1
|
Wen Y, Li Z, Ye J, Wang X, Jiang M, Deng Z, Cao C, He X. Discovery and Characterization of Actinosynnelassin: An Anti- Pseudomonas fluorescens Lasso Peptide Derived from a Large Precursor Open Reading Frame. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 40387067 DOI: 10.1021/acs.jnatprod.5c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Lasso peptides, a unique class of ribosomally synthesized and post-translationally modified peptide (RiPP), are challenging to synthesize chemically, making the discovery of new peptides and their biosynthetic pathways essential. This study reports the discovery and characterization of a novel lasso peptide, actinosynnelassin, from Actinosynnema pretiosum subsp. auranticum DSM 44131. By overexpressing an endogenous TetR/AcrR family regulator and employing OSMAC (One Strain Many Compounds)-guided fermentation screening, several endogenous secondary metabolite biosynthetic gene clusters (BGCs) were activated, resulting in the isolation of actinosynnelassin. The 3D structure of actinosynnelassin, confirmed by nuclear magnetic resonance (NMR) NOE-derived distance constraints, features a 9-aa macrolactam ring, a 6-aa loop, and a 2-aa tail, with the ring encircling the tail between three aromatic bulkier residues. The minimal inhibitory concentration (MIC) tests indicate that actinosynnelassin inhibits several Gram-positive bacteria and Pseudomonas fluorescens, making it the first reported lasso peptide to inhibit P. fluorescens. The predicted open reading frame (ORF) of the precursor peptide may be translated into a 331-aa fusion protein featuring an N-terminal AraC/XylS family transcriptional regulator, making it longer than typical lasso precursors. Thus, discovering this large precursor ORF enhances our understanding of lasso peptide BGCs with unusual architectures and enables the finding of other unique lasso peptides.
Collapse
Affiliation(s)
- Yu Wen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhiyu Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiacai Ye
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
2
|
Nguyen JDM, da Hora GCA, Mifflin MC, Roberts AG, Swanson JMJ. In silico design of foldable lasso peptides. Biophys J 2025; 124:1532-1547. [PMID: 40181537 DOI: 10.1016/j.bpj.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Lasso peptides are a unique class of natural products with distinctively threaded structures, conferring exceptional stability against thermal and proteolytic degradation. Despite their promising biotechnological and pharmaceutical applications, reported attempts to prepare them by chemical synthesis result in forming the nonthreaded branched-cyclic isomer, rather than the desired lassoed structure. This is likely due to the entropic challenge of folding a short, threaded motif before chemically mediated cyclization. Accordingly, this study aims to better understand and enhance the relative stability of pre-lasso conformations-the essential precursor to lasso peptide formation-through sequence optimization, chemical modification, and disulfide incorporation. Using Rosetta fixed backbone design, optimal sequences for several class II lasso peptides are identified. Enhanced sampling with well-tempered metadynamics confirmed that designed sequences derived from the lasso structures of rubrivinodin and microcin J25 exhibit a notable improvement in pre-lasso stability relative to the competing nonthreaded conformations. Chemical modifications to the isopeptide bond-forming residues of microcin J25 further increase the probability of pre-lasso formation, highlighting the beneficial role of noncanonical amino acid residues. Counterintuitively, the introduction of a disulfide cross-link decreased pre-lasso stability. Although cross-linking inherently constrains the peptide structure, decreasing the entropic dominance of unfolded phase space, it hinders the requisite wrapping of the N-terminal end around the tail to adopt the pre-lasso conformation. However, combining chemical modifications with the disulfide cross-link results in further pre-lasso stabilization, indicating that the ring modifications counteract the constraints and provide a cooperative benefit with cross-linking. These findings lay the groundwork for further design efforts to enable synthetic access to the lasso peptide scaffold.
Collapse
Affiliation(s)
- John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | | - Marcus C Mifflin
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
3
|
Nguyen JDM, da Hora GCA, Mifflin MC, Roberts AG, Swanson JMJ. Tying the Knot: In Silico Design of Foldable Lasso Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633674. [PMID: 39896618 PMCID: PMC11785075 DOI: 10.1101/2025.01.17.633674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lasso peptides are a unique class of natural products with distinctively threaded structures, conferring exceptional stability against thermal and proteolytic degradation. Despite their promising biotechnological and pharmaceutical applications, reported attempts to prepare them by chemical synthesis result in forming the nonthreaded branched-cyclic isomer, rather than the desired lassoed structure. This is likely due to the entropic challenge of folding a short, threaded motif prior to chemically mediated cyclization. Accordingly, this study aims to better understand and enhance the relative stability of pre-lasso conformations-the essential precursor to lasso peptide formation-through sequence optimization, chemical modification, and disulfide incorporation. Using Rosetta fixed backbone design, optimal sequences for several class II lasso peptides are identified. Enhanced sampling with well-tempered metadynamics confirmed that designed sequences derived from the lasso structures of rubrivinodin and microcin J25 exhibit a notable improvement in pre-lasso stability relative to the competing nonthreaded conformations. Chemical modifications to the isopeptide bond-forming residues of microcin J25 further increase the probability of pre-lasso formation, highlighting the beneficial role of non-canonical amino acid residues. Counterintuitively, the introduction of a disulfide cross-link decreased pre-lasso stability. Although cross-linking inherently constrains the peptide structure, decreasing the entropic dominance of unfolded phase space, it hinders the requisite wrapping of the N-terminal end around the tail to adopt the pre-lasso conformation. However, combining chemical modifications with the disulfide cross-link results in further pre-lasso stabilization, indicating that the ring modifications counteract the constraints and provide a cooperative benefit with cross-linking. These findings lay the groundwork for further design efforts to enable synthetic access to the lasso peptide scaffold. SIGNIFICANCE Lasso peptides are a unique class of ribosomally synthesized and post-translationally modified natural products with diverse biological activities and potential for therapeutic applications. Although direct synthesis would facilitate therapeutic design, it has not yet been possible to fold these short sequences to their threaded architecture without the help of biosynthetic enzyme stabilization. Our work explores strategies to enhance the stability of the pre-lasso structure, the essential precursor to de novo lasso peptide formation. We find that sequence design, incorporating non-canonical amino acid residues, and design-guided cross-linking can augment stability to increase the likelihood of lasso motif accessibility. This work presents several strategies for the continued design of foldable lasso peptides.
Collapse
|
4
|
Al Musaimi O. Lasso peptides realm: Insights and applications. Peptides 2024; 182:171317. [PMID: 39489300 DOI: 10.1016/j.peptides.2024.171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lasso peptides exhibit a range of bioactivities, including antiviral effects, inhibition of the glucagon receptor, blockade of the endothelin type B receptor, inhibition of myosin light chain kinase, and modulation of the atrial natriuretic factor, as well as notable antimicrobial properties. Intriguingly, lasso peptides exhibit remarkable proteolytic and thermal stability, addressing one of the key challenges that traditional peptides often face. The challenge in producing those valuable peptides remains the main hurdle in the way of producing larger quantities or even modifying them with more potent analogues. Genome mining and heterologous expression approaches have greatly facilitated the production of lasso peptides, moving beyond mere isolation techniques. This advancement not only allows for larger quantities but also enables the creation of additional analogues with improved stability and potency. This review aims to explore the unique bioactivities and stability of lasso peptides, along with recent advancements in genome mining and heterologous expression that address production challenges and open pathways for engineering potent analogues.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne UK NE1 7RU, UK; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Barrett SE, Mitchell DA. Advances in lasso peptide discovery, biosynthesis, and function. Trends Genet 2024; 40:950-968. [PMID: 39218755 PMCID: PMC11537843 DOI: 10.1016/j.tig.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Pfeiffer IPM, Schröder MP, Mordhorst S. Opportunities and challenges of RiPP-based therapeutics. Nat Prod Rep 2024; 41:990-1019. [PMID: 38411278 DOI: 10.1039/d3np00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: up to 2024Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.
Collapse
Affiliation(s)
- Isabel P-M Pfeiffer
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Maria-Paula Schröder
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Silja Mordhorst
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
da Hora GCA, Oh M, Mifflin MC, Digal L, Roberts AG, Swanson JMJ. Lasso Peptides: Exploring the Folding Landscape of Nature's Smallest Interlocked Motifs. J Am Chem Soc 2024; 146:4444-4454. [PMID: 38166378 PMCID: PMC11282585 DOI: 10.1021/jacs.3c10126] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lasso peptides make up a class of natural products characterized by a threaded structure. Given their small size and stability, chemical synthesis would offer tremendous potential for the development of novel therapeutics. However, the accessibility of the pre-folded lasso architecture has limited this advance. To better understand the folding process de novo, simulations are used herein to characterize the folding propensity of microcin J25 (MccJ25), a lasso peptide known for its antimicrobial properties. New algorithms are developed to unambiguously distinguish threaded from nonthreaded precursors and determine handedness, a key feature in natural lasso peptides. We find that MccJ25 indeed forms right-handed pre-lassos, in contrast to past predictions but consistent with all natural lasso peptides. Additionally, the native pre-lasso structure is shown to be metastable prior to ring formation but to readily transition to entropically favored unfolded and nonthreaded structures, suggesting that de novo lasso folding is rare. However, by altering the ring forming residues and appending thiol and thioester functionalities, we are able to increase the stability of pre-lasso conformations. Furthermore, conditions leading to protonation of a histidine imidazole side chain further stabilize the modified pre-lasso ensemble. This work highlights the use of computational methods to characterize lasso folding and demonstrates that de novo access to lasso structures can be facilitated by optimizing sequence, unnatural modifications, and reaction conditions like pH.
Collapse
Affiliation(s)
- Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Myongin Oh
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lori Digal
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Feng D, Liu L, Shi Y, Du P, Xu S, Zhu Z, Xu J, Yao H. Current development of bicyclic peptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Glassey E, King AM, Anderson DA, Zhang Z, Voigt CA. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions. PLoS One 2022; 17:e0266488. [PMID: 36121811 PMCID: PMC9484694 DOI: 10.1371/journal.pone.0266488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
RiPPs (ribosomally-synthesized and post-translationally modified peptides) are a class of pharmaceutically-relevant natural products expressed as precursor peptides before being enzymatically processed into their final functional forms. Bioinformatic methods have illuminated hundreds of thousands of RiPP enzymes in sequence databases and the number of characterized chemical modifications is growing rapidly; however, it remains difficult to functionally express them in a heterologous host. One challenge is peptide stability, which we addressed by designing a RiPP stabilization tag (RST) based on a small ubiquitin-like modifier (SUMO) domain that can be fused to the N- or C-terminus of the precursor peptide and proteolytically removed after modification. This is demonstrated to stabilize expression of eight RiPPs representative of diverse phyla. Further, using Escherichia coli for heterologous expression, we identify a common set of media and growth conditions where 24 modifying enzymes, representative of diverse chemistries, are functional. The high success rate and broad applicability of this system facilitates: (i) RiPP discovery through high-throughput “mining” and (ii) artificial combination of enzymes from different pathways to create a desired peptide.
Collapse
Affiliation(s)
- Emerson Glassey
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Andrew M. King
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Daniel A. Anderson
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhengan Zhang
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Christopher A. Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Unusual Post-Translational Modifications in the Biosynthesis of Lasso Peptides. Int J Mol Sci 2022; 23:ijms23137231. [PMID: 35806232 PMCID: PMC9266682 DOI: 10.3390/ijms23137231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Lasso peptides are a subclass of ribosomally synthesized and post-translationally modified peptides (RiPPs) and feature the threaded, lariat knot-like topology. The basic post-translational modifications (PTMs) of lasso peptide contain two steps, including the leader peptide removal of the ribosome-derived linear precursor peptide by an ATP-dependent cysteine protease, and the macrolactam cyclization by an ATP-dependent macrolactam synthetase. Recently, advanced bioinformatic tools combined with genome mining have paved the way to uncover a rapidly growing number of lasso peptides as well as a series of PTMs other than the general class-defining processes. Despite abundant reviews focusing on lasso peptide discoveries, structures, properties, and physiological functionalities, few summaries concerned their unique PTMs. In this review, we summarized all the unique PTMs of lasso peptides uncovered to date, shedding light on the related investigations in the future.
Collapse
|
12
|
Si Y, Kretsch AM, Daigh LM, Burk MJ, Mitchell DA. Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance. J Am Chem Soc 2021; 143:5917-5927. [PMID: 33823110 DOI: 10.1021/jacs.1c01452] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that display a unique lariat-like, threaded conformation. Owing to a locked three-dimensional structure, lasso peptides can be unusually stable toward heat and proteolytic degradation. Some lasso peptides have been shown to bind human cell-surface receptors and exhibit anticancer properties, while others display antibacterial or antiviral activities. All known lasso peptides are produced by bacteria and genome-mining studies indicate that lasso peptides are a relatively prevalent class of RiPPs; however, the discovery, isolation, and characterization of lasso peptides are constrained by the lack of an efficient production system. In this study, we employ a cell-free biosynthesis (CFB) strategy to address longstanding challenges associated with lasso peptide production. We report the successful use of CFB for the formation of an array of sequence-diverse lasso peptides that include known examples as well as a new predicted lasso peptide from Thermobifida halotolerans. We further demonstrate the utility of CFB to rapidly generate and characterize multisite precursor peptide variants to evaluate the substrate tolerance of the biosynthetic pathway. By evaluating more than 1000 randomly chosen variants, we show that the lasso-forming cyclase from the fusilassin pathway is capable of producing millions of sequence-diverse lasso peptides via CFB. These data lay a firm foundation for the creation of large lasso peptide libraries using CFB to identify new variants with unique properties.
Collapse
Affiliation(s)
- Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Ashley M Kretsch
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Laura M Daigh
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Mark J Burk
- Lassogen, Inc., San Diego, California 92121, United States of America
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| |
Collapse
|
13
|
How to harness biosynthetic gene clusters of lasso peptides. ACTA ACUST UNITED AC 2020; 47:703-714. [DOI: 10.1007/s10295-020-02292-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Abstract
Lasso peptides produced by bacteria have a very unique cyclic structure (“lasso” structure) and are resistant to protease. To date, a number of lasso peptides have been isolated from proteobacteria and actinobacteria. Many lasso peptides exhibit various biological activities, such as antibacterial activity, and are expected to have various applications. Based on study of genome mining, large numbers of biosynthetic gene cluster of lasso peptides are revealed to distribute over genomes of proteobacteria and actinobacteria. However, the biosynthetic gene clusters are cryptic in most cases. Therefore, the combination of genome mining and heterologous production is efficient method for the production of lasso peptides. To utilize lasso peptide as fine chemical, there have been several attempts to add new function to lasso peptide by genetic engineering. Currently, a more efficient lasso peptide production system is being developed to harness cryptic biosynthetic gene clusters of lasso peptide. In this review, the overview of lasso peptide study is discussed.
Collapse
|
14
|
Sabino YNV, de Araújo KC, de Assis FGDV, Moreira SM, Lopes TDS, Mendes TADO, Huws SA, Mantovani HC. In silico Screening Unveil the Great Potential of Ruminal Bacteria Synthesizing Lasso Peptides. Front Microbiol 2020; 11:576738. [PMID: 33072042 PMCID: PMC7533575 DOI: 10.3389/fmicb.2020.576738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Studies of rumen microbial ecology suggest that the capacity to produce antimicrobial peptides could be a useful trait in species competing for ecological niches in the ruminal ecosystem. However, little is known about the synthesis of lasso peptides by ruminal microorganisms. Here we analyzed the distribution and diversity of lasso peptide gene clusters in 425 bacterial genomes from the rumen ecosystem. Genome mining was performed using antiSMASH 5, BAGEL4, and a database of well-known precursor sequences. The genomic context of the biosynthetic clusters was investigated to identify putative lasA genes and protein sequences from enzymes of the biosynthetic machinery were evaluated to identify conserved motifs. Metatranscriptome analysis evaluated the expression of the biosynthetic genes in the rumen microbiome. Several incomplete (n = 23) and complete (n = 11) putative lasso peptide clusters were detected in the genomes of ruminal bacteria. The complete gene clusters were exclusively found within the phylum Firmicutes, mainly (48%) in strains of the genus Butyrivibrio. The analysis of the genetic organization of complete putative lasso peptide clusters revealed the presence of co-occurring genes, including kinases (85%), transcriptional regulators (49%), and glycosyltransferases (36%). Moreover, a conserved pattern of cluster organization was detected between strains of the same genus/species. The maturation enzymes LasB, LasC, and LasD showed regions highly conserved, including the presence of a transglutaminase core in LasB, an asparagine synthetase domain in LasC, and an ABC-type transporter system in LasD. Phylogenetic trees of the essential biosynthetic proteins revealed that sequences split into monophyletic groups according to their shared single common ancestor. Metatranscriptome analyses indicated the expression of the lasso peptides biosynthetic genes within the active rumen microbiota. Overall, our in silico screening allowed the discovery of novel biosynthetic gene clusters in the genomes of ruminal bacteria and revealed several strains with the genetic potential to synthesize lasso peptides, suggesting that the ruminal microbiota represents a potential source of these promising peptides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sharon Ann Huws
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| | - Hilário C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
15
|
Cutting the Gordian knot: early and complete amino acid sequence confirmation of class II lasso peptides by HCD fragmentation. J Antibiot (Tokyo) 2020; 73:772-779. [DOI: 10.1038/s41429-020-00369-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
|
16
|
Ahangarzadeh S, Kanafi MM, Hosseinzadeh S, Mokhtarzadeh A, Barati M, Ranjbari J, Tayebi L. Bicyclic peptides: types, synthesis and applications. Drug Discov Today 2019; 24:1311-1319. [PMID: 31102732 DOI: 10.1016/j.drudis.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Bicyclic peptides form one of the most promising platforms for drug development owing to their biocompatibility, similarity and chemical diversity to proteins, and they are considered as a possible practical tool in various therapeutic and diagnostic applications. Bicyclic peptides are known to have the capability of being employed as an effective alternative to complex molecules, such as antibodies, or small molecules. This review provides a summary of the recent progress on the types, synthesis and applications of bicyclic peptides. More specifically, natural and synthetic bicyclic peptides are introduced with their different production methods and relevant applications, including drug targeting, imaging and diagnosis. Their uses as antimicrobial agents, as well as the therapeutic functions of different bicyclic peptides, are also discussed.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad M Kanafi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
17
|
Chen M, Wang S, Yu X. Cryptand-imidazolium supported total synthesis of the lasso peptide BI-32169 and its d-enantiomer. Chem Commun (Camb) 2019; 55:3323-3326. [PMID: 30719511 DOI: 10.1039/c8cc10301a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lasso peptides are attracting increasing attention due to their broad range of biological activities. The knot topology of lasso peptides, which contains an isopeptide bond-bridged macrocycle threaded by its C-terminal tail, has been proven to be an important structural feature for their bioactivities. The preparation of lasso peptides has been achieved by biosynthetic methods; nevertheless, a chemical synthesis of lasso peptides has not been described so far. Herein, a cryptand-imidazolium complex is designed as a multi-linker support and applied in the chemical synthesis of the lasso peptide BI-32169. Furthermore, the chiral switching of the support and the introduction of d-amino acids enable the synthesis of the d-enantiomer of BI-32169, which shows not only a strong glucagon receptor antagonist activity, but also a much higher enzymatic stability compared to the l-lasso peptide.
Collapse
Affiliation(s)
- Ming Chen
- Laboratory of Natural Peptide Chemistry, College of Life Science, Yan'an University, Shendi Road 580, Yan'an 716000, China.
| | | | | |
Collapse
|
18
|
Structural signatures of the class III lasso peptide BI-32169 and the branched-cyclic topoisomers using trapped ion mobility spectrometry–mass spectrometry and tandem mass spectrometry. Anal Bioanal Chem 2019; 411:6287-6296. [DOI: 10.1007/s00216-019-01613-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
19
|
Kim GJ, Li X, Kim SH, Yang I, Hahn D, Chin J, Nam SJ, Nam JW, Nam DH, Oh DC, Chang HW, Choi H. Seongsanamides A–D: Antiallergic Bicyclic Peptides from Bacillus safensis KCTC 12796BP. Org Lett 2018; 20:7539-7543. [DOI: 10.1021/acs.orglett.8b03293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| | - Xian Li
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| | - Seong-Hwan Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, and Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| | - Doo Hyun Nam
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
20
|
Kaweewan I, Hemmi H, Komaki H, Harada S, Kodani S. Isolation and structure determination of a new lasso peptide specialicin based on genome mining. Bioorg Med Chem 2018; 26:6050-6055. [PMID: 30448257 DOI: 10.1016/j.bmc.2018.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
Based on genome mining, a new lasso peptide specialicin was isolated from the extract of Streptomyces specialis. The structure of specialicin was established by ESI-MS and NMR analyses to be a lasso peptide with the length of 21 amino acids, containing an isopeptide bond and two disulfide bonds in the molecule. The stereochemistries of the constituent amino acids except for Trp were determined to be L and the stereochemistry of Trp at C-terminus was determined to be D. Three dimensional structure of specialicin was determined based on NOE experimental data, which indicated that specialicin possessed the similar conformational structure with siamycin I. Specialicin showed the antibacterial activity against Micrococcus luteus and the moderate anti-HIV activity against HIV-1 NL4-3. The biosynthetic gene cluster of specialicin was proposed from the genome sequence data of S. specialis.
Collapse
Affiliation(s)
- Issara Kaweewan
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561 Shizuoka, Japan
| | - Hikaru Hemmi
- Food Research Institute, NARO, 2-1-12 Kan-nondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hisayuki Komaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shinya Kodani
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561 Shizuoka, Japan; Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 Japan.
| |
Collapse
|
21
|
Demant M, Bagger JI, Suppli MP, Lund A, Gyldenløve M, Hansen KB, Hare KJ, Christensen M, Sonne DP, Holst JJ, Vilsbøll T, Knop FK. Determinants of Fasting Hyperglucagonemia in Patients with Type 2 Diabetes and Nondiabetic Control Subjects. Metab Syndr Relat Disord 2018; 16:530-536. [PMID: 30325692 DOI: 10.1089/met.2018.0066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fasting hyperglucagonemia can be detrimental to glucose metabolism in patients with type 2 diabetes (T2D) and may contribute to metabolic disturbances in obese and/or prediabetic subjects. However, the mechanisms underlying fasting hyperglucagonemia remain elusive. METHODS We evaluated the interrelationship between fasting hyperglucagonemia and demographic and biochemical parameters in 106 patients with T2D (31% female, age: 57 ± 9 years [mean ± standard deviation; body mass index (BMI): 30.1 ± 4.4 kg/m2; fasting plasma glucose (FPG): 9.61 ± 2.39 mM; hemoglobin A1c (HbA1c): 57.1 ± 13.1 mmol/mol] and 163 nondiabetic control subjects (29% female; age: 45 ± 17 years; BMI: 25.8 ± 4.1 kg/m2; FPG: 5.2 ± 0.4 mM; and HbA1c: 35.4 ± 3.8 mmol/mol). Multiple linear regression analysis was applied using a stepwise approach with fasting plasma glucagon as dependent parameter and BMI, waist-to-hip ratio (WHR), blood pressure, hemoglobin A1c, FPG, and insulin concentrations as independent parameters. RESULTS Fasting plasma glucagon concentrations were significantly higher among patients with T2D (13.5 ± 6.3 vs. 8.5 ± 3.8 mM, P < 0.001) together with HbA1c (P < 0.001), FPG (P < 0.001), and insulin (84.9 ± 56.4 vs. 57.7 ± 35.3 mM, P < 0.001). When adjusted for T2D, HbA1c and insulin were significantly positive determinants for fasting plasma glucagon concentrations. Furthermore, WHR comprised a significant positive determinant. CONCLUSIONS We confirm that fasting plasma glucagon concentrations are abnormally high in patients with T2D, and show that fasting plasma glucagon concentrations are influenced by WHR (in addition to glycemic control and fasting plasma insulin concentrations), which may point to visceral fat deposition as an important determinant of increased fasting plasma glucagon concentrations.
Collapse
Affiliation(s)
- Mia Demant
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Jonatan I Bagger
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Malte P Suppli
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Mette Gyldenløve
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Katrine B Hansen
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Kristine J Hare
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Mikkel Christensen
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - David P Sonne
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Jens J Holst
- 2 Department of Biomedical Sciences and Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Tina Vilsbøll
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark .,3 Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Filip K Knop
- 1 Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark .,3 Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark .,4 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
22
|
Hoque M, Ali S, Hoda M. Current status of G-protein coupled receptors as potential targets against type 2 diabetes mellitus. Int J Biol Macromol 2018; 118:2237-2244. [DOI: 10.1016/j.ijbiomac.2018.07.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/09/2018] [Accepted: 07/14/2018] [Indexed: 12/15/2022]
|
23
|
Zong C, Cheung-Lee WL, Elashal HE, Raj M, Link AJ. Albusnodin: an acetylated lasso peptide from Streptomyces albus. Chem Commun (Camb) 2018; 54:1339-1342. [PMID: 29350227 DOI: 10.1039/c7cc08620b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We describe a lasso peptide, albusnodin, that is post-translationally modified with an acetyl group, the first example of a lasso peptide with this modification. Using heterologous expression, we further show that the acetyltransferase colocalized with the albusnodin gene cluster is required for the biosynthesis of this lasso peptide. This type of lasso peptide is widespread in Actinobacteria with 44 examples found in currently sequenced genomes.
Collapse
Affiliation(s)
- Chuhan Zong
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
24
|
Mevaere J, Goulard C, Schneider O, Sekurova ON, Ma H, Zirah S, Afonso C, Rebuffat S, Zotchev SB, Li Y. An orthogonal system for heterologous expression of actinobacterial lasso peptides in Streptomyces hosts. Sci Rep 2018; 8:8232. [PMID: 29844351 PMCID: PMC5974421 DOI: 10.1038/s41598-018-26620-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/15/2018] [Indexed: 12/05/2022] Open
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptides produced by bacteria. They are characterized by an unusual lariat-knot structure. Targeted genome scanning revealed a wide diversity of lasso peptides encoded in actinobacterial genomes, but cloning and heterologous expression of these clusters turned out to be problematic. To circumvent this, we developed an orthogonal expression system for heterologous production of actinobacterial lasso peptides in Streptomyces hosts based on a newly-identified regulatory circuit from Actinoalloteichus fjordicus. Six lasso peptide gene clusters, mainly originating from marine Actinobacteria, were chosen for proof-of-concept studies. By varying the Streptomyces expression hosts and a small set of culture conditions, three new lasso peptides were successfully produced and characterized by tandem MS. The newly developed expression system thus sets the stage to uncover and bioengineer the chemo-diversity of actinobacterial lasso peptides. Moreover, our data provide some considerations for future bioprospecting efforts for such peptides.
Collapse
Affiliation(s)
- Jimmy Mevaere
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Christophe Goulard
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Olha Schneider
- Department of Biotechnology, Norwegian University of Science and Technology NTNU, N-7491, Trondheim, Norway
| | - Olga N Sekurova
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Haiyan Ma
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France.,Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Séverine Zirah
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Carlos Afonso
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA, Rouen, France
| | - Sylvie Rebuffat
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.
| | - Yanyan Li
- Laboratory « Molecules of Communication and Adaptation of Microorganisms » (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
25
|
|
26
|
Martin-Gómez H, Tulla-Puche J. Lasso peptides: chemical approaches and structural elucidation. Org Biomol Chem 2018; 16:5065-5080. [DOI: 10.1039/c8ob01304g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diverse functionality and the extraordinary stability of lasso peptides make these molecules attractive scaffolds for drug discovery. The ability to generate lasso peptides chemically remains a challenging endeavor.
Collapse
Affiliation(s)
| | - Judit Tulla-Puche
- Department of Inorganic and Organic Chemistry – Organic Chemistry Section
- University of Barcelona
- Barcelona
- Spain
| |
Collapse
|
27
|
Rhodes CA, Pei D. Bicyclic Peptides as Next-Generation Therapeutics. Chemistry 2017; 23:12690-12703. [PMID: 28590540 DOI: 10.1002/chem.201702117] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Bicyclic peptides have greater conformational rigidity and metabolic stability than linear and monocyclic peptides and are capable of binding to challenging drug targets with antibody-like affinity and specificity. Powerful combinatorial library technologies have recently been developed to rapidly synthesize and screen large bicyclic peptide libraries for ligands against enzymes, receptors, and protein-protein interaction targets. Bicyclic peptides have been developed as potential therapeutics against a wide range of diseases, drug targeting agents, imaging/diagnostic probes, and research tools. In this Minireview, we provide a summary of the recent progresses on the synthesis and applications of bicyclic peptides.
Collapse
Affiliation(s)
- Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
28
|
Kodani S, Inoue Y, Suzuki M, Dohra H, Suzuki T, Hemmi H, Ohnishi-Kameyama M. Sphaericin, a Lasso Peptide from the Rare ActinomycetePlanomonospora sphaerica. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601334] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shinya Kodani
- Academic Institute; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
- Graduate School of Integrated Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
| | - Yuto Inoue
- Graduate School of Integrated Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
| | - Masahiro Suzuki
- Graduate School of Integrated Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
| | - Hideo Dohra
- Graduate School of Integrated Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
- Research Institute of Green Science and Technology; Shizuoka University; 836 Ohya, Suruga-ku 422-8529 Shizuoka Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education; Utsunomiya University; Minemachi 350, Utsunomiya 321-8505 Tochigi Japan
| | - Hikaru Hemmi
- Food Research Institute; National Agriculture and Food Research Organization (NARO); 2-1-12 Kannondai, Tsukuba 305-8642 Ibaraki Japan
| | - Mayumi Ohnishi-Kameyama
- Food Research Institute; National Agriculture and Food Research Organization (NARO); 2-1-12 Kannondai, Tsukuba 305-8642 Ibaraki Japan
| |
Collapse
|
29
|
Kaweewan I, Ohnishi-Kameyama M, Kodani S. Isolation of a new antibacterial peptide achromosin from Streptomyces achromogenes subsp. achromogenes based on genome mining. J Antibiot (Tokyo) 2016; 70:208-211. [DOI: 10.1038/ja.2016.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/03/2016] [Accepted: 07/30/2016] [Indexed: 11/10/2022]
|
30
|
Structure-Activity Analysis of Gram-positive Bacterium-producing Lasso Peptides with Anti-mycobacterial Activity. Sci Rep 2016; 6:30375. [PMID: 27457620 PMCID: PMC4960549 DOI: 10.1038/srep30375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/30/2016] [Indexed: 01/07/2023] Open
Abstract
Lariatin A, an 18-residue lasso peptide encoded by the five-gene cluster larABCDE, displays potent and selective anti-mycobacterial activity. The structural feature is an N-terminal macrolactam ring, through which the C-terminal passed to form the rigid lariat-protoknot structure. In the present study, we established a convergent expression system by the strategy in which larA mutant gene-carrying plasmids were transformed into larA-deficient Rhodococcus jostii, and generated 36 lariatin variants of the precursor protein LarA to investigate the biosynthesis and the structure-activity relationships. The mutational analysis revealed that four amino acid residues (Gly1, Arg7, Glu8, and Trp9) in lariatin A are essential for the maturation and production in the biosynthetic machinery. Furthermore, the study on structure-activity relationships demonstrated that Tyr6, Gly11, and Asn14 are responsible for the anti-mycobacterial activity, and the residues at positions 15, 16 and 18 in lariatin A are critical for enhancing the activity. This study will not only provide a useful platform for genetically engineering Gram-positive bacterium-producing lasso peptides, but also an important foundation to rationally design more promising drug candidates for combatting tuberculosis.
Collapse
|
31
|
Hegemann JD, Fage CD, Zhu S, Harms K, Di Leva FS, Novellino E, Marinelli L, Marahiel MA. The ring residue proline 8 is crucial for the thermal stability of the lasso peptide caulosegnin II. MOLECULAR BIOSYSTEMS 2016; 12:1106-9. [DOI: 10.1039/c6mb00081a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lasso peptides are fascinating natural products with a unique structural fold that can exhibit tremendous thermal stability.
Collapse
Affiliation(s)
- Julian D. Hegemann
- Department of Chemistry/Biochemistry
- LOEWE Center for Synthetic Microbiology
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Christopher D. Fage
- Department of Chemistry/Biochemistry
- LOEWE Center for Synthetic Microbiology
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Shaozhou Zhu
- Department of Chemistry/Biochemistry
- LOEWE Center for Synthetic Microbiology
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Klaus Harms
- Department of Chemistry/Biochemistry
- LOEWE Center for Synthetic Microbiology
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | | | - Ettore Novellino
- Department of Pharmacy
- Università di Napoli “Federico II”
- 80131 Napoli
- Italy
| | - Luciana Marinelli
- Department of Pharmacy
- Università di Napoli “Federico II”
- 80131 Napoli
- Italy
| | - Mohamed A. Marahiel
- Department of Chemistry/Biochemistry
- LOEWE Center for Synthetic Microbiology
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| |
Collapse
|
32
|
Li Y, Ducasse R, Zirah S, Blond A, Goulard C, Lescop E, Giraud C, Hartke A, Guittet E, Pernodet JL, Rebuffat S. Characterization of Sviceucin from Streptomyces Provides Insight into Enzyme Exchangeability and Disulfide Bond Formation in Lasso Peptides. ACS Chem Biol 2015; 10:2641-9. [PMID: 26343290 DOI: 10.1021/acschembio.5b00584] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lasso peptides are bacterial ribosomally synthesized and post-translationally modified peptides. They have sparked increasing interest in peptide-based drug development because of their compact, interlocked structure, which offers superior stability and protein-binding capacity. Disulfide bond-containing lasso peptides are rare and exhibit highly sought-after activities. In an effort to expand the repertoire of such molecules, we heterologously expressed, in Streptomyces coelicolor, the gene cluster encoding sviceucin, a type I lasso peptide with two disulfide bridges originating from Streptomyces sviceus, which allowed it to be fully characterized. Sviceucin and its reduced forms were characterized by mass spectrometry and peptidase digestion. The three-dimensional structure of sviceucin was determined using NMR. Sviceucin displayed antimicrobial activity selectively against Gram-positive bacteria and inhibition of fsr quorum sensing in Enterococcus faecalis. This study adds sviceucin to the type I lasso peptide family as a new representative. Moreover, new clusters encoding disulfide-bond containing lasso peptides from Actinobacteria were identified by genome mining. Genetic and functional analyses revealed that the formation of disulfide bonds in sviceucin does not require a pathway-encoded thiol-disulfide oxidoreductase. Most importantly, we demonstrated the functional exchangeability of the sviceucin and microcin J25 (a non-disulfide-bridged lasso peptide) macrolactam synthetases in vitro, highlighting the potential of hybrid lasso synthetases in lasso peptide engineering.
Collapse
Affiliation(s)
- Yanyan Li
- Laboratory Molecules
of Communication and Adaptation of Microorganisms (MCAM, UMR 7245
CNRS-MNHN), Sorbonne Universités, Muséum National d’Histoire
Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, F-75005, Paris, France
| | - Rémi Ducasse
- Laboratory Molecules
of Communication and Adaptation of Microorganisms (MCAM, UMR 7245
CNRS-MNHN), Sorbonne Universités, Muséum National d’Histoire
Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, F-75005, Paris, France
| | - Séverine Zirah
- Laboratory Molecules
of Communication and Adaptation of Microorganisms (MCAM, UMR 7245
CNRS-MNHN), Sorbonne Universités, Muséum National d’Histoire
Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, F-75005, Paris, France
| | - Alain Blond
- Laboratory Molecules
of Communication and Adaptation of Microorganisms (MCAM, UMR 7245
CNRS-MNHN), Sorbonne Universités, Muséum National d’Histoire
Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, F-75005, Paris, France
| | - Christophe Goulard
- Laboratory Molecules
of Communication and Adaptation of Microorganisms (MCAM, UMR 7245
CNRS-MNHN), Sorbonne Universités, Muséum National d’Histoire
Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, F-75005, Paris, France
| | - Ewen Lescop
- Institut
de Chimie
des Substances Naturelles, Centre de Recherche de Gif, UPR 2301 CNRS
Université Paris-Sud, 1 avenue
de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Caroline Giraud
- Unité de
Recherche Risques Microbiens (U2RM)-Stress et Virulence (EA 4655),
Université de Caen-Basse Normandie, F-14032 Caen, France
| | - Axel Hartke
- Unité de
Recherche Risques Microbiens (U2RM)-Stress et Virulence (EA 4655),
Université de Caen-Basse Normandie, F-14032 Caen, France
| | - Eric Guittet
- Institut
de Chimie
des Substances Naturelles, Centre de Recherche de Gif, UPR 2301 CNRS
Université Paris-Sud, 1 avenue
de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Jean-Luc Pernodet
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris-Sud, Bât. 400, Université
Paris-Sud, F-91405 Orsay, France
| | - Sylvie Rebuffat
- Laboratory Molecules
of Communication and Adaptation of Microorganisms (MCAM, UMR 7245
CNRS-MNHN), Sorbonne Universités, Muséum National d’Histoire
Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, F-75005, Paris, France
| |
Collapse
|
33
|
Hegemann JD, Zimmermann M, Xie X, Marahiel MA. Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res 2015; 48:1909-19. [PMID: 26079760 DOI: 10.1021/acs.accounts.5b00156] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products of peptidic origin often represent a rich source of medically relevant compounds. The synthesis of such polypeptides in nature is either initiated by deciphering the genetic code on the ribosome during the translation process or driven by ribosome-independent processes. In the latter case, highly modified bioactive peptides are assembled by multimodular enzymes designated as nonribosomal peptide synthetases (NRPS) that act as a protein-template to generate chemically diverse peptides. On the other hand, the ribosome-dependent strategy, although relying strictly on the 20-22 proteinogenic amino acids, generates structural diversity by extensive post-translational-modification. This strategy seems to be highly distributed in all kingdoms of life. One example for this is the lasso peptides, which are an emerging class of ribosomally assembled and post-translationally modified peptides (RiPPs) from bacteria that were first described in 1991. A wide range of interesting biological activities are known for these compounds, including antimicrobial, enzyme inhibitory, and receptor antagonistic activities. Since 2008, genome mining approaches allowed the targeted isolation and characterization of such molecules and helped to better understand this compound class and their biosynthesis. Their defining structural feature is a macrolactam ring that is threaded by the C-terminal tail and held in position by sterically demanding residues above and below the ring, resulting in a unique topology that is reminiscent of a lariat knot. The ring closure is achieved by an isopeptide bond formed between the N-terminal α-amino group of a glycine, alanine, serine, or cysteine and the carboxylic acid side chain of an aspartate or glutamate, which can be located at positions 7, 8, or 9 of the amino acid sequence. In this Account, we discuss the newest findings about these compounds, their biosynthesis, and their physicochemical properties. This includes the suggested mechanism through which the precursor peptide is enzymatically processed into a mature lasso peptide and crucial residues for enzymatic recognition. Furthermore, we highlight new insights considering the protease and thermal stability of lasso peptides and discuss why seven amino acid residue rings are likely to be the lower limit feasible for this compound class. To elucidate their fascinating three-dimensional structures, NMR spectroscopy is commonly employed. Therefore, the general methodology to elucidate these structures by NMR will be discussed and pitfalls for these approaches are highlighted. In addition, new tools provided by recent investigations to assess and prove the lasso topology without a complete structure elucidation will be summarized. These include techniques like ion mobility-mass spectrometry and a combined approach of thermal and carboxypeptidase treatment with subsequent LC-MS analysis. Nevertheless, even though much was learned about these compounds in recent years, their true native function and the exact enzymatic mechanism of their maturation remain elusive.
Collapse
Affiliation(s)
- Julian D. Hegemann
- Department of Chemistry,
Biochemistry and LOEWE-Center
for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein-Strasse
4, D-35032, Marburg, Germany
| | - Marcel Zimmermann
- Department of Chemistry,
Biochemistry and LOEWE-Center
for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein-Strasse
4, D-35032, Marburg, Germany
| | - Xiulan Xie
- Department of Chemistry,
Biochemistry and LOEWE-Center
for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein-Strasse
4, D-35032, Marburg, Germany
| | - Mohamed A. Marahiel
- Department of Chemistry,
Biochemistry and LOEWE-Center
for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein-Strasse
4, D-35032, Marburg, Germany
| |
Collapse
|
34
|
Lotfy M, Kalasz H, Szalai G, Singh J, Adeghate E. Recent Progress in the Use of Glucagon and Glucagon Receptor Antago-nists in the Treatment of Diabetes Mellitus. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2014; 8:28-35. [PMID: 25674162 PMCID: PMC4321206 DOI: 10.2174/1874104501408010028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/25/2022]
Abstract
Glucagon is an important pancreatic hormone, released into blood circulation by alpha cells of the islet of
Langerhans. Glucagon induces gluconeogenesis and glycogenolysis in hepatocytes, leading to an increase in hepatic glucose
production and subsequently hyperglycemia in susceptible individuals. Hyperglucagonemia is a constant feature in
patients with T2DM. A number of bioactive agents that can block glucagon receptor have been identified. These glucagon
receptor antagonists can reduce the hyperglycemia associated with exogenous glucagon administration in normal as well
as diabetic subjects. Glucagon receptor antagonists include isoserine and beta-alanine derivatives, bicyclic 19-residue peptide
BI-32169, Des-His1-[Glu9] glucagon amide and related compounds, 5-hydroxyalkyl-4-phenylpyridines, N-[3-cano-6-
(1,1 dimethylpropyl)-4,5,6,7-tetrahydro-1-benzothien-2-yl]-2-ethylbutamide, Skyrin and NNC 250926. The absorption,
dosage, catabolism, excretion and medicinal chemistry of these agents are the subject of this review. It emphasizes the
role of glucagon in glucose homeostasis and how it could be applied as a novel tool for the management of diabetes mellitus
by blocking its receptors with either monoclonal antibodies, peptide and non-peptide antagonists or gene knockout
techniques.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University; School of Forensic and Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, England, UK; National Research Centre, Hormones Department, Cairo, Egypt
| | - Huba Kalasz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Gyorgy Szalai
- ENT Department, St. Janos Hospital, Budapest, Hungary
| | - Jaipaul Singh
- School of Forensic and Investigative Sciences and School of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, England, UK
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Ar-ab Emirates
| |
Collapse
|
35
|
Letzel AC, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 2014; 15:983. [PMID: 25407095 PMCID: PMC4289311 DOI: 10.1186/1471-2164-15-983] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023] Open
Abstract
Background Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a diverse group of biologically active bacterial molecules. Due to the conserved genomic arrangement of many of the genes involved in their synthesis, these secondary metabolite biosynthetic pathways can be predicted from genome sequence data. To date, however, despite the myriad of sequenced genomes covering many branches of the bacterial phylogenetic tree, such an analysis for a broader group of bacteria like anaerobes has not been attempted. Results We investigated a collection of 211 complete and published genomes, focusing on anaerobic bacteria, whose potential to encode RiPPs is relatively unknown. We showed that the presence of RiPP-genes is widespread among anaerobic representatives of the phyla Actinobacteria, Proteobacteria and Firmicutes and that, collectively, anaerobes possess the ability to synthesize a broad variety of different RiPP classes. More than 25% of anaerobes are capable of producing RiPPs either alone or in conjunction with other secondary metabolites, such as polyketides or non-ribosomal peptides. Conclusion Amongst the analyzed genomes, several gene clusters encode uncharacterized RiPPs, whilst others show similarity with known RiPPs. These include a number of potential class II lanthipeptides; head-to-tail cyclized peptides and lactococcin 972-like RiPP. This study presents further evidence in support of anaerobic bacteria as an untapped natural products reservoir. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-983) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr, 11a, Jena 07745, Germany.
| |
Collapse
|
36
|
Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, Xie X, Marahiel MA. Xanthomonine I-III: eine neue Klasse von Lassopeptiden mit einem Makrolactamring aus sieben Aminosäureresten. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, Xie X, Marahiel MA. Xanthomonins I-III: A New Class of Lasso Peptides with a Seven-Residue Macrolactam Ring. Angew Chem Int Ed Engl 2014; 53:2230-4. [DOI: 10.1002/anie.201309267] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 11/06/2022]
|
38
|
Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA. Lasso peptides from proteobacteria: Genome mining employing heterologous expression and mass spectrometry. Biopolymers 2013; 100:527-42. [DOI: 10.1002/bip.22326] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | | | - Mohamed A. Marahiel
- Department of Chemistry; Philipps-University Marburg, Hans-Meerwein-Strasse 4 and LOEWE-Center for Synthetic Microbiology; Marburg D-35032 Germany
| |
Collapse
|
39
|
The Astexin-1 Lasso Peptides: Biosynthesis, Stability, and Structural Studies. ACTA ACUST UNITED AC 2013; 20:558-69. [DOI: 10.1016/j.chembiol.2013.03.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/08/2013] [Accepted: 03/22/2013] [Indexed: 01/18/2023]
|
40
|
Potterat O, Hamburger M. Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays. Nat Prod Rep 2013; 30:546-64. [DOI: 10.1039/c3np20094a] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Hegemann JD, Zimmermann M, Xie X, Marahiel MA. Caulosegnins I–III: A Highly Diverse Group of Lasso Peptides Derived from a Single Biosynthetic Gene Cluster. J Am Chem Soc 2012; 135:210-22. [DOI: 10.1021/ja308173b] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julian D. Hegemann
- Department of Chemistry, Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse
4 and LOEWE-Centre for Synthetic Microbiology, D-35032, Marburg, Germany
| | - Marcel Zimmermann
- Department of Chemistry, Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse
4 and LOEWE-Centre for Synthetic Microbiology, D-35032, Marburg, Germany
| | - Xiulan Xie
- Department of Chemistry, Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse
4 and LOEWE-Centre for Synthetic Microbiology, D-35032, Marburg, Germany
| | - Mohamed A. Marahiel
- Department of Chemistry, Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse
4 and LOEWE-Centre for Synthetic Microbiology, D-35032, Marburg, Germany
| |
Collapse
|
42
|
Cytotoxic caffeic acid derivatives from the rhizomes of Cimicifuga heracleifolia. Arch Pharm Res 2012; 35:1559-65. [PMID: 23054712 DOI: 10.1007/s12272-012-0906-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 10/27/2022]
Abstract
Activity profiling of the n-BuOH extract from Cimicifuga heracleifolia rhizomes led to the identification of three cytotoxic caffeic acid derivatives, carboxymethyl isoferulate (2), cimicifugic acid A (3), and cimicifugic acid B (4) together with a series of structurally related inactive compounds. The extract was separated by time-based fractionation in a gradient HPLC condition, and cytotoxicity of each fraction was evaluated using HCT116 colon cancer cells in vitro. HPLChyphenated spectroscopy including LC/NMR and LC/PDA/MS provided structural information for phenolic compounds contained in the extract, and further preparative isolation of active compounds 2-4 was achieved by semi-preparative HPLC. Compounds 2-4 showed cytotoxic activity against cancer cells in a dose-dependent manner at the concentrations of 2.5-40 μM, and western blotting analysis showed that these compounds increased expression of cleaved poly ADP ribose polymerase (PARP), a critical apoptosis marker.
Collapse
|
43
|
Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A 2012; 109:15223-8. [PMID: 22949633 DOI: 10.1073/pnas.1208978109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Lasso peptides are a class of ribosomally synthesized posttranslationally modified natural products found in bacteria. Currently known lasso peptides have a diverse set of pharmacologically relevant activities, including inhibition of bacterial growth, receptor antagonism, and enzyme inhibition. The biosynthesis of lasso peptides is specified by a cluster of three genes encoding a precursor protein and two enzymes. Here we develop a unique genome-mining algorithm to identify lasso peptide gene clusters in prokaryotes. Our approach involves pattern matching to a small number of conserved amino acids in precursor proteins, and thus allows for a more global survey of lasso peptide gene clusters than does homology-based genome mining. Of more than 3,000 currently sequenced prokaryotic genomes, we found 76 organisms that are putative lasso peptide producers. These organisms span nine bacterial phyla and an archaeal phylum. To provide validation of the genome-mining method, we focused on a single lasso peptide predicted to be produced by the freshwater bacterium Asticcacaulis excentricus. Heterologous expression of an engineered, minimal gene cluster in Escherichia coli led to the production of a unique lasso peptide, astexin-1. At 23 aa, astexin-1 is the largest lasso peptide isolated to date. It is also highly polar, in contrast to many lasso peptides that are primarily hydrophobic. Astexin-1 has modest antimicrobial activity against its phylogenetic relative Caulobacter crescentus. The solution structure of astexin-1 was determined revealing a unique topology that is stabilized by hydrogen bonding between segments of the peptide.
Collapse
|
44
|
Cho YM, Merchant CE, Kieffer TJ. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 2012; 135:247-78. [DOI: 10.1016/j.pharmthera.2012.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
|
45
|
Maksimov MO, Pan SJ, James Link A. Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 2012; 29:996-1006. [PMID: 22833149 DOI: 10.1039/c2np20070h] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lasso peptides are a class of ribosomally-synthesized and posttranslationally-modified natural products with diverse bioactivities. This review describes the structure and function of all known lasso peptides (as of mid-2012) and covers our current knowledge about the biosynthesis of those molecules. The isolation and characterization of lasso peptides are also covered as are bioinformatics strategies for the discovery of new lasso peptides from genomic sequence data. Several studies on the engineering of new or improved function into lasso peptides are highlighted, and unanswered questions in the field are also described.
Collapse
Affiliation(s)
- Mikhail O Maksimov
- Department of Chemical and Biological Engineering, Princeton University, NJ 08544, USA
| | | | | |
Collapse
|
46
|
Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H. Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol 2012; 95:451-60. [PMID: 22388571 DOI: 10.1007/s00253-012-3973-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/13/2022]
Abstract
The biosynthetic gene cluster for lariatins A and B, anti-mycobacterial peptide antibiotics with a unique "lasso" structure, was cloned from Gram-positive bacterium Rhodococcus jostii K01-B0171. Random transposition mutagenesis using IS1415 derivative was carried out to identify a chromosomal locus involved in lariatin biosynthesis and six independent lariatin non-producing variants were obtained. Arbitrary PCR revealed that one insertion was located near the region involved in lariatin biosynthesis. Using the lariatin gene as a probe, a genomic library of R. jostii K01-B0171 was screened by colony hybridization, and two clones were obtained. Sequence analysis of these clones revealed that the gene cluster for lariatin biosynthesis spanning about 4.5 kb consisted of five open reading frames (larA to larE). We proposed that the linear precursor LarA is processed by LarB, LarC, and LarD, and the mature lariatin is exported by LarE.
Collapse
Affiliation(s)
- Junji Inokoshi
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Xie X, Marahiel MA. NMR as an Effective Tool for the Structure Determination of Lasso Peptides. Chembiochem 2012; 13:621-5. [DOI: 10.1002/cbic.201100754] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Indexed: 11/08/2022]
|
48
|
Zaugg J, Ebrahimi SN, Smiesko M, Baburin I, Hering S, Hamburger M. Identification of GABA A receptor modulators in Kadsura longipedunculata and assignment of absolute configurations by quantum-chemical ECD calculations. PHYTOCHEMISTRY 2011; 72:2385-2395. [PMID: 21889177 PMCID: PMC3201904 DOI: 10.1016/j.phytochem.2011.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/14/2011] [Accepted: 08/04/2011] [Indexed: 05/31/2023]
Abstract
A petroleum ether extract of Kadsura longipedunculata enhanced the GABA-induced chloride current (I(GABA)) by 122.5±0.3% (n=2) when tested at 100 μg/ml in Xenopuslaevis oocytes expressing GABA A receptors (α(1)β(2)γ(2S) subtype) in two-microelectrode voltage clamp measurements. Thirteen compounds were subsequently identified by HPLC-based activity profiling as responsible for GABA A receptor activity and purified in preparative scale. 6-Cinnamoyl-6,7-dihydro-7-myrceneol and 5,6-dihydrocuparenic acid were thereby isolated for the first time. The determination of the absolute stereochemistry of these compounds was achieved by comparison of experimental and calculated ECD spectra. All but one of the 13 isolated compounds from K. longipedunculata potentiated I(GABA) through GABA A receptors composed of α(1)β(2)γ(2S) subunits in a concentration-dependent manner. Potencies ranged from 12.8±3.1 to 135.6±85.7 μM, and efficiencies ranged from 129.7±36.8% to 885.8±291.2%. The phytochemical profiles of petroleum ether extracts of Kadsura japonica fruits (114.1±2.6% potentiation of I(GABA) at 100 μg/ml, n=2), and Schisandra chinensis fruits (inactive at 100 μg/ml) were compared by HPLC-PDA-ESIMS with that of K. longipedunculata.
Collapse
Affiliation(s)
- Janine Zaugg
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Samad Nejad Ebrahimi
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
- Departement of Phytochemistry, Medicinal Plant and Drugs Research Institute, Shahid Beheshti University, G.C., Tehran, Iran
| | - Martin Smiesko
- Division of Molecular Modeling, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Igor Baburin
- Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Steffen Hering
- Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
49
|
Christensen M, Bagger JI, Vilsbøll T, Knop FK. The alpha-cell as target for type 2 diabetes therapy. Rev Diabet Stud 2011; 8:369-81. [PMID: 22262074 DOI: 10.1900/rds.2011.8.369] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucagon is the main secretory product of the pancreatic alpha-cells. The main function of this peptide hormone is to provide sustained glucose supply to the brain and other vital organs during fasting conditions. This is exerted by stimulation of hepatic glucose production via specific G protein-coupled receptors in the hepatocytes. Type 2 diabetic patients are characterized by elevated glucagon levels contributing decisively to hyperglycemia in these patients. Accumulating evidence demonstrates that targeting the pancreatic alpha-cell and its main secretory product glucagon is a possible treatment for type 2 diabetes. Several lines of preclinical evidence have paved the way for the development of drugs, which suppress glucagon secretion or antagonize the glucagon receptor. In this review, the physiological actions of glucagon and the role of glucagon in type 2 diabetic pathophysiology are outlined. Furthermore, potential advantages and limitations of antagonizing the glucagon receptor or suppressing glucagon secretion in the treatment of type 2 diabetes are discussed with a focus on already marketed drugs and drugs in clinical development. It is concluded that the development of novel glucagon receptor antagonists are confronted with several safety issues. At present, available pharmacological agents based on the glucose-dependent glucagonostatic effects of GLP-1 represent the most favorable way to apply constraints to the alpha-cell in type 2 diabetes.
Collapse
Affiliation(s)
- Mikkel Christensen
- Diabetes Research Division, Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
50
|
Bagger JI, Knop FK, Holst JJ, Vilsbøll T. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab 2011; 13:965-71. [PMID: 21615669 DOI: 10.1111/j.1463-1326.2011.01427.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glucagon is a hormone secreted from the alpha cells of the pancreatic islets. Through its effect on hepatic glucose production (HGP), glucagon plays a central role in the regulation of glucose homeostasis. In patients with type 2 diabetes mellitus (T2DM), abnormal regulation of glucagon secretion has been implicated in the development of fasting and postprandial hyperglycaemia. Therefore, new therapeutic agents based on antagonizing glucagon action, and hence blockade of glucagon-induced HGP, could be effective in lowering both fasting and postprandial hyperglycaemia in patients with T2DM. This review focuses on the mechanism of action, safety and efficacy of glucagon antagonists in the treatment of T2DM and discusses the challenges associated with this new potential antidiabetic treatment modality.
Collapse
Affiliation(s)
- J I Bagger
- Diabetes Research Division, Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | | |
Collapse
|