1
|
Zhang Y, Qian W, Fei W, Zheng Y, Yao Y, Kong M, Zhu X, Peng Y, He D, Zheng C. Revolutionizing anticoagulation: Nanoengineered therapies and precision medicine approaches. Int J Pharm 2025; 676:125596. [PMID: 40239875 DOI: 10.1016/j.ijpharm.2025.125596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
With the advancement of therapeutic concepts, early intervention with antithrombotic therapy for patients at potential thrombotic risk is becoming more proactive. Anticoagulant therapy, a critical component of antithrombotic treatment, thus plays a key role in the prevention and treatment of cardiovascular diseases. Unfortunately, existing anticoagulation treatments still face many challenges, including abnormal bleeding, allergic reactions, and drug resistance. To identify novel technologies for addressing these issues and explore the latest research developments in the field of anticoagulation, this paper reviewed the advances of anticoagulant factor-loaded nanoplatforms firstly. These systems can precisely deliver anticoagulant drugs to specific targets, improving drug bioavailability and reducing unnecessary systemic side effects. Subsequently, the paper delved into the development of anticoagulant technologies, including the advancements in biocompatible anticoagulant nanomaterials, the application of DNA origami technology, and the progress in external energy-mediated anticoagulation strategies. A common feature of these engineered anticoagulation systems is their ability to modulate the dynamic balance of anticoagulant factors in the body without relying on traditional drugs, enabling more personalized and efficient anticoagulation effects. Finally, the paper examined novel precision anticoagulation strategies that combine biomedical engineering technologies with precision anticoagulation therapy. These strategies can tailor anticoagulation treatments to the specific pathological conditions of individual patients, such as thrombin activity, thereby reducing the risk of excessive anticoagulation. In conclusion, the engineered anticoagulation therapy strategies proposed in this paper represent cutting-edge advancements in anticoagulation medicine, providing more precise and safer solutions for the treatment of thrombotic diseases, and offering important theoretical and practical guidance for future personalized medicine and precision therapies.
Collapse
Affiliation(s)
- Ying Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenqiang Qian
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yongquan Zheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yao Yao
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Maiqi Kong
- School of Medicine & Nursing, Huzhou University, Huzhou 313000, China
| | - Xiaojun Zhu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yujie Peng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan He
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Caihong Zheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
2
|
Shen Y, Yu Y, Zhang X, Hu B, Wang N. Progress of nanomaterials in the treatment of thrombus. Drug Deliv Transl Res 2024; 14:1154-1172. [PMID: 38006448 DOI: 10.1007/s13346-023-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Thrombus has long been the major contributor of death and disability because it can cause adverse effects to varying degrees on the body, resulting in vascular blockage, embolism, heart valve deformation, widespread bleeding, etc. However, clinically, conventional thrombolytic drug treatments have hemorrhagic complication risks and easy to miss the best time of treatment window. Thus, it is an urgent need to investigate newly alternative treatment strategies that can reduce adverse effects and improve treatment effectiveness. Drugs based on nanomaterials act as a new biomedical strategy and promising tools, and have already been investigated for both diagnostic and therapeutic purposes in thrombus therapy. Recent studies have some encouraging progress. In the present review, we primarily concern with the latest developments in the areas of nanomedicines targeting thrombosis therapy. We present the thrombus' formation, characteristics, and biomarkers for diagnosis, overview recent emerging nanomedicine strategies for thrombus therapy, and focus on the future design directions, challenges, and prospects in the nanomedicine application in thrombus therapy.
Collapse
Affiliation(s)
- Yetong Shen
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110167, China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
- Department of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
3
|
Priya V, Samridhi, Singh N, Dash D, Muthu MS. Nattokinase Encapsulated Nanomedicine for Targeted Thrombolysis: Development, Improved in Vivo Thrombolytic Effects, and Ultrasound/Photoacoustic Imaging. Mol Pharm 2024; 21:283-302. [PMID: 38126777 DOI: 10.1021/acs.molpharmaceut.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Nattokinase (NK), a potent thrombolytic enzyme that dissolves blood clots, is highly used in the treatment of cardiovascular disorders. However, its effective delivery remains demanding because of stability and bioavailability problems owing to its high molecular weight and proteineous nature. In this research, we have developed novel NK-loaded nontargeted liposomes (NK-LS) and targeted liposomes (RGD-NK-LS and AM-NK-LS) by the reverse phase evaporation method. The physiochemical characterizations (particle size, polydispersity index, zeta potential, and morphology) were performed by a Zetasizer, SEM, TEM, and AFM. The Bradford assay and XPS analysis confirmed the successful surface conjugation of the targeting ligands. Platelet interaction studies by CLSM, photon imager optima, and flow cytometry showed significantly higher (P < 0.05) platelet binding affinity of targeted liposomes. In vitro evaluations were performed using human blood and a fibrinolysis study by CLSM imaging demonstrating the potent antithrombotic efficacy of AM-NK-LS. Furthermore, bleeding and clotting time studies revealed that the targeted liposomes were free from any bleeding complications. Moreover, the in vivo FeCl3 model on Sprague-Dawley (SD) rats using a Doppler flow meter and ultrasound/photoacoustic imaging indicated the increased % thrombolysis and potent affinity of targeted liposomes toward the thrombus site. Additionally, in vitro hemocompatibility and histopathology studies demonstrated the safety and biocompatibility of the nanoformulations.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Samridhi
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| |
Collapse
|
4
|
Tu J, Liu Q, You S, Meng Z, Fang S, Yu B, Chen X, Zhou Y, Zeng L, Herrmann A, Chen G, Shen J, Zheng L, Ji J. Recombinant supercharged polypeptides for safe and efficient heparin neutralization. Biomater Sci 2023; 11:5533-5539. [PMID: 37395046 DOI: 10.1039/d3bm00628j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heparin is a widely used anticoagulant agent in the clinic. After application, its anticoagulant effect must be reversed to prevent potential side effects. Protamine sulfate (PS) is the only clinically licensed antidote that has been used for this purpose in the last 80 years, which, however, provokes severe adverse effects, such as systemic hypotension and even death. Herein, we demonstrate the potential of supercharged polypeptides as a promising alternative for protamine sulfate. A series of supercharged polypeptides with multiple positive charges was recombinantly produced, and the heparin-neutralizing performance of the polypeptides was evaluated in comparison with PS. It was found that increasing the number of charges significantly enhanced the ability to neutralize heparin and resist the screening effect induced by salt. In particular, the polypeptide bearing 72 charges (K72) exhibited an excellent heparin-neutralizing behavior that was comparable to that of PS. Further in vivo studies revealed that the heparin-triggered bleeding was almost completely alleviated by K72 while a negligible toxic effect was observed. Therefore, such recombinant supercharged polypeptides might replace protamine sulfate as heparin-reversal agents.
Collapse
Affiliation(s)
- Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Qing Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Shengye You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Binhong Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Xumin Chen
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yu Zhou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Lulu Zeng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
5
|
Li MX, Wei QQ, Mo HL, Ren Y, Zhang W, Lu HJ, Joung YK. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res 2023; 27:58. [PMID: 37291675 PMCID: PMC10251629 DOI: 10.1186/s40824-023-00399-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Hui-Lin Mo
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China
- School of Textile and Clothing, Nantong University, Nantong, 226019, China
| | - Wei Zhang
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, 226019, China.
- School of Textile and Clothing, Nantong University, Nantong, 226019, China.
| | - Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Priya V, Singh SK, Revand R, Kumar S, Mehata AK, Sushmitha P, Mahto SK, Muthu MS. GPIIb/IIIa Receptor Targeted Rutin Loaded Liposomes for Site-Specific Antithrombotic Effect. Mol Pharm 2023; 20:663-679. [PMID: 36413707 DOI: 10.1021/acs.molpharmaceut.2c00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rutin (RUT) is a flavonoid obtained from a natural source and is reported for antithrombotic potential, but its delivery remains challenging because of its poor solubility and bioavailability. In this research, we have fabricated novel rutin loaded liposomes (RUT-LIPO, nontargeted), liposomes conjugated with RGD peptide (RGD-RUT-LIPO, targeted), and abciximab (ABX-RUT-LIPO, targeted) by ethanol injection method. The particle size, ζ potential, and morphology of prepared liposomes were analyzed by using DLS, SEM, and TEM techniques. The conjugation of targeting moiety on the surface of targeted liposomes was confirmed by XPS analysis and Bradford assay. In vitro assessment such as blood clot assay, aPTT assay, PT assay, and platelet aggregation analysis was performed using human blood which showed the superior antithrombotic potential of ABX-RUT-LIPO and RGD-RUT-LIPO liposomes. The clot targeting efficiency was evaluated by in vitro imaging and confocal laser scanning microscopy. A significant (P < 0.05) rise in the affinity of targeted liposomes toward activated platelets was demonstrated that revealed their remarkable potential in inhibiting thrombus formation. Furthermore, an in vivo study executed on Sprague Dawley rats (FeCl3 model) demonstrated improved antithrombotic activity of RGD-RUT-LIPO and ABX-RUT-LIPO compared with pure drug. The pharmacokinetic study performed on rats demonstrates the increase in bioavailability when administered as liposomal formulation as compared to RUT. Moreover, the tail bleeding assay and clotting time study (Swiss Albino mice) indicated a better antithrombotic efficacy of targeted liposomes than control preparations. Additionally, biocompatibility of liposomal formulations was determined by an in vitro hemolysis study and cytotoxicity assay, which showed that they were hemocompatible and safe for human use. A histopathology study on rats suggested no severe toxicity of prepared liposomal formulations. Thus, RUT encapsulated nontargeted and targeted liposomes exhibited superior antithrombotic potential over RUT and could be used as a promising carrier for future use.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| | - Sanjeev K Singh
- Department of Physiology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Ravindran Revand
- Department of Physiology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Sandip Kumar
- Department of Pathology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| | - Paulraj Sushmitha
- School of Biomedical Engineering, IIT (BHU), Varanasi221005, UPIndia
| | | | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| |
Collapse
|
7
|
Rout SK, Priya V, Vikas, Mehata AK, Muthu MS. Abciximab coated albumin nanoparticles of rutin for improved and targeted antithrombotic effect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Priya V, Vikas, Mehata AK, Jain D, Singh SK, Muthu MS. Efficient delivery of abciximab using mesoporous silica nanoparticles: In-vitro assessment for targeted and improved antithrombotic activity. Colloids Surf B Biointerfaces 2022; 218:112697. [PMID: 35917688 DOI: 10.1016/j.colsurfb.2022.112697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
Abciximab (ABX) is a chimeric monoclonal antibody reported for antithrombotic activity but their delivery remains challenging due to its poor stability in a biological system. The purpose of this research was to deliver ABX on the target efficiently using mesoporous silica nanoparticles (MSN). ABX coated mesoporous silica nanoparticles (MSN-ABX) were formulated and analyzed for particle size, shape, zeta-potential, surface morphology and surface chemistry. XPS analysis confirmed the presence of ABX on the surface of amino functionalized mesoporous silica nanoparticles (MSN-NH2). The degree of ABX attachment was 67.53 ± 5.81 % which was demonstrated by the Bradford assay. Furthermore, the targeting efficiency of the targeted nanoparticles has been evaluated by capturing the fluorescent images in-vitro which showed the significant accumulation of the ABX coated nanoparticles towards activated platelets. The significant (P < 0.05) increase in affinity of DiD dye loaded nanoparticles towards the activated platelets was confirmed by using an in-vitro imaging through photon imager optima. The hemolysis study of the nanoparticle formulations revealed that they were non-hemolytic for healthy human blood. The in-vitro antithrombotic effects of MSN-ABX were observed by blood clot assay which revealed its superior antithrombotic activity over clinical injection of ABX and could be a promising carrier for improved ABX targeted delivery.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sanjeev K Singh
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
9
|
Wang Y, Wu H, Zhou Z, Maitz MF, Liu K, Zhang B, Yang L, Luo R, Wang Y. A thrombin-triggered self-regulating anticoagulant strategy combined with anti-inflammatory capacity for blood-contacting implants. SCIENCE ADVANCES 2022; 8:eabm3378. [PMID: 35245113 PMCID: PMC8896797 DOI: 10.1126/sciadv.abm3378] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
Interrelated coagulation and inflammation are impediments to endothelialization, a prerequisite for the long-term function of cardiovascular materials. Here, we proposed a self-regulating anticoagulant coating strategy combined with anti-inflammatory capacity, which consisted of thrombin-responsive nanogels with anticoagulant and anti-inflammatory components. As an anticoagulant, rivaroxaban was encapsulated in nanogels cross-linked by thrombin-cleavable peptide and released upon the trigger of environmental thrombin, blocking the further coagulation cascade. The superoxide dismutase mimetic Tempol imparted the antioxidant property. Polyphenol epigallocatechin gallate (EGCG), in addition to its anti-inflammatory function in synergy with Tempol, also acted as a weak cross-linker to stabilize the coating. The effectiveness and versatility of this coating were validated using two typical cardiovascular devices as models, biological valves and vascular stents. It was demonstrated that the coating worked as a precise strategy to resist coagulation and inflammation, escorted reendothelialization on the cardiovascular devices, and provided a new perspective for designing endothelium-like functional coatings.
Collapse
Affiliation(s)
- Yanan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhongyi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden 01069, Germany
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kunpeng Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Corresponding author. (R.L.); (Yunbing Wang)
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Corresponding author. (R.L.); (Yunbing Wang)
| |
Collapse
|
10
|
Priya V, Viswanadh MK, Mehata AK, Jain D, Singh SK, Muthu MS. Targeted nanotherapeutics in the prophylaxis and treatment of thrombosis. Nanomedicine (Lond) 2021; 16:1153-1176. [PMID: 33973818 DOI: 10.2217/nnm-2021-0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Currently available anti-thrombotic therapy for the prophylaxis and treatment of arterial and venous thrombosis includes intravenous administration of anti-thrombotic drugs which lead to severe bleeding risks such as cerebral hemorrhage and stroke. Targeting approaches that utilize nanosystems to reach the thrombus sites are emerging to increase the local effect of anti-thrombotic drugs, as well as to decrease these severe bleeding complications by diminishing the systemic availability of these drugs. This review emphasizes the emerging targeted nanomedicines (liposomes, micelles, polymeric nanoparticles, material bases nanoparticles and other biological vectors) for the prophylaxis and treatment of thrombotic events as well as multifunctional nanomedicines for theranostic applications. Nanomedicine offers a promising platform for a smart, safe, and effective approach for the management of thrombosis.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjeev K Singh
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
11
|
Ashcraft M, Douglass M, Chen Y, Handa H. Combination strategies for antithrombotic biomaterials: an emerging trend towards hemocompatibility. Biomater Sci 2021; 9:2413-2423. [PMID: 33599226 PMCID: PMC8035307 DOI: 10.1039/d0bm02154g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface-induced thrombosis is a frequent, critical issue for blood-contacting medical devices that poses a serious threat to patient safety and device functionality. Antithrombotic material design strategies including the immobilization of anticoagulants, alterations in surface chemistries and morphology, and the release of antithrombotic compounds have made great strides in the field with the ultimate goal of circumventing the need for systemic anticoagulation, but have yet to achieve the same hemocompatibility as the native endothelium. Given that the endothelium achieves this state through the use of many mechanisms of action, there is a rising trend in combining these established design strategies for improved antithrombotic actions. Here, we describe this emerging paradigm, highlighting the apparent advantages of multiple antithrombotic mechanisms of action and discussing the demonstrated potential of this new direction.
Collapse
Affiliation(s)
- Morgan Ashcraft
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
Acute brain injuries such as traumatic brain injury and stroke affect 85 million people a year worldwide, and many survivors suffer from long-term physical, cognitive, or psychosocial impairments. There are few FDA-approved therapies that are effective at preventing, halting, or ameliorating the state of disease in the brain after acute brain injury. To address this unmet need, one potential strategy is to leverage the unique physical and biological properties of nanomaterials. Decades of cancer nanomedicine research can serve as a blueprint for innovation in brain injury nanomedicines, both to emulate the successes and also to avoid potential pitfalls. In this review, we discuss how shared disease physiology between cancer and acute brain injuries can inform the design of novel nanomedicines for acute brain injuries. These disease hallmarks include dysregulated vasculature, an altered microenvironment, and changes in the immune system. We discuss several nanomaterial strategies that can be engineered to exploit these disease hallmarks, for example, passive accumulation, active targeting of disease-associated signals, bioresponsive designs that are "smart", and immune interactions.
Collapse
|
13
|
Xu J, Zhang Y, Nie G. Intelligent antithrombotic nanomedicines: Progress, opportunities, and challenges. VIEW 2021. [DOI: 10.1002/viw.20200145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- GBA Research Innovation Institute for Nanotechnology Guangdong China
- Henan Institute of Advanced Technology Zhengzhou University Zhengzhou China
| |
Collapse
|
14
|
Yang Y, Xiao Y. Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv Healthc Mater 2020; 9:e2000726. [PMID: 32691989 DOI: 10.1002/adhm.202000726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Blood coagulation in tissue healing not only prevents blood loss, but also forms a natural scaffold for tissue repair and regeneration. As blood clot formation is the initial and foremost phase upon bone injury, and the quality of blood clot (hematoma) orchestrates the following inflammatory and cellular processes as well as the subsequent callus formation and bone remodeling process. Inspired by the natural healing hematoma, tissue-engineered biomimic scaffold/hydrogels and blood prefabrication strategies attract significant interests in developing functional bone substitutes. The alteration of the fracture hematoma ca significantly accelerate or impair the overall bone healing process. This review summarizes the impact of biomaterials on blood coagulation and provides evidence on fibrin network structure, growth factors, and biomolecules that contribute to bone healing within the hematoma. The aim is to provide insights into the development of novel implant and bone biomaterials for enhanced osteogenesis. Advances in the understanding of biomaterial characteristics (e.g., morphology, chemistry, wettability, and protein adsorption) and their effect on hematoma properties are highlighted. Emphasizing the importance of the initial healing phase of the hematoma endows the design of advanced biomaterials with the desired regulatory properties for optimal coagulation and hematoma properties, thereby facilitating enhanced osteogenesis and ideal therapeutic effects.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
15
|
Huang Q, Zhao H, Shui M, Guo DS, Wang R. Heparin reversal by an oligoethylene glycol functionalized guanidinocalixarene. Chem Sci 2020; 11:9623-9629. [PMID: 34094229 PMCID: PMC8162181 DOI: 10.1039/d0sc03922e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 02/02/2023] Open
Abstract
Unfractionated heparin (UFH), a naturally occurring anionic polysaccharide, is widely used as an anticoagulant agent in clinical practice. When overdosed or used in sensitive patients, UFH may cause various risks and a UFH neutralizer needs to be administered immediately to reverse heparinization. However, the most common UFH neutralizer, protamine sulfate, often causes various adverse effects, some of which are life-threatening. Herein, we designed a highly biocompatible, oligoethylene glycol functionalized guanidinocalixarene (GC4AOEG) as an antidote against UFH. GC4AOEG and UFH exhibited a strong binding affinity, ensuring specific recognition and neutralization of UFH by GC4AOEG in vitro and in vivo. As a consequence, UFH-induced excessive bleeding was significantly alleviated by GC4AOEG in different mouse bleeding models. Additionally, no adverse effects were observed during these treatments in vivo. Taken together, GC4AOEG, as a strategically designed, biocompatible artificial receptor with strong recognition affinity towards UFH, may have significant clinical potential as an alternative UFH reversal agent.
Collapse
Affiliation(s)
- Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| | - Hong Zhao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin China
| | - Mingju Shui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| |
Collapse
|
16
|
Abstract
The term "nanotechnology" was coined by Norio Taniguchi in the 1970s to describe the manipulation of materials at the nano (10-9) scale, and the term "nanomedicine" was put forward by Eric Drexler and Robert Freitas Jr. in the 1990s to signify the application of nanotechnology in medicine. Nanomedicine encompasses a variety of systems including nanoparticles, nanofibers, surface nano-patterning, nanoporous matrices, and nanoscale coatings. Of these, nanoparticle-based applications in drug formulations and delivery have emerged as the most utilized nanomedicine system. This review aims to present a comprehensive assessment of nanomedicine approaches in vascular diseases, emphasizing particle designs, therapeutic effects, and current state-of-the-art. The expected advantages of utilizing nanoparticles for drug delivery stem from the particle's ability to (1) protect the drug from plasma-induced deactivation; (2) optimize drug pharmacokinetics and biodistribution; (3) enhance drug delivery to the disease site via passive and active mechanisms; (4) modulate drug release mechanisms via diffusion, degradation, and other unique stimuli-triggered processes; and (5) biodegrade or get eliminated safely from the body. Several nanoparticle systems encapsulating a variety of payloads have shown these advantages in vascular drug delivery applications in preclinical evaluation. At the same time, new challenges have emerged regarding discrepancy between expected and actual fate of nanoparticles in vivo, manufacturing barriers of complex nanoparticle designs, and issues of toxicity and immune response, which have limited successful clinical translation of vascular nanomedicine systems. In this context, this review will discuss challenges and opportunities to advance the field of vascular nanomedicine.
Collapse
Affiliation(s)
- Michael Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
17
|
Wang S, Guo X, Xiu W, Liu Y, Ren L, Xiao H, Yang F, Gao Y, Xu C, Wang L. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. SCIENCE ADVANCES 2020; 6:eaaz8204. [PMID: 32832678 PMCID: PMC7439573 DOI: 10.1126/sciadv.aaz8204] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/12/2020] [Indexed: 05/21/2023]
Abstract
Conventional thrombolytic drugs for vascular blockage such as tissue plasminogen activator (tPA) are challenged by the low bioavailability, off-target side effects and limited penetration in thrombi, leading to delayed recanalization. We hypothesize that these challenges can be addressed with the targeted and controlled delivery of thrombolytic drugs or precision drug delivery. A porous and magnetic microbubble platform is developed to formulate tPA. This system can maintain the tPA activity during circulation, be magnetically guided to the thrombi, and then remotely activated for drug release. The ultrasound stimulation also improves the drug penetration into thrombi. In a mouse model of venous thrombosis, the residual thrombus decreased by 67.5% when compared to conventional injection of tPA. The penetration of tPA by ultrasound was up to several hundred micrometers in thrombi. This strategy not only improves the therapeutic efficacy but also accelerates the lytic rate, enabling it to be promising in time-critical thrombolytic therapy.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xixi Guo
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yang Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lili Ren
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Huaxin Xiao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Gao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
18
|
Myerson JW, McPherson O, DeFrates KG, Towslee JH, Marcos-Contreras OA, Shuvaev VV, Braender B, Composto RJ, Muzykantov VR, Eckmann DM. Cross-linker-Modulated Nanogel Flexibility Correlates with Tunable Targeting to a Sterically Impeded Endothelial Marker. ACS NANO 2019; 13:11409-11421. [PMID: 31600053 PMCID: PMC7393972 DOI: 10.1021/acsnano.9b04789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deformability of injectable nanocarriers impacts rheological behavior, drug loading, and affinity target adhesion. Here, we present atomic force microscopy (AFM) and spectroscopy measurements of nanocarrier Young's moduli, tune the moduli of deformable nanocarriers with cross-linkers, and demonstrate vascular targeting behavior that correlates with Young's modulus. Homobifunctional cross-linkers were introduced into lysozyme-dextran nanogels (NGs). Single particle-scale AFM measurements determined NG moduli varying from ∼50-150 kPa for unmodified NGs or NGs with a short hydrophilic cross-linker (2,2'-(ethylenedioxy)bis(ethylamine), EOD) to ∼350 kPa for NGs modified with a longer hydrophilic cross-linker (4,9-dioxa-1,12-dodecanediamine, DODD) to ∼10 MPa for NGs modified with a longer hydrophobic cross-linker (1,12-diaminododecane, DAD). Cross-linked NGs were conjugated to antibodies for plasmalemma vesicle associated protein (PLVAP), a caveolar endothelial marker that cannot be accessed by rigid particles larger than ∼100 nm. In previous work, 150 nm NGs effectively targeted PLVAP, where rigid particles of similar diameter did not. EOD-modified NGs targeted PLVAP less effectively than unmodified NGs, but more effectively than DODD or DAD modified NGs, which both yielded low levels of targeting, resembling results previously obtained with polystyrene particles. Cross-linked NGs were also conjugated to antibodies against intracellular adhesion molecule-1 (ICAM-1), an endothelial marker accessible to large rigid particles. Cross-linked NGs and unmodified NGs targeted uniformly to ICAM-1. We thus demonstrate cross-linker modification of NGs, AFM determination of NG mechanical properties varying with cross-linker, and tuning of specific sterically constrained vascular targeting behavior in correlation with cross-linker-modified NG mechanical properties.
Collapse
Affiliation(s)
- Jacob Wheatley Myerson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Olivia McPherson
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kelsey G. DeFrates
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jenna H. Towslee
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A. Marcos-Contreras
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir V. Shuvaev
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bruce Braender
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Author:
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Maitz MF, Martins MCL, Grabow N, Matschegewski C, Huang N, Chaikof EL, Barbosa MA, Werner C, Sperling C. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater 2019; 94:33-43. [PMID: 31226481 DOI: 10.1016/j.actbio.2019.06.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022]
Abstract
Biomedical devices in the blood flow disturb the fine-tuned balance of pro- and anti-coagulant factors in blood and vessel wall. Numerous technologies have been suggested to reduce coagulant and inflammatory responses of the body towards the device material, ranging from camouflage effects to permanent activity and further to a responsive interaction with the host systems. However, not all types of modification are suitable for all types of medical products. This review has a focus on application-oriented considerations of hemocompatible surface fittings. Thus, passive versus bioactive modifications are discussed along with the control of protein adsorption, stability of the immobilization, and the type of bioactive substance, biological or synthetic. Further considerations are related to the target system, whether enzymes or cells should be addressed in arterial or venous system, or whether the blood vessel wall is addressed. Recent developments like feedback controlled or self-renewing systems for drug release or addressing cellular regulation pathways of blood platelets and endothelial cells are paradigms for a generation of blood contacting devices, which are hemocompatible by cooperation with the host system. STATEMENT OF SIGNIFICANCE: This paper is part 4 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany; Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Niels Grabow
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany
| | - Claudia Matschegewski
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany; Institute for ImplantTechnology and Biomaterials (IIB) e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, United States; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Mário A Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| |
Collapse
|
20
|
Zhang X, Chen L, Lim KH, Gonuguntla S, Lim KW, Pranantyo D, Yong WP, Yam WJT, Low Z, Teo WJ, Nien HP, Loh QW, Soh S. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804540. [PMID: 30624820 DOI: 10.1002/adma.201804540] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/09/2018] [Indexed: 05/22/2023]
Abstract
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man-made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli-responsive materials; these "smart" materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli-responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self-regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli-responsive materials as the basic building blocks.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Spandhana Gonuguntla
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Wen Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wai Pong Yong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wei Jian Tyler Yam
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhida Low
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wee Joon Teo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Ping Nien
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiao Wen Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
21
|
Sufi SA, Pajaniradje S, Mukherjee V, Rajagopalan R. Redox Nano-Architectures: Perspectives and Implications in Diagnosis and Treatment of Human Diseases. Antioxid Redox Signal 2019; 30:762-785. [PMID: 29334759 DOI: 10.1089/ars.2017.7412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Efficient targeted therapy with minimal side-effects is the need of the hour. Locally altered redox state is observed in several human ailments, such as inflammation, sepsis, and cancer. This has been taken advantage of in designing redox-responsive nanodrug carriers. Redox-responsive nanosystems open a door to a multitude of possibilities for the control of diseases over other drug delivery systems. Recent Advances: The first-generation nanotherapy relies on novel properties of nanomaterials to shield the drug and deliver it to the diseased tissue or organ. The second generation is based on targeting the drug or diagnostic material to the diseased cell-specific receptors, or to a particular organ to improve the efficacy of the drug. The third and the latest generation of nanocarriers, the stimuli-responsive nanocarriers exploit the disease condition or environment to specifically deliver the drug or diagnostic probe for the best diagnosis and treatment. Several different kinds of stimuli such as temperature, magnetic field, pH, and altered redox state-responsive nanosystems have educed immense promise in the field of nanomedicine and therapy. CRITICAL ISSUES We describe the evolution of nanomaterial since its inception with an emphasis on stimuli-responsive nanocarriers, especially redox-sensitive nanocarriers. Importantly, we discuss the future perspectives of redox-responsive nanocarriers and their implications. FUTURE DIRECTIONS Redox-responsive nanocarriers achieve a near-to-zero premature release of the drug, thus avoiding off-site toxicity associated with the free drug. This bears great potential for the development of more effective drug delivery with better pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Shamim Akhtar Sufi
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Victor Mukherjee
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
22
|
Sharma S, Javed MN, Pottoo FH, Rabbani SA, Barkat MA, Harshita, Sarafroz M, Amir M. Bioresponse Inspired Nanomaterials for Targeted Drug and Gene Delivery. Pharm Nanotechnol 2019; 7:220-233. [PMID: 31486751 DOI: 10.2174/2211738507666190429103814] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 06/10/2023]
Abstract
The traditional drug delivery techniques are unresponsive to the altering metabolic states of the body and fail to achieve target specific drug delivery, which results in toxic plasma concentrations. In order to harmonize the drug release profiles, diverse biological and pathological pathways and factors involved have been studied and consequently, nanomaterials and nanostructures are engineered in a manner so that they respond and interact with the target cells and tissues in a controlled manner to induce promising pharmacological responses with least undesirable effects. The bioinspired nanoparticles such as carbon nanotubes, metallic nanoparticles, and quantum dots sense the localized host environment for diagnosis and treatment of pathological states. These biocompatible polymeric- based nanostructures bind drugs to the specific receptors, which renders them as ideal vehicles for the delivery of drugs and gene. The ultimate goal of bioinspired nanocomposites is to achieve personalized diagnostic and therapeutic outcomes. This review briefly discussed current trends; role, recent advancements as well as different approaches, which are being used for designing and fabrication of some bioinspired nanocarriers.
Collapse
Affiliation(s)
- Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K. R. Mangalam University, Gurgaon, Haryana, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New-Delhi, India
- School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam, 31441, Saudi Arabia
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Al Qusaidat, United Arab Emirates
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K. R. Mangalam University, Gurgaon, Haryana, India
| | - Harshita
- Department of Pharmacy, School of Medical and Allied Sciences, K. R. Mangalam University, Gurgaon, Haryana, India
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohd Amir
- Department of Natural Product and Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
23
|
Buss CG, Dudani JS, Akana RTK, Fleming HE, Bhatia SN. Protease activity sensors noninvasively classify bacterial infections and antibiotic responses. EBioMedicine 2018; 38:248-256. [PMID: 30503861 PMCID: PMC6306379 DOI: 10.1016/j.ebiom.2018.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Respiratory tract infections represent a significant public health risk, and timely and accurate detection of bacterial infections facilitates rapid therapeutic intervention. Furthermore, monitoring the progression of infections after intervention enables 'course correction' in cases where initial treatments are ineffective, avoiding unnecessary drug dosing that can contribute to antibiotic resistance. However, current diagnostic and monitoring techniques rely on non-specific or slow readouts, such as radiographic imaging and sputum cultures, which fail to specifically identify bacterial infections and take several days to identify optimal antibiotic treatments. METHODS Here we describe a nanoparticle system that detects P. aeruginosa lung infections by sensing host and bacterial protease activity in vivo, and that delivers a urinary detection readout. One protease sensor is comprised of a peptide substrate for the P. aeruginosa protease LasA. A second sensor designed to detect elastases is responsive to recombinant neutrophil elastase and secreted proteases from bacterial strains. FINDINGS In mice infected with P. aeruginosa, nanoparticle formulations of these protease sensors-termed activity-based nanosensors (ABNs)-detect infections and monitor bacterial clearance from the lungs over time. Additionally, ABNs differentiate between appropriate and ineffective antibiotic treatments acutely, within hours after the initiation of therapy. INTERPRETATION These findings demonstrate how activity measurements of disease-associated proteases can provide a noninvasive window into the dynamic process of bacterial infection and resolution, offering an opportunity for detecting, monitoring, and characterizing lung infections. FUND: National Cancer Institute, National Institute of Environmental Health Sciences, National Institutes of Health, National Science Foundation Graduate Research Fellowship Program, and Howard Hughes Medical Institute.
Collapse
Affiliation(s)
- Colin G Buss
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaideep S Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Reid T K Akana
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather E Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Ippel BD, Dankers PYW. Introduction of Nature's Complexity in Engineered Blood-compatible Biomaterials. Adv Healthc Mater 2018; 7. [PMID: 28841771 DOI: 10.1002/adhm.201700505] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/04/2017] [Indexed: 01/07/2023]
Abstract
Biomaterials with excellent blood-compatibility are needed for applications in vascular replacement therapies, such as vascular grafts, heart valves and stents, and in extracorporeal devices such as hemodialysis machines and blood-storage bags. The modification of materials that are being used for blood-contacting devices has advanced from passive surface modifications to the design of more complex, smart biomaterials that respond to relevant stimuli from blood to counteract coagulation. Logically, the main source of inspiration for the design of new biomaterials has been the endogenous endothelium. Endothelial regulation of hemostasis is complex and involves a delicate interplay of structural components and feedback mechanisms. Thus, challenges to develop new strategies for blood-compatible biomaterials now lie in incorporating true feedback controlled mechanisms that can regulate blood compatibility in a dynamic way. Here, supramolecular material systems are highlighted as they provide a promising platform to introduce dynamic reciprocity, due to their inherent dynamic nature.
Collapse
Affiliation(s)
- Bastiaan D. Ippel
- Institute for Complex Molecular Systems; Laboratory for Chemical Biology; and Laboratory for Cell and Tissue Engineering; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems; Laboratory for Chemical Biology; and Laboratory for Cell and Tissue Engineering; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
25
|
Advances in bioresponsive closed-loop drug delivery systems. Int J Pharm 2017; 544:350-357. [PMID: 29191483 DOI: 10.1016/j.ijpharm.2017.11.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023]
Abstract
Controlled drug delivery systems are able to improve efficacy and safety of therapeutics by optimizing the duration and kinetics of release. Among them, closed-loop delivery strategies, also known as self-regulated administration, have proven to be a practical tool for homeostatic regulation, by tuning drug release as a function of biosignals relevant to physiological and pathological processes. A typical example is glucose-responsive insulin delivery system, which can mimic the pancreatic beta cells to release insulin with a proper dose at a proper time point by responding to plasma glucose levels. Similar self-regulated systems are also important in the treatment of other diseases including thrombosis and bacterial infection. In this review, we survey the recent advances in bioresponsive closed-loop drug delivery systems, including glucose-responsive, enzyme-activated, and other biosignal-mediated delivery systems. We also discuss the future opportunities and challenges in this field.
Collapse
|
26
|
Polysaccharides-based nanocomplexes for the prolonged delivery of enoxaparin: In-vitro and in-vivo evaluation. Int J Pharm 2017; 526:271-279. [DOI: 10.1016/j.ijpharm.2017.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 11/18/2022]
|
27
|
Huang Y, Zhang Y, Feng L, He L, Guo R, Xue W. Synthesis of N-alkylated chitosan and its interactions with blood. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:544-550. [DOI: 10.1080/21691401.2017.1328687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuchen Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Liumin He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institute, Department of Biochemistry and Molecular Biology, Guangzhou, China
| |
Collapse
|
28
|
Maitz MF, Zitzmann J, Hanke J, Renneberg C, Tsurkan MV, Sperling C, Freudenberg U, Werner C. Adaptive release of heparin from anticoagulant hydrogels triggered by different blood coagulation factors. Biomaterials 2017; 135:53-61. [PMID: 28486148 DOI: 10.1016/j.biomaterials.2017.04.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 12/23/2022]
Abstract
Feedback-controlled anticoagulant hydrogels were formed by crosslinking the anticoagulant heparin with star-shaped poly(ethylene glycol) using peptide linkers, which are selectively cleaved by different activated blood coagulation factors acting as proteolytic enzymes. Various cleavable peptide units, differing either in their thrombin turnover rates or in their responsiveness to factors activated earlier in the course of blood coagulation, were used for the formation of the biohybrid materials. Release triggered by the early coagulation factors Xa (FXa) or FXIIa/kallikrein was shown to enhance the efficiency of the released anticoagulant. Furthermore, FXa-cleavable gels enabled a faster release of heparin, which was attributed to the lower affinity of the factor for heparin. Combining early and fast responses, FXa-cleavable gels were shown to provide anticoagulant protection of biomaterial surfaces at low levels of released heparin in human whole-blood incubation experiments. The results demonstrate the potential for employing biomolecular circuits in the design of functional biomaterials to tailor the adaptive delivery of bioactive molecules.
Collapse
Affiliation(s)
- Manfred F Maitz
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | - Jan Zitzmann
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Jasmin Hanke
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Claudia Renneberg
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Mikhail V Tsurkan
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Claudia Sperling
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
29
|
Abstract
Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
Collapse
Affiliation(s)
- Jianyu Li
- John A. Paulson School of Engineering and Applied Sciences, and the Wyss Institute for biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, and the Wyss Institute for biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
30
|
Wagner HJ, Sprenger A, Rebmann B, Weber W. Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv Drug Deliv Rev 2016; 105:77-95. [PMID: 27179764 DOI: 10.1016/j.addr.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 02/04/2023]
Abstract
One key aspect of synthetic biology is the development and characterization of modular biological building blocks that can be assembled to construct integrated cell-based circuits performing computational functions. Likewise, the idea of extracting biological modules from the cellular context has led to the development of in vitro operating systems. This principle has attracted substantial interest to extend the repertoire of functional materials by connecting them with modules derived from synthetic biology. In this respect, synthetic biological switches and sensors, as well as biological targeting or structure modules, have been employed to upgrade functions of polymers and solid inorganic material. The resulting systems hold great promise for a variety of applications in diagnosis, tissue engineering, and drug delivery. This review reflects on the most recent developments and critically discusses challenges concerning in vivo functionality and tolerance that must be addressed to allow the future translation of such synthetic biology-upgraded materials from the bench to the bedside.
Collapse
|
31
|
Lo JH, Kwon EJ, Zhang AQ, Singhal P, Bhatia SN. Comparison of Modular PEG Incorporation Strategies for Stabilization of Peptide-siRNA Nanocomplexes. Bioconjug Chem 2016; 27:2323-2331. [PMID: 27583545 DOI: 10.1021/acs.bioconjchem.6b00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoparticulate systems have shown great promise in overcoming the considerable trafficking barriers associated with systemic nucleic acid delivery, which must be addressed to unlock the full potential of technologies such as RNAi and gene editing in vivo. In addition to mediating the cytoplasmic delivery of nucleic cargo and shielding it from nuclease degradation and immunostimulation, nucleic-acid-containing nanomaterials delivered intravenously must also be stable in the bloodstream after administration to avoid toxicity and off-target delivery. To this end, the hydrophilic molecule polyethylene glycol (PEG) has been deployed in many different nanoparticle systems to prevent aggregation and recognition by the reticuloendothelial system. However, the optimal strategy for incorporating PEG into self-assembled nucleic acid delivery systems to obtain nanoparticle stability while retaining important functions such as receptor targeting and cargo activity remains unclear. In this work, we develop substantially improved formulations of tumor-penetrating nanocomplexes (TPNs), targeted self-assembled nanoparticles formulated with peptide carriers and siRNA that have been shown to mitigate tumor burden in an orthotopic model of ovarian cancer. We specifically sought to tailor TPNs for intravenous delivery by systematically comparing formulations with three different classes of modular PEG incorporation (namely PEG graft polymers, PEG lipids, and PEGylated peptide), each synthesized using straightforward bioconjugation techniques. We found that the addition of PEG lipids or PEGylated peptide carriers led to the formation of small and stable nanoparticles, but only nanoparticles formulated with PEGylated peptide carriers retained substantial activity in a gene silencing assay. In vivo, this formulation significantly decreased accumulation in off-target organs and improved initial availability in circulation compared to results from the original non-PEGylated particles. Thus, from among a set of candidate strategies, we identified TPNs with admixed PEGylated peptide carriers as the optimal formulation for systemic administration of siRNA on the basis of their performance in a battery of physicochemical and biological assays. Moreover, this optimized formulation confers pharmacologic advantages that may enable further translational development of tumor-penetrating nanocomplexes, highlighting the preclinical value of comparing formulation strategies and the relevance of this systematic approach for the development of other self-assembled nanomaterials.
Collapse
Affiliation(s)
- Justin H Lo
- Koch Institute for Integrative Cancer Research, MIT , 500 Main Street, Cambridge, Massachusetts 02139, United States
| | - Ester J Kwon
- Koch Institute for Integrative Cancer Research, MIT , 500 Main Street, Cambridge, Massachusetts 02139, United States
| | - Angela Q Zhang
- Koch Institute for Integrative Cancer Research, MIT , 500 Main Street, Cambridge, Massachusetts 02139, United States
| | - Preeti Singhal
- Koch Institute for Integrative Cancer Research, MIT , 500 Main Street, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, MIT , 500 Main Street, Cambridge, Massachusetts 02139, United States.,Department of Medicine, Brigham and Women's Hospital , 75 Francis Street, Boston, Massachusetts 02115, United States.,Howard Hughes Medical Institute , 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
32
|
Huang SS, Wei SC, Chang HT, Lin HJ, Huang CC. Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant. J Control Release 2015; 221:9-17. [PMID: 26643617 DOI: 10.1016/j.jconrel.2015.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023]
Abstract
We demonstrated that thrombin-binding aptamer-conjugated gold nanoparticles (TBA-Au NPs), prepared from a self-assembled hybrid monolayer (SAHM) of triblock aptamers on Au NPs (13 nm), can effectively inhibit thrombin activity toward fibrinogen. The first block poly(adenine) at the end of the triblock TBA was used for the self-assembly on Au NP surface. The second block, in the middle of TBA, was composed of oligonucleotides that could hybridize with each other. The third block, containing TBA15 (15-base, binding to the exosite I of thrombin) and TBA29 (29-base, binding to the exosite II of thrombin) provided bivalent interaction with thrombin. The SAHM triblock aptamers have optimal distances between TBA15 and TBA29, aptamer density, and orientation on the Au NP surfaces. These properties strengthen the interactions with thrombin (Kd=1.5 × 10(-11)M), resulting in an extremely high anticoagulant potency. The thrombin clotting time mediated by SAHM TBA15/TBA29-Au NPs was >10 times longer than that of four commercially available drugs (heparin, argatroban, hirudin, or warfarin). In addition, the rat-tail bleeding assay time further demonstrated that the SAHM TBA15/TBA29-Au NPs were superior to heparin. The SAHM TBA15/TBA29-Au NPs exhibited excellent stability in the human plasma (half-life >14 days) and good biocompatibility (low cytotoxicity and hemolysis). Most interestingly, the inhibition by SAHM TBA15/TBA29-Au NPs was controllable by the irradiation of green laser, via heat transfer-induced TBA release from Au NPs. Therefore, these easily prepared (self-assembled), low cost (non-thiolated aptamer), photo-controllable, multivalent TBA15/TBA29-Au NPs (high density of TBA15/TBA29 on Au NPs) show good potential for the treatment of various diseases related to blood-clotting disorders. Our study opens up the possibility of regulation of molecule binding, protein recognition, and enzyme activity using SAHM aptamer-functionalized nanomaterials.
Collapse
Affiliation(s)
- San-Shan Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
33
|
Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proc Natl Acad Sci U S A 2015; 112:14460-6. [PMID: 26598694 DOI: 10.1073/pnas.1508522112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanoparticle technologies intended for human administration must be designed to interact with, and ideally leverage, a living host environment. Here, we describe smart nanosystems classified in two categories: (i) those that sense the host environment and respond and (ii) those that first prime the host environment to interact with engineered nanoparticles. Smart nanosystems have the potential to produce personalized diagnostic and therapeutic schema by using the local environment to drive material behavior and ultimately improve human health.
Collapse
|
34
|
|
35
|
Such GK, Yan Y, Johnston APR, Gunawan ST, Caruso F. Interfacing materials science and biology for drug carrier design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2278-2297. [PMID: 25728711 DOI: 10.1002/adma.201405084] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.
Collapse
Affiliation(s)
- Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|