1
|
Panigaj M, Basu Roy T, Skelly E, Chandler MR, Wang J, Ekambaram S, Bircsak K, Dokholyan NV, Afonin KA. Autonomous Nucleic Acid and Protein Nanocomputing Agents Engineered to Operate in Living Cells. ACS NANO 2025; 19:1865-1883. [PMID: 39760461 PMCID: PMC11757000 DOI: 10.1021/acsnano.4c13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent years, the rapid development and employment of autonomous technology have been observed in many areas of human activity. Autonomous technology can readily adjust its function to environmental conditions and enable an efficient operation without human control. While applying the same concept to designing advanced biomolecular therapies would revolutionize nanomedicine, the design approaches to engineering biological nanocomputing agents for predefined operations within living cells remain a challenge. Autonomous nanocomputing agents made of nucleic acids and proteins are an appealing idea, and two decades of research has shown that the engineered agents act under real physical and biochemical constraints in a logical manner. Throughout all domains of life, nucleic acids and proteins perform a variety of vital functions, where the sequence-defined structures of these biopolymers either operate on their own or efficiently function together. This programmability and synergy inspire massive research efforts that utilize the versatility of nucleic and amino acids to encode functions and properties that otherwise do not exist in nature. This Perspective covers the key concepts used in the design and application of nanocomputing agents and discusses potential limitations and paths forward.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Tanaya Basu Roy
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Jian Wang
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Srinivasan Ekambaram
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kristin Bircsak
- MIMETAS
US, INC, Gaithersburg, Maryland 20878, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
2
|
Sha CM, Wang J, Dokholyan NV. Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks. Biophys J 2024; 123:2671-2681. [PMID: 37838833 PMCID: PMC11393712 DOI: 10.1016/j.bpj.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Fast and accurate 3D RNA structure prediction remains a major challenge in structural biology, mostly due to the size and flexibility of RNA molecules, as well as the lack of diverse experimentally determined structures of RNA molecules. Unlike DNA structure, RNA structure is far less constrained by basepair hydrogen bonding, resulting in an explosion of potential stable states. Here, we propose a convolutional neural network that predicts all pairwise distances between residues in an RNA, using a recently described smooth parametrization of Euclidean distance matrices. We achieve high-accuracy predictions on RNAs up to 100 nt in length in fractions of a second, a factor of 107 faster than existing molecular dynamics-based methods. We also convert our coarse-grained machine learning output into an all-atom model using discrete molecular dynamics with constraints. Our proposed computational pipeline predicts all-atom RNA models solely from the nucleotide sequence. However, this method suffers from the same limitation as nucleic acid molecular dynamics: the scarcity of available RNA crystal structures for training.
Collapse
Affiliation(s)
- Congzhou M Sha
- Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Nikolay V Dokholyan
- Department of Engineering Science and Mechanics, Penn State University, State College, Pennsylvania; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania; Department of Chemistry, Penn State University, State College, Pennsylvania; Department of Biomedical Engineering, Penn State University, State College, Pennsylvania.
| |
Collapse
|
3
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. APPLIED PHYSICS REVIEWS 2023; 10:011304. [PMID: 36874908 PMCID: PMC9869343 DOI: 10.1063/5.0121820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
Collapse
Affiliation(s)
- Nicole I. Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kristine Y. Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
6
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
Affiliation(s)
- Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kunmeng Yang
- The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130061, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yachen Peng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
7
|
Characterization of structures and molecular interactions of RNA and lipid carriers using atomic force microscopy. Adv Colloid Interface Sci 2023; 313:102855. [PMID: 36774766 DOI: 10.1016/j.cis.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Ribonucleic acid (RNA) and lipid are essential biomolecules in many biological processes, and hold a great prospect for biomedical applications, such as gene therapy, vaccines and therapeutic drug delivery. The characterization of morphology and intra-/inter-molecular interactions of RNA and lipid molecules is critical for understanding their functioning mechanisms. Atomic force microscopy (AFM) is a sophisticated technique for characterizing biomolecules featured by its piconewton force sensitivity, sub-nanometer spatial resolution, and flexible operation conditions in both air and liquid. The goal of this review is to highlight the representative and outstanding discoveries of the characterization of RNA and lipid molecules through morphology identification, physicochemical property determination and intermolecular force measurements by AFM. The first section introduces the AFM imaging of RNA molecules to obtain high-resolution morphologies and nanostructures in air and liquid, followed by the discussion of employing AFM force spectroscopy in understanding the nanomechanical properties and intra-/inter-molecular interactions of RNA molecules, including RNA-RNA and RNA-biomolecule interactions. The second section focuses on the studies of lipid and RNA encapsulated in lipid carrier (RNA-lipid) by AFM as well as the sample preparation and factors influencing the morphology and structure of lipid/RNA-lipid complexes. Particularly, the nanomechanical properties of lipid and RNA-lipid characterized by nanomechanical imaging and force measurements are discussed. The future perspectives and remaining challenges on the characterization of RNA and lipid offered by the versatile AFM techniques are also discussed. This review provides useful insights on the characterization of RNA and lipids nanostructures along with their molecular interactions, and also enlightens the application of AFM techniques in investigating a broad variety of biomolecules.
Collapse
|
8
|
Younas T, Liu C, Struwe WB, Kukura P, He L. Engineer RNA-Protein Nanowires as Light-Responsive Biomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206513. [PMID: 36642821 DOI: 10.1002/smll.202206513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
RNA molecules have emerged as increasingly attractive biomaterials with important applications such as RNA interference (RNAi) for cancer treatment and mRNA vaccines against infectious diseases. However, it remains challenging to engineer RNA biomaterials with sophisticated functions such as non-covalent light-switching ability. Herein, light-responsive RNA-protein nanowires are engineered to have such functions. It first demonstrates that the high affinity of RNA aptamer enables the formation of long RNA-protein nanowires through designing a dimeric RNA aptamer and an engineered green fluorescence protein (GFP) that contains two TAT-derived peptides at N- and C- termini. GFP is then replaced with an optogenetic protein pair system, LOV2 (light-oxygen-voltage) protein and its binding partner ZDK (Z subunit of protein A), to confer blue light-controlled photo-switching ability. The light-responsive nanowires are long (>500 nm) in the dark, but small (20-30 nm) when exposed to light. Importantly, the co-assembly of this RNA-protein hybrid biomaterial does not rely on the photochemistry commonly used for light-responsive biomaterials, such as bond formation, cleavage, and isomerization, and is thus reversible. These RNA-protein structures can serve as a new class of light-controlled biocompatible frameworks for incorporating versatile elements such as RNA, DNA, and enzymes.
Collapse
Affiliation(s)
- Tayyaba Younas
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Chang Liu
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Lizhong He
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
9
|
Zhu L, Luo J, Ren K. Nucleic acid-based artificial nanocarriers for gene therapy. J Mater Chem B 2023; 11:261-279. [PMID: 36524395 DOI: 10.1039/d2tb01179d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid nanotechnology is a powerful tool in the fields of biosensing and nanomedicine owing to their high editability and easy synthesis and modification. Artificial nucleic acid nanostructures have become an emerging research hotspot as gene carriers with low cytotoxicity and immunogenicity for therapeutic approaches. In this review, recent progress in the design and functional mechanisms of nucleic acid-based artificial nano-vectors especially for exogenous siRNA and antisense oligonucleotide delivery is summarized. Different types of DNA nanocarriers, including DNA junctions, tetrahedrons, origami, hydrogels and scaffolds, are introduced. The enhanced targeting strategies to improve the delivery efficacy are demonstrated. Furthermore, RNA based gene nanocarrier systems by self-assembly of short strands, rolling circle transcription, chemical crosslinking and using RNA motifs and DNA-RNA hybrids are demonstrated. Finally, the outlook and potential challenges are highlighted. The nucleic acid-based artificial nanocarriers offer a promising and precise tool for gene delivery and therapy.
Collapse
Affiliation(s)
- Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
10
|
Elonen A, Natarajan AK, Kawamata I, Oesinghaus L, Mohammed A, Seitsonen J, Suzuki Y, Simmel FC, Kuzyk A, Orponen P. Algorithmic Design of 3D Wireframe RNA Polyhedra. ACS NANO 2022; 16:16608-16616. [PMID: 36178116 PMCID: PMC9620399 DOI: 10.1021/acsnano.2c06035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 06/01/2023]
Abstract
We address the problem of de novo design and synthesis of nucleic acid nanostructures, a challenge that has been considered in the area of DNA nanotechnology since the 1980s and more recently in the area of RNA nanotechnology. Toward this goal, we introduce a general algorithmic design process and software pipeline for rendering 3D wireframe polyhedral nanostructures in single-stranded RNA. To initiate the pipeline, the user creates a model of the desired polyhedron using standard 3D graphic design software. As its output, the pipeline produces an RNA nucleotide sequence whose corresponding RNA primary structure can be transcribed from a DNA template and folded in the laboratory. As case examples, we design and characterize experimentally three 3D RNA nanostructures: a tetrahedron, a triangular bipyramid, and a triangular prism. The design software is openly available and also provides an export of the targeted 3D structure into the oxDNA molecular dynamics simulator for easy simulation and visualization.
Collapse
Affiliation(s)
- Antti Elonen
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
| | | | - Ibuki Kawamata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan
- Natural
Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
| | - Lukas Oesinghaus
- Physics
Department E14, Technical University Munich, 85748 Garching, Germany
| | - Abdulmelik Mohammed
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
- Department
of Biomedical Engineering, San José
State University, San José, California 95192, United States
| | - Jani Seitsonen
- Department
of Applied Physics and Nanomicroscopy Center, Aalto University, 00076 Aalto, Finland
| | - Yuki Suzuki
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan
- Division
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Friedrich C. Simmel
- Physics
Department E14, Technical University Munich, 85748 Garching, Germany
| | - Anton Kuzyk
- Department
of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Pekka Orponen
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
11
|
Abstract
Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometer resolution. For biological applications, one of its key advantages is its ability to visualize the substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine the secondary and tertiary structure of surface-bound DNA, and its interactions with proteins.
Collapse
Affiliation(s)
- Philip J Haynes
- London Centre for Nanotechnology, University College London, London, UK
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Kavit H S Main
- London Centre for Nanotechnology, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Bernice Akpinar
- London Centre for Nanotechnology, University College London, London, UK
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London, UK
| | - Alice L B Pyne
- London Centre for Nanotechnology, University College London, London, UK.
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Fukushima K, Matsuzaki K, Oji M, Higuchi Y, Watanabe G, Suzuki Y, Kikuchi M, Fujimura N, Shimokawa N, Ito H, Kato T, Kawaguchi S, Tanaka M. Anisotropic, Degradable Polymer Assemblies Driven by a Rigid Hydrogen-Bonding Motif That Induce Shape-Specific Cell Responses. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuki Fukushima
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kodai Matsuzaki
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masashi Oji
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Moriya Kikuchi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Nozomi Fujimura
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Naofumi Shimokawa
- School of Materials and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hiroaki Ito
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seigou Kawaguchi
- Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Li H, Zhang K, Binzel DW, Shlyakhtenko LS, Lyubchenko YL, Chiu W, Guo P. RNA nanotechnology to build a dodecahedral genome of single-stranded RNA virus. RNA Biol 2021; 18:2390-2400. [PMID: 33845711 PMCID: PMC8632126 DOI: 10.1080/15476286.2021.1915620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
The quest for artificial RNA viral complexes with authentic structure while being non-replicative is on its way for the development of viral vaccines. RNA viruses contain capsid proteins that interact with the genome during morphogenesis. The sequence and properties of the protein and genome determine the structure of the virus. For example, the Pariacoto virus ssRNA genome assembles into a dodecahedron. Virus-inspired nanotechnology has progressed remarkably due to the unique structural and functional properties of viruses, which can inspire the design of novel nanomaterials. RNA is a programmable biopolymer able to self-assemble sophisticated 3D structures with rich functionalities. RNA dodecahedrons mimicking the Pariacoto virus quasi-icosahedral genome structures were constructed from both native and 2'-F modified RNA oligos. The RNA dodecahedron easily self-assembled using the stable pRNA three-way junction of bacteriophage phi29 as building blocks. The RNA dodecahedron cage was further characterized by cryo-electron microscopy and atomic force microscopy, confirming the spontaneous and homogenous formation of the RNA cage. The reported RNA dodecahedron cage will likely provide further studies on the mechanisms of interaction of the capsid protein with the viral genome while providing a template for further construction of the viral RNA scaffold to add capsid proteins for the assembly of the viral nucleocapsid as a model. Understanding the self-assembly and RNA folding of this RNA cage may offer new insights into the 3D organization of viral RNA genomes. The reported RNA cage also has the potential to be explored as a novel virus-inspired nanocarrier.
Collapse
Affiliation(s)
- Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kaiming Zhang
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lyudmila S. Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Chen S, Xing L, Zhang D, Monferrer A, Hermann T. Nano-sandwich composite by kinetic trapping assembly from protein and nucleic acid. Nucleic Acids Res 2021; 49:10098-10105. [PMID: 34500473 PMCID: PMC8464029 DOI: 10.1093/nar/gkab797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Design and preparation of layered composite materials alternating between nucleic acids and proteins has been elusive due to limitations in occurrence and geometry of interaction sites in natural biomolecules. We report the design and kinetically controlled stepwise synthesis of a nano-sandwich composite by programmed noncovalent association of protein, DNA and RNA modules. A homo-tetramer protein core was introduced to control the self-assembly and precise positioning of two RNA–DNA hybrid nanotriangles in a co-parallel sandwich arrangement. Kinetically favored self-assembly of the circularly closed nanostructures at the protein was driven by the intrinsic fast folding ability of RNA corner modules which were added to precursor complex of DNA bound to the protein. The 3D architecture of this first synthetic protein–RNA–DNA complex was confirmed by fluorescence labeling and cryo-electron microscopy studies. The synthesis strategy for the nano-sandwich composite provides a general blueprint for controlled noncovalent assembly of complex supramolecular architectures from protein, DNA and RNA components, which expand the design repertoire for bottom-up preparation of layered biomaterials.
Collapse
Affiliation(s)
- Shi Chen
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Li Xing
- Irvine Materials Research Institute, University of California, Irvine, CA 92697, USA
| | - Douglas Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alba Monferrer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Thomas Hermann
- To whom correspondence should be addressed. Tel: +1 858 534 4467; Fax: +1 858 534 0202;
| |
Collapse
|
15
|
Folding RNA-Protein Complex into Designed Nanostructures. Methods Mol Biol 2021. [PMID: 34086284 DOI: 10.1007/978-1-0716-1499-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA-protein (RNP) complexes are promising biomaterials for the fields of nanotechnology and synthetic biology. Protein-responsive RNA sequences (RNP motifs) can be integrated into various RNAs, such as messenger RNA, short-hairpin RNA, and synthetic RNA nanoobjects for a variety of purposes. Direct observation of RNP interaction in solution at high resolution is important in the design and construction of RNP-mediated nanostructures. Here we describe a method to construct and visualize RNP nanostructures that precisely arrange a target protein on the RNA scaffold with nanometer scale. High-speed AFM (HS-AFM) images of RNP nanostructures show that the folding of RNP complexes of defined sizes can be directly visualized at single RNP resolution in solution.
Collapse
|
16
|
Graczyk A, Pawlowska R, Chworos A. Gold Nanoparticles as Carriers for Functional RNA Nanostructures. Bioconjug Chem 2021; 32:1667-1674. [PMID: 34323473 DOI: 10.1021/acs.bioconjchem.1c00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conjugates of gold nanoparticles and ribonucleic acid are particularly interesting for biological applications to serve as therapeutics or biosensors. In this paper we present, for the first time, a conjugate of gold nanoparticles and structural RNA (tectoRNA), which serves as a tool for gene expression regulation. The tectoRNA trimer was modified to facilitate the introduction of a thiol linker, which aids the formation of stable RNA:AuNP conjugates. We demonstrated that these complexes can penetrate cells, which were observed in TEM analysis and are effective in gene expression regulation evident in GFP expression studies with fluorescence methods. The presented compounds have the potential to become a new generation of therapeutics that utilize the power of self-assembling, biologically active RNAs and gold nanoparticles, with their diagnostically useful optical properties and biocompatibility advantages.
Collapse
Affiliation(s)
- Anna Graczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz 90-363, Poland
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz 90-363, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz 90-363, Poland
| |
Collapse
|
17
|
Strategies to Build Hybrid Protein-DNA Nanostructures. NANOMATERIALS 2021; 11:nano11051332. [PMID: 34070149 PMCID: PMC8158336 DOI: 10.3390/nano11051332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Proteins and DNA exhibit key physical chemical properties that make them advantageous for building nanostructures with outstanding features. Both DNA and protein nanotechnology have growth notably and proved to be fertile disciplines. The combination of both types of nanotechnologies is helpful to overcome the individual weaknesses and limitations of each one, paving the way for the continuing diversification of structural nanotechnologies. Recent studies have implemented a synergistic combination of both biomolecules to assemble unique and sophisticate protein-DNA nanostructures. These hybrid nanostructures are highly programmable and display remarkable features that create new opportunities to build on the nanoscale. This review focuses on the strategies deployed to create hybrid protein-DNA nanostructures. Here, we discuss strategies such as polymerization, spatial directing and organizing, coating, and rigidizing or folding DNA into particular shapes or moving parts. The enrichment of structural DNA nanotechnology by incorporating protein nanotechnology has been clearly demonstrated and still shows a large potential to create useful and advanced materials with cell-like properties or dynamic systems. It can be expected that structural protein-DNA nanotechnology will open new avenues in the fabrication of nanoassemblies with unique functional applications and enrich the toolbox of bionanotechnology.
Collapse
|
18
|
An RNA Triangle with Six Ribozyme Units Can Promote a Trans-Splicing Reaction through Trimerization of Unit Ribozyme Dimers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribozymes are catalytic RNAs that are attractive platforms for the construction of nanoscale objects with biological functions. We designed a dimeric form of the Tetrahymena group I ribozyme as a unit structure in which two ribozymes were connected in a tail-to-tail manner with a linker element. We introduced a kink-turn motif as a bent linker element of the ribozyme dimer to design a closed trimer with a triangular shape. The oligomeric states of the resulting ribozyme dimers (kUrds) were analyzed biochemically and observed directly by atomic force microscopy (AFM). Formation of kUrd oligomers also triggered trans-splicing reactions, which could be monitored with a reporter system to yield a fluorescent RNA aptamer as the trans-splicing product.
Collapse
|
19
|
McCluskey JB, Clark DS, Glover DJ. Functional Applications of Nucleic Acid-Protein Hybrid Nanostructures. Trends Biotechnol 2020; 38:976-989. [PMID: 32818445 DOI: 10.1016/j.tibtech.2020.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/09/2023]
Abstract
Combining the diverse chemical functionality of proteins with the predictable structural assembly of nucleic acids has enabled the creation of hybrid nanostructures for a range of biotechnology applications. Through the attachment of proteins onto or within nucleic acid nanostructures, materials with dynamic capabilities can be created that include switchable enzyme activity, targeted drug delivery, and multienzyme cascades for biocatalysis. Investigations of difficult-to-study biological mechanisms have also been aided by using DNA-protein assemblies that mimic natural processes in a controllable manner. Furthermore, advances that enable the recombinant production and intracellular assembly of hybrid nanostructures have the potential to overcome the significant manufacturing cost that has limited the use of DNA and RNA nanotechnology.
Collapse
Affiliation(s)
- Joshua B McCluskey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
20
|
Badu S, Prabhakar S, Melnik R, Singh S. Atomistic to continuum model for studying mechanical properties of RNA nanotubes. Comput Methods Biomech Biomed Engin 2020; 23:396-407. [PMID: 32116031 DOI: 10.1080/10255842.2020.1733991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With rapid advancements in the emerging field of RNA nanotechnology, its current and potential applications, new important problems arise in our quest to better understand properties of RNA nanocomplexes. In this paper, our focus is on the modeling of RNA nanotubes which are important for many biological processes. These RNA complexes are also important for human beings, with their theurapeutical and biomedical applications discussed vigorously in the literature over the recent years. Here, we develop a continuum model of RNA nanotubes, originally obtained from self assembly of RNA building blocks in the molecular dynamics simulation. Based on the finite element method, we calculate the elastic properties of these nanostructures and provide a relationship between stress and strain induced in the RNA nanotube. We also analyze the variations in the displacement vector along the assembly axis for RNA nanotubes of different sizes. In particular, we show that oscillations in the amplitudes of strains and displacements significantly differ for such RNA nanotubes. These findings are discussed in the context of atomistic simulations and experimental results in this field.
Collapse
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sanjay Prabhakar
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
21
|
Halman JR, Kim KT, Gwak SJ, Pace R, Johnson MB, Chandler MR, Rackley L, Viard M, Marriott I, Lee JS, Afonin KA. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 23:102094. [PMID: 31669854 PMCID: PMC6942546 DOI: 10.1016/j.nano.2019.102094] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously. Polymeric platforms have proven to be efficient in shielding nucleic acid cargos from nuclease degradation while promoting their delivery and intracellular release. Here, we venture beyond the delivery of conventional TNAs and combine the stable cationic poly-(lactide-co-glycolide)-graft-polyethylenimine with functionalized NANPs. Furthermore, we compare several representative NANPs to assess how their overall structures influence their delivery with the same carrier. An extensive study of various formulations both in vitro and in vivo reveals differences in their immunostimulatory activity, gene silencing efficiency, and biodistribution, with fibrous NANPs advancing for TNA delivery.
Collapse
Affiliation(s)
- Justin R Halman
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ki-Taek Kim
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - So-Jung Gwak
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Richard Pace
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, USA
| | - Morgan R Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Lauren Rackley
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mathias Viard
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, USA
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA.
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
22
|
Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS NANO 2019; 13:12301-12321. [PMID: 31664817 PMCID: PMC7382785 DOI: 10.1021/acsnano.9b06522] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucleic acids play a central role in all domains of life, either as genetic blueprints or as regulators of various biochemical pathways. The chemical makeup of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), generally represented by a sequence of four monomers, also provides precise instructions for folding and higher-order assembly of these biopolymers that, in turn, dictate biological functions. The sequence-based specific 3D structures of nucleic acids led to the development of the directed evolution of oligonucleotides, SELEX (systematic evolution of ligands by exponential enrichment), against a chosen target molecule. Among the variety of functions, selected oligonucleotides named aptamers also allow targeting of cell-specific receptors with antibody-like precision and can deliver functional RNAs without a transfection agent. The advancements in the field of customizable nucleic acid nanoparticles (NANPs) opened avenues for the design of nanoassemblies utilizing aptamers for triggering or blocking cell signaling pathways or using aptamer-receptor combinations to activate therapeutic functionalities. A recent selection of fluorescent aptamers enables real-time tracking of NANP formation and interactions. The aptamers are anticipated to contribute to the future development of technologies, enabling an efficient assembly of functional NANPs in mammalian cells or in vivo. These research topics are of top importance for the field of therapeutic nucleic acid nanotechnology with the promises to scale up mass production of NANPs suitable for biomedical applications, to control the intracellular organization of biological materials to enhance the efficiency of biochemical pathways, and to enhance the therapeutic potential of NANP-based therapeutics while minimizing undesired side effects and toxicities.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jessica McMillan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Ekaterina A. Goncharova
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 191002, Russian Federation
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
23
|
Chandler M, Afonin KA. Smart-Responsive Nucleic Acid Nanoparticles (NANPs) with the Potential to Modulate Immune Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E611. [PMID: 31013847 PMCID: PMC6523571 DOI: 10.3390/nano9040611] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Nucleic acids are programmable and biocompatible polymers that have beneficial uses in nanotechnology with broad applications in biosensing and therapeutics. In some cases, however, the development of the latter has been impeded by the unknown immunostimulatory properties of nucleic acid-based materials, as well as a lack of functional dynamicity due to stagnant structural design. Recent research advancements have explored these obstacles in tandem via the assembly of three-dimensional, planar, and fibrous cognate nucleic acid-based nanoparticles, called NANPs, for the conditional activation of embedded and otherwise quiescent functions. Furthermore, a library of the most representative NANPs was extensively analyzed in human peripheral blood mononuclear cells (PBMCs), and the links between the programmable architectural and physicochemical parameters of NANPs and their immunomodulatory properties have been established. This overview will cover the recent development of design principles that allow for fine-tuning of both the physicochemical and immunostimulatory properties of dynamic NANPs and discuss the potential impacts of these novel strategies.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
24
|
Jedrzejczyk D, Chworos A. Self-Assembling RNA Nanoparticle for Gene Expression Regulation in a Model System. ACS Synth Biol 2019; 8:491-497. [PMID: 30649860 DOI: 10.1021/acssynbio.8b00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the search for enzymatically processed RNA fragments, we found the novel three-way junction motif. The structure prediction suggested the arrangement of helices at acute angle approx. 60°. This allows the design of a trimeric RNA nanoparticle that can be functionalized with multiple regulatory fragments. Such RNA nano-object of equilateral triangular shape was applied for gene expression regulation studies in two independent cellular systems. Biochemical and functional studies confirmed the predicted shape and structure of the nanoparticle. The regulatory siRNA fragments incorporated into the nanoparticle were effectively released and triggered gene silencing. The regulatory effect was prolonged when induced with structuralized RNA compared to unstructured siRNAs. In these studies, the enzymatic processing of the motif was utilized for function release from the nanoparticle, enabling simultaneous delivery of different regulatory functions. This methodology of sequence search, RNA structural prediction, and application for rational design opens a new way for creating enzymatically processed RNA nanoparticles.
Collapse
Affiliation(s)
- Dominika Jedrzejczyk
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , 90-363 Lodz , Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , 90-363 Lodz , Poland
| |
Collapse
|
25
|
Sajja S, Chandler M, Fedorov D, Kasprzak WK, Lushnikov A, Viard M, Shah A, Dang D, Dahl J, Worku B, Dobrovolskaia MA, Krasnoslobodtsev A, Shapiro BA, Afonin KA. Dynamic Behavior of RNA Nanoparticles Analyzed by AFM on a Mica/Air Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15099-15108. [PMID: 29669419 PMCID: PMC6207479 DOI: 10.1021/acs.langmuir.8b00105] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNA is an attractive biopolymer for engineering self-assembling materials suitable for biomedical applications. Previously, programmable hexameric RNA rings were developed for the controlled delivery of up to six different functionalities. To increase the potential for functionalization with little impact on nanoparticle topology, we introduce gaps into the double-stranded regions of the RNA rings. Molecular dynamic simulations are used to assess the dynamic behavior and the changes in the flexibility of novel designs. The changes suggested by simulations, however, cannot be clearly confirmed by the conventional techniques such as nondenaturing polyacrylamide gel electrophoresis (native-PAGE) and dynamic light scattering (DLS). Also, an in vitro analysis in primary cultures of human peripheral blood mononuclear cells does not reveal any discrepancy in the immunological recognition of new assemblies. To address these deficiencies, we introduce a computer-assisted quantification strategy. This strategy is based on an algorithmic atomic force microscopy (AFM)-resolved deformation analysis of the RNA nanoparticles studied on a mica/air interface. We validate this computational method by manual image analysis and fitting it to the simulation-predicted results. The presented nanoparticle modification strategy and subsequent AFM-based analysis are anticipated to provide a broad spectrum approach for the future development of nucleic acid-based nanotechnology.
Collapse
Affiliation(s)
- Sameer Sajja
- Nanoscale Science Program, Department of Chemistry
| | | | - Dmitry Fedorov
- ViQi Inc., Santa Barbara, California 93109, United States
| | | | - Alexander Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mathias Viard
- Basic Science Program, Leidos Biomedical Research Inc and
- RNA Biology Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dylan Dang
- Nanoscale Science Program, Department of Chemistry
| | - Jared Dahl
- Nanoscale Science Program, Department of Chemistry
| | | | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Alexey Krasnoslobodtsev
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Physics, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
| | - Bruce A. Shapiro
- RNA Biology Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
26
|
Ohno H, Akamine S, Saito H. RNA nanostructures and scaffolds for biotechnology applications. Curr Opin Biotechnol 2018; 58:53-61. [PMID: 30502620 DOI: 10.1016/j.copbio.2018.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
RNA plays important roles in the regulation of gene expressions and other cellular functions. It functions as both as an informational carrier and a nanomachine due to its complementary base-pairing ability and complexed three-dimensional structure. Several nanostructures have been designed and constructed by exploiting these natural RNA properties. In this review, we will introduce the design principles of RNA nanostructures and their biotechnology applications as molecular scaffolds. RNA-based molecular scaffolds can control the accumulation and interaction of target proteins at nanometer-scale to regulate the function of bacterial and mammalian cells. Combining useful property of RNA as a nano-material and a molecular scaffold may provide us powerful tools in biological research, bioengineering, and future medicine.
Collapse
Affiliation(s)
- Hirohisa Ohno
- Center for iPS Cell Research and Application, Kyoto University, Kyoto City, Japan
| | - Sae Akamine
- Center for iPS Cell Research and Application, Kyoto University, Kyoto City, Japan
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto City, Japan.
| |
Collapse
|
27
|
Jang B, Kim B, Kim H, Kwon H, Kim M, Seo Y, Colas M, Jeong H, Jeong EH, Lee K, Lee H. Enzymatic Synthesis of Self-assembled Dicer Substrate RNA Nanostructures for Programmable Gene Silencing. NANO LETTERS 2018; 18:4279-4284. [PMID: 29863365 DOI: 10.1021/acs.nanolett.8b01267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Enzymatic synthesis of RNA nanostructures is achieved by isothermal rolling circle transcription (RCT). Each arm of RNA nanostructures provides a functional role of Dicer substrate RNA inducing sequence specific RNA interference (RNAi). Three different RNAi sequences (GFP, RFP, and BFP) are incorporated within the three-arm junction RNA nanostructures (Y-RNA). The template and helper DNA strands are designed for the large-scale in vitro synthesis of RNA strands to prepare self-assembled Y-RNA. Interestingly, Dicer processing of Y-RNA is highly influenced by its physical structure and different gene silencing activity is achieved depending on its arm length and overhang. In addition, enzymatic synthesis allows the preparation of various Y-RNA structures using a single DNA template offering on demand regulation of multiple target genes.
Collapse
Affiliation(s)
- Bora Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Boyoung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Hyunsook Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Hyokyoung Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Marion Colas
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
- Faculté de Pharmacie de Paris , Université Paris Descartes , Paris 75006 , France
| | - Hansaem Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Eun Hye Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| |
Collapse
|
28
|
Ahmed S, Kaushik M, Chaudhary S, Kukreti S. Formation of G-wires, bimolecular and tetramolecular quadruplex: Cation-induced structural polymorphs of G-rich DNA sequence of human SYTX gene. Biopolymers 2018; 109:e23115. [PMID: 29672834 DOI: 10.1002/bip.23115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 01/18/2023]
Abstract
An exceptional property of auto-folding into a range of intra- as well as intermolecular quadruplexes by guanine-rich oligomers (GROs) of promoters, telomeres and various other genomic locations is still one of the most attractive areas of research at present times. The main reason for this attention is due to their established in vivo existence and biological relevance. Herein, the structural status of a 20-nt long G-rich sequence with two G5 stretches (SG20) is investigated using various biophysical and biochemical techniques. Bioinformatics analysis suggested the presence of a 17-nt stretch of this SG20 sequence in the intronic region of human SYTX (Synaptotagmin 10) gene. The SYTX gene helps in sensing out the Ca2+ ion, causing its intake in the pre-synaptic neuron. A range of various topologies like bimolecular, tetramolecular and guanine-wires (nano-wires) was exhibited by the studied sequence, as a function of cations (Na+ /K+ ) concentration. UV-thermal denaturation, gel electrophoresis, and circular dichroism (CD) spectroscopy showed correlations and established a cation-dependent structural switch. The G-wire formation, in the presence of K+ , may further be explored for its possible relevance in nano-biotechnological applications.
Collapse
Affiliation(s)
- Saami Ahmed
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Mahima Kaushik
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Swati Chaudhary
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
29
|
Jasinski DL, Li H, Guo P. The Effect of Size and Shape of RNA Nanoparticles on Biodistribution. Mol Ther 2018; 26:784-792. [PMID: 29402549 PMCID: PMC5910665 DOI: 10.1016/j.ymthe.2017.12.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Drugs with ideal pharmacokinetic profile require long half-life but little organ accumulation. Generally, PK and organ accumulation are contradictory factors: smaller size leads to faster excretion and shorter half-lives and thus a lower tendency to reach targets; larger size leads to longer circulation but stronger organ accumulation that leads to toxicity. Organ accumulation has been reported to be size dependent due in large part to engulfing by macrophages. However, publications on the size effect are inconsistent because of complication by the effect of shape that varies from nanoparticle to nanoparticle. Unique to RNA nanotechnology, size could be tuned without a change in shape, resulting in a true size comparison. Here we investigated size effects using RNA squares of identical shape but varying size and shape effects using RNA triangles, squares, and pentagons of identical size but varying shape. We found that circulation time increased with increasing RNA nanoparticle size from 5-25 nm, which is the common size range of therapeutic RNA nanoparticles. Most particles were cleared from the body within 2 hr after systemic injection. Undetectable organ accumulation was found at any time for 5 nm particles. For 20 nm particles, weak signal was found after 24 hr, while accumulation in tumor was strongest during the entire study.
Collapse
Affiliation(s)
- Daniel L Jasinski
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Hui Li
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
30
|
Kim H, Lee E, Kang YY, Song J, Mok H, Lee JB. Enzymatically Produced miR34a Nanoparticles for Enhanced Antiproliferation Activity. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| | - Eunju Lee
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 Republic of Korea
| | - Jihyun Song
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| |
Collapse
|
31
|
Usui K, Okada A, Sakashita S, Shimooka M, Tsuruoka T, Nakano SI, Miyoshi D, Mashima T, Katahira M, Hamada Y. DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity. Molecules 2017; 22:E1991. [PMID: 29144399 PMCID: PMC6150327 DOI: 10.3390/molecules22111991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 01/23/2023] Open
Abstract
The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca2+, and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.
Collapse
Affiliation(s)
- Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Arisa Okada
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Shungo Sakashita
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Masayuki Shimooka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takaaki Tsuruoka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Shu-Ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Yoshio Hamada
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
32
|
Alibakhshi MA, Halman JR, Wilson J, Aksimentiev A, Afonin KA, Wanunu M. Picomolar Fingerprinting of Nucleic Acid Nanoparticles Using Solid-State Nanopores. ACS NANO 2017; 11:9701-9710. [PMID: 28841287 PMCID: PMC5959297 DOI: 10.1021/acsnano.7b04923] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nucleic acid nanoparticles (NANPs) are an emerging class of programmable structures with tunable shape and function. Their promise as tools for fundamental biophysics studies, molecular sensing, and therapeutic applications necessitates methods for their detection and characterization at the single-particle level. In this work, we study electrophoretic transport of individual ring-shaped and cube-shaped NANPs through solid-state nanopores. In the optimal nanopore size range, the particles must deform to pass through, which considerably increases their residence time within the pore. Such anomalously long residence times permit detection of picomolar amounts of NANPs when nanopore measurements are carried out at a high transmembrane bias. In the case of a NANP mixture, the type of individual particle passing through nanopores can be efficiently determined from analysis of a single electrical pulse. Molecular dynamics simulations provide insight into the mechanical barrier to transport of the NANPs and corroborate the difference in the signal amplitudes observed for the two types of particles. Our study serves as a basis for label-free analysis of soft programmable-shape nanoparticles.
Collapse
Affiliation(s)
| | - Justin R. Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - James Wilson
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
33
|
Jasinski DL, Yin H, Li Z, Guo P. Hydrophobic Effect from Conjugated Chemicals or Drugs on In Vivo Biodistribution of RNA Nanoparticles. Hum Gene Ther 2017; 29:77-86. [PMID: 28557574 DOI: 10.1089/hum.2017.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver or other organ accumulation of drugs is one of the major problems that leads to toxicity and side effects in therapy using chemicals or other macromolecules. It has been shown that specially designed RNA nanoparticles can specifically target cancer cells, silence oncogenic genes, and stop cancer growth with little or no accumulation in the liver or other vital organs. It is well known that physical properties of nanoparticles such as size, shape, and surface chemistry affect biodistribution and pharmacokinetic profiles in vivo. This study examined how the hydrophobicity of chemicals conjugated to RNA nanoparticles affect in vivo biodistribution. Weaker organ accumulation was observed for hydrophobic chemicals after they were conjugated to RNA nanoparticles, revealing RNA's ability to solubilize hydrophobic chemicals. It was found that different chemicals conjugated to RNA nanoparticles resulted in the alteration of RNA hydrophobicity. Stronger hydrophobicity induced by chemical conjugates resulted in higher accumulation of RNA nanoparticles in vital organs in mice. This study provides new insights for handling drug insolubility, therapeutic toxicity, and organ clearance in drug development.
Collapse
Affiliation(s)
- Daniel L Jasinski
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio
| | - Hongran Yin
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio
| | - Zhefeng Li
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio
| | - Peixuan Guo
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio
| |
Collapse
|
34
|
Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate. Nat Commun 2017; 8:540. [PMID: 28912471 PMCID: PMC5599586 DOI: 10.1038/s41467-017-00459-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022] Open
Abstract
Nucleic acid nanotechnology has great potential for future therapeutic applications. However, the construction of nanostructured devices that control cell fate by detecting and amplifying protein signals has remained a challenge. Here we design and build protein-driven RNA-nanostructured devices that actuate in vitro by RNA-binding-protein-inducible conformational change and regulate mammalian cell fate by RNA–protein interaction-mediated protein assembly. The conformation and function of the RNA nanostructures are dynamically controlled by RNA-binding protein signals. The protein-responsive RNA nanodevices are constructed inside cells using RNA-only delivery, which may provide a safe tool for building functional RNA–protein nanostructures. Moreover, the designed RNA scaffolds that control the assembly and oligomerization of apoptosis-regulatory proteins on a nanometre scale selectively kill target cells via specific RNA–protein interactions. These findings suggest that synthetic RNA nanodevices could function as molecular robots that detect signals and localize target proteins, induce RNA conformational changes, and programme mammalian cellular behaviour. Nucleic acid nanotechnology has great potential for future therapeutic applications. Here the authors build protein-driven RNA nanostructures that can function within mammalian cells and regulate the cell fate.
Collapse
|
35
|
Schön P. Atomic force microscopy of RNA: State of the art and recent advancements. Semin Cell Dev Biol 2017; 73:209-219. [PMID: 28843977 DOI: 10.1016/j.semcdb.2017.08.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022]
Abstract
The atomic force microscope (AFM) has become a powerful tool for the visualization, probing and manipulation of RNA at the single molecule level. AFM measurements can be carried out in buffer solution in a physiological medium, which is crucial to study the structure and function of biomolecules, also allowing studying them at work. Imaging the specimen in its native state is a great advantage compared to other high resolution methods such as electron microscopy and X-ray diffraction. There is no need to stain, freeze or crystallize biological samples. Moreover, compared to NMR spectroscopy for instance, for AFM studies the size of the biomolecules is not limiting. Consequently the AFM allows one also to investigate larger RNA molecules. In particular, structural studies of nucleic acids and assemblies thereof, have been carried out by AFM routinely including ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. These are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In particular by AFM unique information can be obtained on these RNA based assemblies. Moreover, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. Important applications include the detection and quantification of RNA in biological samples. A selection of recent highlights and breakthroughs will be provided related to structural and functional studies by AFM. The main intention of this short review to provide the reader with a flavor of what AFM is able to contribute to RNA research and engineering.
Collapse
Affiliation(s)
- Peter Schön
- NanoBioInterface Research Group, Research Center Design and Technology, Saxion University of Applied Sciences, 7500 KB Enschede, The Netherlands; Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
36
|
Kim H, Jeong J, Kim D, Kwak G, Kim SH, Lee JB. Bubbled RNA-Based Cargo for Boosting RNA Interference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600523. [PMID: 28852615 PMCID: PMC5566230 DOI: 10.1002/advs.201600523] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Indexed: 05/23/2023]
Abstract
As ribonucleic acid (RNA) nanotechnology has advanced, it has been applied widely in RNA-based therapeutics. Among the range of approaches, enzymatically synthesized RNA structures for inducing RNA interference in cancer cells have potential for silencing genes in a target-specific manner. On the other hand, the efficiency of gene silencing needs to be improved to utilize the RNA-based system for RNAi therapeutics. This paper introduces a new approach for efficient generation of siRNA from bubbled RNA-based cargo (BRC). The presence of bubbles in between to avoid nonfunctional short dsRNAs allows the RNA-based cargoes to contain multiple Dicer-cleavage sites to release the functional siRNAs when introduced to cells. BRCs can be synthesized easily in a one-pot process and be purified by simple centrifugation. Furthermore, efficient target gene silencing by the bubbled structure is confirmed both in vitro and in vivo. Therefore, this bubbled RNA cargo system can be utilized for target-specific RNAi therapeutics with high efficiency in the generation of functional siRNAs in the target cells.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical EngineeringUniversity of Seoul163 SeoulsiripdaeroDongdaemun‐gu Seoul02504Republic of Korea
| | - Jaepil Jeong
- Department of Chemical EngineeringUniversity of Seoul163 SeoulsiripdaeroDongdaemun‐gu Seoul02504Republic of Korea
| | - Dajeong Kim
- Department of Chemical EngineeringUniversity of Seoul163 SeoulsiripdaeroDongdaemun‐gu Seoul02504Republic of Korea
| | - Gijung Kwak
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145 Anam‐roSeongbuk‐gu, Seoul02841Republic of Korea
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Sun Hwa Kim
- Center for TheragnosisBiomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jong Bum Lee
- Department of Chemical EngineeringUniversity of Seoul163 SeoulsiripdaeroDongdaemun‐gu Seoul02504Republic of Korea
| |
Collapse
|
37
|
Jedrzejczyk D, Gendaszewska-Darmach E, Pawlowska R, Chworos A. Designing synthetic RNA for delivery by nanoparticles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:123001. [PMID: 28004640 DOI: 10.1088/1361-648x/aa5561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid's nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.
Collapse
Affiliation(s)
- Dominika Jedrzejczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | | | | |
Collapse
|
38
|
Halman JR, Satterwhite E, Roark B, Chandler M, Viard M, Ivanina A, Bindewald E, Kasprzak WK, Panigaj M, Bui MN, Lu JS, Miller J, Khisamutdinov EF, Shapiro BA, Dobrovolskaia MA, Afonin KA. Functionally-interdependent shape-switching nanoparticles with controllable properties. Nucleic Acids Res 2017; 45:2210-2220. [PMID: 28108656 PMCID: PMC5389727 DOI: 10.1093/nar/gkx008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology.
Collapse
Affiliation(s)
- Justin R. Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Emily Satterwhite
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Brandon Roark
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Mathias Viard
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Leidos Biomedical Research, Inc., RNA Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna Ivanina
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., RNA Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., RNA Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Martin Panigaj
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice, 041 54, Slovak Republic
| | - My N. Bui
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Jacob S. Lu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Johann Miller
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Bruce A. Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
39
|
Usui K, Ozaki M, Yamada A, Hamada Y, Tsuruoka T, Imai T, Tomizaki KY. Site-specific control of multiple mineralizations using a designed peptide and DNA. NANOSCALE 2016; 8:17081-17084. [PMID: 27550384 DOI: 10.1039/c6nr03468c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have developed a site-specific method for precipitating multiple inorganic compounds using target DNA and a designed peptide consisting of a peptide nucleic acid (PNA) sequence and an inorganic compound-precipitating sequence. This system for controlled site-specific precipitation represents a powerful tool for use in nanobiotechnology and materials science.
Collapse
Affiliation(s)
- Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ozaki M, Nagai K, Nishiyama H, Tsuruoka T, Fujii S, Endoh T, Imai T, Tomizaki KY, Usui K. Site-specific control of silica mineralization on DNA using a designed peptide. Chem Commun (Camb) 2016; 52:4010-3. [PMID: 26690695 DOI: 10.1039/c5cc07870a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a site-specific method for precipitating inorganic compounds using organic compounds, DNA, and designed peptides with peptide nucleic acids (PNAs). Such a system for site-specific precipitation represents a powerful tool for use in nanobiochemistry and materials chemistry.
Collapse
Affiliation(s)
- Makoto Ozaki
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Kazuma Nagai
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Hiroto Nishiyama
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takaaki Tsuruoka
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Satoshi Fujii
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Tamaki Endoh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahito Imai
- Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan
| | - Kin-Ya Tomizaki
- Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan and Innovative Materials and Processing Research Center, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan.
| | - Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
41
|
Jeong EH, Kim H, Jang B, Cho H, Ryu J, Kim B, Park Y, Kim J, Lee JB, Lee H. Technological development of structural DNA/RNA-based RNAi systems and their applications. Adv Drug Deliv Rev 2016; 104:29-43. [PMID: 26494399 DOI: 10.1016/j.addr.2015.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023]
Abstract
RNA interference (RNAi)-based gene therapy has drawn tremendous attention due to its highly specific gene regulation by selective degradation of any target mRNA. There have been multiple reports regarding the development of various cationic materials for efficient siRNA delivery, however, many studies still suffer from the conventional delivery problems such as suboptimal transfection performance, a lack of tissue specificity, and potential cytotoxicity. Despite the huge therapeutic potential of siRNAs, conventional gene carriers have failed to guarantee successful gene silencing in vivo, thus not warranting clinical trials. The relatively short double-stranded structure of siRNAs has resulted in uncompromising delivery formulations, as well as low transfection efficiency, compared with the conventional nucleic acid drugs such as plasmid DNAs. Recent developments in structural siRNA and RNAi nanotechnology have enabled more refined and reliable in vivo gene silencing with multiple advantages over naked siRNAs. This review focuses on recent progress in the development of structural DNA/RNA-based RNAi systems and their potential therapeutic applications. In addition, an extensive list of prior reports on various RNAi systems is provided and categorized by their distinctive molecular characters.
Collapse
|
42
|
Pandian GN, Sugiyama H. Nature-Inspired Design of Smart Biomaterials Using the Chemical Biology of Nucleic Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Parlea L, Bindewald E, Sharan R, Bartlett N, Moriarty D, Oliver J, Afonin KA, Shapiro BA. Ring Catalog: A resource for designing self-assembling RNA nanostructures. Methods 2016; 103:128-37. [PMID: 27090005 PMCID: PMC6319925 DOI: 10.1016/j.ymeth.2016.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Designing self-assembling RNA ring structures based on known 3D structural elements connected via linker helices is a challenging task due to the immense number of motif combinations, many of which do not lead to ring-closure. We describe an in silico solution to this design problem by combinatorial assembly of RNA 3-way junctions, bulges, and kissing loops, and tabulating the cases that lead to ring formation. The solutions found are made available in the form of a web-accessible Ring Catalog. As an example of a potential use of this resource, we chose a predicted RNA square structure consisting of five RNA strands and demonstrate experimentally that the self-assembly of those five strands leads to the formation of a square-like complex. This is a demonstration of a novel "design by catalog" approach to RNA nano-structure generation. The URL https://rnajunction.ncifcrf.gov/ringdb can be used to access the resource.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rishabh Sharan
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Nathan Bartlett
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Daniel Moriarty
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Jerome Oliver
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Bruce A Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
44
|
Afonin KA, Viard M, Tedbury P, Bindewald E, Parlea L, Howington M, Valdman M, Johns-Boehme A, Brainerd C, Freed EO, Shapiro BA. The Use of Minimal RNA Toeholds to Trigger the Activation of Multiple Functionalities. NANO LETTERS 2016; 16:1746-53. [PMID: 26926382 PMCID: PMC6345527 DOI: 10.1021/acs.nanolett.5b04676] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Current work reports the use of single-stranded RNA toeholds of different lengths to promote the reassociation of various RNA-DNA hybrids, which results in activation of multiple split functionalities inside human cells. The process of reassociation is analyzed and followed with a novel computational multistrand secondary structure prediction algorithm and various experiments. All of our previously designed RNA/DNA nanoparticles employed single-stranded DNA toeholds to initiate reassociation. The use of RNA toeholds is advantageous because of the simpler design rules, the shorter toeholds, and the smaller size of the resulting nanoparticles (by up to 120 nucleotides per particle) compared to the same hybrid nanoparticles with single-stranded DNA toeholds. Moreover, the cotranscriptional assemblies result in higher yields for hybrid nanoparticles with ssRNA toeholds.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Philip Tedbury
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marshall Howington
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Melissa Valdman
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Alizah Johns-Boehme
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Cara Brainerd
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
45
|
RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:165-85. [PMID: 26970194 DOI: 10.1016/bs.pmbts.2015.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems.
Collapse
|
46
|
Abstract
Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.
Collapse
Affiliation(s)
- Alice L B Pyne
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK.
| |
Collapse
|
47
|
Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ, Guo P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY 2015; 10:631-655. [PMID: 26770259 PMCID: PMC4707685 DOI: 10.1016/j.nantod.2015.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.
Collapse
Affiliation(s)
- Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Taek Lee
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fengmei Pi
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Xu
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chan Li
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
48
|
Altering the orientation of a fused protein to the RNA-binding ribosomal protein L7Ae and its derivatives through circular permutation. Biochem Biophys Res Commun 2015; 466:388-92. [DOI: 10.1016/j.bbrc.2015.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/06/2015] [Indexed: 12/17/2022]
|
49
|
Studying RNAP–promoter interactions using atomic force microscopy. Methods 2015; 86:4-9. [DOI: 10.1016/j.ymeth.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/02/2023] Open
|
50
|
A trifunctional, triangular RNA-protein complex. FEBS Lett 2015; 589:2424-8. [DOI: 10.1016/j.febslet.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/09/2015] [Accepted: 07/04/2015] [Indexed: 01/20/2023]
|