1
|
Ma Y, Liu Y, Cao C, Peng J, Jiang Y, Li T. Host-Guest Chemistry-Mediated Biomimetic Chemoenzymatic Synthesis of Complex Glycosphingolipids. J Am Chem Soc 2025; 147:6974-6982. [PMID: 39933159 DOI: 10.1021/jacs.4c17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Glycosphingolipids (GSLs) are amphipathic complex biomolecules constituted of hydrophilic glycans covalently linked to hydrophobic lipids via glycosidic bonds. GSLs are widely distributed in cells and tissues, where they play crucial roles in various biological functions and disease processes. However, the heterogeneity and complexity of GSLs make it difficult to explore their precise biofunctions due to obstacles in obtaining well-defined structures. Herein, we report a host-guest-chemistry-mediated biomimetic chemoenzymatic approach for the efficient synthesis of diverse complex GSLs. A key feature of this approach is that the use of methyl-β-cyclodextrin enables amphipathic glycolipids forming water-soluble inclusion complexes to improve their solubility in aqueous media, thereby facilitating enzyme-catalyzed reactions. The power and applicability of our approach are demonstrated by the streamlined synthesis of biologically important globo-, ganglio-, neolacto-, and lacto-series GSLs library containing 20 neutral and acidic glycolipids with different fucosylation and sialylation patterns. The developed method will open new avenues to easily access a wide range of complex GSLs for biomedical applications.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiarong Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinyu Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Ma W, Xu Z, Teng C, Cao C, Wu R, Meng X, Sui Q, Gao Q, Zong C, Li T. Enhanced Antitumor Immunity of a Globo H-Based Vaccine Enabled by the Combination Adjuvants of 3D-MPL and QS-21. Angew Chem Int Ed Engl 2025; 64:e202418948. [PMID: 39679641 DOI: 10.1002/anie.202418948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Globo H, a specific carbohydrate antigen overexpressed on various human malignancies, has attracted considerable interest as an antigenic target for anticancer vaccine development. Despite several Globo H-based carbohydrate vaccines that have been designed, efficient access to Globo H hexasaccharide antigen and development of powerful adjuvants for enhancing antitumor immunity remain challenging. Herein, we reported a streamlined chemoenzymatic approach to prepare this hexasaccharide antigen, relying on chemical synthesis of Gb5 pentasaccharide by a stereoconvergent [2+3] strategy and subsequent enzymatic α-fucosylation to easily install α1,2-fucose residue. Separately, a modular assembly approach to efficiently synthesize 3-O-deacyl-monophosphoryl lipid A (3D-MPL) was developed by the integration of stereocontrolled glycosylation, regioselective acylation, site-specific phosphorylation, and facile global deprotection. After efficient construction of Globo H-CRM197 conjugate, we conducted systematic immunological evaluations of Globo H-CRM197 formulated with various adjuvants and adjuvant combinations, comprising saponin QS-21, synthetic 3D-MPL and α-galactosylceramide derivative S34. The results revealed that Globo H-CRM197 conjugate adjuvanted with QS-21 and 3D-MPL elicited robust IgG2a and IgG3 antibody responses and Th1 cellular immunity in mice. Moreover, antibodies induced by this formulation effectively bound to Globo H-positive MCF-7 cancer cells and exhibited superior complement-dependent cytotoxicity and antibody-dependent cellular phagocytosis, holding promise for further development of effective anticancer vaccines.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changcai Teng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Chang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruixue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Meng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Sui
- Shanghai Anyikang Biotechnology Co., LTD, Shanghai, 200131, China
| | - Qi Gao
- Shanghai Anyikang Biotechnology Co., LTD, Shanghai, 200131, China
| | - Chengli Zong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
3
|
Yang X, Mishra B, Yu H, Wei Y, Chen X. A bifunctional Pasteurella multocida β1-3-galactosyl/ N-acetylgalactosaminyltransferase (PmNatB) for the highly efficient chemoenzymatic synthesis of disaccharides. Org Biomol Chem 2024; 22:6004-6015. [PMID: 38993172 PMCID: PMC11290465 DOI: 10.1039/d4ob00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glycosyltransferases are nature's key biocatalysts for the formation of glycosidic bonds. Discovery and characterization of new synthetically useful glycosyltransferases are critical for the development of efficient enzymatic and chemoenzymatic strategies for producing complex carbohydrates and glycoconjugates. Herein we report the identification of Pasteurella multocida PmNatB as a bifunctional single-catalytic-domain glycosyltransferase with both β1-3-galactosyltransferase and β1-3-N-acetylgalactosaminyltransferase activities. It is a novel glycosyltransferase for constructing structurally diverse GalNAcβ3Galα/βOR and Galβ3GalNAcα/βOR disaccharides in one-pot multienzyme systems with in situ generation of UDP-sugars.
Collapse
Affiliation(s)
- Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Bijoyananda Mishra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | - Yijun Wei
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
- Department of Statistics, University of California, Davis, California 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| |
Collapse
|
4
|
Liu Y, Yan M, Wang M, Luo S, Wang S, Luo Y, Xu Z, Ma W, Wen L, Li T. Stereoconvergent and Chemoenzymatic Synthesis of Tumor-Associated Glycolipid Disialosyl Globopentaosylceramide for Probing the Binding Affinity of Siglec-7. ACS CENTRAL SCIENCE 2024; 10:417-425. [PMID: 38435515 PMCID: PMC10906248 DOI: 10.1021/acscentsci.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is a tumor-associated complex glycosphingolipid. However, the accessibility of structurally well-defined DSGb5 for precise biological functional studies remains challenging. Herein, we describe the first total synthesis of DSGb5 glycolipid by an efficient chemoenzymatic approach. A Gb5 pentasaccharide-sphingosine was chemically synthesized by a convergent and stereocontrolled [2 + 3] method using an oxazoline disaccharide donor to exclusively form β-anomeric linkage. After investigating the substrate specificity of different sialyltransferases, regio- and stereoselective installment of two sialic acids was achieved by two sequential enzyme-catalyzed reactions using α2,3-sialyltransferase Cst-I and α2,6-sialyltransferase ST6GalNAc5. A unique aspect of the approach is that methyl-β-cyclodextrin-assisted enzymatic α2,6-sialylation of glycolipid substrate enables installment of the challenging internal α2,6-linked sialoside to synthesize DSGb5 glycosphingolipid. Surface plasmon resonance studies indicate that DSGb5 glycolipid exhibits better binding affinity for Siglec-7 than the oligosaccharide moiety of DSGb5. The binding results suggest that the ceramide moiety of DSGb5 facilitates its binding by presenting multivalent interactions of glycan epitope for the recognition of Siglec-7.
Collapse
Affiliation(s)
- Yating Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Mengkun Yan
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiwei Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Shasha Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yawen Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojia Xu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Ma
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing Wen
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Fu X, Gadi MR, Wang S, Han J, Liu D, Chen X, Yin J, Li L. General Tolerance of Galactosyltransferases toward UDP‐galactosamine Expands Their Synthetic Capability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuan Fu
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
- Center for Diagnostics & Therapeutics Georgia State University Atlanta GA 30303 USA
| | | | - Shuaishuai Wang
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Jinghua Han
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Ding Liu
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Xi Chen
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - Jun Yin
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
- Center for Diagnostics & Therapeutics Georgia State University Atlanta GA 30303 USA
| | - Lei Li
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| |
Collapse
|
6
|
Fu X, Gadi MR, Wang S, Han J, Liu D, Chen X, Yin J, Li L. General Tolerance of Galactosyltransferases toward UDP-galactosamine Expands Their Synthetic Capability. Angew Chem Int Ed Engl 2021; 60:26555-26560. [PMID: 34661966 PMCID: PMC8720041 DOI: 10.1002/anie.202112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/15/2022]
Abstract
Accessing large numbers of structurally diverse glycans and derivatives is essential to functional glycomics. We showed a general tolerance of galactosyltransferases toward uridine-diphosphate-galactosamine (UDP-GalN), which is not a commonly used sugar nucleotide donor. The property was harnessed to develop a two-step chemoenzymatic strategy for facile synthesis of novel and divergent N-acetylgalactosamine (GalNAc)-glycosides and derivatives in preparative scales. The discovery and the application of the new property of existing glycosyltransferases expand their catalytic capabilities in generating novel carbohydrate linkages, thus prompting the synthesis of diverse glycans and glycoconjugates for biological studies.
Collapse
Affiliation(s)
- Xuan Fu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jinghua Han
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
7
|
Zhai C, Zheng XJ, Song C, Ye XS. Synthesis and immunological evaluation of N-acyl modified Globo H derivatives as anticancer vaccine candidates. RSC Med Chem 2021; 12:1239-1243. [PMID: 34355188 PMCID: PMC8292959 DOI: 10.1039/d1md00067e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Globo H is a tumor-associated carbohydrate antigen (TACA), which serves as a valuable target for antitumor vaccine or cancer immunotherapies. However, most TACAs are T-cell-independent, and they cannot induce powerful immune response due to their poor immunogenicity. To address this problem, herein, several Globo H analogues with modification on the N-acyl group were prepared through a preactivation-based glycosylation strategy from the non-reducing end to the reducing end. These modified Globo H derivatives were then conjugated with carrier protein CRM197 to form glycoconjugates as anticancer vaccine candidates, which were used in combination with adjuvant glycolipid C34 for immunological studies. The immunological effects of these synthetic vaccine candidates were evaluated on Balb/c mice. The results showed that the fluorine-modified N-acyl Globo H conjugates can induce higher titers of IgG antibodies that can recognize the naturally occurring Globo H antigen on the surface of cancer cells and can eliminate cancer cells in the presence of a complement, indicating the potential of these synthetic glycoconjugates as anticancer vaccine candidates.
Collapse
Affiliation(s)
- Canjia Zhai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd No. 38 Beijing 100191 China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd No. 38 Beijing 100191 China
| | - Chengcheng Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd No. 38 Beijing 100191 China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd No. 38 Beijing 100191 China
| |
Collapse
|
8
|
Li Q, Jaiswal M, Rohokale RS, Guo Z. A Diversity-Oriented Strategy for Chemoenzymatic Synthesis of Glycosphingolipids and Related Derivatives. Org Lett 2020; 22:8245-8249. [PMID: 33074681 DOI: 10.1021/acs.orglett.0c02847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A diversity-oriented strategy combining enzymatic glycan assembly and on-site lipid remodeling via chemoselective cross-metathesis and N-acylation was developed for glycosphingolipid (GSL) synthesis starting from a common, simple glycoside. The strategy was verified with a series of natural GSLs and GSL derivatives and showed several advantages. Most notably, it enabled two-way diversification of the glycan and lipid, including introduction of designed molecular tags, to provide functionalized GSLs useful for biological studies and applications.
Collapse
Affiliation(s)
- Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Rajendra S Rohokale
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Feng Y, Wu J, Chen G, Chai Y. Fast and Low-Cost Purification Strategy for Oligosaccharide Synthesis Based on a Hop-On/Off Carrier. Org Lett 2020; 22:2564-2568. [PMID: 32181668 DOI: 10.1021/acs.orglett.0c00477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A feasible and convenient strategy for oligosaccharide synthesis, which realizes reaction in solution while product purification occurs only by solid-liquid filtration, has been developed. By using a hop-on/off carrier (polytetrafluoroethylene particle), rapid synthesis of tumor-associated antigen Globo-H hexasaccharide has been successfully achieved within 5 steps in 48% overall yield without any intermediate purification by column chromatography. Also, global deprotection, including the cleavage of the tag, proceeded simultaneously only by one-step hydrogenolysis.
Collapse
Affiliation(s)
- Yingle Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.,The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jingjing Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
10
|
Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20215263. [PMID: 31652818 PMCID: PMC6861944 DOI: 10.3390/ijms20215263] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Enzymes are nature’s catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.
Collapse
Affiliation(s)
- Luuk Mestrom
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marta Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Stefan R Marsden
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Isabel Bento
- EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany.
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland.
| | - Katarzyna Szymańska
- Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | | | - Dirk Tischler
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Rob Schoevaart
- ChiralVision, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
11
|
't Hart IME, Li T, Wolfert MA, Wang S, Moremen KW, Boons GJ. Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide. Org Biomol Chem 2019; 17:7304-7308. [PMID: 31339142 PMCID: PMC6852662 DOI: 10.1039/c9ob01368g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is often expressed by renal cell carcinomas. To investigate properties of DSGb5, we have prepared its oligosaccharide moiety by chemically synthesizing Gb5 which was enzymatically sialylated using the mammalian sialyltransferases ST3Gal1 and ST6GalNAc5. Glycan microarray binding studies indicate that Siglec-7 does not recognize DSGb5, and preferentially binds Neu5Acα(2,8)Neu5Ac containing glycans.
Collapse
Affiliation(s)
- Ingrid M E 't Hart
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Li PJ, Huang SY, Chiang PY, Fan CY, Guo LJ, Wu DY, Angata T, Lin CC. Chemoenzymatic Synthesis of DSGb5 and Sialylated Globo-series Glycans. Angew Chem Int Ed Engl 2019; 58:11273-11278. [PMID: 31140679 DOI: 10.1002/anie.201903943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Indexed: 12/26/2022]
Abstract
Sialic-acid-binding, immunoglobulin-type lectin-7 (Siglec-7) is present on the surface of natural killer cells. Siglec-7 shows preference for disialylated glycans, including α(2,8)-α(2,3)-disialic acids or internally branched α(2,6)-NeuAc, such as disialosylglobopentaose (DSGb5). Herein, DSGb5 was synthesized by a one-pot multiple enzyme method from Gb5 by α2,3-sialylation (with PmST1) followed by α2,6-sialylation (with Psp2,6ST) in 23 % overall yield. DSGb5 was also chemoenzymatically synthesized. The protection of the nonreducing-end galactose of Gb5 as 3,4-O-acetonide, 3,4-O-benzylidene, and 4,6-O-benzylidene derivatives provided DSGb5 in overall yields of 26 %, 12 %, and 19 %, respectively. Gb3, Gb4, and Gb5 were enzymatically sialylated to afford a range of globo-glycans. Surprisingly, DSGb5 shows a low affinity for Siglec-7 in a glycan microarray binding affinity assay. Among the synthesized globo-series glycans, α6α3DSGb4 shows the highest binding affinity for Siglec-7.
Collapse
Affiliation(s)
- Pei-Jhen Li
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Szu-Yu Huang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Pei-Yun Chiang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Chen-Yo Fan
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Li-Jhen Guo
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Dung-Yeh Wu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
13
|
Li P, Huang S, Chiang P, Fan C, Guo L, Wu D, Angata T, Lin C. Chemoenzymatic Synthesis of DSGb5 and Sialylated Globo‐series Glycans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pei‐Jhen Li
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Szu‐Yu Huang
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Pei‐Yun Chiang
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Chen‐Yo Fan
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Li‐Jhen Guo
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Dung‐Yeh Wu
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Takashi Angata
- Institute of Biological ChemistryAcademia Sinica 128, Sec. 2, Academia Rd. Nankang Taipei 11529 Taiwan
| | - Chun‐Cheng Lin
- Department of ChemistryNational Tsing Hua University 101, Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| |
Collapse
|
14
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
15
|
Tsering D, Chen C, Ye J, Han Z, Jing BQ, Liu XW, Chen X, Wang F, Ling P, Cao H. Enzymatic synthesis of human blood group P1 pentasaccharide antigen. Carbohydr Res 2016; 438:39-43. [PMID: 27960098 DOI: 10.1016/j.carres.2016.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
The enzymatic synthesis of biologically important and structurally unique human P1PK blood group type P1 pentasaccharide antigen is described. This synthesis features a three-step sequential one-pot multienzyme (OPME) glycosylation for the stepwise enzymatic chain elongation of readily available lactoside acceptor with cheap and commercially available galactose and N-acetylglucosamine as donor precursors. This enzymatic synthesis provides an operationally simple approach to access P1 pentasaccharide and its structurally related Gb3 and P1 trisaccharide epitopes.
Collapse
Affiliation(s)
- Dawa Tsering
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Congcong Chen
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jinfeng Ye
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Zhipeng Han
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Bai-Qian Jing
- Department of Pharmacy, Qilu Hospital, Shandong University, Jinan, 250012, China.
| | - Xian-Wei Liu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China; Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, Shandong University, Jinan, 250012, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China; State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China.
| |
Collapse
|
16
|
Yu H, Li Y, Zeng J, Thon V, Nguyen DM, Ly T, Kuang HY, Ngo A, Chen X. Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. J Org Chem 2016; 81:10809-10824. [PMID: 27736072 DOI: 10.1021/acs.joc.6b01905] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosphingolipids are a diverse family of biologically important glycolipids. In addition to variations on the lipid component, more than 300 glycosphingolipid glycans have been characterized. These glycans are directly involved in various molecular recognition events. Several naturally occurring sialic acid forms have been found in sialic acid-containing glycosphingolipids, namely gangliosides. However, ganglioside glycans containing less common sialic acid forms are currently not available. Herein, highly effective one-pot multienzyme (OPME) systems are used in sequential for high-yield and cost-effective production of glycosphingolipid glycans, including those containing different sialic acid forms such as N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn), and 8-O-methyl-N-acetylneuraminic acid (Neu5Ac8OMe). A library of 64 structurally distinct glycosphingolipid glycans belonging to ganglio-series, lacto-/neolacto-series, and globo-/isoglobo-series glycosphingolipid glycans is constructed. These glycans are essential standards and invaluable probes for bioassays and biomedical studies.
Collapse
Affiliation(s)
- Hai Yu
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Jie Zeng
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States.,School of Food Science, Henan Institute of Science and Technology , Xinxiang, Henan 453003, China
| | - Vireak Thon
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Dung M Nguyen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Thao Ly
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Hui Yu Kuang
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Alice Ngo
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
17
|
Li L, Liu Y, Li T, Wang W, Yu Z, Ma C, Qu J, Zhao W, Chen X, Wang PG. Efficient chemoenzymatic synthesis of novel galacto-N-biose derivatives and their sialylated forms. Chem Commun (Camb) 2015; 51:10310-3. [PMID: 26023910 PMCID: PMC4498953 DOI: 10.1039/c5cc03746h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Galacto-N-biose (GNB) derivatives were efficiently synthesized from galactose derivatives via a one-pot two-enzyme system containing two promiscuous enzymes from Bifidobacterium infantis: a galactokinase (BiGalK) and a d-galactosyl-β1-3-N-acetyl-d-hexosamine phosphorylase (BiGalHexNAcP). Mono-sialyl and di-sialyl galacto-N-biose derivatives were then prepared using a one-pot two-enzyme system containing a CMP-sialic acid synthetase and an α2-3-sialyltransferase or an α2-6-sialyltransferase.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yonghui Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Tiehai Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wenjun Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Zaikuan Yu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Cheng Ma
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Jingyao Qu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peng G Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
18
|
De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 2015; 33:288-302. [PMID: 25698505 DOI: 10.1016/j.biotechadv.2015.02.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 01/04/2023]
Abstract
Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.
Collapse
Affiliation(s)
- Frederik De Bruyn
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Joeri Beauprez
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Abstract
A derivative of the tumor-associated globo H antigen, a complex hexasaccharide, was synthesized by a convergent and efficient [3+2+1] strategy using various glycosylation methods. All glycosylation reactions afforded good to excellent yields and outstanding stereoselectivity, including the installation of cis α-linked D-galactose and L-fucose. The longest linear sequence for this synthesis was 11 steps from a galactose derivative 11 to give an overall yield of 2.6%. The synthetic target had a free and reactive amino group at the glycan reducing end, facilitating its conjugation with other molecules for various applications.
Collapse
Affiliation(s)
- Satadru S. Mandal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Guochao Liao
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Zhai Y, Han D, Pan Y, Wang S, Fang J, Wang P, Liu XW. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering. Enzyme Microb Technol 2014; 69:38-45. [PMID: 25640723 DOI: 10.1016/j.enzmictec.2014.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023]
Abstract
Guanosine 5'-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5'-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.
Collapse
Affiliation(s)
- Yafei Zhai
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Donglei Han
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Ying Pan
- The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Shuaishuai Wang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Peng Wang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xian-wei Liu
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China.
| |
Collapse
|
21
|
Lee HY, Chen CY, Tsai TI, Li ST, Lin KH, Cheng YY, Ren CT, Cheng TJR, Wu CY, Wong CH. Immunogenicity Study of Globo H Analogues with Modification at the Reducing or Nonreducing End of the Tumor Antigen. J Am Chem Soc 2014; 136:16844-53. [DOI: 10.1021/ja508040d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hsin-Yu Lee
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
- Department
of Chemistry, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 106, Taiwan
| | - Chien-Yu Chen
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Tsung-I Tsai
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shiou-Ting Li
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Kun-Hsien Lin
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chien-Tai Ren
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Ting-Jen R. Cheng
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
- Department
of Chemistry, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 106, Taiwan
| |
Collapse
|
22
|
Brockhausen I. Crossroads between Bacterial and Mammalian Glycosyltransferases. Front Immunol 2014; 5:492. [PMID: 25368613 PMCID: PMC4202792 DOI: 10.3389/fimmu.2014.00492] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022] Open
Abstract
Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, Queen's University , Kingston, ON , Canada ; Department of Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| |
Collapse
|
23
|
Li SP, Hsiao WC, Yu CC, Chien WT, Lin HJ, Huang LD, Lin CH, Wu WL, Wu SH, Lin CC. Characterization ofMeiothermus taiwanensisGalactokinase and its Use in the One-Pot Enzymatic Synthesis of Uridine Diphosphate-Galactose and the Chemoenzymatic Synthesis of the Carbohydrate Antigen Stage Specific Embryonic Antigen-3. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Tsai TI, Lee HY, Chang SH, Wang CH, Tu YC, Lin YC, Hwang DR, Wu CY, Wong CH. Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J Am Chem Soc 2013; 135:14831-9. [PMID: 24044869 DOI: 10.1021/ja4075584] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report here the development of chemoenzymatic methods for the large-scale synthesis of cancer-associated antigens globopentaose (Gb5), fucosyl-Gb5 (Globo H), and sialyl-Gb5 (SSEA4) by using overexpressed glycosyltransferases coupled with effective regeneration of sugar nucleotides, including UDP-Gal, UDP-GalNAc, GDP-Fuc, and CMP-Neu5Ac. The enzymes used in the synthesis were first identified from different species through comparative studies and then overexpressed in E. coli and isolated for synthesis. These methods provide multigram quantities of products in high yield with only two or three purification steps and are suitable for the evaluation and development of cancer vaccines and therapeutics.
Collapse
Affiliation(s)
- Tsung-I Tsai
- Genomics Research Center, Academia Sinica , No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yu H, Lau K, Li Y, Sugiarto G, Chen X. One-pot multienzyme synthesis of Lewis x and sialyl Lewis x antigens. ACTA ACUST UNITED AC 2012; 4:233-247. [PMID: 25000293 DOI: 10.1002/9780470559277.ch110277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
L-Fucose has been found abundantly in human milk oligosaccharides, bacterial lipopolysaccharides, glycolipids, and many N- and O-linked glycans produced by mammalian cells. Fucose-containing carbohydrates have important biological functions. Alterations in the expression of fucosylated oligosaccharides have been observed in several pathological processes such as cancer and atherosclerosis. Chemical formation of fucosidic bonds is challenging due to its acid lability. Enzymatic construction of fucosidic bonds by fucosyltransferases is highly efficient and selective but requires the expensive sugar nucleotide donor guanosine 5'- diphosphate-L-fucose (GDP-Fuc). Here, we describe a protocol for applying a one-pot three-enzyme system in synthesizing structurally defined fucose-containing oligosaccharides from free L-fucose. In this system, GDP-Fuc is generated from L-fucose, adenosine 5'-triphosphate (ATP), and guanosine 5'-triphosphate (GTP) by a bifunctional L-fucokinase/GDP-fucose pyrophosphorylase (FKP). An inorganic pyrophosphatase (PpA) is used to degrade the by-product pyrophosphate (PPi) to drive the reaction towards the formation of GDP-Fuc. In situ generated GDP-Fuc is then used by a suitable fucosyltransferase for the formation of fucosides. The three-enzyme reactions are carried out in one pot without the need for high cost sugar nucleotide or isolation of intermediates. The time for the synthesis is 4-24 hours. Purification and characterization of products can be completed in 2-3 days.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Kam Lau
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Yanhong Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Go Sugiarto
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
26
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
27
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
29
|
|
30
|
Yu H, Thon V, Lau K, Cai L, Chen Y, Mu S, Li Y, Wang PG, Chen X. Highly efficient chemoenzymatic synthesis of β1-3-linked galactosides. Chem Commun (Camb) 2010; 46:7507-9. [PMID: 20830443 DOI: 10.1039/c0cc02850a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel D-galactosyl-β1-3-N-acetyl-D-hexosamine phosphorylase cloned from Bifidobacterium infantis (BiGalHexNAcP) was used with a recombinant E. coli K-12 galactokinase (GalK) for efficient one-pot two-enzyme synthesis of T-antigens, galacto-N-biose (Galβ1-3GalNAc), lacto-N-biose (Galβ1-3GlcNAc), and their derivatives.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Muthana S, Cao H, Chen X. Recent progress in chemical and chemoenzymatic synthesis of carbohydrates. Curr Opin Chem Biol 2009; 13:573-81. [PMID: 19833544 DOI: 10.1016/j.cbpa.2009.09.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/28/2009] [Accepted: 09/05/2009] [Indexed: 12/12/2022]
Abstract
The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products.
Collapse
Affiliation(s)
- Saddam Muthana
- Department of Chemistry, One Shields Avenue, University of California, Davis, CA 95616, United States
| | | | | |
Collapse
|
32
|
Zhu J, Wan Q, Yang G, Ouerfelli O, Danishefsky SJ. Synthesis of Human Cancer Associated Globo-H (MBr1) Glycosylamino Acid: Some Mechanistic and Conformational Reinvestigations. HETEROCYCLES 2009; 79:441-449. [PMID: 21423783 PMCID: PMC3059307 DOI: 10.3987/com-08-s(d)82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synthesis of an extended globo-H (MBr1 antigen) in the form of a glycosylamino acid is reported. By careful NMR analysis, we found an interesting conformational "flip" on the E ring of some synthetic intermediates. An explanation offered for the successful [3+3] coupling of ABC acceptor 11 and DEF donor 10 possessing a C4 free hydroxyl to produce β-galactoside in azaglycosidations is reinforced.
Collapse
Affiliation(s)
- Jianglong Zhu
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Ave., New York, NY 10065
| | - Qian Wan
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Ave., New York, NY 10065
| | - Guangbin Yang
- Organic Synthesis Core Laboratory, Sloan-Kettering Institute for Cancer Research, 1275 York Ave., New York, NY 10065
| | - Ouathek Ouerfelli
- Organic Synthesis Core Laboratory, Sloan-Kettering Institute for Cancer Research, 1275 York Ave., New York, NY 10065
| | - Samuel J. Danishefsky
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Ave., New York, NY 10065
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027 (USA)
| |
Collapse
|
33
|
|
34
|
Stein D, Lin YN, Lin CH. Characterization ofHelicobacter pyloriα1,2-Fucosyltransferase for Enzymatic Synthesis of Tumor-Associated Antigens. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200800435] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Wang Z, Gilbert M, Eguchi H, Yu H, Cheng J, Muthana S, Zhou L, Wang PG, Chen X, Huang X. Chemoenzymatic Syntheses of Tumor-Associated Carbohydrate Antigen Globo-H and Stage-Specific Embryonic Antigen 4. Adv Synth Catal 2008; 350:1717-1728. [PMID: 20305750 PMCID: PMC2842016 DOI: 10.1002/adsc.200800129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gangliosides have attracted much attention due to their important biological properties. Herein, we report the first chemoenzymatic syntheses of two globo series of ganglioside oligosaccharides, Globo-H 1 and stage-specific embryonic antigen-4 (SSEA-4) 2. The common precursor SSEA-3 pentasaccharide for these two compounds was assembled rapidly using the pre-activation based one-pot glycosylation method. The stereoselectivity in forming the 1,2-cis linkage in SSEA-3 was attributed to a steric buttressing effect of the donor rather than electronic properties of the glycosyl donors. SSEA-3 was then successfully fucosylated by the fucosyltransferase WbsJ and sialylated by sialyltransferases CST-I and PmST1 producing Globo-H and SSEA-4 respectively.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, The University of Toledo, 2801 W. Bancroft Street, MS 602, Toledo, Ohio 43606 USA
| | - Michel Gilbert
- National Research Council Canada, Institute for Biological Sciences, Glycobiology Program, 100 Sussex Drive, Ottawa, ON K1A 0R6 Canada
| | - Hironobu Eguchi
- The Ohio State University, Departments of Biochemistry and Chemistry, 484 West 12th Avenue, Columbus, OH 43210 USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA USA
| | - Jiansong Cheng
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA USA
| | - Saddam Muthana
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA USA
| | - Luyuan Zhou
- Department of Chemistry, The University of Toledo, 2801 W. Bancroft Street, MS 602, Toledo, Ohio 43606 USA
| | - Peng George Wang
- The Ohio State University, Departments of Biochemistry and Chemistry, 484 West 12th Avenue, Columbus, OH 43210 USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA USA
| | - Xuefei Huang
- Department of Chemistry, The University of Toledo, 2801 W. Bancroft Street, MS 602, Toledo, Ohio 43606 USA
| |
Collapse
|