1
|
Yang W, Chen T, Zhou Q, Xu J. Resistance to linezolid in Staphylococcus aureus by mutation, modification, and acquisition of genes. J Antibiot (Tokyo) 2025; 78:4-13. [PMID: 39420155 PMCID: PMC11700844 DOI: 10.1038/s41429-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Linezolid binds to the 50S subunit of the bacterial ribosome, inhibiting bacterial protein synthesis by preventing the formation of the initiation complex. Oxazolidinone antimicrobial drugs represent the last line of defense in treating Staphylococcus aureus infections; thus, resistance to linezolid in S. aureus warrants high priority. This article examines the major mechanisms of resistance to linezolid in S. aureus, which include: mutations in the domain V of 23S rRNA (primarily G2576); chromosomal mutations in the rplC, rplD, and rplV genes (encoding the ribosomal uL3, uL4, and uL22 proteins, respectively); the exogenous acquisition of the methylase encoded by the chloramphenicol-florfenicol resistance (cfr) gene; the endogenous methylation or demethylation of 23S rRNA; the acquisition of optrA and poxtA resistance genes; and the existence of the LmrS multidrug efflux pump. In conclusion, these mechanisms mediate resistance through mutations or modifications to the bacterial target, thereby reducing the affinity of linezolid for the peptidyl transferase center (PTC) binding site or by preventing the binding of linezolid to the PTC through a ribosomal protective effect. The existence of additional, unexplained resistance mechanisms requires further investigation and verification.
Collapse
Affiliation(s)
- Wenjing Yang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Taoran Chen
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Poshvina DV, Dilbaryan DS, Vasilchenko AS. Gausemycin A-Resistant Staphylococcus aureus Demonstrates Affected Cell Membrane and Cell Wall Homeostasis. Microorganisms 2023; 11:1330. [PMID: 37317304 PMCID: PMC10220612 DOI: 10.3390/microorganisms11051330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Antibiotic resistance is a significant and pressing issue in the medical field, as numerous strains of infectious bacteria have become resistant to commonly prescribed antibiotics. Staphylococcus aureus is a bacterium that poses a grave threat, as it is responsible for a large number of nosocomial infections and has high mortality rates worldwide. Gausemycin A is a new lipoglycopeptide antibiotic that has considerable efficacy against multidrug-resistant S. aureus strains. Although the cellular targets of gausemycin A have been previously identified, detailing the molecular processes of action is still needed. We performed gene expression analysis to identify molecular mechanisms that may be involved in bacterial resistance to gausemycin A. In the present study, we observed that gausemycin A-resistant S. aureus in the late-exponential phase showed an increased expression of genes involved in cell wall turnover (sceD), membrane charge (dltA), phospholipid metabolism (pgsA), the two-component stress-response system (vraS), and the Clp proteolytic system (clpX). The increased expression of these genes implies that changes in the cell wall and cell membrane are essential for the bacterial resistance to gausemycin A. In the stationary phase, we observed a decrease in the expression of genes involved in the phospholipid metabolism (mprF) and Clp proteolytic system (clpX).
Collapse
Affiliation(s)
| | | | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (D.V.P.); (D.S.D.)
| |
Collapse
|
3
|
Bai B, Chen C, Zhao Y, Xu G, Yu Z, Tam VH, Wen Z. In vitro activity of tigecycline and proteomic analysis of tigecycline adaptation strategies in clinical Enterococcus faecalis isolates from China. J Glob Antimicrob Resist 2022; 30:66-74. [PMID: 35508286 DOI: 10.1016/j.jgar.2022.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/02/2022] [Accepted: 04/27/2022] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the in vitro activities of tigecycline (TGC) and the underlying molecular mechanisms of TGC stress response and resistance in clinical Enterococcus faecalis isolates from China. METHODS Antimicrobial susceptibility and antibiofilm activities of TGC in 399 E. faecalis isolates were evaluated. Heteroresistance was evaluated by population analysis profiling. Resistance and heteroresistance mechanisms were investigated by identifying genetic mutations in tetracycline (tet) target sites and through analysis of efflux protein inhibitors (EPIs). Furthermore, quantitative proteomics was used to investigate the global proteomic response of E. faecalis to TGC stress, as well as the resistance mechanisms of TGC within in vitro induced resistant isolate. RESULTS TGC minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates were ≤0.5 mg/L. TGC displayed remarkable inhibitory activity against biofilm formation. The occurrence rate of TGC heteroresistance was 1.75% (7/399), and the increased TGC MIC values of heteroresistance-derived clones could be reversed by EPI. TGC resistance was associated with mutations in the 16S rRNA site or 30S ribosomal protein S10. A total of 105 and 356 differentially expressed proteins was identified after being exposed to 1/2× MIC concentrations of TGC, while 356 differentially expressed proteins was identified in TGC-resistant isolate. The differentially expressed proteins were enriched in the translation and DNA replication process. In addition, multiple adenosine triphosphate (ATP)-binding cassette (ABC) transporters were upregulated. CONCLUSIONS TGC exhibited excellent activity against a substantial proportion of clinical isolates from China. However, E. faecalis exhibited a strong adaptation mechanism during TGC exposure: mutation of TGC target sites and elevated expression of efflux pumps under TGC selection, resulting in TGC resistance.
Collapse
Affiliation(s)
- Bing Bai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China; Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas
| | - Chengchun Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuxi Zhao
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Guangjian Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas.
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
4
|
Wen Z, Liu F, Zhang P, Wei Y, Shi Y, Zheng J, Li G, Yu Z, Xu Z, Deng Q, Chen Z. In vitro activity and adaptation strategies of eravacycline in clinical Enterococcus faecium isolates from China. J Antibiot (Tokyo) 2022; 75:498-508. [PMID: 35896611 DOI: 10.1038/s41429-022-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022]
Abstract
Eravacycline (Erava) is a synthetic fluorocycline with potent antimicrobial activity against a wide range of Gram-positive bacteria. This study aimed to investigate the in vitro antimicrobial activity and resistance mechanism of Erava in clinical E. faecium isolates from China. Erava minimum inhibitory concentrations (MICs) against clinical E. faecium isolates-including those resistant to linezolid (LZD) or harboring the tetracycline (Tet) resistance genes was ≤0.25 mg l-1. Moreover, our data indicated that clinical isolates of E. faecium with Erava MIC 0.25 mg l-1 were predominantly shown to belong to Sequence-type 78 (ST78) and ST80. The prevalence of Erava heteroresistance in clinical E. faecium strain was 2.46% (3/122). The increased Erava MIC values of heteroresistance-derived E. faecium clones could be significantly reduced by efflux pump inhibitors (EPIs). Furthermore, comparative proteomics results showed that efflux pumps lmrA, mdlA, and mdlB contributed significantly to the acquisition of Erava resistance in E. faecium. In addition, a genetic mutation in 16 S rRNA (G190A) were detected in resistant E. faecium isolates induced by Erava. In summary, Erava exhibits potent in vitro antimicrobial activity against E. faecium, but mutation of Tet target sites and elevated expression of efflux pumps under Erava selection results in Erava resistance.
Collapse
Affiliation(s)
- Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Fangfang Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Peixing Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Ying Wei
- Heilongjiang Medical Service Management Evaluation Center, Harbin, Heilongjiang, 150031, China
| | - Yiyi Shi
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Guiqiu Li
- Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.,The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhicao Xu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
5
|
Fait A, Seif Y, Mikkelsen K, Poudel S, Wells JM, Palsson BO, Ingmer H. Adaptive laboratory evolution and independent component analysis disentangle complex vancomycin adaptation trajectories. Proc Natl Acad Sci U S A 2022; 119:e2118262119. [PMID: 35858453 PMCID: PMC9335240 DOI: 10.1073/pnas.2118262119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
Human infections with methicillin-resistant Staphylococcus aureus (MRSA) are commonly treated with vancomycin, and strains with decreased susceptibility, designated as vancomycin-intermediate S. aureus (VISA), are associated with treatment failure. Here, we profiled the phenotypic, mutational, and transcriptional landscape of 10 VISA strains adapted by laboratory evolution from one common MRSA ancestor, the USA300 strain JE2. Using functional and independent component analysis, we found that: 1) despite the common genetic background and environmental conditions, the mutational landscape diverged between evolved strains and included mutations previously associated with vancomycin resistance (in vraT, graS, vraFG, walKR, and rpoBCD) as well as novel adaptive mutations (SAUSA300_RS04225, ssaA, pitAR, and sagB); 2) the first wave of mutations affected transcriptional regulators and the second affected genes involved in membrane biosynthesis; 3) expression profiles were predominantly strain-specific except for sceD and lukG, which were the only two genes significantly differentially expressed in all clones; 4) three independent virulence systems (φSa3, SaeR, and T7SS) featured as the most transcriptionally perturbed gene sets across clones; 5) there was a striking variation in oxacillin susceptibility across the evolved lineages (from a 10-fold increase to a 63-fold decrease) that also arose in clinical MRSA isolates exposed to vancomycin and correlated with susceptibility to teichoic acid inhibitors; and 6) constitutive expression of the VraR regulon explained cross-susceptibility, while mutations in walK were associated with cross-resistance. Our results show that adaptation to vancomycin involves a surprising breadth of mutational and transcriptional pathways that affect antibiotic susceptibility and possibly the clinical outcome of infections.
Collapse
Affiliation(s)
- Anaëlle Fait
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870 Denmark
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Merck & Co., Inc., South San Francisco, CA 94080
| | - Kasper Mikkelsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870 Denmark
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Jerry M. Wells
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870 Denmark
| |
Collapse
|
6
|
Wang W, Sun B. VraCP regulates cell wall metabolism and antibiotic resistance in vancomycin-intermediate Staphylococcus aureus strain Mu50. J Antimicrob Chemother 2021; 76:1712-1723. [PMID: 33948657 PMCID: PMC8212773 DOI: 10.1093/jac/dkab113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/13/2021] [Indexed: 01/29/2023] Open
Abstract
Objectives Vancomycin-intermediate Staphylococcus aureus (VISA) is increasingly being reported. Previous studies have shown that vraC and vraP may be involved in vancomycin resistance, although the molecular mechanism remains elusive. Methods The vraC (SAV0577), vraP (SAV0578) and vraCP mutants were constructed in Mu50 by allelic replacement. Some common VISA phenotypes were assessed in mutants, such as, susceptibility to the cell wall-associated antibiotics, cell wall thickness, autolysis activity and growth rate. RT-qPCR was performed to reveal the differential genes associated with these phenotypes. The binding abilities of VraC and VraCP to the promoters of target genes were determined by electrophoretic mobility shift assay (EMSA). Results VraP forms a stable complex with VraC to preserve their own stability. The vraC, vraP and vraCP mutants exhibited increased susceptibility to the cell wall-associated antibiotics and thinner cell walls compared with the WT strain. Consistent with these phenotypes, RT-qPCR revealed downregulated transcription of glyS, sgtB, ddl and alr2, which are involved in cell wall biosynthesis. Moreover, the transcription of cell wall hydrolysis genes, including sceD, lytM and isaA, was significantly downregulated, supporting the finding that mutants exhibited reduced autolysis rates. EMSA confirmed that both VraC and VraCP can directly bind to the sceD, lytM and isaA promoter regions containing the consensus sequence (5′-TTGTAAN2AN3TGTAA-3′), which is crucial for the binding of VraCP with target genes. GFP-reporter assays further revealed VraC and VraCP can enhance promoter activity of sceD to positively regulate its expression. Conclusions vraCP plays a significant role in cell wall metabolism and antibiotic resistance in Mu50.
Collapse
Affiliation(s)
- Wanying Wang
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
7
|
Babele P, Kumar RB, Rajoria S, Rashid F, Malakar D, Bhagyawant SS, Kamboj DV, Alam SI. Putative serum protein biomarkers for epsilon toxin exposure in mouse model using LC-MS/MS analysis. Anaerobe 2020; 63:102209. [PMID: 32387808 DOI: 10.1016/j.anaerobe.2020.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens Type B or type D strains, is a potential biological and toxin warfare (BTW) agent, largely for its very high toxicity. The toxin is implicated in several animal diseases. Using LC-MS/MS analysis, we report here elucidation of putative serum maker proteins for ETX exposure with an objective of the early diagnosis of intoxication. Of 166 consensus proteins (488 peptides), showing ETX-induced alterations, 119 proteins exhibited increase and 47 proteins showed decreased abundance in serum, as revealed by SWATH (DIA) acquisition on LC-MS/MS and label free quantitative analysis of control and test samples. Complement and coagulation cascade, nitrogen metabolism, negative regulation of peptidase activity, and response to ROS were among the biological processes and pathways perturbed by the ETX exposure. Interaction network indicated enzyme inhibitor activity, detoxification of ROS, and steroid binding functions were the major interaction networks for the proteins with increased abundance, while, hemostasis and structural molecule activity were the prominent networks for the down-regulated proteins. Validation studies were carried out by immunoprecipitation, ELISA, and Western blot analysis of selected proteins to demonstrate diagnostic potential of the putative marker proteins of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Faraz Rashid
- Sciex, 121 DHR, Udyog Vihar, Gurugram, Haryana, India
| | - Dipankar Malakar
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
8
|
A Kayvirus Distant Homolog of Staphylococcal Virulence Determinants and VISA Biomarker Is a Phage Lytic Enzyme. Viruses 2020; 12:v12030292. [PMID: 32156046 PMCID: PMC7150955 DOI: 10.3390/v12030292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal bacteriophages of the Kayvirus genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD. It causes lysis of E. coli cells expressing the cloned tgl gene, but could be overproduced when depleted of signal peptide. S. aureus cells producing Tgl lysed in the presence of nisin, which mimics the action of phage holin. In vitro, Tgl protein was able to destroy S. aureus cell walls. The production of Tgl decreased S. aureus tolerance to vancomycin, unlike the production of SceD, which is associated with decreased sensitivity to vancomycin. In the genomes of kayviruses, the tgl gene is located a few genes away from the lysK gene, encoding the major endolysin. While lysK is a late phage gene, tgl can be transcribed by a host RNA polymerase, like phage early genes. Taken together, our data indicate that tgl belongs to the kayvirus lytic module and encodes an additional endolysin that can act in concert with LysK in cell lysis.
Collapse
|
9
|
Kuroda M, Sekizuka T, Matsui H, Ohsuga J, Ohshima T, Hanaki H. IS 256-Mediated Overexpression of the WalKR Two-Component System Regulon Contributes to Reduced Vancomycin Susceptibility in a Staphylococcus aureus Clinical Isolate. Front Microbiol 2019; 10:1882. [PMID: 31474962 PMCID: PMC6702299 DOI: 10.3389/fmicb.2019.01882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
Vancomycin (VAN)-intermediate-resistant Staphylococcus aureus (VISA) is continually isolated globally, with a systematic review suggesting a prevalence of 2% in all blood culture samples. Most VISA strains exhibit common characteristics, such as a thickened cell wall, reduced autolysis, and attenuated virulence. Here, based on multi-omics approaches, we have characterized clinical VISA isolates obtained through prolonged antimicrobial treatment in a single patient. All VISA isolates were isogenic, based on multi-locus sequence typing (MLST) ST5, SCCmec type II (2A), and spa type t17639. Core-genome single nucleotide variations (SNVs) found among thirteen isolates during the patient's hospitalization, indicated clonality, but not notable genetic features of the VISA phenotype. We determined the complete genome sequence of VAN-susceptible strain KG-03 (minimum inhibitory concentration [MIC] 0.5 μg/mL) and two VISA strains, KG-18 and KG-22 (MIC 8.0 and 4.0 μg/mL, respectively). Comparative genome analysis showed remarkable strain-specific IS256 insertions. RNA-Seq transcriptome analysis revealed IS256-mediated overexpression of the walKR two-component system in VISA KG-18, possibly leading to modulation of cell wall integrity (lytM and sceD) and surface charge (mprF and dltABCD). In addition, secretome analysis indicated that cell wall-anchored proteins (Protein A, SasG, and SdrD) were significantly decreased. KG-18 and KG-22 exhibit thickened cell wall, and are relatively resistant to lysostaphin, which cleaves a staphylococcus-unique pentaglycine chain in the peptidoglycan. We conclude that KG-18 achieved reduced susceptibility to VAN by IS256-mediated WalKR overexpression, leading to a markedly thickened cell wall for trapping free VAN molecules with redundant D-Ala-D-Ala targets. In addition, a positively charged surface with lysyl-phosphatidylglycerol and depolarization of wall teichoic acid could contribute to inhibiting cationic daptomycin and VAN antimicrobial activity. Comparative omics approaches in this study strongly suggest that fully complete and annotated genome sequences will be indispensable for characterizing overall VISA phenotype.
Collapse
Affiliation(s)
- Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Hidehito Matsui
- Infection Control Research Center, Kitasato University, Minato-ku, Japan
| | - Jun Ohsuga
- Department of Clinical Laboratory, Tokai University Oiso Hospital, Kanagawa, Japan
| | - Toshio Ohshima
- Department of Medical Risk and Crisis Management, Chiba Institute of Science, Chiba, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, Kitasato University, Minato-ku, Japan
| |
Collapse
|
10
|
Wang J, Wang J, Wang Y, Sun P, Zou X, Ren L, Zhang C, Liu E. Protein expression profiles in methicillin-resistant Staphylococcus aureus (MRSA) under effects of subminimal inhibitory concentrations of imipenem. FEMS Microbiol Lett 2019; 366:5570583. [PMID: 31529016 DOI: 10.1093/femsle/fnz195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Imipenem is a beta-lactam antibiotic mainly active against gram-negative bacterial pathogens and also could cause cell wall impairment in methicillin-resistant Staphylococcus aureus(MRSA). However, related antibacterial mechanisms of imipenem on MRSA and mixed infections of MRSA and gram-negative bacteria are relatively poorly revealed. This study was to identify proteins in the MRSA response to subminimal inhibitory concentrations (sub-MICs) of imipenem treatment. Our results showed that 240 and 58 different expression proteins (DEPs) in sub-MICs imipenem-treated S3 (a standard MRSA strain) and S23 (a clinical MRSA strain) strains were identified through the isobaric tag for relative and absolute quantitation method when compared with untreated S3 and S23 strains, respectively, which was further confirmed by multiple reactions monitoring. Our result also demonstrated that expressions of multiple DEPs involved in cellular proliferation, metabolism and virulence were significantly changed in S3 and S23 strains, which was proved by gene ontology annotations and qPCR analysis. Further, transmission electron microscopy and scanning electron microscopy analysis showed cell wall deficiency, cell lysis and abnormal nuclear mitosis on S23 strain. Our study provides important information for understanding the antibacterial mechanisms of imipenem on MRSA and for better usage of imipenem on patients co-infected with MRSA and other multidrug-resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Jichun Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China.,Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Junrui Wang
- Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Yanyan Wang
- Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Peng Sun
- Pathogen and Immunity Research Center, College of Basic Medicine, Inner Mongolia Medical University, Jinshan Avenue, Hohhot, Inner Mongolia 010110, China
| | - Xiaohui Zou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention; China CDC, Key Laboratory for Medical Virology, Ministry of Health, Beijing 102206, China
| | - Luo Ren
- Pediatrics Institute, Children's Hospital Chongqing Medical University, No. 136, Zhong Shan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Chunxia Zhang
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Enmei Liu
- Pediatrics Institute, Children's Hospital Chongqing Medical University, No. 136, Zhong Shan 2nd Road, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
11
|
Basco MDS, Kothari A, McKinzie PB, Revollo JR, Agnihothram S, Azevedo MP, Saccente M, Hart ME. Reduced vancomycin susceptibility and increased macrophage survival in Staphylococcus aureus strains sequentially isolated from a bacteraemic patient during a short course of antibiotic therapy. J Med Microbiol 2019; 68:848-859. [DOI: 10.1099/jmm.0.000988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- M. D. S. Basco
- 1 Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - A. Kothari
- 2 Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Page B. McKinzie
- 3 Division of Molecular and Genetic Toxicology, NCTR, Food and Drug Administration, Jefferson, Arkansas, USA
| | - J. R. Revollo
- 3 Division of Molecular and Genetic Toxicology, NCTR, Food and Drug Administration, Jefferson, Arkansas, USA
| | - S. Agnihothram
- 1 Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - M. P. Azevedo
- 1 Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - M. Saccente
- 2 Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - M. E. Hart
- 1 Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
- 4 Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
12
|
Babele P, Verma S, Kumar RB, Bhagyawant SS, Kamboj DV, Alam SI. Elucidation of protein biomarkers in plasma and urine for epsilon toxin exposure in mouse model. Anaerobe 2019; 59:76-91. [PMID: 31145997 DOI: 10.1016/j.anaerobe.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Epsilon toxin (ETX) is the major virulence determinant of C. perfringens type B or type D strains, causing diseases in animals, besides being a listed biological and toxin warfare (BTW) agent. Keeping in mind the high lethality and the rapid onset of clinical manifestations, early diagnosis of epsilon toxin exposure is of paramount importance for implementation of appropriate medical countermeasures. Using a 2DE-MS approach, the present study is the first comprehensive proteomic elucidation of ETX-induced protein markers in the mouse model, providing putative targets for early diagnosis of ETX exposure. A total of 52 unique proteins showing ETX-induced modulations were identified in plasma and urine samples. Fibrinogen, apolipoprotein, serum amyloid protein, plasminogen, serum albumin, glutathione peroxidase, transferrin, major urinary protein 2, haptoglobin, transthyretin, and vitamin D-binding protein were among the proteins observed in more than one dataset with altered abundance after the ETX-intoxication. The predicted localization, function, and interaction of the ETX-modulated proteins in the plasma and urine indicated involvement of multiple pathways; extracellular proteins, followed by macromolecular complexes associated with blood coagulation and plasminogen activating cascade, being the most prominent among others. The putative markers elucidated here warrants further validation and can be of immense value for the early diagnosis of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Smarti Verma
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
13
|
Subramanian D, Natarajan J. RNA-seq analysis reveals resistome genes and signalling pathway associated with vancomycin-intermediate Staphylococcus aureus. Indian J Med Microbiol 2019; 37:173-185. [PMID: 31745016 DOI: 10.4103/ijmm.ijmm_18_311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context Vancomycin-intermediate Staphylococcus aureus remains one of the most prevalent multidrug-resistant pathogens causing healthcare infections that are difficult to treat. Aims This study uses a comprehensive computational analysis to systematically investigate various gene expression profiles of resistant and sensitive S. aureus strains on exposure to antibiotics. Settings and Design The transcriptional changes leading to the development of multiple antibiotic resistance were examined by an integrative analysis of nine differential expression experiments under selected conditions of vancomycin-intermediate and -sensitive strains for four different antibiotics using publicly available RNA-Seq datasets. Materials and Methods For each antibiotic, three experimental conditions for expression analysis were selected to identify those genes that are particularly involved in the development of resistance. The results were further scrutinised to generate a resistome that can be analysed for their role in the development or adaptation to antibiotic resistance. Results The 99 genes in the resistome are then compiled to create a multiple drug resistome of 25 known and novel genes identified to play a part in antibiotic resistance. The inclusion of agr genes and associated virulence factors in the identified resistome supports the role of agr quorum sensing system in multiple drug resistance. In addition, enrichment analysis also identified the kyoto encyclopedia of genes and genomes (KEGG) pathways - quorum sensing and two-component system pathways - in the resistome gene set. Conclusion Further studies on understanding the role of the identified molecular targets such as SAA6008_00181, SAA6008_01127, agrA, agrC and coa in adapting to the pressure of antibiotics at sub-inhibitory concentrations can help in learning the molecular mechanisms causing resistance to the pathogens as well as finding other potential therapeutics.
Collapse
Affiliation(s)
- Devika Subramanian
- Department of Bioinformatics, Data Mining and Text Mining Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jeyakumar Natarajan
- Department of Bioinformatics, Data Mining and Text Mining Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
14
|
Zhao H, Hu F, Yang H, Ding B, Xu X, He C, Cui Z, Shu W, Liu Q. Isobaric tags for relative and absolute quantitation proteomics analysis of gene regulation by SprC in Staphylococcus aureus. Future Microbiol 2017; 12:1181-1199. [PMID: 28876151 DOI: 10.2217/fmb-2017-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To explore the complete gene networks regulated by small RNA SprC and its targets in Staphylococcus aureus. MATERIALS & METHODS The isobaric tags for relative and absolute quantitation and bioinformatic methods were utilized to identify and analyze the target proteins affected by SprC in S. aureus N315. RESULTS Proteomic analysis showed that the expression of 44 proteins was modulated by SprC. Further, bioinformatic analysis displayed that these affected proteins mainly associated with metabolic and cellular process, biological regulation and catalytic activity. CONCLUSION Our data provide a rich resource of SprC targets in S. aureus, although the mechanism of regulation by SprC is yet to be elucidated.
Collapse
Affiliation(s)
- Huanqiang Zhao
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Han Yang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunyan He
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zelin Cui
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Shu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Cui Z, Guo X, Dong K, Zhang Y, Li Q, Zhu Y, Zeng L, Tang R, Li L. Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences. Sci Rep 2017; 7:41259. [PMID: 28117392 PMCID: PMC5259776 DOI: 10.1038/srep41259] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus phages of the Myoviridae family have a wide host range and potential applications in phage therapy. In this report, safety assessments of these phages were conducted based on their complete genome sequences. The complete genomes of Staphylococcus phages of the Myoviridae family were analyzed, and the Open Reading Frame (ORFs) were compared with a pool of virulence and antibiotic resistance genes using the BLAST algorithm. In addition, the lifestyle of the phages (virulent or temperate) was also confirmed using PHACTS. The results showed that all phages were lytic and did not contain resistance or virulence genes based on bioinformatic analyses, excluding the possibility that they could be vectors for the dissemination of these undesirable genes. These findings suggest that the phages are safe at the genome level. The SceD-like transglycosylase, which is a biomarker for vancomycin-intermediate strains, was widely distributed in the phage genomes. Approximately 70% of the ORFs encoded in the phage genomes have unknown functions; therefore, their roles in the antibiotic resistance and virulence of Staphylococcus aureus are still unknown and require consideration before use in phage therapy.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ke Dong
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Zhang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingbing Zeng
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Rong Tang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
16
|
Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl 2016; 10:964-981. [PMID: 27312049 DOI: 10.1002/prca.201600041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022]
Abstract
Developing elaborate techniques for clinical applications can be a complicated process. Whole-cell MALDI-TOF MS revolutionized reliable microorganism identification in clinical microbiology laboratories and is now replacing phenotypic microbial identification. This technique is a generic, accurate, rapid, and cost-effective growth-based method. Antibiotic resistance keeps emerging in environmental and clinical microorganisms, leading to clinical therapeutic challenges, especially for Gram-negative bacteria. Antimicrobial susceptibility testing is used to reliably predict antimicrobial success in treating infection, but it is inherently limited by the need to isolate and grow cultures, delaying the application of appropriate therapies. Antibiotic resistance prediction by growth-independent methods is expected to reduce the turnaround time. Recently, the potential of next-generation sequencing and microarrays in predicting microbial resistance has been demonstrated, and this review evaluates the potential of MS in this field. First, technological advances are described, and the possibility of predicting antibiotic resistance by MS is then illustrated for three prototypical human pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clearly, MS methods can identify antimicrobial resistance mediated by horizontal gene transfers or by mutations that affect the quantity of a gene product, whereas antimicrobial resistance mediated by target mutations remains difficult to detect.
Collapse
Affiliation(s)
- Yannick Charretier
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals
| |
Collapse
|
17
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
18
|
Lee CR, Lee JH, Park KS, Jeong BC, Lee SH. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol 2015; 6:828. [PMID: 26322035 PMCID: PMC4531251 DOI: 10.3389/fmicb.2015.00828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
19
|
Otto A, Becher D, Schmidt F. Quantitative proteomics in the field of microbiology. Proteomics 2014; 14:547-65. [PMID: 24376008 DOI: 10.1002/pmic.201300403] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/15/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022]
Abstract
Quantitative proteomics has become an indispensable analytical tool for microbial research. Modern microbial proteomics covers a wide range of topics in basic and applied research from in vitro characterization of single organisms to unravel the physiological implications of stress/starvation to description of the proteome content of a cell at a given time. With the techniques available, ranging from classical gel-based procedures to modern MS-based quantitative techniques, including metabolic and chemical labeling, as well as label-free techniques, quantitative proteomics is today highly successful in sophisticated settings of high complexity such as host-pathogen interactions, mixed microbial communities, and microbial metaproteomics. In this review, we will focus on the vast range of techniques practically applied in current research with an introduction of the workflows used for quantitative comparisons, a description of the advantages/disadvantages of the various methods, reference to hallmark publications and presentation of applications in current microbial research.
Collapse
Affiliation(s)
- Andreas Otto
- Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Germany
| | | | | |
Collapse
|
20
|
The msaABCR operon regulates resistance in vancomycin-intermediate Staphylococcus aureus strains. Antimicrob Agents Chemother 2014; 58:6685-95. [PMID: 25155591 DOI: 10.1128/aac.03280-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) strains present an increasingly difficult problem in terms of public health. However, the molecular mechanism for this resistance is not yet understood. In this study, we define the role of the msaABCR operon in vancomycin resistance in three clinical VISA strains, i.e., Mu50, HIP6297, and LIM2. Deletion of the msaABCR operon resulted in significant decreases in the vancomycin MIC (from 6.25 to 1.56 μg/ml) and significant reductions of cell wall thickness in strains Mu50 and HIP6297. Growth of the mutants in medium containing vancomycin at concentrations greater than 2 μg/ml resulted in decreases in the growth rate, compared with the wild-type strains. Mutation of the msaABCR operon also reduced the binding capacity for vancomycin. We conclude that the msaABCR operon contributes to resistance to vancomycin and cell wall synthesis in S. aureus.
Collapse
|
21
|
Devic I, Shi M, Schubert MM, Lloid M, Izutsu KT, Pan C, Missaghi M, Morton TH, Mancl LA, Zhang J, Presland RB. Proteomic analysis of saliva from patients with oral chronic graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20:1048-55. [PMID: 24704387 DOI: 10.1016/j.bbmt.2014.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/26/2014] [Indexed: 12/13/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an immune-mediated disorder and is the major long-term complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). The oral mucosa, including the salivary glands, is affected in the majority of patients with cGVHD; however, at present there is only a limited understanding of disease pathobiology. In this study, we performed a quantitative proteomic analysis of saliva pooled from patients with and without oral cGVHD-cGVHD(+) and cGVHD(-), respectively-using isobaric tags for relative and absolute quantification labeling, followed by tandem mass spectrometry. Among 249 salivary proteins identified by tandem mass spectrometry, 82 exhibited altered expression in the oral cGVHD(+) group compared with the cGVHD(-) group. Many of the identified proteins function in innate or acquired immunity, or are associated with tissue maintenance functions, such as proteolysis or the cytoskeleton. Using ELISA immunoassays, we further confirmed that 2 of these proteins, IL-1 receptor antagonist and cystatin B, showed decreased expression in patients with active oral cGVHD (P < .003). Receiver operating curve characteristic analysis revealed that these 2 markers were able to distinguish oral cGVHD with a sensitivity of 85% and specificity of 60%, and showed slightly better discrimination in newly diagnosed patients evaluated within 12 months of allo-HSCT (sensitivity, 92%; specificity 73%). In addition to identifying novel potential salivary cGVHD biomarkers, our study demonstrates that there is coordinated regulation of protein families involved in inflammation, antimicrobial defense, and tissue protection in oral cGVHD that also may reflect changes in salivary gland function and damage to the oral mucosa.
Collapse
Affiliation(s)
- Ivana Devic
- Department of Pathology, University of Washington, Seattle, Washington
| | - Min Shi
- Department of Pathology, University of Washington, Seattle, Washington
| | - Mark M Schubert
- Department of Oral Medicine, University of Washington, Seattle, Washington; Seattle Cancer Care Alliance, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michele Lloid
- Department of Oral Medicine, University of Washington, Seattle, Washington; Seattle Cancer Care Alliance, Seattle, Washington
| | - Kenneth T Izutsu
- Department of Oral Health Sciences, University of Washington, Seattle, Washington
| | - Catherine Pan
- Department of Pathology, University of Washington, Seattle, Washington
| | - Melody Missaghi
- Department of Oral Health Sciences, University of Washington, Seattle, Washington
| | - Thomas H Morton
- Department of Oral Health Sciences, University of Washington, Seattle, Washington
| | - Lloyd A Mancl
- Department of Oral Health Sciences, University of Washington, Seattle, Washington
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, Washington
| | - Richard B Presland
- Department of Oral Health Sciences, University of Washington, Seattle, Washington; Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
22
|
Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics 2014; 97:88-99. [DOI: 10.1016/j.jprot.2013.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/12/2013] [Accepted: 10/19/2013] [Indexed: 01/10/2023]
|
23
|
Chen H, Liu Y, Zhao C, Xiao D, Zhang J, Zhang F, Chen M, Wang H. Comparative proteomics-based identification of genes associated with glycopeptide resistance in clinically derived heterogeneous vancomycin-intermediate Staphylococcus aureus strains. PLoS One 2013; 8:e66880. [PMID: 23840544 PMCID: PMC3696005 DOI: 10.1371/journal.pone.0066880] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/10/2013] [Indexed: 11/29/2022] Open
Abstract
Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) is associated with clinical treatment failure. However, the resistance mechanism of hVISA has not been fully clarified. In the present study, comparative proteomics analysis of two pairs of isogenic vancomycin-susceptible S. aureus (VSSA) and hVISA strains isolated from two patients identified five differentially expressed proteins, IsaA, MsrA2, Asp23, GpmA, and AhpC, present in both isolate pairs. All the proteins were up-regulated in the hVISA strains. These proteins were analyzed in six pairs of isogenic VSSA and hVISA strains, and unrelated VSSA (n = 30) and hVISA (n = 24) by real-time quantitative reverse transcriptase–PCR (qRT–PCR). Of the six pairs of isogenic strains, isaA, msrA2 and ahpC were up-regulated in all six hVISA strains; whereas asp23 and gpmA were up-regulated in five hVISA strains compared with the VSSA parental strains. In the unrelated strains, statistical analyses showed that only isaA was significantly up-regulated in the hVISA strains. Analysis of the five differentially expressed proteins in 15 pairs of persistent VSSA strains by qRT–PCR showed no differences in the expression of the five genes among the persistent strains, suggesting that these genes are not associated with persistence infection. Our results indicate that increased expression of isaA may be related to hVISA resistance.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yali Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Di Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Feifei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Minjun Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
24
|
Decreased vancomycin susceptibility in Staphylococcus aureus caused by IS256 tempering of WalKR expression. Antimicrob Agents Chemother 2013; 57:3240-9. [PMID: 23629723 DOI: 10.1128/aac.00279-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) strains often arise by mutations in the essential two-component regulator walKR; however their impact on walKR function has not been definitively established. Here, we investigated 10 MRSA strains recovered serially after exposure of vancomycin-susceptible S. aureus (VSSA) JKD6009 to simulated human vancomycin dosing regimens (500 mg to 4,000 mg every 12 h) using a 10-day hollow fiber infection model. After continued exposure to the vancomycin regimens, two isolates displayed reduced susceptibility to both vancomycin and daptomycin, developing independent IS256 insertions in the walKR 5' untranslated region (5' UTR). Quantitative reverse transcription-PCR (RT-PCR) revealed a 50% reduction in walKR gene expression in the IS256 mutants compared to the VSSA parent. Green fluorescent protein (GFP) reporter analysis, promoter mapping, and site-directed mutagenesis confirmed these findings and showed that the IS256 insertions had replaced two SigA-like walKR promoters with weaker, hybrid promoters. Removal of IS256 reverted the phenotype to VSSA, showing that reduced expression of WalKR did induce the VISA phenotype. Analysis of selected WalKR-regulated autolysins revealed upregulation of ssaA but no change in expression of sak and sceD in both IS256 mutants. Whole-genome sequencing of the two mutants revealed an additional IS256 insertion within agrC for one mutant, and we confirmed that this mutation abolished agr function. These data provide the first substantial analysis of walKR promoter function and show that prolonged vancomycin exposure can result in VISA through an IS256-mediated reduction in walKR expression; however, the mechanisms by which this occurs remain to be determined.
Collapse
|
25
|
Lima TB, Pinto MFS, Ribeiro SM, de Lima LA, Viana JC, Gomes Júnior N, Cândido EDS, Dias SC, Franco OL. Bacterial resistance mechanism: what proteomics can elucidate. FASEB J 2013; 27:1291-303. [PMID: 23349550 DOI: 10.1096/fj.12-221127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotics are important therapeutic agents commonly used for the control of bacterial infectious diseases; however, resistance to antibiotics has become a global public health problem. Therefore, effective therapy in the treatment of resistant bacteria is necessary and, to achieve this, a detailed understanding of mechanisms that underlie drug resistance must be sought. To fill the multiple gaps that remain in understanding bacterial resistance, proteomic tools have been used to study bacterial physiology in response to antibiotic stress. In general, the global analysis of changes in the protein composition of bacterial cells in response to treatment with antibiotic agents has made it possible to construct a database of proteins involved in the process of resistance to drugs with similar mechanisms of action. In the past few years, progress in using proteomic tools has provided the most realistic picture of the infective process, since these tools detect the end products of gene biosynthetic pathways, which may eventually determine a biological phenotype. In most bacterial species, alterations occur in energy and nitrogen metabolism regulation; glucan biosynthesis is up-regulated; amino acid, protein, and nucleotide synthesis is affected; and various proteins show a stress response after exposing these microorganisms to antibiotics. These issues have been useful in identifying targets for the development of novel antibiotics and also in understanding, at the molecular level, how bacteria resist antibiotics.
Collapse
Affiliation(s)
- Thais Bergamin Lima
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee JY, Pajarillo EAB, Kim MJ, Chae JP, Kang DK. Proteomic and Transcriptional Analysis of Lactobacillus johnsonii PF01 during Bile Salt Exposure by iTRAQ Shotgun Proteomics and Quantitative RT-PCR. J Proteome Res 2012. [DOI: 10.1021/pr300794y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ji Yoon Lee
- National
Instrumentation Center
for Environmental Management, Seoul National University, Seoul 151-921, Republic of Korea
| | | | - Min Jeong Kim
- Department of Animal Resources
Science, Dankook University, Cheonan 330-714,
Republic of Korea
| | - Jong Pyo Chae
- Department of Animal Resources
Science, Dankook University, Cheonan 330-714,
Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources
Science, Dankook University, Cheonan 330-714,
Republic of Korea
| |
Collapse
|
27
|
A mutation in the PP2C phosphatase gene in a Staphylococcus aureus USA300 clinical isolate with reduced susceptibility to vancomycin and daptomycin. Antimicrob Agents Chemother 2012; 56:5212-23. [PMID: 22850507 DOI: 10.1128/aac.05770-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains with reduced susceptibility to vancomycin (MIC of 4 to 8 μg/ml) are referred to as vancomycin-intermediate S. aureus (VISA). In this study, we characterized two isogenic USA300 S. aureus isolates collected sequentially from a single patient with endocarditis where the S. aureus isolate changed from being susceptible to vancomycin (VSSA) (1 μg/ml) to VISA (8 μg/ml). In addition, the VISA isolate lost beta-lactamase activity and showed increased resistance to daptomycin and linezolid. The two strains did not differ in growth rate, but the VISA isolate had a thickened cell wall and was less autolytic. Transcriptome sequencing (RNA-seq) analysis comparing the two isolates grown to late exponential phase showed significant differences in transcription of cell surface protein genes (spa, SBI [second immunoglobulin-binding protein of S. aureus], and fibrinogen-binding proteins), regulatory genes (agrBCA, RNAIII, sarT, and saeRS), and others. Using whole-genome shotgun resequencing, we identified 6 insertion/deletion mutations between the VSSA and VISA isolates. A protein phosphatase 2C (PP2C) family phosphatase had a 6-bp (nonframeshift) insertion mutation in a highly conserved metal binding domain. Complementation of the clinical VISA isolate with a wild-type copy of the PP2C gene reduced the vancomycin and daptomycin MICs and increased autolytic activity, suggesting that this gene contributed to the reduced vancomycin susceptibility phenotype acquired in vivo. Creation of de novo mutants from the VSSA strain resulted in different mutations, demonstrating that reduced susceptibility to vancomycin in USA300 strains can occur via multiple routes, highlighting the complex nature of the VISA phenotype.
Collapse
|
28
|
Lu JJ, Tsai FJ, Ho CM, Liu YC, Chen CJ. Peptide biomarker discovery for identification of methicillin-resistant and vancomycin-intermediate Staphylococcus aureus strains by MALDI-TOF. Anal Chem 2012; 84:5685-92. [PMID: 22762263 DOI: 10.1021/ac300855z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid identification of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA), hospital-associated (HA) MRSA, and vancomycin-intermediate S. aureus (VISA) is essential for proper therapy and timely intervention of outbreaks. In this study, peptide biomarkers for rapid identification of methicillin-resistant and vancomycin-intermediate S. aureus strains were discovered by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results showed that the 1774.1 and 1792.1 m/z peaks corresponding to the phenol-soluble modulin α1 and phenol-soluble modulin α2 peptides, respectively, were present in the majority (95%, 121 of 127) of SCCmec types IV and V isolates, but only in 8% (15 of 185) of SCCmec types I-III isolates. Since SCCmec types I-III isolates are recognized as HA-MRSA and most CA-MRSA isolates belong to SCCmec types IV and V, these two peptides may serve as markers for discrimination between HA-MRSA and CA-MRSA isolates. The 1835.0 and 1863.0 m/z peaks were present in 50% (4 of 8) of heterogeneous VISA and 88% (14 of 16) of VISA isolates. The peptides of these two peaks were identified as proteolytic products of the acyl carrier protein. The results of this study provide the possibility to develop methods for identification of CA-MRSA, HA-MRSA, and vancomycin-resistant S. aureus isolates based on the presence of these peptides.
Collapse
Affiliation(s)
- Jang-Jih Lu
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | | | | | | | | |
Collapse
|
29
|
The posttranslocational chaperone lipoprotein PrsA is involved in both glycopeptide and oxacillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2012; 56:3629-40. [PMID: 22526301 DOI: 10.1128/aac.06264-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding in detail the factors which permit Staphylococcus aureus to counteract cell wall-active antibiotics is a prerequisite to elaborating effective strategies to prolong the usefulness of these drugs and define new targets for pharmacological intervention. Methicillin-resistant S. aureus (MRSA) strains are major pathogens of hospital-acquired and community-acquired infections and are most often treated with glycopeptides (vancomycin and teicoplanin) because of their resistance to most penicillins and a limited arsenal of clinically proven alternatives. In this study, we examined PrsA, a lipid-anchored protein of the parvulin PPIase family (peptidyl-prolyl cis/trans isomerase) found ubiquitously in all Gram-positive species, in which it assists posttranslocational folding at the outer surface of the cytoplasmic membrane. We show by both genetic and biochemical assays that prsA is directly regulated by the VraRS two-component sentinel system of cell wall stress. Disruption of prsA is tolerated by S. aureus, and its loss results in no detectable overt macroscopic changes in cell wall architecture or growth rate under nonstressed growth conditions. Disruption of prsA leads, however, to notable alterations in the sensitivity to glycopeptides and dramatically decreases the resistance of COL (MRSA) to oxacillin. Quantitative transcriptional analysis reveals that prsA and vraR are coordinately upregulated in a panel of stable laboratory and clinical glycopeptide-intermediate S. aureus (GISA) strains compared to their susceptible parents. Collectively, our results point to a role for prsA as a facultative facilitator of protein secretion or extracellular folding and provide a framework for understanding why prsA is a key element of the VraRS-mediated cell wall stress response.
Collapse
|
30
|
Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrob Agents Chemother 2012; 56:1714-24. [PMID: 22290970 DOI: 10.1128/aac.05558-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) are effective antibiotic agents commonly found in plants, animals, and microorganisms, and they have been suggested as the future of antimicrobial chemotherapies. It is vital to understand the molecular details that define the mechanism of action of resistance to AMPs for a rational planning of the next antibiotic generation and also to shed some light on the complex AMP mechanism of action. Here, the antibiotic resistance of Escherichia coli ATCC 8739 to magainin I was evaluated in the cytosolic subproteome. Magainin-resistant strains were selected after 10 subsequent spreads at subinhibitory concentrations of magainin I (37.5 mg · liter⁻¹), and their cytosolic proteomes were further compared to those of magainin-susceptible strains through two-dimensional electrophoresis analysis. As a result, 41 differentially expressed proteins were detected by in silico analysis and further identified by tandem mass spectrometry de novo sequencing. Functional categorization indicated an intense metabolic response mainly in energy and nitrogen uptake, stress response, amino acid conversion, and cell wall thickness. Indeed, data reported here show that resistance to cationic antimicrobial peptides possesses a greater molecular complexity than previously supposed, resulting in cell commitment to several metabolic pathways.
Collapse
|
31
|
Cafiso V, Bertuccio T, Spina D, Purrello S, Campanile F, Di Pietro C, Purrello M, Stefani S. Modulating activity of vancomycin and daptomycin on the expression of autolysis cell-wall turnover and membrane charge genes in hVISA and VISA strains. PLoS One 2012; 7:e29573. [PMID: 22253738 PMCID: PMC3253798 DOI: 10.1371/journal.pone.0029573] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/30/2011] [Indexed: 11/21/2022] Open
Abstract
Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in hVISA and VISA, can influence their cross-resistance mechanisms promoting VISA behavior in hVISA and enhancing the cell-wall pathways responsible for the intermediate vancomycin resistance in VISA. Daptomycin can also induce a charge repulsion mechanism both in hVISA and VISA increasing the activity of the mprF.
Collapse
Affiliation(s)
- Viviana Cafiso
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Taschia Bertuccio
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Daniela Spina
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Simona Purrello
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Floriana Campanile
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- Unit of Genome and Molecular Complex Systems BioMedicine G Sichel, Department Gian Filippo Ingrassia, Catania, Italy
| | - Michele Purrello
- Unit of Genome and Molecular Complex Systems BioMedicine G Sichel, Department Gian Filippo Ingrassia, Catania, Italy
| | - Stefania Stefani
- Unit of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy
| |
Collapse
|
32
|
Feng J, Billal DS, Lupien A, Racine G, Winstall E, Légaré D, Leprohon P, Ouellette M. Proteomic and transcriptomic analysis of linezolid resistance in Streptococcus pneumoniae. J Proteome Res 2011; 10:4439-52. [PMID: 21875071 DOI: 10.1021/pr200221s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linezolid is an oxazolidinone antibiotic that inhibits the initiation of translation. Although resistance to linezolid is an uncommon event, it has been reported in clinical isolates. The genome sequence of Streptococcus pneumoniae linezolid-resistant mutants recently revealed mutations associated with resistance. A proteomic and transcriptomic screen now reveals a possible increase in the metabolism and transport of carbohydrates in these linezolid-resistant S. pneumoniae mutants. Several glycolytic proteins were shown to be overexpressed in the resistant strains, along with other enzymes and transporters involved in the metabolism of sugars. An increase in energy needs appears to be required to sustain extended levels of resistance to linezolid as the disruption of two ABC transporters putatively involved in the import of carbohydrates leads to a 2-fold sensitization to linezolid. Furthermore, the disruption of the catabolite control protein A, a regulator of the metabolism of sugars whose expression is highly increased in one linezolid-resistant mutant, resulted in a 2-fold increase in linezolid susceptibility. This global scale analysis of gene and protein expression profiling highlights metabolism alterations associated with linezolid resistance in S. pneumoniae.
Collapse
Affiliation(s)
- Jie Feng
- Centre de Recherche en Infectiologie and Plate-forme §Protéomique du Centre de génomique de Québec, Université Laval, CHUQ, Pavillon CHUL, 2705 boulevard Laurier, Quebec, QC, Canada, G1V 4G2
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Solis N, Cordwell SJ. Current methodologies for proteomics of bacterial surface-exposed and cell envelope proteins. Proteomics 2011; 11:3169-89. [DOI: 10.1002/pmic.201000808] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/16/2011] [Accepted: 04/05/2011] [Indexed: 12/18/2022]
|
34
|
Wang Z, Zhang J, Chen P, Zhou X, Yang Y, Wu S, Niu L, Han Y, Wang L, Chen P, Boey F, Zhang Q, Liedberg B, Zhang H. Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens Bioelectron 2011; 26:3881-6. [DOI: 10.1016/j.bios.2011.03.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/01/2011] [Indexed: 02/03/2023]
|
35
|
Muthukrishnan G, Quinn GA, Lamers RP, Diaz C, Cole AL, Chen S, Cole AM. Exoproteome of Staphylococcus aureus reveals putative determinants of nasal carriage. J Proteome Res 2011; 10:2064-78. [PMID: 21338050 PMCID: PMC3070068 DOI: 10.1021/pr200029r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the increasing prevalence of nosocomial and community-acquired antibiotic resistant Staphylococcus aureus (SA), understanding the determinants of SA nasal carriage has become a major imperative. Previous research has revealed many host and bacterial factors that contribute to SA nasal carriage. To assess bacterial factors that facilitate nasal carriage, we compared the exoproteome of a nasal carrier strain of SA to a genetically similar noncarrier strain. Additionally, the carrier strain biofilm exoproteome was also compared against its planktonic counterpart. Using high throughput proteomics, it was observed that the carrier strain of SA secretes a greater number of proteins that may promote successful colonization of the human nose, including cell attachment and immunoevasive proteins, than the noncarrier strain. Similarly, SA carrier strain biofilm exoproteome contains a greater number of immunoevasive proteins than its planktonic counterpart. Analysis of the most abundant immunoevasive proteins revealed that Staphylococcal protein A was present at significantly higher levels in carrier than in noncarrier strains of SA, suggesting an association with nasal carriage. While further analyses of specific differences between carrier and noncarrier strains of SA are required, many of the differentially expressed proteins identified can be considered to be putative determinants of nasal carriage.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Laboratory of Innate Host Defense, Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Gerry A. Quinn
- Laboratory of Innate Host Defense, Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ryan P. Lamers
- Laboratory of Innate Host Defense, Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Carolyn Diaz
- Department of Biology and Interdisciplinary Center for Biotechnological Research, University of Florida, Gainesville, Florida, USA
| | - Amy L. Cole
- Laboratory of Innate Host Defense, Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sixue Chen
- Department of Biology and Interdisciplinary Center for Biotechnological Research, University of Florida, Gainesville, Florida, USA
| | - Alexander M. Cole
- Laboratory of Innate Host Defense, Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
36
|
Mehaffy C, Hess A, Prenni JE, Mathema B, Kreiswirth B, Dobos KM. Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. Proteomics 2010; 10:1966-84. [PMID: 20217870 PMCID: PMC3517044 DOI: 10.1002/pmic.200900836] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/16/2010] [Indexed: 01/29/2023]
Abstract
The use of isobaric tags such as iTRAQ allows the relative and absolute quantification of hundreds of proteins in a single experiment for up to eight different samples. More classical techniques such as 2-DE can offer a complimentary approach for the analysis of complex protein samples. In this study, the proteomes of secreted and cytosolic proteins of genetically closely related strains of Mycobacterium tuberculosis were analyzed. Analysis of 2-D gels afforded 28 spots with variations in protein abundance between strains. These were identified by MS/MS. Meanwhile, a rigorous statistical analysis of iTRAQ data allowed the identification and quantification of 101 and 137 proteins in the secreted and cytosolic fractions, respectively. Interestingly, several differences in protein levels were observed between the closely related strains BE, C28 and H6. Seven proteins related to cell wall and cell processes were more abundant in BE, while enzymes related to metabolic pathways (GltA2, SucC, Gnd1, Eno) presented lower levels in the BE strain. Proteins involved in iron and sulfur acquisition (BfrB, ViuB, TB15.3 and SseC2) were more abundant in C28 and H6. In general, iTRAQ afforded rapid identification of fine differences between protein levels such as those presented between closely related strains. This provides a platform from which the relevance of these differences can be assessed further using complimentary proteomic and biological modeling methods.
Collapse
Affiliation(s)
- Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University; Fort Collins, CO, 80523
| | - Ann Hess
- Center for bioinformatics and Department of Statistics, Colorado State University, Fort Collins, CO, 80523
| | - Jessica E. Prenni
- Proteomics and Metabolomics Facility, Colorado State University Fort Collins, CO, 80523
| | | | | | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University; Fort Collins, CO, 80523
| |
Collapse
|
37
|
Shen CJ, Kuo TY, Lin CC, Chow LP, Chen WJ. Proteomic identification of membrane proteins regulating antimicrobial peptide resistance inVibrio parahaemolyticus. J Appl Microbiol 2010; 108:1398-407. [DOI: 10.1111/j.1365-2672.2009.04544.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Current diagnostic tools for methicillin-resistant Staphylococcus aureus infections. Mol Diagn Ther 2010; 14:73-80. [PMID: 20359250 DOI: 10.1007/bf03256356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogen responsible for a wide spectrum of healthcare-associated and community-acquired infections. Infections with MRSA strains that are resistant to beta-lactams and other types of antibiotics are a serious therapeutic problem - first, because in such cases only a limited spectrum of antibiotics can be used; and second, because such infections require prolonged hospitalization and result in economic losses. Therefore, in order to limit the overspread of pathogens, the development of diagnostic tools enabling rapid identification of carriers and infected patients, as well as proper identification of drug-resistance mechanisms to enable development of more targeted clinical treatment, are vital. This article reviews the current knowledge concerning prospective diagnostics of MRSA infections.
Collapse
|
39
|
Hawkey PM. Low-level glycopeptide resistance in methicillin-resistant Staphylococcus aureus and how to test it. Clin Microbiol Infect 2010; 15 Suppl 7:2-9. [PMID: 19951328 DOI: 10.1111/j.1469-0691.2009.03094.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vancomycin resistance in Staphylococcus aureus has emerged over the last ten years due to varying mechanisms and giving variable levels of resistance to vancomycin. The most resistant strains (fortunately rare) bear the vanA gene cluster and these are generally recognisable as MICs of vancomycin are usually found to be in the range 32-64mg/L. It should be noted that some automated systems have failed to detect these isolates. The much more commonly encountered GISA and hGISA vancomycin resistant strains of MRSA and methicillin sensitive Staph. aureus (MSSA) exhibit lower levels of resistance and difficulty is encountered in reliably defining and identifying these strains in clinical laboratories. No single completely reliable, convenient test either phonotypical genetic currently exists which can be readily applied in the clinical laboratory for the detection of hGISA/GISA. The population analysis profile (PAP) method is currently regarded as the reference method but is slow and tedious to perform on a large number of isolates. This enables the differentiation of hGISA and GISA from fully vancomycin sensitive strains. In the clinical laboratory the use of Meuller-Hinton agar with 5mg/L teicoplanin and a 10microL innoculum of MacFarland 0.5 incubated for 48h represents the most reliable and economical screening test. Further confirmation would be required using either macrodilution Etest methodology using an MIC >or= 8mg/L of vancomycin and/or teicoplanin as the cut off for hGISA or the newer GRD (glycopeptide resistance detection) strip.
Collapse
Affiliation(s)
- P M Hawkey
- Division of Immunity and Infection, The Medical School, University of Birmingham, and Health Protection Agency West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
40
|
Solis N, Larsen MR, Cordwell SJ. Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus
using a false-positive control. Proteomics 2010; 10:2037-49. [DOI: 10.1002/pmic.200900564] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 2010; 23:99-139. [PMID: 20065327 DOI: 10.1128/cmr.00042-09] [Citation(s) in RCA: 685] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The emergence of vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) over the past decade has provided a challenge to diagnostic microbiologists to detect these strains, clinicians treating patients with infections due to these strains, and researchers attempting to understand the resistance mechanisms. Recent data show that these strains have been detected globally and in many cases are associated with glycopeptide treatment failure; however, more rigorous clinical studies are required to clearly define the contribution of hVISA to glycopeptide treatment outcomes. It is now becoming clear that sequential point mutations in key global regulatory genes contribute to the hVISA and VISA phenotypes, which are associated predominately with cell wall thickening and restricted vancomycin access to its site of activity in the division septum; however, the phenotypic features of these strains can vary because the mutations leading to resistance can vary. Interestingly, changes in the staphylococcal surface and expression of agr are likely to impact host-pathogen interactions in hVISA and VISA infections. Given the subtleties of vancomycin susceptibility testing against S. aureus, it is imperative that diagnostic laboratories use well-standardized methods and have a framework for detecting reduced vancomycin susceptibility in S. aureus.
Collapse
|
42
|
Eshghi A, Cullen PA, Cowen L, Zuerner RL, Cameron CE. Global proteome analysis of Leptospira interrogans. J Proteome Res 2009; 8:4564-78. [PMID: 19663501 PMCID: PMC2757032 DOI: 10.1021/pr9004597] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Indexed: 11/28/2022]
Abstract
Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometry complemented with two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. A total of 563 proteins were identified in this study. Altered expression of 65 proteins, including upregulation of the L. interrogans virulence factor Loa22 and 5 novel proteins with homology to virulence factors found in other pathogens, was observed between the comparative conditions. Immunoblot analyses confirmed upregulation of 5 of the known or putative virulence factors in L. interrogans exposed to the in vivo-like environmental conditions. Further, ELISA analyses using serum from patients with leptospirosis and immunofluorescence studies performed on liver sections derived from L. interrogans-infected hamsters verified expression of all but one of the identified proteins during infection. These studies, which represent the first documented comparative global proteome analysis of Leptospira, demonstrated proteome alterations under conditions that mimic in vivo infection and allowed for the identification of novel putative L. interrogans virulence factors.
Collapse
Affiliation(s)
| | | | | | | | - Caroline E. Cameron
- To whom correspondence should be addressed. Tel: 250-853-3189. Fax: 250-721-8855. E-mail:
| |
Collapse
|
43
|
Jin J, Park J, Kim K, Kang Y, Park SG, Kim JH, Park KS, Jun H, Kim Y. Detection of differential proteomes of human beta-cells during islet-like differentiation using iTRAQ labeling. J Proteome Res 2009; 8:1393-403. [PMID: 19199707 DOI: 10.1021/pr800765t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A human beta-cell line, RNAKT-15, was recently established from human pancreatic islets, whereby its differentiation into islet-like beta-cells (islet-like RNAKT-15) increased its expression of insulin 2-fold compared with RNAKT-15 cells. To characterize the differentiation of RNAKT-15 cells into islet-like RNAKT-15, microarray and quantitative proteomics were performed. Our analysis of differential proteomic and mRNA expression has resulted in a greater understanding of the molecular functions that are involved in beta-cell differentiation and insulin synthesis and release.
Collapse
Affiliation(s)
- Jonghwa Jin
- Departments of Biomedical Sciences and Internal Medicine, Genome Research Center for Diabetes and Endocrine Disease, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Feng J, Lupien A, Gingras H, Wasserscheid J, Dewar K, Légaré D, Ouellette M. Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res 2009; 19:1214-23. [PMID: 19351617 PMCID: PMC2704432 DOI: 10.1101/gr.089342.108] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 04/02/2009] [Indexed: 12/22/2022]
Abstract
Linezolid is a member of a novel class of antibiotics, with resistance already being reported. We used whole-genome sequencing on three independent Streptococcus pneumoniae strains made resistant to linezolid in vitro in a step-by-step fashion. Analysis of the genome assemblies revealed mutations in the 23S rRNA gene in all mutants including, notably, G2576T, a previously recognized resistance mutation. Mutations in an additional 31 genes were also found in at least one of the three sequenced genomes. We concentrated on three new mutations that were found in at least two independent mutants. All three mutations were experimentally confirmed to be involved in antibiotic resistance. Mutations upstream of the ABC transporter genes spr1021 and spr1887 were correlated with increased expression of these genes and neighboring genes of the same operon. Gene inactivation supported a role for these ABC transporters in resistance to linezolid and other antibiotics. The hypothetical protein spr0333 contains an RNA methyltransferase domain, and mutations within that domain were found in all S. pneumoniae linezolid-resistant strains. Primer extension experiments indicated that spr0333 methylates G2445 of the 23S rRNA and mutations in spr0333 abolished this methylation. Reintroduction of a nonmutated version of spr0333 in resistant bacteria reestablished G2445 methylation and led to cells being more sensitive to linezolid and other antibiotics. Interestingly, the spr0333 ortholog was also mutated in a linezolid-resistant clinical Staphylococcus aureus isolate. Whole-genome sequencing and comparative analyses of S. pneumoniae resistant isolates was useful for discovering novel resistance mutations.
Collapse
Affiliation(s)
- Jie Feng
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| | - Andréanne Lupien
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| | - Hélène Gingras
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| | - Jessica Wasserscheid
- McGill University and Génome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada
| | - Ken Dewar
- McGill University and Génome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Québec G1V 4G2, Canada
- Division de Microbiologie, Université Laval, Québec G1V 4G2, Canada
| |
Collapse
|
45
|
A comparison of MS/MS-based, stable-isotope-labeled, quantitation performance on ESI-quadrupole TOF and MALDI-TOF/TOF mass spectrometers. Proteomics 2009; 9:3328-40. [DOI: 10.1002/pmic.200800412] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Current world literature. Curr Opin Otolaryngol Head Neck Surg 2009; 17:66-73. [PMID: 19225308 DOI: 10.1097/moo.0b013e32832406ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Zhu M, Dai S, McClung S, Yan X, Chen S. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics 2009; 8:752-66. [PMID: 19106087 PMCID: PMC2667361 DOI: 10.1074/mcp.m800343-mcp200] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/02/2008] [Indexed: 12/28/2022] Open
Abstract
Guard cells are highly specialized cells that form tiny pores called stomata on the leaf surface. The opening and closing of stomata control leaf gas exchange and water transpiration as well as allow plants to quickly respond and adjust to new environmental conditions. Mesophyll cells are specialized for photosynthesis. Despite the phenotypic and obvious functional differences between the two types of cells, the full protein components and their functions have not been explored but are addressed here through a global comparative proteomics analysis of purified guard cells and mesophyll cells. With the use of isobaric tags for relative and absolute quantification (iTRAQ) tagging and two-dimensional liquid chromatography mass spectrometry, we identified 1458 non-redundant proteins in both guard cells and mesophyll cells of Brassica napus leaves. Based on stringent statistical criteria, a total of 427 proteins were quantified, and 74 proteins were found to be enriched in guard cells. Proteins involved in energy (respiration), transport, transcription (nucleosome), cell structure, and signaling are preferentially expressed in guard cells. We observed several well characterized guard cell proteins. By contrast, proteins involved in photosynthesis, starch synthesis, disease/defense/stress, and other metabolisms are preferentially represented in mesophyll cells. Of the identified proteins, 110 have corresponding microarray data obtained from Arabidopsis guard cells and mesophyll cells. About 72% of these proteins follow the same trend of expression at the transcript and protein levels. For the rest of proteins, the correlation between proteomics data and the microarray data is poor. This highlights the importance of quantitative profiling at the protein level. Collectively this work represents the most extensive proteomic description of B. napus guard cells and has improved our knowledge of the functional specification of guard cells and mesophyll cells.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Botany, Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
48
|
Proteomics: New technologies and clinical applications. Eur J Cancer 2008; 44:2737-41. [DOI: 10.1016/j.ejca.2008.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 09/23/2008] [Indexed: 12/26/2022]
|
49
|
Li H, Wang BC, Xu WJ, Lin XM, Peng XX. Identification and network of outer membrane proteins regulating streptomysin resistance in Escherichia coli. J Proteome Res 2008; 7:4040-9. [PMID: 18680355 DOI: 10.1021/pr800310y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial Outer membrane (OM) proteins involved in antibiotic resistance have been reported. However, little is known about the OM proteins and their interaction network regulating streptomycin (SM) resistance. In the present study, a subproteomic approach was utilized to characterize OM proteins of Escherichia coli with SM resistance. TolC, OmpT and LamB were found to be up-regulated, and FadL, OmpW and a location-unknown protein Dps were down-regulated in the SM-resistant E. coli strain. These changes at the level of protein expression were validated using Western blotting. The possible roles of the altered proteins involved in the SM resistance were investigated using genetic modified strains with the deletion of these altered genes. It is found that decreased and elevated minimum inhibitory concentrations and survival capabilities of the gene deleted strains and their resistant strains, Delta tolC, Delta ompT, Delta dps, Delta tolC-R, Delta ompT-R, Delta dps-R and Delta fadL-R, were correlated with the changes of TolC, OmpT, Dps and FadL at the protein expression levels detected by 2-DE gels, respectively. The results may suggest that these proteins are the key OM proteins and play important roles in the regulation of SM resistance in E. coli. Furthermore, an interaction network of altered OM proteins involved in the SM resistance was proposed in this report. Of the six altered proteins, TolC may play a central role in the network. These findings may provide novel insights into mechanisms of SM resistance in E. coli.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PRC
| | | | | | | | | |
Collapse
|