturation around orthopedic implants. In addition, by observing the new bone formation, a new principle and timetable for an implant osseointegrated with bone can be established and a new type of implant fixture or surface treatment can be evaluated using this system.
Collapse
Affiliation(s)
- Chien-Chou Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Hsuan Chiu
- McLean Imaging Center, McLean Hospital and Harvard Medical School, Belmont, MA 02478, USA
| | - Walter H. Chang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Cheng-An J. Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chun S. Zuo
- McLean Imaging Center, McLean Hospital and Harvard Medical School, Belmont, MA 02478, USA
| | - Austin Changou
- Ph.D. Program for Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei 110, Taiwan
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei 110, Taiwan
| | - Yue-Fa Cheng
- College of Basic Medicine, North China University of Science and Technology, Tangshan 066008, China
| | - Wen-Fu T. Lai
- McLean Imaging Center, McLean Hospital and Harvard Medical School, Belmont, MA 02478, USA
- Institute of Graduate Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Research and Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital, New Taipei City 235, Taiwan
- Correspondence:
| |
Collapse
|
2
|
Deng Q, Mi J, Dong J, Chen Y, Chen L, He J, Zhou J. Superiorly Stable Three-Layer Air Microbubbles Generated by Versatile Ethanol-Water Exchange for Contrast-Enhanced Ultrasound Theranostics. ACS NANO 2023; 17:263-274. [PMID: 36354372 DOI: 10.1021/acsnano.2c07300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbubbles have been widely used as ultrasound contrast agents in clinical diagnosis. Moreover, most current preparation methods for microbubbles are uncontrollable, and the as-obtained microbubbles are unstable in aqueous solution or under ultrasound. Here, we report a strategy to prepare superiorly stable microbubbles with three-layer structures by the ethanol-water exchange. This versatile method can also be applied to prepare different kinds of protein microbubbles with various sizes for advanced biomedical applications. To demonstrate this, the protein air microbubbles are created, which is stable in water for several days with intact structures and exhibits excellent contrast-enhanced ultrasound imaging. Moreover, the protein air microbubbles can also deliver a mass of drugs while maintaining their stable structures, making them a platform for ultrasound imaging-guided drug delivery. The versatile protein air microbubbles have great potential for the design and application of theranostic platforms.
Collapse
Affiliation(s)
- Qiurong Deng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jiaomei Mi
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Yin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Lanxi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jinxu He
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
3
|
Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, Singh J, Fakhrullin R, Wang F, Cai X, Li R. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part Fibre Toxicol 2022; 19:55. [PMID: 35933442 PMCID: PMC9356472 DOI: 10.1186/s12989-022-00492-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/08/2022] [Indexed: 12/17/2022] Open
Abstract
As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, 220116, Minsk, Belarus
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rawil Fakhrullin
- Kazan Federal University, Institute of Fundamental Medicine & Biology, Kreml Uramı 18, Kazan, Republic of Tatarstan, Russian Federation, 420008
| | - Fangjun Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
4
|
Hou TY, Shao FY, Sun YT, Yang KS, Chang WH, Lin CAJ. From mono-PEGylation towards anti-nonspecific protein interaction: comparison of dihydrolipoic acid versus glutathione-capped fluorescent gold nanoclusters using gel electrophoresis. NANOSCALE 2020; 12:17786-17794. [PMID: 32820774 DOI: 10.1039/d0nr03359f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultrafine fluorescent gold nanoclusters (AuNCs) have emerged as biocompatible nanoprobes for biomedical imaging in vivo, and the precision surface chemistry of AuNCs is the key for attaining their clinical application. Comparison of two promising candidates for future nanomedicine, i.e. dihydrolipoic acid- versus glutathione-capped AuNCs (AuNC@DHLA vs. AuNC@GSH), was conducted for the first time to clarify their polyethylene glycol-related bioconjugate chemistry (PEGylation) and protein interactions. Gel electrophoresis was performed to separate the number of AuNCs PEGylation, and the molecular weight of the PEG spacer dominated the resolution of the separation in the gel. We have engineered and isolated the mono-PEGylated AuNCs either from the indirect carbodiimide bioconjugate chemistry or the direct Au-S binding. One-pot synthesis showed great efficiency for isolating mono-PEGylated AuNC@GSH from the tailored controlled aggregation of Au(i)-thiolate complexes on in situ generated Au(0) cores. Post-PEGylation of AuNC@GSH was also feasible using monodendate thiol-terminated PEG, but bidendate ligands of AuNC@DHLA exhibited low PEGylated efficiency by Au-S binding. In addition, mono-PEGylated AuNC@GSH significantly enhanced the ability of anti-nonspecific protein adsorption, but mono-PEGylated AuNC@DHLA cannot avoid the nonspecific binding with serum albumin. In addition, specific nano-assembly involving mono-biotinylated AuNCs with streptavidin were also compared using gel electrophoresis. These results provide key insights into the selection, preparation and design of functional AuNCs as nanoprobes for versatile biomedical applications.
Collapse
Affiliation(s)
- Tzu-Yin Hou
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan (R.O.C.).
| | | | | | | | | | | |
Collapse
|
5
|
Prada YA, Guzmán F, Ortíz C, Cabanzo R, Torres R, Mejía-Ospino E. New Synthetic Peptides Conjugated to Gold Nanoclusters: Antibiotic Activity Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Protein J 2020; 38:506-514. [PMID: 31119600 DOI: 10.1007/s10930-019-09840-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold nanoclusters protected with bovine serum albumin (AuNC) can be used in multiple biomedical applications through functionalization with two new and bioactive peptides. Both cationic peptides sequences of 17 amino acids in length and the cysteine residue at its C-terminus were designed and synthesized. Peptides were obtained by solid phase synthesis using the Fmoc strategy. Peptides may be coupled via disulfide bonds to AuNC with hydrodynamic size ~ 2 nm ± 0.3 determined by dynamic light scattering and it had a zeta potential value equal to - 42 mV. Peptides named NBC2253 and NBC2254 were attached to the AuNC using N-succinimidyl-3-(2-pyridyl-dithiol) propionate as crosslinker agent. AuNC@NBC2253 was more active against methicillin-resistant Staphylococcus aureus (MIC50 6.5 µM) and AuNC@NBC2254 exhibited higher antimicrobial activity than the free peptides on Escherichia coli O157:H7 (MIC50 3.5 µM). No hemolysis was detected for any of the peptides. It is evidenced that these antimicrobial peptides conjugated to AuNC serve as promising agents to combat some multi-resistant bacterial strains and that the specific binding of these antimicrobial peptides to gold nanoclusters improves the interaction of these nanostructured systems with the biological target.
Collapse
Affiliation(s)
- Y A Prada
- Laboratorio de Espectroscopía Atómica y Molecular (LEAM), Centro de Materiales y Nanociencias (CMN), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Piedecuesta, 681012, Colombia.
| | - Fanny Guzmán
- Laboratorio de Síntesis de Péptidos, Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Claudia Ortíz
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, 680001, Colombia
| | - Rafael Cabanzo
- Laboratorio de Espectroscopía Atómica y Molecular (LEAM), Centro de Materiales y Nanociencias (CMN), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Piedecuesta, 681012, Colombia
| | - Rodrigo Torres
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, 680001, Colombia
| | - Enrique Mejía-Ospino
- Laboratorio de Espectroscopía Atómica y Molecular (LEAM), Centro de Materiales y Nanociencias (CMN), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Piedecuesta, 681012, Colombia
| |
Collapse
|
6
|
Mutalik C, Wang DY, Krisnawati DI, Jazidie A, Yougbare S, Kuo TR. Light-Activated Heterostructured Nanomaterials for Antibacterial Applications. NANOMATERIALS 2020; 10:nano10040643. [PMID: 32235565 PMCID: PMC7222013 DOI: 10.3390/nano10040643] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/04/2022]
Abstract
An outbreak of a bacterial contagion is a critical threat for human health worldwide. Recently, light-activated heterostructured nanomaterials (LAHNs) have shown potential as antibacterial agents, owing to their unique structural and optical properties. Many investigations have revealed that heterostructured nanomaterials are potential antibacterial agents under light irradiation. In this review, we summarize recent developments of light-activated antibacterial agents using heterostructured nanomaterials and specifically categorized those agents based on their various light harvesters. The detailed antibacterial mechanisms are also addressed. With the achievements of LAHNs as antibacterial agents, we further discuss the challenges and opportunities for their future clinical applications.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
- Center for Science and Technology, Tunghai University, Taichung 40704, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
- University Nahdlatul Ulama Surabaya, Surabaya 60111, Indonesia
| | - Sibidou Yougbare
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Anjali Devi JS, Aswathy B, Asha S, George S. Lactose tailored boronic acid conjugated fluorescent gold nanoclusters for turn-on sensing of dopamine. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817040037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomater 2016; 41:1-16. [PMID: 27265153 DOI: 10.1016/j.actbio.2016.06.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Nanoparticles (NPs) are playing a progressively more significant role in multimodal and multifunctional molecular imaging. The agents like Superparamagnetic iron oxide (SPIO), manganese oxide (MnO), gold NPs/nanorods and quantum dots (QDs) possess specific properties like paramagnetism, superparamagnetism, surface plasmon resonance (SPR) and photoluminescence respectively. These specific properties make them able for single/multi-modal and single/multi-functional molecular imaging. NPs generally have nanomolar or micromolar sensitivity range and can be detected via imaging instrumentation. The distinctive characteristics of these NPs make them suitable for imaging, therapy and delivery of drugs. Multifunctional nanoparticles (MNPs) can be produced through either modification of shell or surface or by attaching an affinity ligand to the nanoparticles. They are utilized for targeted imaging by magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), photo acoustic imaging (PAI), two photon or fluorescent imaging and ultra sound etc. Toxicity factor of NPs is also a very important concern and toxic effect should be eliminated. First generation NPs have been designed, developed and tested in living subjects and few of them are already in clinical use. In near future, molecular imaging will get advanced with multimodality and multifunctionality to detect diseases like cancer, neurodegenerative diseases, cardiac diseases, inflammation, stroke, atherosclerosis and many others in their early stages. In the current review, we discussed single/multifunctional nanoparticles along with molecular imaging modalities. STATEMENT OF SIGNIFICANCE The present article intends to reveal recent avenues for nanomaterials in multimodal and multifunctional molecular imaging through a review of pertinent literatures. The topic emphasises on the distinctive characteristics of nanomaterial which makes them, suitable for biomedical imaging, therapy and delivery of drugs. This review is more informative of indicative technologies which will be helpful in a way to plan, understand and lead the nanotechnology related work.
Collapse
|
9
|
Teraphongphom N, Chhour P, Eisenbrey JR, Naha PC, Witschey WRT, Opasanont B, Jablonowski L, Cormode DP, Wheatley MA. Nanoparticle Loaded Polymeric Microbubbles as Contrast Agents for Multimodal Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11858-67. [PMID: 26446176 PMCID: PMC4818153 DOI: 10.1021/acs.langmuir.5b03473] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ultrasound contrast agents are typically microbubbles (MB) with a gas core that is stabilized by a shell made of lipids, proteins, or polymers. The high impedance mismatch between the gas core and an aqueous environment produces strong contrast in ultrasound (US). Poly(lactic acid) (PLA) MB, previously developed in our laboratory, have been shown to be highly echogenic both in vitro and in vivo. Combining US with other imaging modalities such as fluorescence, magnetic resonance imaging (MRI), or computerized tomography (CT) could improve the accuracy of many US applications and provide more comprehensive diagnostic information. Furthermore, our MB have the capacity to house a drug in the PLA shell and create drug-loaded nanoparticles in situ when passing through an ultrasound beam. To create multimodal contrast agents, we hypothesized that the polymer shell of our PLA MB platform could accommodate additional payloads. In this study, we therefore modified our current MB by encapsulating nanoparticles including aqueous or organic quantum dots (QD), magnetic iron oxide nanoparticles (MNP), or gold nanoparticles (AuNP) to create bimodality platforms in a manner that minimally compromised the performance of each individual imaging technique.
Collapse
Affiliation(s)
- Nutte Teraphongphom
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104 United States
| | - Peter Chhour
- Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University , Philadelphia, Pennsylvania 19107, United States
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Walter R T Witschey
- Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Surgery, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Borirak Opasanont
- Chemical and Biological Engineering Department, Drexel University , Philadelphia, Pennsylvania 19104 United States
| | - Lauren Jablonowski
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104 United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Margaret A Wheatley
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104 United States
| |
Collapse
|
10
|
Jin B, Lin M, Zong Y, Wan M, Xu F, Duan Z, Lu T. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging. NANOTECHNOLOGY 2015; 26:345601. [PMID: 26243035 DOI: 10.1088/0957-4484/26/34/345601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photo blinking,auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of up conversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy.
Collapse
|
11
|
Ma J, Xu CS, Gao F, Chen M, Li F, Du LF. Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review). Mol Med Rep 2015; 12:4022-4028. [PMID: 26081968 DOI: 10.3892/mmr.2015.3941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
The contrast enhanced imaging function of ultrasound contrast agents (UCAs) has been extensively investigated using physical acoustic signatures. It has a number of novel applications, including tissue‑specific molecular imaging and multi‑modal imaging. In addition there are numerous other therapeutic applications of UCAs, for example as vehicles for drug or gene delivery. These uses are discussed, as well as the acoustically‑induced biological effects, including ultrasound targeted microbubble destruction (UTMD). This review also explores the considerations for the safe use of UCA from an acoustic standpoint. The scope of the application of UCA has markedly expanded in recent years, and it is a rapidly growing field of medical research. The current article reviews recent advances in the diagnostic and therapeutic applications of ultrasound microbubble/nanobubble contrast agents.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chang Song Xu
- Department of Ultrasound, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Chen
- Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
12
|
He X, Ma N. An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B Biointerfaces 2014; 124:118-31. [DOI: 10.1016/j.colsurfb.2014.06.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/23/2014] [Accepted: 06/01/2014] [Indexed: 12/23/2022]
|
13
|
Elward JM, Irudayanathan FJ, Nangia S, Chakraborty A. Optical Signature of Formation of Protein Corona in the Firefly Luciferase-CdSe Quantum Dot Complex. J Chem Theory Comput 2014; 10:5224-8. [DOI: 10.1021/ct500681m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jennifer M. Elward
- Army Research Laboratory, Aberdeen
Proving Ground, Aberdeen, Maryland 21005, United States
| | | | | | | |
Collapse
|
14
|
Khan MS, Chaudhari VR. Morphological Effect on Fluorescence Behavior of Silver Nanoparticles. J Fluoresc 2014; 24:751-7. [DOI: 10.1007/s10895-014-1348-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022]
|
15
|
Wang X, Chen JT, Zhu H, Chen X, Yan XP. One-Step Solvothermal Synthesis of Targetable Optomagnetic Upconversion Nanoparticles for in Vivo Bimodal Imaging. Anal Chem 2013; 85:10225-31. [DOI: 10.1021/ac401934p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xu Wang
- State
Key Laboratory of Medicinal Chemical Biology (Nankai University),
Synergetic Innovation Center of Chemical Science and Engineering (Tianjin),
and Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Tong Chen
- Department
of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haomiao Zhu
- Key
Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xueyuan Chen
- Key
Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiu-Ping Yan
- State
Key Laboratory of Medicinal Chemical Biology (Nankai University),
Synergetic Innovation Center of Chemical Science and Engineering (Tianjin),
and Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
|