1
|
Nguyen TTD, Ho QT, Le NQK, Phan VD, Ou YY. Use Chou's 5-Steps Rule With Different Word Embedding Types to Boost Performance of Electron Transport Protein Prediction Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1235-1244. [PMID: 32750894 DOI: 10.1109/tcbb.2020.3010975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Living organisms receive necessary energy substances directly from cellular respiration. The completion of electron storage and transportation requires the process of cellular respiration with the aid of electron transport chains. Therefore, the work of deciphering electron transport proteins is inevitably needed. The identification of these proteins with high performance has a prompt dependence on the choice of methods for feature extraction and machine learning algorithm. In this study, protein sequences served as natural language sentences comprising words. The nominated word embedding-based feature sets, hinged on the word embedding modulation and protein motif frequencies, were useful for feature choosing. Five word embedding types and a variety of conjoint features were examined for such feature selection. The support vector machine algorithm consequentially was employed to perform classification. The performance statistics within the 5-fold cross-validation including average accuracy, specificity, sensitivity, as well as MCC rates surpass 0.95. Such metrics in the independent test are 96.82, 97.16, 95.76 percent, and 0.9, respectively. Compared to state-of-the-art predictors, the proposed method can generate more preferable performance above all metrics indicating the effectiveness of the proposed method in determining electron transport proteins. Furthermore, this study reveals insights about the applicability of various word embeddings for understanding surveyed sequences.
Collapse
|
2
|
Chou KC. An Insightful 10-year Recollection Since the Emergence of the 5-steps Rule. Curr Pharm Des 2020; 25:4223-4234. [PMID: 31782354 DOI: 10.2174/1381612825666191129164042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE One of the most challenging and also the most difficult problems is how to formulate a biological sequence with a vector but considerably keep its sequence order information. METHODS To address such a problem, the approach of Pseudo Amino Acid Components or PseAAC has been developed. RESULTS AND CONCLUSION It has become increasingly clear via the 10-year recollection that the aforementioned proposal has been indeed very powerful.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, Massachusetts 02478, United States.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Saikia S, Bordoloi M, Sarmah R. Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection. Curr Drug Targets 2020; 20:522-539. [PMID: 30394207 DOI: 10.2174/1389450120666181105152439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
The largest family of drug targets in clinical trials constitute of GPCRs (G-protein coupled receptors) which accounts for about 34% of FDA (Food and Drug Administration) approved drugs acting on 108 unique GPCRs. Factors such as readily identifiable conserved motif in structures, 127 orphan GPCRs despite various de-orphaning techniques, directed functional antibodies for validation as drug targets, etc. has widened their therapeutic windows. The availability of 44 crystal structures of unique receptors, unexplored non-olfactory GPCRs (encoded by 50% of the human genome) and 205 ligand receptor complexes now present a strong foundation for structure-based drug discovery and design. The growing impact of polypharmacology for complex diseases like schizophrenia, cancer etc. warrants the need for novel targets and considering the undiscriminating and selectivity of GPCRs, they can fulfill this purpose. Again, natural genetic variations within the human genome sometimes delude the therapeutic expectations of some drugs, resulting in medication response differences and ADRs (adverse drug reactions). Around ~30 billion US dollars are dumped annually for poor accounting of ADRs in the US alone. To curb such undesirable reactions, the knowledge of established and currently in clinical trials GPCRs families can offer huge understanding towards the drug designing prospects including "off-target" effects reducing economical resource and time. The druggability of GPCR protein families and critical roles played by them in complex diseases are explained. Class A, class B1, class C and class F are generally established family and GPCRs in phase I (19%), phase II(29%), phase III(52%) studies are also reviewed. From the phase I studies, frizzled receptors accounted for the highest in trial targets, neuropeptides in phase II and melanocortin in phase III studies. Also, the bioapplications for nanoparticles along with future prospects for both nanomedicine and GPCR drug industry are discussed. Further, the use of computational techniques and methods employed for different target validations are also reviewed along with their future potential for the GPCR based drug discovery.
Collapse
Affiliation(s)
- Surovi Saikia
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Manobjyoti Bordoloi
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Rajeev Sarmah
- Allied Health Sciences, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| |
Collapse
|
4
|
Hu Y, Lu Y, Wang S, Zhang M, Qu X, Niu B. Application of Machine Learning Approaches for the Design and Study of Anticancer Drugs. Curr Drug Targets 2020; 20:488-500. [PMID: 30091413 DOI: 10.2174/1389450119666180809122244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world's highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. OBJECTIVE In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. RESULTS Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. CONCLUSION This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.
Collapse
Affiliation(s)
- Yan Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yi Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shuo Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mengying Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, 530023,Nanning, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
|
6
|
Zheng L, Huang S, Mu N, Zhang H, Zhang J, Chang Y, Yang L, Zuo Y. RAACBook: a web server of reduced amino acid alphabet for sequence-dependent inference by using Chou's five-step rule. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5650975. [PMID: 31802128 PMCID: PMC6893003 DOI: 10.1093/database/baz131] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
By reducing amino acid alphabet, the protein complexity can be significantly simplified, which could improve computational efficiency, decrease information redundancy and reduce chance of overfitting. Although some reduced alphabets have been proposed, different classification rules could produce distinctive results for protein sequence analysis. Thus, it is urgent to construct a systematical frame for reduced alphabets. In this work, we constructed a comprehensive web server called RAACBook for protein sequence analysis and machine learning application by integrating reduction alphabets. The web server contains three parts: (i) 74 types of reduced amino acid alphabet were manually extracted to generate 673 reduced amino acid clusters (RAACs) for dealing with unique protein problems. It is easy for users to select desired RAACs from a multilayer browser tool. (ii) An online tool was developed to analyze primary sequence of protein. The tool could produce K-tuple reduced amino acid composition by defining three correlation parameters (K-tuple, g-gap, λ-correlation). The results are visualized as sequence alignment, mergence of RAA composition, feature distribution and logo of reduced sequence. (iii) The machine learning server is provided to train the model of protein classification based on K-tuple RAAC. The optimal model could be selected according to the evaluation indexes (ROC, AUC, MCC, etc.). In conclusion, RAACBook presents a powerful and user-friendly service in protein sequence analysis and computational proteomics. RAACBook can be freely available at http://bioinfor.imu.edu.cn/raacbook. Database URL: http://bioinfor.imu.edu.cn/raacbook
Collapse
Affiliation(s)
- Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Shenghui Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Nengjiang Mu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Haoyue Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Jiayu Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Yu Chang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Baojian Road No.157, Harbin 150081, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| |
Collapse
|
7
|
Zhou GP, Liao SM, Chen D, Huang RB. The Cooperative Effect between Polybasic Region (PBR) and Polysialyltransferase Domain (PSTD) within Tumor-Target Polysialyltranseferase ST8Sia II. Curr Top Med Chem 2020; 19:2831-2841. [PMID: 31755393 DOI: 10.2174/1568026619666191121145924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/29/2022]
Abstract
ST8Sia II (STX) is a highly homologous mammalian polysialyltransferase (polyST), which is a validated tumor-target in the treatment of cancer metastasis reliant on tumor cell polysialylation. PolyST catalyzes the synthesis of α2,8-polysialic acid (polySia) glycans by carrying out the activated CMP-Neu5Ac (Sia) to N- and O-linked oligosaccharide chains on acceptor glycoproteins. In this review article, we summarized the recent studies about intrinsic correlation of two polybasic domains, Polysialyltransferase domain (PSTD) and Polybasic region (PBR) within ST8Sia II molecule, and suggested that the critical amino acid residues within the PSTD and PBR motifs of ST8Sia II for polysialylation of Neural cell adhesion molecules (NCAM) are related to ST8Sia II activity. In addition, the conformational changes of the PSTD domain due to point mutations in the PBR or PSTD domain verified an intramolecular interaction between the PBR and the PSTD. These findings have been incorporated into Zhou's NCAM polysialylation/cell migration model, which will provide new perspectives on drug research and development related to the tumor-target ST8Sia II.
Collapse
Affiliation(s)
- Guo-Ping Zhou
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.,Gordon Life Science Institute, NC 27804, United States
| | - Si-Ming Liao
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Dong Chen
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Ri-Bo Huang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| |
Collapse
|
8
|
Zheng H, Yang H, Gong D, Mai L, Qiu X, Chen L, Su X, Wei R, Zeng Z. Progress in the Mechanism and Clinical Application of Cilostazol. Curr Top Med Chem 2020; 19:2919-2936. [PMID: 31763974 DOI: 10.2174/1568026619666191122123855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Cilostazol is a unique platelet inhibitor that has been used clinically for more than 20 years. As a phosphodiesterase type III inhibitor, cilostazol is capable of reversible inhibition of platelet aggregation and vasodilation, has antiproliferative effects, and is widely used in the treatment of peripheral arterial disease, cerebrovascular disease, percutaneous coronary intervention, etc. This article briefly reviews the pharmacological mechanisms and clinical application of cilostazol.
Collapse
Affiliation(s)
- Huilei Zheng
- Department of Medical Examination & Health Management, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Hua Yang
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Department of Critical Care Medicine, Second People's Hospital of Nanning, Nanning, Guangxi, China
| | - Danping Gong
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Cardiology Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lanxian Mai
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Disciplinary Construction Office, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoling Qiu
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Lidai Chen
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Xiaozhou Su
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China
| | - Ruoqi Wei
- Department of Computer Science and Engineering, University of Bridgeport,126 Park Ave, BRIDGEPORT, CT 06604, United States
| | - Zhiyu Zeng
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention,Nanning, Guangxi, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, China.,Elderly Cardiology Ward, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Lu B, Liu XH, Liao SM, Lu ZL, Chen D, Troy Ii FA, Huang RB, Zhou GP. A Possible Modulation Mechanism of Intramolecular and Intermolecular Interactions for NCAM Polysialylation and Cell Migration. Curr Top Med Chem 2019; 19:2271-2282. [PMID: 31648641 DOI: 10.2174/1568026619666191018094805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.
Collapse
Affiliation(s)
- Bo Lu
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Ming Liao
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Zhi-Long Lu
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Dong Chen
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Frederic A Troy Ii
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA, 95817, United States
| | - Ri-Bo Huang
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.,Life Science and Biotechnology College, Guangxi University, Nanning, Guangxi 530004, China
| | - Guo-Ping Zhou
- The National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
10
|
Chou KC. Impacts of Pseudo Amino Acid Components and 5-steps Rule to Proteomics and Proteome Analysis. Curr Top Med Chem 2019; 19:2283-2300. [DOI: 10.2174/1568026619666191018100141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 01/27/2023]
Abstract
Stimulated by the 5-steps rule during the last decade or so, computational proteomics has achieved remarkable progresses in the following three areas: (1) protein structural class prediction; (2) protein subcellular location prediction; (3) post-translational modification (PTM) site prediction. The results obtained by these predictions are very useful not only for an in-depth study of the functions of proteins and their biological processes in a cell, but also for developing novel drugs against major diseases such as cancers, Alzheimer’s, and Parkinson’s. Moreover, since the targets to be predicted may have the multi-label feature, two sets of metrics are introduced: one is for inspecting the global prediction quality, while the other for the local prediction quality. All the predictors covered in this review have a userfriendly web-server, through which the majority of experimental scientists can easily obtain their desired data without the need to go through the complicated mathematics.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
11
|
Behbahani M, Nosrati M, Moradi M, Mohabatkar H. Using Chou's General Pseudo Amino Acid Composition to Classify Laccases from Bacterial and Fungal Sources via Chou's Five-Step Rule. Appl Biochem Biotechnol 2019; 190:1035-1048. [PMID: 31659712 DOI: 10.1007/s12010-019-03141-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/12/2019] [Indexed: 01/28/2023]
Abstract
Laccases are a group of enzymes with a critical activity in the degradation process of both phenolic and non-phenolic compounds. These enzymes present in a diverse array of species, including fungi and bacteria. Since this enzyme is in the market for different usages from industry to medicine, having a better knowledge of its structures and properties from diverse sources will be useful to select the most appropriate candidate for different purposes. In the current study, sequence- and structure-based characteristics of these enzymes from fungi and bacteria, including pseudo amino acid composition (PseAAC), physicochemical characteristics, and their secondary structures, are being compared and classified. Autodock 4 software was used for docking analysis between these laccases and some phenolic and non-phenolic compounds. The results indicated that features including molecular weight, aliphatic, extinction coefficient, and random coil percentage of these protein groups present high degrees of diversity in most cases. Categorization of these enzymes by the notion of PseAAC, showed over 96% accuracy. The binding free energy between fungal laccases and their substrates showed to be considerably higher than those of bacterial ones. According to the outcomes of the current study, data mining methods by using different machine learning algorithms, especially neural networks, could provide valuable information for a fair comparison between fungal and bacterial laccases. These results also suggested an association between efficacy and physicochemical features of laccase enzymes from different sources.
Collapse
Affiliation(s)
- Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mokhtar Nosrati
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Moradi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
12
|
Xie NZ, Li JX, Huang RB. Biological Production of (S)-acetoin: A State-of-the-Art Review. Curr Top Med Chem 2019; 19:2348-2356. [PMID: 31648637 DOI: 10.2174/1568026619666191018111424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022]
Abstract
Acetoin is an important four-carbon compound that has many applications in foods, chemical synthesis, cosmetics, cigarettes, soaps, and detergents. Its stereoisomer (S)-acetoin, a high-value chiral compound, can also be used to synthesize optically active drugs, which could enhance targeting properties and reduce side effects. Recently, considerable progress has been made in the development of biotechnological routes for (S)-acetoin production. In this review, various strategies for biological (S)- acetoin production are summarized, and their constraints and possible solutions are described. Furthermore, future prospects of biological production of (S)-acetoin are discussed.
Collapse
Affiliation(s)
- Neng-Zhong Xie
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Jian-Xiu Li
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Ri-Bo Huang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| |
Collapse
|
13
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
14
|
Liang R, Xie J, Zhang C, Zhang M, Huang H, Huo H, Cao X, Niu B. Identifying Cancer Targets Based on Machine Learning Methods via Chou's 5-steps Rule and General Pseudo Components. Curr Top Med Chem 2019; 19:2301-2317. [PMID: 31622219 DOI: 10.2174/1568026619666191016155543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
Abstract
In recent years, the successful implementation of human genome project has made people realize that genetic, environmental and lifestyle factors should be combined together to study cancer due to the complexity and various forms of the disease. The increasing availability and growth rate of 'big data' derived from various omics, opens a new window for study and therapy of cancer. In this paper, we will introduce the application of machine learning methods in handling cancer big data including the use of artificial neural networks, support vector machines, ensemble learning and naïve Bayes classifiers.
Collapse
Affiliation(s)
- Ruirui Liang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiayang Xie
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Chi Zhang
- Foshan Huaxia Eye Hospital, Huaxia Eye Hospital Group, Foshan 528000, China
| | - Mengying Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hai Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xin Cao
- Zhongshan Hospital, Institute of Clinical Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
15
|
Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule. Biophys Chem 2019; 253:106227. [DOI: 10.1016/j.bpc.2019.106227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
|
16
|
|
17
|
Liao SM, Shen NK, Liang G, Lu B, Lu ZL, Peng LX, Zhou F, Du LQ, Wei YT, Zhou GP, Huang RB. Inhibition of α-amylase Activity by Zn2+: Insights from Spectroscopy and Molecular Dynamics Simulations. Med Chem 2019; 15:510-520. [DOI: 10.2174/1573406415666181217114101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 02/08/2023]
Abstract
Background:Inhibition of α-amylase activity is an important strategy in the treatment of diabetes mellitus. An important treatment for diabetes mellitus is to reduce the digestion of carbohydrates and blood glucose concentrations. Inhibiting the activity of carbohydrate-degrading enzymes such as α-amylase and glucosidase significantly decreases the blood glucose level. Most inhibitors of α-amylase have serious adverse effects, and the α-amylase inactivation mechanisms for the design of safer inhibitors are yet to be revealed.Objective:In this study, we focused on the inhibitory effect of Zn2+ on the structure and dynamic characteristics of α-amylase from Anoxybacillus sp. GXS-BL (AGXA), which shares the same catalytic residues and similar structures as human pancreatic and salivary α-amylase (HPA and HSA, respectively).Methods:Circular dichroism (CD) spectra of the protein (AGXA) in the absence and presence of Zn2+ were recorded on a Chirascan instrument. The content of different secondary structures of AGXA in the absence and presence of Zn2+ was analyzed using the online SELCON3 program. An AGXA amino acid sequence similarity search was performed on the BLAST online server to find the most similar protein sequence to use as a template for homology modeling. The pocket volume measurer (POVME) program 3.0 was applied to calculate the active site pocket shape and volume, and molecular dynamics simulations were performed with the Amber14 software package.Results:According to circular dichroism experiments, upon Zn2+ binding, the protein secondary structure changed obviously, with the α-helix content decreasing and β-sheet, β-turn and randomcoil content increasing. The structural model of AGXA showed that His217 was near the active site pocket and that Phe178 was at the outer rim of the pocket. Based on the molecular dynamics trajectories, in the free AGXA model, the dihedral angle of C-CA-CB-CG displayed both acute and planar orientations, which corresponded to the open and closed states of the active site pocket, respectively. In the AGXA-Zn model, the dihedral angle of C-CA-CB-CG only showed the planar orientation. As Zn2+ was introduced, the metal center formed a coordination interaction with H217, a cation-π interaction with W244, a coordination interaction with E242 and a cation-π interaction with F178, which prevented F178 from easily rotating to the open state and inhibited the activity of the enzyme.Conclusion:This research may have uncovered a subtle mechanism for inhibiting the activity of α-amylase with transition metal ions, and this finding will help to design more potent and specific inhibitors of α-amylases.
Collapse
Affiliation(s)
- Si-Ming Liao
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Nai-Kun Shen
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, 530008, China
| | - Ge Liang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Bo Lu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Zhi-Long Lu
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Li-Xin Peng
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Feng Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Li-Qin Du
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu-Tuo Wei
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guo-Ping Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Ri-Bo Huang
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
18
|
Identification and characterization of WD40 superfamily genes in peach. Gene 2019; 710:291-306. [PMID: 31185283 DOI: 10.1016/j.gene.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023]
Abstract
The WD40 transcription factor family is a superfamily found in all eukaryotes that plays important roles in regulating growth and development. To our knowledge, to date, WD40 superfamily genes have been identified and characterized in several plant species, but little information is available on the WD40 superfamily genes in peach. In this study, we identified 220 members of the WD40 superfamily in the peach genome, and these members were further classified into five subfamilies based on phylogenetic comparison with those in Arabidopsis. The members within each subfamily had conserved motifs and gene structures. The WD40 genes were unevenly distributed on chromosomes 1 to 8 of the peach genome. Additionally, 58 pairs of paralog WD40 members were found on eight chromosomes in peach, and 242 pairs of orthologous WD40 genes in peach and Arabidopsis were matched. The 54 selected putative WD40 genes in peach had diverse expression patterns in red-fleshed and white-fleshed peach fruits at five developmental stages. Prupe.6G211800.1 was located only on the cytomembrane, while Prupe.1G428200.1 and Prupe.I003200.1 were located on both the cytomembrane and in the nucleus; Prupe.1G558700.1 was densely localized around the nuclear rim but relatively faintly localized in the nucleoplasm; Prupe.5G116300.1 was located in the nucleus and cytomembrane with strong signals but showed weak signals in the cytoplasm; and Prupe.8G212400.1 and Prupe.1G053600.1 were located mainly in the nuclear envelope and cytomembrane but relatively faintly in the nucleoplasm. This study provides a foundation for the further functional verification of WD40 genes in peach.
Collapse
|
19
|
The preliminary efficacy evaluation of the CTLA-4-Ig treatment against Lupus nephritis through in-silico analyses. J Theor Biol 2019; 471:74-81. [DOI: 10.1016/j.jtbi.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/22/2019] [Indexed: 01/04/2023]
|
20
|
Pan Q, Guo Y, Guo L, Liao S, Zhao C, Wang S, Liu HF. Mechanistic Insights of Chemicals and Drugs as Risk Factors for Systemic Lupus Erythematosus. Curr Med Chem 2019; 27:5175-5188. [PMID: 30947650 DOI: 10.2174/0929867326666190404140658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic and relapsing heterogenous autoimmune disease that primarily affects women of reproductive age. Genetic and environmental risk factors are involved in the pathogenesis of SLE, and susceptibility genes have recently been identified. However, as gene therapy is far from clinical application, further investigation of environmental risk factors could reveal important therapeutic approaches. We systematically explored two groups of environmental risk factors: chemicals (including silica, solvents, pesticides, hydrocarbons, heavy metals, and particulate matter) and drugs (including procainamide, hydralazine, quinidine, Dpenicillamine, isoniazid, and methyldopa). Furthermore, the mechanisms underlying risk factors, such as genetic factors, epigenetic change, and disrupted immune tolerance, were explored. This review identifies novel risk factors and their underlying mechanisms. Practicable measures for the management of these risk factors will benefit SLE patients and provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Yun Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Linjie Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Sijie Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
21
|
Han Q, Yang C, Lu J, Zhang Y, Li J. Metabolism of Oxalate in Humans: A Potential Role Kynurenine Aminotransferase/Glutamine Transaminase/Cysteine Conjugate Beta-lyase Plays in Hyperoxaluria. Curr Med Chem 2019; 26:4944-4963. [PMID: 30907303 DOI: 10.2174/0929867326666190325095223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
Hyperoxaluria, excessive urinary oxalate excretion, is a significant health problem worldwide. Disrupted oxalate metabolism has been implicated in hyperoxaluria and accordingly, an enzymatic disturbance in oxalate biosynthesis can result in the primary hyperoxaluria. Alanine glyoxylate aminotransferase-1 and glyoxylate reductase, the enzymes involving glyoxylate (precursor for oxalate) metabolism, have been related to primary hyperoxalurias. Some studies suggest that other enzymes such as glycolate oxidase and alanine glyoxylate aminotransferase-2 might be associated with primary hyperoxaluria as well, but evidence of a definitive link is not strong between the clinical cases and gene mutations. There are still some idiopathic hyperoxalurias, which require a further study for the etiologies. Some aminotransferases, particularly kynurenine aminotransferases, can convert glyoxylate to glycine. Based on biochemical and structural characteristics, expression level, subcellular localization of some aminotransferases, a number of them appear able to catalyze the transamination of glyoxylate to glycine more efficiently than alanine glyoxylate aminotransferase-1. The aim of this minireview is to explore other undermining causes of primary hyperoxaluria and stimulate research toward achieving a comprehensive understanding of underlying mechanisms leading to the disease. Herein, we reviewed all aminotransferases in the liver for their functions in glyoxylate metabolism. Particularly, kynurenine aminotransferase-I and III were carefully discussed regarding their biochemical and structural characteristics, cellular localization, and enzyme inhibition. Kynurenine aminotransferase-III is, so far, the most efficient putative mitochondrial enzyme to transaminate glyoxylate to glycine in mammalian livers, might be an interesting enzyme to look over in hyperoxaluria etiology of primary hyperoxaluria and should be carefully investigated for its involvement in oxalate metabolism.
Collapse
Affiliation(s)
- Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228. China
| | - Cihan Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228. China
| | - Jun Lu
- Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208. China
| | - Yinai Zhang
- Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208. China
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
22
|
Ghosh A, Yan H. Hydrogen bond analysis of the EGFR-ErbB3 heterodimer related to non-small cell lung cancer and drug resistance. J Theor Biol 2018; 464:63-71. [PMID: 30593826 DOI: 10.1016/j.jtbi.2018.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
Abstract
Lung cancer is the predominant cause of cancer deaths on a worldwide scale. A mutation in the epidermal growth factor receptor (EGFR) can cause non-small cell lung cancer (NSCLC). The L858R one-point mutation in exon 21 in EGFR is the most prevalent in NSCLC. For over 60% of EGFR-muted NSCLC, another mutation T790M can cause drug resistance. In this paper, we consider EGFR and ErbB3 heterodimers involving three structures of EGFR, wild-type, with L858R mutation, and with L858R and T790M mutations. We perform molecular dynamics (MD) simulations to analyze hydrogen bonds in all three instances. The hydrogen bonds contribute to the conformational stability of the protein and molecular recognition. Several other parameters are also investigated in the present study, which reveals significant changes in the dimer at different levels of mutation. The knowledge and results obtained from this study lead to useful insight into the mechanism of NSCLC drug resistance.
Collapse
Affiliation(s)
- Avirup Ghosh
- Department of Electronics Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| | - Hong Yan
- Department of Electronics Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
23
|
Chen W, Liang X, Nong Z, Li Y, Pan X, Chen C, Huang L. The Multiple Applications and Possible Mechanisms of the Hyperbaric Oxygenation Therapy. Med Chem 2018; 15:459-471. [PMID: 30569869 DOI: 10.2174/1573406415666181219101328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Hyperbaric Oxygenation Therapy (HBOT) is used as an adjunctive method for multiple diseases. The method meets the routine treating and is non-invasive, as well as provides 100% pure oxygen (O2), which is at above-normal atmospheric pressure in a specialized chamber. It is well known that in the condition of O2 deficiency, it will induce a series of adverse events. In order to prevent the injury induced by anoxia, the capability of offering pressurized O2 by HBOT seems involuntary and significant. In recent years, HBOT displays particular therapeutic efficacy in some degree, and it is thought to be beneficial to the conditions of angiogenesis, tissue ischemia and hypoxia, nerve system disease, diabetic complications, malignancies, Carbon monoxide (CO) poisoning and chronic radiation-induced injury. Single and combination HBOT are both applied in previous studies, and the manuscript is to review the current applications and possible mechanisms of HBOT. The applicability and validity of HBOT for clinical treatment remain controversial, even though it is regarded as an adjunct to conventional medical treatment with many other clinical benefits. There also exists a negative side effect of accepting pressurized O2, such as oxidative stress injury, DNA damage, cellular metabolic, activating of coagulation, endothelial dysfunction, acute neurotoxicity and pulmonary toxicity. Then it is imperative to comprehensively consider the advantages and disadvantages of HBOT in order to obtain a satisfying therapeutic outcome.
Collapse
Affiliation(s)
- Wan Chen
- Department of Emergency, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Xingmei Liang
- Department of Pharmacy, Guangxi Medical College, Nanning, Guangxi 530021, China
| | - Zhihuan Nong
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning 530022, China
| | - Yaoxuan Li
- Department of Neurology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530022, China
| | - Xiaorong Pan
- Department of Hyperbaric oxygen, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Chunxia Chen
- Department of Hyperbaric oxygen, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Luying Huang
- Department of Respiratory Medicine, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| |
Collapse
|
24
|
Sankari ES, Manimegalai D. Predicting membrane protein types by incorporating a novel feature set into Chou's general PseAAC. J Theor Biol 2018; 455:319-328. [DOI: 10.1016/j.jtbi.2018.07.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/27/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
25
|
Sankari ES, Manimegalai D. Predicting membrane protein types using various decision tree classifiers based on various modes of general PseAAC for imbalanced datasets. J Theor Biol 2017; 435:208-217. [PMID: 28941868 DOI: 10.1016/j.jtbi.2017.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier.
Collapse
Affiliation(s)
- E Siva Sankari
- Department of CSE, Government College of Engineering, Tirunelveli, Tamil Nadu, India.
| | - D Manimegalai
- Department of IT, National Engineering College, Kovilpatti, Tamil Nadu, India.
| |
Collapse
|
26
|
Zhang Q, Wang C, Wan M, Wu Y, Ma Q. Streptococcus pneumoniae Genome-wide Identification and Characterization of BOX Element-binding Domains. Mol Inform 2016; 34:742-52. [PMID: 27491035 DOI: 10.1002/minf.201500044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Indexed: 11/11/2022]
Abstract
The BOX elements are short repetitive DNA sequences that distribute randomly in intergenic regions of the Streptococcus pneumoniae genome. The function and origin of such elements are still unknown, but they were found to modulate expression of neighboring genes. Evidences suggested that the modulation's mechanism can be fulfilled by sequence-specific interaction of BOX elements with transcription factor family proteins. However, the type and function of these BOX-binding proteins still remain largely unexplored to date. In the current study we described a synthetic protocol to investigate the recognition and interaction between a highly conserved site of BOX elements and the DNA-binding domains of a variety of putative transcription factors in the pneumococcal genome. With the protocol we were able to predict those high-affinity domain binders of the conserved BOX DNA site (BOX DNA) in a high-throughput manner, and analyzed sequence-specific interaction in the domainDNA recognition at molecular level. Consequently, a number of putative transcription factor domains with both high affinity and specificity for the BOX DNA were identified, from which the helix-turn-helix (HTH) motif of a small heat shock factor was selected as a case study and tested for its binding capability toward the double-stranded BOX DNA using fluorescence anisotropy analysis. As might be expected, a relatively high affinity was detected for the interaction of HTH motif with BOX DNA with dissociation constant at nanomolar level. Molecular dynamics simulation, atomic structure examination and binding energy analysis revealed a complicated network of intensive nonbonded interactions across the complex interface, which confers both stability and specificity for the complex architecture.
Collapse
Affiliation(s)
- Qiao Zhang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Changzheng Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Min Wan
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yin Wu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qianli Ma
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
27
|
Identifying key interactions stabilizing DOF zinc finger-DNA complexes using in silico approaches. J Theor Biol 2015; 382:150-9. [PMID: 26092376 DOI: 10.1016/j.jtbi.2015.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/09/2015] [Accepted: 06/06/2015] [Indexed: 11/21/2022]
Abstract
DOF (DNA-binding with one finger) proteins, a family of DNA-binding transcription factors, are members of zinc fingers unique to plants. They are associated with different plant specific phenomena including germination, dormancy, light and defense responses. Until now, there is no report of experimentally solved structure for DOF proteins, making empirical investigation of DOF-DNA interaction more challenging. It has been shown that comparative modeling can be used to reliably predict the three-dimensional (3D) model of structurally unknown proteins whenever a suitable template is available. Furthermore, current molecular mechanics force fields allow prediction of interaction energies for macromolecular complexes. Therefore, the approaches considered in this work were to model the 3D structures of DOF zinc fingers (ZFs) from Arabidopsis thaliana complexed with DNA molecule, to calculate their binding energies, to identify key interactions established between ZFs and DNA, and to determine the impact of the different interactions on the binding energies. The results were used to predict the binding affinities for the novel designed ZFs and may be used in engineering DNA binding proteins.
Collapse
|
28
|
Xiao X, Min JL, Lin WZ, Liu Z, Cheng X, Chou KC. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J Biomol Struct Dyn 2015; 33:2221-33. [DOI: 10.1080/07391102.2014.998710] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xuan Xiao
- Computer Department, Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333046, China
- Information School, ZheJiang Textile & Fashion College , NingBo 315211, China
- Gordon Life Science Institute , 53 South Cottage Road, Boston 02478, MA, USA
| | - Jian-Liang Min
- Computer Department, Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333046, China
| | - Wei-Zhong Lin
- Computer Department, Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333046, China
| | - Zi Liu
- Computer Department, Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333046, China
| | - Xiang Cheng
- Computer Department, Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333046, China
| | - Kuo-Chen Chou
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University , JeddaH 21589, Saudi Arabia
- Gordon Life Science Institute , 53 South Cottage Road, Boston 02478, MA, USA
| |
Collapse
|
29
|
Fan YN, Xiao X, Min JL, Chou KC. iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking. Int J Mol Sci 2014; 15:4915-37. [PMID: 24651462 PMCID: PMC3975431 DOI: 10.3390/ijms15034915] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptors (NRs) are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called “iNR-Drug” was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional) vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine) algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well.
Collapse
Affiliation(s)
- Yue-Nong Fan
- Computer Department, Jing-De-Zhen Ceramic Institute, Jingdezhen 333046, Jiangxi, China.
| | - Xuan Xiao
- Computer Department, Jing-De-Zhen Ceramic Institute, Jingdezhen 333046, Jiangxi, China.
| | - Jian-Liang Min
- Computer Department, Jing-De-Zhen Ceramic Institute, Jingdezhen 333046, Jiangxi, China.
| | - Kuo-Chen Chou
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
30
|
Xiao X, Min JL, Wang P, Chou KC. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One 2013; 8:e72234. [PMID: 24015221 PMCID: PMC3754978 DOI: 10.1371/journal.pone.0072234] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Involved in many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, G-protein-coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. It is time-consuming and expensive to determine whether a drug and a GPCR are to interact with each other in a cellular network purely by means of experimental techniques. Although some computational methods were developed in this regard based on the knowledge of the 3D (dimensional) structure of protein, unfortunately their usage is quite limited because the 3D structures for most GPCRs are still unknown. To overcome the situation, a sequence-based classifier, called "iGPCR-drug", was developed to predict the interactions between GPCRs and drugs in cellular networking. In the predictor, the drug compound is formulated by a 2D (dimensional) fingerprint via a 256D vector, GPCR by the PseAAC (pseudo amino acid composition) generated with the grey model theory, and the prediction engine is operated by the fuzzy K-nearest neighbour algorithm. Moreover, a user-friendly web-server for iGPCR-drug was established at http://www.jci-bioinfo.cn/iGPCR-Drug/. For the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated math equations presented in this paper just for its integrity. The overall success rate achieved by iGPCR-drug via the jackknife test was 85.5%, which is remarkably higher than the rate by the existing peer method developed in 2010 although no web server was ever established for it. It is anticipated that iGPCR-Drug may become a useful high throughput tool for both basic research and drug development, and that the approach presented here can also be extended to study other drug - target interaction networks.
Collapse
Affiliation(s)
- Xuan Xiao
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, China
- Information School, ZheJiang Textile and Fashion College, NingBo, China
- Gordon Life Science Institute, Belmont, Massachusetts, United States of America
| | - Jian-Liang Min
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, China
| | - Pu Wang
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, China
| | - Kuo-Chen Chou
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Gordon Life Science Institute, Belmont, Massachusetts, United States of America
| |
Collapse
|
31
|
Du QS, Wang SQ, Huang RB, Chou KC. Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2009.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Wang JF, Wei DQ, Chou KC. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus. Biochem Biophys Res Commun 2009; 388:413-7. [PMID: 19665993 DOI: 10.1016/j.bbrc.2009.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/28/2022]
Abstract
The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.
Collapse
Affiliation(s)
- Jing-Fang Wang
- College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | |
Collapse
|
33
|
Wang SQ, Du QS, Huang RB, Zhang DW, Chou KC. Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem Biophys Res Commun 2009; 386:432-6. [PMID: 19523442 DOI: 10.1016/j.bbrc.2009.06.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 06/05/2009] [Indexed: 11/17/2022]
Affiliation(s)
- Shu-Qing Wang
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | | | | | | | | |
Collapse
|
34
|
Pérez-Montoto LG, Dea-Ayuela MA, Prado-Prado FJ, Bolas-Fernández F, Ubeira FM, González-Díaz H. Study of peptide fingerprints of parasite proteins and drug-DNA interactions with Markov-Mean-Energy invariants of biopolymer molecular-dynamic lattice networks. POLYMER 2009; 50:3857-3870. [PMID: 32287404 PMCID: PMC7111648 DOI: 10.1016/j.polymer.2009.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 11/26/2022]
Abstract
Since the advent of Molecular Dynamics (MD) in biopolymers science with the study by Karplus et al. on protein dynamics, MD has become the by foremost well established, computational technique to investigate structure and function of biomolecules and their respective complexes and interactions. The analysis of the MD trajectories (MDTs) remains, however, the greatest challenge and requires a great deal of insight, experience, and effort. Here, we introduce a new class of invariants for MDTs based on the spatial distribution of Mean-Energy values ξk (L) on a 2D Euclidean space representation of the MDTs. The procedure forces one MD trajectory to fold into a 2D Cartesian coordinates system using a step-by-step procedure driven by simple rules. The ξk (L) values are invariants of a Markov matrix (1 Π), which describes the probabilities of transition between two states in the new 2D space; which is associated to a graph representation of MDTs similar to the lattice networks (LNs) of DNA and protein sequences. We also introduce a new algorithm to perform phylogenetic analysis of peptides based on MDTs instead of the sequence of the polypeptide. In a first experiment, we illustrate this algorithm for 35 peptides present on the Peptide Mass Fingerprint (PMF) of a new protein of Leishmania infantum studied in this work. We report, by the first time, 2D Electrophoresis isolation, MALDI TOF Mass Spectroscopy characterization, and MASCOT search results for this PMF. In a second experiment, we construct the LNs for 422 MDTs obtained in DNA-Drug Docking simulations of the interaction of 57 anticancer furocoumarins with a DNA oligonucleotide. We calculated the respective ξk (L) values for all these LNs and used them as inputs to train a new classifier with Accuracy = 85.44% and 84.91% in training and validation respectively. The new model can be used as scoring function to guide DNA-Drug Docking studies in drug design of new coumarins for PUVA therapy. The new phylogenetics analysis algorithms encode information different from sequence similarity and may be used to analyze MDTs obtained in Docking or modeling experiments for any classes of biopolymers. The work opens new perspective on the analysis and applications of MD in polymer sciences.
Collapse
Affiliation(s)
- Lázaro Guillermo Pérez-Montoto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Auxiliadora Dea-Ayuela
- Departamento de Atención Sanitaria, Salud Pública y Sanidad Animal, Facultad CC Experimentales y de La Salud, Universidad CEU Cardenal Herrera, 46113 Moncada (Valencia), Spain
| | - Francisco J Prado-Prado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Florencio M Ubeira
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Humberto González-Díaz
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
35
|
Rosandić M, Glunčić M, Paar V, Basar I. The role of alphoid higher order repeats (HORs) in the centromere folding. J Theor Biol 2008; 254:555-60. [DOI: 10.1016/j.jtbi.2008.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 05/13/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
|
36
|
Ababneh AM, Ababneh ZQ, Large CC. DNA A-tracts bending: polarization effects on electrostatic interactions across their minor groove. J Theor Biol 2008; 252:742-9. [PMID: 18396297 DOI: 10.1016/j.jtbi.2008.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Bending by the DNA A-tracts constitutes a contentious issue, suggesting deficiencies in the physics employed so far. Here, we inquire as to the importance in this bending of many-body polarization effects on the electrostatic interactions across their narrow minor groove. We have done this on the basis of the findings of Jarque and Buckingham who developed a procedure based on a Monte Carlo simulation for two charges of the same sign embedded in a polarizable medium. Remarkably, the present analysis reveals that for compact DNA conformations, which result from dynamic effects, an overall attractive interaction operates between the phosphate charges; this interaction is especially strong for the narrow minor groove of the A-tracts, suggesting a tendency for DNA to bend toward this groove. This tendency is in agreement with the conclusions of electrophoretic and NMR solution studies. The present analysis is also consistent with the experimental observations that the minor groove is much more easily compressible than the major groove and the bending propensity of the A-tracts is greatly reduced at "premelting" temperatures. By contrast, the dielectric screening model predicts a repulsion between the phosphate charges and is not consistent with the aforementioned bending tendency or experimental observations.
Collapse
Affiliation(s)
- Anas M Ababneh
- Physics Department, Yarmouk University, Irbid 211-63, Jordan.
| | | | | |
Collapse
|
37
|
Wang Y, Xue Z, Shen G, Xu J. PRINTR: Prediction of RNA binding sites in proteins using SVM and profiles. Amino Acids 2008; 35:295-302. [DOI: 10.1007/s00726-007-0634-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
|
38
|
Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Li YX, Chou KC. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem Biophys Res Commun 2007; 359:323-9. [PMID: 17544374 DOI: 10.1016/j.bbrc.2007.05.101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang T, Zou YS, Zhu DW, Azzi A, Liu WY, Lin SX. Cinnamomin: separation, crystallization and preliminary X-ray diffraction study. Amino Acids 2007; 34:239-43. [PMID: 17404804 DOI: 10.1007/s00726-006-0490-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
Cinnamomin from Cinnamonum camphora seeds, a type II ribosome-inactivating protein that interferes with protein biosynthesis in mammalian cells, can induce the apoptosis of carcinoma cells and be used as an insecticide. A rapid and improved method has been developed for the extraction and purification of cinnamomin from camphora seed. Purification of cinnamomin is achieved with two successive steps of hydrophobic interaction chromatography carried out on a fast protein liquid chromatography (FPLC) system. Crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion method. A complete data set at 2.8 A resolution has been collected. Data indexation and refinement indicate that the crystal is orthorhombic with space group P2(1)2(1)2(1) and unit cell dimensions a = 52.39 A, b = 126.33 A, c = 161.45 A. There are two molecules per asymmetric unit. Initial phasing by molecular replacement method yielded a solution, which will contribute to the structure determination. A molecular model will further the understanding of the mechanism of cinnamomin function. The latter will be combined with bio-informatics to facilitate the medical and other applications of cinnamomin.
Collapse
Affiliation(s)
- T Wang
- Structural Biology Platform, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
40
|
Zhou M, Azzi A, Xia X, Wang ED, Lin SX. Crystallization and preliminary X-ray diffraction analysis of E. coli arginyl-tRNA synthetase in complex form with a tRNAArg. Amino Acids 2006; 32:479-82. [PMID: 17061034 DOI: 10.1007/s00726-006-0436-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 09/09/2006] [Indexed: 10/24/2022]
Abstract
Amino acids are building blocks of proteins, while aminoacyl-tRNA synthetases (aaRSs) catalyze the first reaction in such building: the biosynthesis of proteins. The E. coli arginyl-tRNA synthetase (ArgRS) has been crystallized in complex form with tRNA(Arg) (B. stearothermophilus), at pH 5.6 using ammonium sulfate as a precipitating agent. Two crystal forms have been identified based on unit cell dimension. The complete data sets from both crystal forms have been collected with a primitive hexagonal space group. A data set of Form II crystals at 3.2 A and 94% completeness has been obtained, with unit cell parameters a = b = 98.0 A, c = 463.2 A, and alpha = beta = 90 degrees , gamma = 120 degrees , being different from a = b = 110.8 A, c = 377.8 A for form I. The structure determination will demonstrate the interaction of these two macromolecules to understand the special mechanism of ArgRS that requires the presence of tRNA for amino acid activation. Such complex structure also provides a wide opening for inhibitor search using bioinformatics.
Collapse
Affiliation(s)
- M Zhou
- Laboratory of Molecular Endocrinology, CHUL Research Center, Québec, Canada
| | | | | | | | | |
Collapse
|
41
|
Wei DQ, Sirois S, Du QS, Arias HR, Chou KC. Theoretical studies of Alzheimer’s disease drug candidate 3-[(2,4-dimethoxy)benzylidene]-anabaseine (GTS-21) and its derivatives. Biochem Biophys Res Commun 2005; 338:1059-64. [PMID: 16256952 DOI: 10.1016/j.bbrc.2005.10.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 10/11/2005] [Indexed: 11/22/2022]
Abstract
Theoretical and molecular modeling studies have been conducted for understanding the details of how 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride (GTS-21) and its metabolism derivatives bind with the receptor of alpha7 nicotinic acetylcholine dimer. Good accordance with experimental results has been achieved. It was found that the van der Waals repulsion makes the dominant contribution to the binding energy. GTS-21 and its metabolites are apparently too large for the binding sites of the alpha7 dimer. To improve the effectiveness of the drug, a possible approach is to reduce its volume while maintaining the presence of the active groups. Our studies, in combination with experimental studies, will lead to a promising basis for practical drug design against Alzheimer's disease.
Collapse
Affiliation(s)
- Dong-Qing Wei
- Tianjin Institute of Bioinformatics and Drug Discoveries, Tianjin Normal University, Tianjin 300074, China.
| | | | | | | | | |
Collapse
|