1
|
Luo Z, Qin D, Wu Y, Meng S, Mo W, Deng B. An electrochemiluminescence immunosensor based on ABEI-GO-AgNPs as a double-amplified luminophore for the ultra-sensitive detection of prostate-specific antigen. Colloids Surf B Biointerfaces 2022; 218:112718. [PMID: 35905591 DOI: 10.1016/j.colsurfb.2022.112718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
A sandwich electrochemiluminescence (ECL) immunosensor based on an N-(4-aminobutyl)-N-ethylisoluminol-graphene oxide-Ag nanoparticle (ABEI-GO-AgNPs) complex and cysteine silver nanowires (AgCysNWs) was prepared to detect prostate-specific antigen (PSA). Our results showed that an ECL signal probe, ABEI-GO-AgNPs, with an ultrahigh specific surface area, favorable catalytic properties, and electrical conductivity was prepared by a one-step synthesis method. ABEI-GO-AgNPs with good biocompatibility immobilized secondary antibody (Ab2) via AgN bonds. Furthermore, AgCysNWs containing many -COOH groups were prepared and used to enrich primary antibody (Ab1), which could be used as an affinity probe for the selective capture of PSA. Lastly, through layer-by-layer assembly, we established an ECL immunosensing platform for the sensitive detection of PSA. Under the optimized conditions, the designed ECL immunosensor showed promising sensitivity and selectivity for the detection of PSA in the linear range of 5.5 × 10-7-5.5 ng/mL, with a detection limit of 1.2 × 10-7 ng/mL. The constructed ECL sensing platform possessed good specificity, reproducibility, and stability and could detect PSA in actual human serum samples.
Collapse
Affiliation(s)
- Zhi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuo Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Weiming Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
2
|
Zou L, Wang X, Guo Z, Sun H, Shao C, Yang Y, Sun W. Differential urinary proteomics analysis of myocardial infarction using iTRAQ quantification. Mol Med Rep 2019; 19:3972-3988. [PMID: 30942401 PMCID: PMC6471447 DOI: 10.3892/mmr.2019.10088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/06/2019] [Indexed: 11/06/2022] Open
Abstract
Myocardial infarction (MI) is a disease characterized by high morbidity and mortality rates. MI biomarkers are frequently used in clinical diagnosis; however, their specificity and sensitivity remain unsatisfactory. Urinary proteome is an easy, efficient and noninvasive source to examine biomarkers associated with various diseases. The present study, to the best of the authors' knowledge, is the first to examine the urinary proteome using the isobaric tags for relative and absolute quantitation (iTRAQ) technology to identify potential diagnostic biomarkers of MI. The urinary proteome was analyzed within 12 h following the first symptoms of early‑onset MI and at day 7 following percutaneous coronary intervention via iTRAQ labeling and two‑dimensional liquid chromatography‑tandem mass spectrometry. Candidate biomarkers were validated by multiple reaction monitoring (MRM) analysis. A total of 233 urinary proteins were differentially expressed. Gene enrichment analysis identified that the urinary proteome in patients with MI was associated with atherosclerosis, abnormal coagulation and abnormal cell metabolism. In total, 12 differentially expressed urinary proteins were validated by MRM analysis, five of which were associated with MI for the first time in the present study. Binary logistic regression analysis suggested that the combination of five urinary proteins (antithrombin‑III, complement C3, α‑1‑acid glycoprotein 1, serotransferrin and cathepsin Z) may be used to diagnose MI with 94% sensitivity and 93% specificity. In addition, the protein expression levels of three proteins were significantly restored to normal levels following surgical treatment. The verified candidate biomarkers may be used for the diagnosis of MI, and for monitoring the disease status and the effects of treatments for MI. The present results may facilitate future clinical applications of the urinary proteome to diagnose MI.
Collapse
Affiliation(s)
- Lili Zou
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xubo Wang
- Department of Cardiology, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Chen Shao
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Yehong Yang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
3
|
Cheow ESH, Cheng WC, Yap T, Dutta B, Lee CN, Kleijn DPVD, Sorokin V, Sze SK. Myocardial Injury Is Distinguished from Stable Angina by a Set of Candidate Plasma Biomarkers Identified Using iTRAQ/MRM-Based Approach. J Proteome Res 2017; 17:499-515. [DOI: 10.1021/acs.jproteome.7b00651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esther Sok Hwee Cheow
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Woo Chin Cheng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
| | - Terence Yap
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Bamaprasad Dutta
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Dominique P. V. de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands & Interuniversity Cardiovascular Institute of The Netherlands, Utrecht 3508 GA, The Netherlands
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| |
Collapse
|
4
|
Klont F, Ten Hacken NHT, Horvatovich P, Bakker SJL, Bischoff R. Assuring Consistent Performance of an Insulin-Like Growth Factor 1 MALDImmunoassay by Monitoring Measurement Quality Indicators. Anal Chem 2017; 89:6188-6195. [PMID: 28467045 PMCID: PMC5463271 DOI: 10.1021/acs.analchem.7b01125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Analytical
methods based on mass spectrometry (MS) have been successfully
applied in biomarker discovery studies, while the role of MS in translating
biomarker candidates to clinical diagnostics is less pronounced. MALDImmunoassays—methods
that combine immunoaffinity enrichment with matrix-assisted laser
desorption ionization time-of-flight (MALDI-TOF) mass spectrometric
detection—are attractive analytical approaches for large-scale
sample analysis by virtue of their ease of operation and high-throughput
capabilities. Despite this fact, MALDImmunoassays are not widely used
in clinical diagnostics, which is mainly due to the limited availability
of internal standards that can adequately correct for variability
in sample preparation and the MALDI process itself. Here we present
a novel MALDImmunoassay for quantification of insulin-like growth
factor 1 (IGF1) in human plasma. Reliable IGF1 quantification in the
range of 10–1000 ng/mL was achieved by employing 15N-IGF1 as internal standard, which proved to be an essential feature
of the IGF1 MALDImmunoassay. The method was validated according to
U.S. Food and Drug Administration (FDA) guidelines, which included
demonstrating the effectiveness of IGF1/IGF binding protein (IGF1/IGFBP)
complex dissociation using sodium dodecyl sulfate (SDS). Furthermore,
the MALDImmunoassay compared well with the IDS-iSYS IGF1 immunoassay
with high correlation (R2 = 0.99), although
substantially lower levels were reported by the MALDImmunoassay. The
method was tested on >1000 samples from a cohort of renal transplant
recipients to assess its performance in a clinical setting. On the
basis of this study, we identified readouts to monitor the quality
of the measurements. Our work shows that MALDI-TOF mass spectrometry
is suitable for quantitative biomarker analysis provided that an appropriate
internal standard is used and that readouts are monitored to assess
the quality of the measurements.
Collapse
Affiliation(s)
- Frank Klont
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | - Péter Horvatovich
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | - Rainer Bischoff
- Analytical Biochemistry, Department of Pharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Trenchevska O, Yassine HN, Borges CR, Nelson RW, Nedelkov D. Development of quantitative mass spectrometric immunoassay for serum amyloid A. Biomarkers 2016; 21:743-751. [PMID: 27308834 DOI: 10.1080/1354750x.2016.1201533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Proteins can exist as multiple proteoforms in vivo that can have important roles in physiological and pathological states. METHODS We present the development and characterization of mass spectrometric immunoassay (MSIA) for quantitative determination of serum amyloid A (SAA) proteoforms. RESULTS Intra- and inter-day precision revealed CVs <10%. Against existing SAA ELISA, the developed MSIA showed good correlation according to the Altman-Bland plot. Individual concentrations of the SAA proteoforms across a cohort of 170 samples revealed 7 diverse SAA polymorphic types and 12 different proteoforms. CONCLUSION The new SAA MSIA enables parallel analysis of SAA polymorphisms and quantification of all expressed SAA proteoforms, in a high-throughput and time-efficient manner.
Collapse
Affiliation(s)
| | - Hussein N Yassine
- b Department of Medicine , University of Southern California , Los Angeles , CA , USA
| | - Chad R Borges
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| | - Randall W Nelson
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| | - Dobrin Nedelkov
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
6
|
Whitin JC, Yu TTS, Ling XB, Kanegaye JT, Burns JC, Cohen HJ. A Novel Truncated Form of Serum Amyloid A in Kawasaki Disease. PLoS One 2016; 11:e0157024. [PMID: 27271757 PMCID: PMC4894573 DOI: 10.1371/journal.pone.0157024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
Background Kawasaki disease (KD) is an acute vasculitis in children that can cause coronary artery abnormalities. Its diagnosis is challenging, and many cytokines, chemokines, acute phase reactants, and growth factors have failed evaluation as specific biomarkers to distinguish KD from other febrile illnesses. We performed protein profiling, comparing plasma from children with KD with febrile control (FC) subjects to determine if there were specific proteins or peptides that could distinguish the two clinical states. Materials and Methods Plasma from three independent cohorts from the blood of 68 KD and 61 FC subjects was fractionated by anion exchange chromatography, followed by surface-enhanced laser desorption ionization (SELDI) mass spectrometry of the fractions. The mass spectra of KD and FC plasma samples were analyzed for peaks that were statistically significantly different. Results A mass spectrometry peak with a mass of 7,860 Da had high intensity in acute KD subjects compared to subacute KD (p = 0.0003) and FC (p = 7.9 x 10−10) subjects. We identified this peak as a novel truncated form of serum amyloid A with N-terminal at Lys-34 of the circulating form and validated its identity using a hybrid mass spectrum immunoassay technique. The truncated form of serum amyloid A was present in plasma of KD subjects when blood was collected in tubes containing protease inhibitors. This peak disappeared when the patients were examined after their symptoms resolved. Intensities of this peptide did not correlate with KD-associated laboratory values or with other mass spectrum peaks from the plasma of these KD subjects. Conclusions Using SELDI mass spectrometry, we have discovered a novel truncated form of serum amyloid A that is elevated in the plasma of KD when compared with FC subjects. Future studies will evaluate its relevance as a diagnostic biomarker and its potential role in the pathophysiology of KD.
Collapse
Affiliation(s)
- John C. Whitin
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Tom To-Sang Yu
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Xuefeng Bruce Ling
- Department of Surgery, Stanford University, Stanford, California, United States of America
| | - John T. Kanegaye
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America, and Rady Children’s Hospital–San Diego, San Diego, California, United States of America
| | - Jane C. Burns
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America, and Rady Children’s Hospital–San Diego, San Diego, California, United States of America
| | - Harvey J. Cohen
- Department of Pediatrics, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Trenchevska O, Nelson RW, Nedelkov D. Mass Spectrometric Immunoassays in Characterization of Clinically Significant Proteoforms. Proteomes 2016; 4:proteomes4010013. [PMID: 28248223 PMCID: PMC5217360 DOI: 10.3390/proteomes4010013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023] Open
Abstract
Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Randall W Nelson
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Dobrin Nedelkov
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
8
|
Trenchevska O, Schaab MR, Nelson RW, Nedelkov D. Development of multiplex mass spectrometric immunoassay for detection and quantification of apolipoproteins C-I, C-II, C-III and their proteoforms. Methods 2015; 81:86-92. [PMID: 25752847 PMCID: PMC4574700 DOI: 10.1016/j.ymeth.2015.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 01/11/2023] Open
Abstract
The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼ 40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Matthew R Schaab
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Randall W Nelson
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Dobrin Nedelkov
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
9
|
Liang B, Ju Y, Joubert JR, Kaleta EJ, Lopez R, Jones IW, Hall HK, Ratnayaka SN, Wysocki VH, Saavedra SS. Label-free detection and identification of protein ligands captured by receptors in a polymerized planar lipid bilayer using MALDI-TOF MS. Anal Bioanal Chem 2015; 407:2777-89. [PMID: 25694144 PMCID: PMC4417943 DOI: 10.1007/s00216-015-8508-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/10/2015] [Accepted: 01/21/2015] [Indexed: 01/27/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) coupled with affinity capture is a well-established method to extract biological analytes from complex samples followed by label-free detection and identification. Many bioanalytes of interest bind to membrane-associated receptors; however, the matrices and high-vacuum conditions inherent to MALDI-TOF MS make it largely incompatible with the use of artificial lipid membranes with incorporated receptors as platforms for detection of captured proteins and peptides. Here we show that cross-linking polymerization of a planar supported lipid bilayer (PSLB) provides the stability needed for MALDI-TOF MS analysis of proteins captured by receptors embedded in the membrane. PSLBs composed of poly(bis-sorbylphosphatidylcholine) (poly(bis-SorbPC)) and doped with the ganglioside receptors GM1 and GD1a were used for affinity capture of the B subunits of cholera toxin, heat-labile enterotoxin, and pertussis toxin. The three toxins were captured simultaneously, then detected and identified by MS on the basis of differences in their molecular weights. Poly(bis-SorbPC) PSLBs are inherently resistant to nonspecific protein adsorption, which allowed selective toxin detection to be achieved in complex matrices (bovine serum and shrimp extract). Using GM1-cholera toxin subunit B as a model receptor-ligand pair, we estimated the minimal detectable concentration of toxin to be 4 nM. On-plate tryptic digestion of bound cholera toxin subunit B followed by MS/MS analysis of digested peptides was performed successfully, demonstrating the feasibility of using the PSLB-based affinity capture platform for identification of unknown, membrane-associated proteins. Overall, this work demonstrates that combining a poly(lipid) affinity capture platform with MALDI-TOF MS detection is a viable approach for capture and proteomic characterization of membrane-associated proteins in a label-free manner.
Collapse
Affiliation(s)
- Boying Liang
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | | | - James R. Joubert
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Erin J. Kaleta
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Rodrigo Lopez
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Ian W. Jones
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Henry K. Hall
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Saliya N. Ratnayaka
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | | | - S. Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Schneck NA, Lowenthal M, Phinney K, Lee SB. Current trends in magnetic particle enrichment for mass spectrometry-based analysis of cardiovascular protein biomarkers. Nanomedicine (Lond) 2015; 10:433-46. [DOI: 10.2217/nnm.14.188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Magnetic particles have traditionally been utilized to isolate and enrich various cardiovascular protein biomarkers for mass spectrometry-based proteomic analysis. The application of functionalized magnetic particles for immunocapture is attractive due to their easy manipulation, large surface area-to-volume ratios for maximal antibody binding, good recovery and high magnetic saturation. Magnetic particle enrichment coupled with mass spectrometry can act as a complementary tool for clinical sandwich-immunoassay development since it can provide improved target specificity and true metrological traceability. The purpose of this review is to summarize current separation methods and technologies that use magnetic particles to enrich protein biomarkers from complex matrices, specifically focusing on cardiovascular disease-related proteins and the advantages of magnetic particles over existing techniques.
Collapse
Affiliation(s)
- Nicole A Schneck
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Mark Lowenthal
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Karen Phinney
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Sang Bok Lee
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Sherma ND, Borges CR, Trenchevska O, Jarvis JW, Rehder DS, Oran PE, Nelson RW, Nedelkov D. Mass Spectrometric Immunoassay for the qualitative and quantitative analysis of the cytokine Macrophage Migration Inhibitory Factor (MIF). Proteome Sci 2014; 12:52. [PMID: 25328446 PMCID: PMC4201675 DOI: 10.1186/s12953-014-0052-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022] Open
Abstract
Background The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity regarding its relationship to diverse pathologies. Results In this work, we have developed and validated a fully quantitative MSIA assay for MIF, and used it in the discovery and quantification of different proteoforms of MIF in serum samples, including cysteinylated and glycated MIF. The MSIA assay had a linear range of 1.56-50 ng/mL, and exhibited good precision, linearity, and recovery characteristics. The new assay was applied to a small cohort of human serum samples, and benchmarked against an MIF ELISA assay. Conclusions The quantitative MIF MSIA assay provides a sensitive, precise and high throughput method to delineate and quantify MIF proteoforms in biological samples.
Collapse
Affiliation(s)
- Nisha D Sherma
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287 USA
| | - Chad R Borges
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287 USA ; Department of Chemistry & Biochemistry at Arizona State University, Tempe, AZ 85287 USA
| | - Olgica Trenchevska
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287 USA
| | - Jason W Jarvis
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287 USA
| | - Douglas S Rehder
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287 USA
| | - Paul E Oran
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287 USA
| | - Randall W Nelson
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287 USA
| | - Dobrin Nedelkov
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
12
|
Ljunggren S, Levels JHM, Turkina MV, Sundberg S, Bochem AE, Hovingh K, Holleboom AG, Lindahl M, Kuivenhoven JA, Karlsson H. ApoA-I mutations, L202P and K131del, in HDL from heterozygotes with low HDL-C. Proteomics Clin Appl 2014; 8:241-50. [DOI: 10.1002/prca.201300014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/04/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Stefan Ljunggren
- Occupational and Environmental Medicine; Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | | | - Maria V. Turkina
- Division of Cell Biology; Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Sofie Sundberg
- Occupational and Environmental Medicine; Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Andrea E. Bochem
- Department of Vascular Medicine; Academic Medical Centre; Amsterdam The Netherlands
| | - Kees Hovingh
- Department of Vascular Medicine; Academic Medical Centre; Amsterdam The Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular Medicine; Academic Medical Centre; Amsterdam The Netherlands
| | - Mats Lindahl
- Occupational and Environmental Medicine; Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Jan Albert Kuivenhoven
- Department of Molecular Genetics; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Helen Karlsson
- Occupational and Environmental Medicine; Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
- Department of Occupational and Environmental Medicine; Heart Medical Centre; Linköping Sweden
| |
Collapse
|
13
|
Martín-Ventura JL, Blanco-Colio LM, Tunon J, Gomez-Guerrero C, Michel JB, Meilhac O, Egido J. Proteomics in atherothrombosis: a future perspective. Expert Rev Proteomics 2014; 4:249-60. [PMID: 17425460 DOI: 10.1586/14789450.4.2.249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherothrombosis is the primary cause of death in Western countries. The cellular and molecular mechanisms underlying atherosclerosis remain widely unknown. The complex nature of atherosclerotic cardiovascular diseases demands the development of novel technologies that enable discovery of new biomarkers for early disease detection and risk stratification, which may predict clinical outcome. In this review, we outline potential sources and recent proteomic approaches that could be applied in the search of novel biomarkers of cardiovascular risk. In addition, we describe some issues raised in relation to the application of proteomics to blood samples, as well as two novel emerging concepts, such as peptidomics and population proteomics. In the future, the use of high-throughput techniques (proteomic, genomics and metabolomics) will potentially identify novel patterns of biomarkers, which, along with traditional risk factors and imaging techniques, could help to target vulnerable patients and monitor the beneficial effects of pharmacological agents.
Collapse
|
14
|
Yassine H, Borges CR, Schaab MR, Billheimer D, Stump C, Reaven P, Lau SS, Nelson R. Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin Appl 2013; 7:528-40. [PMID: 23696124 DOI: 10.1002/prca.201200028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 02/04/2013] [Accepted: 03/30/2013] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an important risk factor for cardiovascular disease (CVD)--the leading cause of death in the United States. Yet not all subjects with T2DM are at equal risk for CVD complications; the challenge lies in identifying those at greatest risk. Therapies directed toward treating conventional risk factors have failed to significantly reduce this residual risk in T2DM patients. Thus newer targets and markers are needed for the development and testing of novel therapies. Herein we review two complementary MS-based approaches--mass spectrometric immunoassay (MSIA) and MS/MS as MRM--for the analysis of plasma proteins and PTMs of relevance to T2DM and CVD. Together, these complementary approaches allow for high-throughput monitoring of many PTMs and the absolute quantification of proteins near the low picomolar range. In this review article, we discuss the clinical relevance of the high density lipoprotein (HDL) proteome and Apolipoprotein A-I PTMs to T2DM and CVD as well as provide illustrative MSIA and MRM data on HDL proteins from T2DM patients to provide examples of how these MS approaches can be applied to gain new insight regarding cardiovascular risk factors. Also discussed are the reproducibility, interpretation, and limitations of each technique with an emphasis on their capacities to facilitate the translation of new biomarkers into clinical practice.
Collapse
Affiliation(s)
- Hussein Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Napoli C, Zullo A, Picascia A, Infante T, Mancini FP. Recent advances in proteomic technologies applied to cardiovascular disease. J Cell Biochem 2013; 114:7-20. [PMID: 22886784 DOI: 10.1002/jcb.24307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022]
Abstract
In recent years, the diagnosis of cardiovascular disease (CVD) has increased its potential, also thanks to mass spectrometry (MS) proteomics. Modern MS proteomics tools permit analyzing a variety of biological samples, ranging from single cells to tissues and body fluids, like plasma and urine. This approach enhances the search for informative biomarkers in biological samples from apparently healthy individuals or patients, thus allowing an earlier and more precise diagnosis and a deeper comprehension of pathogenesis, development and outcome of CVD to further reduce the enormous burden of this disease on public health. In fact, many differences in protein expression between CVD-affected and healthy subjects have been detected, but only a few of them have been useful to establish clinical biomarkers because they did not pass the verification and validation tests. For a concrete clinical support of MS proteomics to CVD, it is, therefore, necessary to: ameliorate the resolution, sensitivity, specificity, throughput, precision, and accuracy of MS platform components; standardize procedures for sample collection, preparation, and analysis; lower the costs of the analyses; reduce the time of biomarker verification and validation. At the same time, it will be fundamental, for the future perspectives of proteomics in clinical trials, to define the normal protein maps and the global patterns of normal protein levels, as well as those specific for the different expressions of CVD.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Excellence Research Centre on Cardiovascular Disease, U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Ospedaliera Universitaria (AOU), 1st School of Medicine, Second University of Naples, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
16
|
Barbosa EB, Vidotto A, Polachini GM, Henrique T, Marqui ABTD, Tajara EH. Proteomics: methodologies and applications to the study of human diseases. Rev Assoc Med Bras (1992) 2013. [PMID: 22735231 DOI: 10.1590/s0104-42302012000300019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Proteomic approach has allowed large-scale studies of protein expression in different tissues and body fluids in discrete conditions and/or time points. Recent advances of methodologies in this field have opened new opportunities to obtain relevant information on normal and abnormal processes occurring in the human body. In the current report, the main proteomics techniques and their application to human disease study are reviewed.
Collapse
|
17
|
Barbosa EB, Vidotto A, Polachini GM, Henrique T, de Marqui ABT, Helena Tajara E. Proteomics: methodologies and applications to the study of human diseases. Rev Assoc Med Bras (1992) 2012. [DOI: 10.1016/s0104-4230(12)70209-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
|
19
|
Cubedo J, Padró T, Alonso R, Cinca J, Mata P, Badimon L. Differential proteomic distribution of TTR (pre-albumin) forms in serum and HDL of patients with high cardiovascular risk. Atherosclerosis 2012; 222:263-9. [PMID: 22420894 DOI: 10.1016/j.atherosclerosis.2012.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 01/24/2012] [Accepted: 02/15/2012] [Indexed: 11/26/2022]
Abstract
UNLABELLED Inflammation is a common condition contributing to cardiovascular disease progression which leads to clinical manifestations such as acute myocardial infarction (AMI). By applying a proteomic expression profiling approach we have investigated changes in transthyretin (TTR) in AMI-patients and its distribution patterns in HDL samples of patients with high cardiovascular risk, such as those with familiar hypercholesterolemia (FH). METHODS AND RESULTS The characterization by bidimensional electrophoresis (2-DE), followed by mass-spectrometry (MALDI-TOF) of serum samples revealed changes in the intensity of the TTR spot with a pI of 5.6 and a Mw of 42kDa (tTTR) between AMI-patients in association to diabetic dyslipemia. Serum TTR levels, determined by commercial ELISA, were significantly lower (p<0.0001) in AMI-patients (n=39) and FH-patients (n=100) than in healthy controls (n=60). Western blot and 2-DE analysis showed a differential distribution profile of TTR forms between serum, where 3 TTR forms of 42 (tTTR), 28 (dTTR), and 14kDa (mTTR) were detected, and HDL samples, where only mTTR was present. CONCLUSIONS Our results demonstrate alterations in TTR proteomic profile in relation to the clustering of risk factors which seems to highlight the implication of TTR in cardiovascular risk. The significant differences in TTR between serum (tTTR) and HDL (mTTR) underscore the importance of TTR-forms in the circulation and deserve further investigation to understand their function.
Collapse
Affiliation(s)
- Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), Spain
| | | | | | | | | | | |
Collapse
|
20
|
Zhang M, Dai W, Yan M, Ge S, Yu J, Song X, Xu W. Ultrasensitive electrochemiluminescence immunosensor using PtAg@carbon nanocrystals composites as labels and carbon nanotubes-chitosan/gold nanoparticles as enhancer. Analyst 2012; 137:2112-8. [DOI: 10.1039/c2an35186b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Boschetti E, Chung MCM, Righetti PG. "The quest for biomarkers": are we on the right technical track? Proteomics Clin Appl 2011; 6:22-41. [PMID: 22213582 DOI: 10.1002/prca.201100039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/01/2011] [Accepted: 11/15/2011] [Indexed: 12/19/2022]
Abstract
The discovery phase of biomarkers of diagnostic or therapeutic interest started a decade ago with the very rapid development of proteomic investigations. In spite of the development of innovative technologies and multiple approaches, the "harvest" is still modest. Various reasons justified the encountered difficulties and most of them have been circumvented by specific sample treatments or dedicated analytical approaches. Nevertheless, the situation of very modest biomarker discovery level did not change much. This review intends to specifically analyze the main approaches used for biomarker discovery phase and evaluate related advantages and disadvantages. Thus, preliminary sample treatments such as fractionation, depletion and reduction of dynamic concentration range will critically be discussed and then the main differential expression investigation methods analyzed. Combinations of technologies are also discussed along with possible proposals to federate associations of complementary technologies for better chances of success.
Collapse
Affiliation(s)
- Egisto Boschetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy.
| | | | | |
Collapse
|
22
|
Zhu P, Bowden P, Zhang D, Marshall JG. Mass spectrometry of peptides and proteins from human blood. MASS SPECTROMETRY REVIEWS 2011; 30:685-732. [PMID: 24737629 DOI: 10.1002/mas.20291] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/09/2009] [Accepted: 01/19/2010] [Indexed: 06/03/2023]
Abstract
It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.
Collapse
Affiliation(s)
- Peihong Zhu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
| | | | | | | |
Collapse
|
23
|
Method validation and application of protein biomarkers: basic similarities and differences from biotherapeutics. Bioanalysis 2011; 1:1461-74. [PMID: 21083095 DOI: 10.4155/bio.09.130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein drug development and biomarkers share common bioanalytical technologies that are applied for different purposes. A fit-for-purpose approach should be used for biomarker assays at various stages of novel biomarker development and their application to drug development. Biomarker quantifications can be absolute or relative, depending upon the characteristics of the standard curve, which include the reference standard, substituted matrix and parallelism. Appropriate method-validation experiments should be carried out on sample collection, relative accuracy and precision, range finding, parallelism, selectivity, specificity and stability in order to meet the need for exploratory or advanced application that is specified for a study. The interaction of a biotherapeutic with the target ligand or inter-related biomarkers should be taken into consideration for method platform choice and validation. Direct adoption of commercial diagnostic kits can produce confounding data. Therefore, kit comparison, modification and appropriate validation experiments are often carried out to meet the specific purpose for drug development. Multiplex assays and physicochemical methods can complement the single-analyte ligand-binding assay for protein drugs and biomarkers.
Collapse
|
24
|
Borges CR, Oran PE, Buddi S, Jarvis JW, Schaab MR, Rehder DS, Rogers SP, Taylor T, Nelson RW. Building multidimensional biomarker views of type 2 diabetes on the basis of protein microheterogeneity. Clin Chem 2011; 57:719-28. [PMID: 21402800 DOI: 10.1373/clinchem.2010.156976] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND In 2008, the US Food and Drug Administration (FDA) issued a Guidance for Industry statement formally recognizing (during drug development) the conjoined nature of type 2 diabetes (T2D) and cardiovascular disease (CVD), which has precipitated an urgent need for panels of markers (and means of analysis) that are able to differentiate subtypes of CVD in the context of T2D. Here, we explore the possibility of creating such panels using the working hypothesis that proteins, in addition to carrying time-cumulative marks of hyperglycemia (e.g., protein glycation in the form of Hb A(₁c)), may carry analogous information with regard to systemic oxidative stress and aberrant enzymatic signaling related to underlying pathobiologies involved in T2D and/or CVD. METHODS We used mass spectrometric immunoassay to quantify, in targeted fashion, relative differences in the glycation, oxidation, and truncation of 11 specific proteins. RESULTS Protein oxidation and truncation (owing to modified enzymatic activity) are able to distinguish between subsets of diabetic patients with or without a history of myocardial infarction and/or congestive heart failure where markers of glycation alone cannot. CONCLUSION Markers based on protein modifications aligned with the known pathobiologies of T2D represent a reservoir of potential cardiovascular markers that are needed to develop the next generation of antidiabetes medications.
Collapse
Affiliation(s)
- Chad R Borges
- Molecular Biomarkers, The Biodesign Institute at Arizona State University, Tempe, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Théberge R, Infusini G, Tong W, McComb ME, Costello CE. Top-Down Analysis of Small Plasma Proteins Using an LTQ-Orbitrap. Potential for Mass Spectrometry-Based Clinical Assays for Transthyretin and Hemoglobin. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 300:130-142. [PMID: 21607198 PMCID: PMC3098445 DOI: 10.1016/j.ijms.2010.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transthyretin (TTR) amyloidosis and hemoglobinopathies are the archetypes of molecular diseases where point mutation characterization is diagnostically critical. We have developed a Top-down analytical platform for variant and/or modified protein sequencing and are examining the feasibility of using this platform for the analysis of hemoglobin/TTR patient samples and evaluating the potential clinical applications. The platform is based on a commercial high resolution hybrid orbitrap mass spectrometer (LTQ-Orbitrap(™)) with automated sample introduction; automated data analysis is performed by our own software algorithm (BUPID topdown).The analytical strategy consists of iterative data capture, first recording a mass profile of the protein(s). The presence of a variant is revealed by a mass shift consistent with the amino acid substitution. Nozzle-skimmer dissociation (NSD) of the protein(s) yields a wide variety of sequence-defining fragment ions. The fragment ion containing the amino acid substitution or modification can be identified by searching for a peak exhibiting the mass shift observed in the protein mass profile. This fragment ion can then be selected for MS/MS analysis in the ion trap to yield sequence information permitting the identification of the variant. Substantial sequence coverage has been obtained in this manner. This strategy allows for a stepwise MS/MS analysis of the protein structure. The sequence information obtained can be supplemented with whole protein NSD fragmentation and MS/MS analysis of specific protein charge states. The analyses of variant forms of TTR and hemoglobin are presented to illustrate the potential of the method.
Collapse
Affiliation(s)
| | | | | | | | - Catherine E. Costello
- Address for correspondence: Prof. Catherine E. Costello, Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Room 511, Boston, MA 02118-2646, Ph.: (617) 638-6490, Fax: (617) 638-6491,
| |
Collapse
|
26
|
Johnson EM, Ellis WR, Powers LS, Wysocki VH. Affinity capture mass spectrometry of biomarker proteins using peptide ligands from biopanning. Anal Chem 2010; 81:5999-6005. [PMID: 19572565 DOI: 10.1021/ac900868q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Affinity capture mass spectrometry was used to isolate and ionize protein A from Staphylococcus aureus from both a commercial source and cell culture lysate using matrix assisted laser desorption/ionization (MALDI) mass spectrometry. Two surfaces are compared: gold surfaces with immunoglobulin G covalently immobilized and silica surfaces with a covalently bound small peptide discovered via biopanning. A detection limit of 2.22 bacterial cells/mL of culture fluid was determined for the immobilized peptide surfaces. This study emphasizes the ability to use peptide ligands to effectively capture a biomarker protein out of a complex mixture. This demonstrates the potential to use biopanning to generate capture ligands for a large variety of target proteins and subsequently detect the captured protein using MALDI mass spectrometry.
Collapse
Affiliation(s)
- Erin M Johnson
- Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
27
|
Rehder DS, Borges CR. Possibilities and pitfalls in quantifying the extent of cysteine sulfenic acid modification of specific proteins within complex biofluids. BMC BIOCHEMISTRY 2010; 11:25. [PMID: 20594348 PMCID: PMC2916888 DOI: 10.1186/1471-2091-11-25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/01/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move a step beyond detection and into the relative quantification of Cys-SOH within specific proteins found in a complex biological setting--namely, human plasma. RESULTS This report describes the possibilities and limitations of performing such analyses based on the use of thionitrobenzoic acid and dimedone-based probes which are commonly employed to trap Cys-SOH. Results obtained by electrospray ionization-based mass spectrometric immunoassay reveal the optimal type of probe for such analyses as well as the reproducible relative quantification of Cys-SOH within albumin and transthyretin extracted from human plasma--the latter as a protein previously unknown to be modified by Cys-SOH. CONCLUSIONS The relative quantification of Cys-SOH within specific proteins in a complex biological setting can be accomplished, but several analytical precautions related to trapping, detecting, and quantifying Cys-SOH must be taken into account prior to pursuing its study in such matrices.
Collapse
Affiliation(s)
- Douglas S Rehder
- Molecular Biomarkers, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
28
|
Borges CR, Rehder DS, Jarvis JW, Schaab MR, Oran PE, Nelson RW. Full-Length Characterization of Proteins in Human Populations. Clin Chem 2010; 56:202-11. [DOI: 10.1373/clinchem.2009.134858] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Diversity in human proteins often gives rise to pluralities of structurally similar but functionally distinct proteins. Such microheterogeneity generally escapes proteomics discovery technologies, as well as conventional immunometric assays. As an intermediate between these 2 technological approaches, targeted, full-length characterization of proteins using mass spectrometry is a suitable means of defining microheterogeneity evident in human populations.
Content: We describe and explore the implications of microheterogeneity using the exemplar of human vitamin D binding protein (Gc-Globulin) as observed in cohorts of 400 individuals. Our investigations yielded: (a) population frequency data comparable to genotyping; (b) population frequency data for protein variants, with and without genotype linkage; (c) reference values for the different protein variants per cohort and genotype; and (d) associations between variant, frequency, relative abundance, and diseases.
Summary: With the exception of the genotype frequency, such population data are unique and illustrate a need to more fully understand the exact full-length qualitative and quantitative idiosyncrasies of individual proteins in relation to health and disease as part of the standardized biomarker development and clinical proteomic investigation of human proteins.
Collapse
Affiliation(s)
- Chad R Borges
- The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Doug S Rehder
- The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Jason W Jarvis
- The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Mathew R Schaab
- The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Paul E Oran
- The Biodesign Institute, Arizona State University, Tempe, AZ
| | | |
Collapse
|
29
|
Rehder DS, Nelson RW, Borges CR. Glycosylation status of vitamin D binding protein in cancer patients. Protein Sci 2009; 18:2036-42. [PMID: 19642159 DOI: 10.1002/pro.214] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages.
Collapse
Affiliation(s)
- Douglas S Rehder
- The Biodesign Institute at Arizona State University, Tempe, 85287, USA
| | | | | |
Collapse
|
30
|
Karlsson H, Mörtstedt H, Lindqvist H, Tagesson C, Lindahl M. Protein profiling of low-density lipoprotein from obese subjects. Proteomics Clin Appl 2009; 3:663-71. [DOI: 10.1002/prca.200800138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Hunter JM, Paramithiotis E. Protein biomarker quantification by mass spectrometry. ACTA ACUST UNITED AC 2009; 4:11-20. [DOI: 10.1517/17530050902929214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Sparbier K, Wenzel T, Dihazi H, Blaschke S, Müller GA, Deelder A, Flad T, Kostrzewa M. Immuno-MALDI-TOF MS: New perspectives for clinical applications of mass spectrometry. Proteomics 2009; 9:1442-50. [DOI: 10.1002/pmic.200800616] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
The potential of mass spectrometry to study iron-containing proteins used in clinical diagnosis. Anal Chim Acta 2009; 634:1-14. [DOI: 10.1016/j.aca.2008.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/25/2008] [Accepted: 12/06/2008] [Indexed: 11/24/2022]
|
34
|
Abstract
BACKGROUND Proteomics has evolved into a large-scale biomarker discovery program; however, these initiatives are viewed as failing owing to a lack of successful implementation of new protein biomarkers in the diagnostic arena. New approaches to proteomics biomarker discovery and validation may be the key to boosting clinical proteomics into diagnostics. OBJECTIVE To review the technologies and the mindsets behind proteomic biomarker discovery and discuss suitable methods for the detection of protein variants and their use as potential biomarkers of disease states. METHODS A literature review of recent research on proteomic biomarkers and through experience with biomarker discovery research was surveyed and described. Emphasis was placed on top-down proteomics approaches for the discovery and routine screening of protein variation. CONCLUSION Protein variation is an untapped resource in the biomarker space, but only a selected few forms of proteomics applications are suitable for their analysis. Such variation could have a significant impact in disease diagnostics and therapeutic intervention.
Collapse
Affiliation(s)
- Urban A Kiernan
- Senior Research Scientist, Intrinsic Bioprobes, Inc. - R&D, 2155 E Conference Dr Tempe, AZ 85284, USA +1 480 804 1778 ; +480 804 0778 ;
| |
Collapse
|
35
|
Ritorto MS, Borlak J. A simple and reliable protocol for mouse serum proteome profiling studies by use of two-dimensional electrophoresis and MALDI TOF/TOF mass spectrometry. Proteome Sci 2008; 6:25. [PMID: 18789141 PMCID: PMC2563006 DOI: 10.1186/1477-5956-6-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/12/2008] [Indexed: 11/14/2022] Open
Abstract
Background Unravelling the serum proteome is the subject of intensified research. In this regard, two-dimensional electrophoresis coupled with MALDI MS analysis is still one of the most commonly used method. Despite some improvements, there is the need for better protocols to enable comprehensive identification of serum proteins. Here we report a combination of two proteomic strategies, zoom in acidic and neutral part of 2-D gels and an application of two optimised matrix preparations for MALDI-MS analyses to simplify serum proteome mapping. Results Mouse serum proteins were separated by 2-D electrophoresis at the pH ranges 3–10 and 4–7, respectively. Then in gel tryptic digests were analysed by MALDI-MS. Notably, sample-matrix preparations consisted of either a thin-layer α-ciano-4-hydroxycinnamic acid (CHCA) matrix deposition or a matrix-layer 2,5-dihydroxybenzoic acid (DHB). This enabled an identification of 90 proteins. The herein reported method enhanced identification of proteins by 32% when compared with previously published studies of mouse serum proteins, using the same approaches. Furthermore, experimental improvements of matrix preparations enabled automatic identification of mouse proteins, even when one of the two matrices failed. Conclusion We report a simple and reliable protocol for serum proteome analysis that combines an optimized resolution of 2-D gels spots and improved sample-matrix preparations for MALDI-MS analysis. The protocol allowed automated data acquisition for both CHCA and DHB and simplified the MS data acquisition therefore avoiding time-consuming procedures. The simplicity and reliability of the developed protocol may be applied universally.
Collapse
Affiliation(s)
- Maria Stella Ritorto
- Department of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hanover, Germany.
| | | |
Collapse
|
36
|
Nedelkov D. Population proteomics: investigation of protein diversity in human populations. Proteomics 2008; 8:779-86. [PMID: 18210367 DOI: 10.1002/pmic.200700501] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Outlined in this review is the concept of population proteomics, its aspects, enabling approaches, and significance in understanding proteins' roles in physiological processes and diseases. Population proteomics addresses the need for individual assessment of proteins across large populations to delineate the existence of structural variations, determine their frequency, and explore the association of the modifications with specific diseases. Besides the basic concepts and underlying reasons for such protein diversity studies, also reviewed here are the results of two fundamental studies that investigated human plasma protein diversity across the healthy population in the United States. Such studies of protein diversity are needed to map all the post-expression protein modifications and determine the wild-type protein profiles, similar to the human diversity studies at the genome level that have helped redefine the "normal" human genome.
Collapse
Affiliation(s)
- Dobrin Nedelkov
- Institute for Population Proteomics, and Intrinsic Bioprobes, Inc., Tempe, AZ 85284, USA.
| |
Collapse
|
37
|
Nelson RW, Kiernan UA, Nedelkov D, Tubbs KA, Niederkofler EE. The Study of Microheterogeneity in Human Plasma Proteins: Application to Acute Myocardial Infarction. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Nicol GR, Han M, Kim J, Birse CE, Brand E, Nguyen A, Mesri M, FitzHugh W, Kaminker P, Moore PA, Ruben SM, He T. Use of an immunoaffinity-mass spectrometry-based approach for the quantification of protein biomarkers from serum samples of lung cancer patients. Mol Cell Proteomics 2008; 7:1974-82. [PMID: 18388126 DOI: 10.1074/mcp.m700476-mcp200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is a challenging task to verify and quantify potential biomarkers expressed at elevated levels in sera from cancer patients. An immunoaffinity-mass spectrometry-based approach has been developed using antibodies to enrich proteins of interest from sera followed by mass spectrometry-based quantification. Antibodies specific to the protein of interest were immobilized to hydrazide resin via the carbohydrate moiety on the Fc region of the antibody. Captured proteins were eluted, reduced, alkylated, and digested with trypsin. Peptides were analyzed by LC coupled with multiple reaction monitoring approach, and quantification was achieved by the addition of stable isotope-labeled (heavy) standard peptides. Using this methodology, we were able to achieve a linear response from 15 to 250 ng/ml for carcinoembryonic antigen (CEA), a known tumor biomarker. Moreover we observed elevated levels of CEA in sera samples from lung cancer patients that to our knowledge is the first time that circulating CEA has been detected by mass spectrometry-based analysis. This approach was further applied to potential protein biomarkers discovered from tumor cell lines and tumor tissues. A linear response was obtained from a multiplex spiking experiment in normal human sera for secretory leukocyte peptidase inhibitor (4-500 ng/ml), tissue factor pathway inhibitor (TFPI) (42-1000 ng/ml), tissue factor pathway inhibitor 2 (TFPI2) (2-250 ng/ml), and metalloproteinase inhibitor 1 (TIMP1) (430-1000 ng/ml). A replicate experiment for a single concentration value yielded a relative coefficient of variation better than 11% for TFPI, secretory leukocyte peptidase inhibitor, and TFPI2. The expression level of the proteins in lung cancer patient sera was assayed by an immunoaffinity-multiple reaction monitoring method, and the results were comparable with those obtained from ELISA. This immunoaffinity-mass spectrometry-based quantification approach thus provides a specific and accurate assay for verifying the expression of potential biomarkers in patient serum samples especially for those proteins for which the necessary reagents for ELISA development are unavailable.
Collapse
|
39
|
Vivanco F, Padial L, Darde V, de la Cuesta F, Alvarez-Llamas G, Diaz-Prieto N, Barderas M. Proteomic Biomarkers of Atherosclerosis. Biomark Insights 2008; 3:101-113. [PMID: 19578499 PMCID: PMC2688368 DOI: 10.4137/bmi.s488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SUMMARY: Biomarkers provide a powerful approach to understanding the spectrum of cardiovascular diseases. They have application in screening, diagnostic, prognostication, prediction of recurrences and monitoring of therapy. The "omics" tool are becoming very useful in the development of new biomarkers in cardiovascular diseases. Among them, proteomics is especially fitted to look for new proteins in health and disease and is playing a significant role in the development of new diagnostic tools in cardiovascular diagnosis and prognosis. This review provides an overview of progress in applying proteomics to atherosclerosis. First, we describe novel proteins identified analysing atherosclerotic plaques directly. Careful analysis of proteins within the atherosclerotic vascular tissue can provide a repertoire of proteins involved in vascular remodelling and atherogenesis. Second, we discuss recent data concerning proteins secreted by atherosclerotic plaques. The definition of the atheroma plaque secretome resides in that proteins secreted by arteries can be very good candidates of novel biomarkers. Finally we describe proteins that have been differentially expressed (versus controls) by individual cells which constitute atheroma plaques (endothelial cells, vascular smooth muscle cells, macrophages and foam cells) as well as by circulating cells (monocytes, platelets) or novel biomarkers present in plasma.
Collapse
Affiliation(s)
- F. Vivanco
- Department of Immunology. Fundación Jiménez Díaz, Madrid, Spain
- Department of Biochemistry and Molecular Biology I, Universidad Complutense, Proteomic Unit, Madrid, Spain
| | - L.R. Padial
- Department of Cardiology. Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | - V.M. Darde
- Department of Immunology. Fundación Jiménez Díaz, Madrid, Spain
| | - F. de la Cuesta
- Department of Immunology. Fundación Jiménez Díaz, Madrid, Spain
| | | | - Natacha Diaz-Prieto
- Department of Vascular Pathophysiology. Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - M.G. Barderas
- Department of Immunology. Fundación Jiménez Díaz, Madrid, Spain
- Department of Vascular Pathophysiology. Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| |
Collapse
|
40
|
Vivanco F, Mas S, Darde VM, De la Cuesta F, Alvarez-Llamas G, Barderas MG. Vascular proteomics. Proteomics Clin Appl 2007; 1:1102-22. [DOI: 10.1002/prca.200700190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Wu AHB. Early detection of acute coronary syndromes and risk stratification by multimarker analysis. Biomark Med 2007; 1:45-57. [DOI: 10.2217/17520363.1.1.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cardiac troponin is the standard biomarker for the diagnosis of acute myocardial infarction (AMI) and risk stratification for short-term adverse cardiac events (death, AMI or need for revascularization). Unfortunately, the concentration of troponin in blood is normal in AMI patients who present early after the onset of symptoms. As such, there is active research being conducted in finding early markers of AMI and risk stratification. Despite years of testing dozens of candidates, no single test has had the necessary clinical sensitivity and specificity for this indication. Therefore, many researchers have advocated multimarker testing. There are two approaches that have been taken for discovering new markers. The proteomic approach involves focusing on the differences in the biochemical signatures between the tissues or biological fluids of normal compared with diseased individuals. Specific biochemical targets are not preselected. The pathophysiologic approach involves combining biomarkers that indicate a particular pathway or event known to be involved in the disease process. In both approaches, some bioinformatic algorithm will be necessary in order to combine the information provided by the individual tests. Representative approaches include the Multimarker Index™, classification and regression tree analysis and neural networks.
Collapse
Affiliation(s)
- Alan HB Wu
- University of California, Department of Laboratory Medicine, San Francisco, CA, USA
| |
Collapse
|