1
|
Meksiriporn B, Ludwicki MB, Stephens EA, Jiang A, Lee HC, Waraho-Zhmayev D, Kummer L, Brandl F, Plückthun A, DeLisa MP. A survival selection strategy for engineering synthetic binding proteins that specifically recognize post-translationally phosphorylated proteins. Nat Commun 2019; 10:1830. [PMID: 31015433 PMCID: PMC6478843 DOI: 10.1038/s41467-019-09854-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
There is an urgent need for affinity reagents that target phospho-modified sites on individual proteins; however, generating such reagents remains a significant challenge. Here, we describe a genetic selection strategy for routine laboratory isolation of phospho-specific designed ankyrin repeat proteins (DARPins) by linking in vivo affinity capture of a phosphorylated target protein with antibiotic resistance of Escherichia coli cells. The assay is validated using an existing panel of DARPins that selectively bind the nonphosphorylated (inactive) form of extracellular signal-regulated kinase 2 (ERK2) or its doubly phosphorylated (active) form (pERK2). We then use the selection to affinity-mature a phospho-specific DARPin without compromising its selectivity for pERK2 over ERK2 and to reprogram the substrate specificity of the same DARPin towards non-cognate ERK2. Collectively, these results establish our genetic selection as a useful and potentially generalizable protein engineering tool for studying phospho-specific binding proteins and customizing their affinity and selectivity. Protein phosphorylation helps to control many important cellular activities. Here the authors describe a genetic selection strategy to isolate designed ankyrin repeat proteins that bind specifically to phosphomodified targets.
Collapse
Affiliation(s)
- Bunyarit Meksiriporn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Morgan B Ludwicki
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Erin A Stephens
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Allen Jiang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Hyeon-Cheol Lee
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Lutz Kummer
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Fabian Brandl
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Matthew P DeLisa
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Brumbaugh K, Liao WC, Houchins JP, Cooper J, Stoesz S. Phosphosite-Specific Antibodies: A Brief Update on Generation and Applications. Methods Mol Biol 2017; 1554:1-40. [PMID: 28185181 DOI: 10.1007/978-1-4939-6759-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphate addition is a posttranslational modification of proteins, and this modification can affect the activity and other properties of intracellular proteins. Different animal species can be used to generate phosphosite-specific antibodies as either polyclonals or monoclonals, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is vital for their use in proteomics and profiling of disease.
Collapse
Affiliation(s)
- Kathy Brumbaugh
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA.
| | - Wen-Chie Liao
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - J P Houchins
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Jeff Cooper
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Steve Stoesz
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| |
Collapse
|
3
|
Camprubí C, Salas-Huetos A, Aiese-Cigliano R, Godo A, Pons MC, Castellano G, Grossmann M, Sanseverino W, Martin-Subero JI, Garrido N, Blanco J. Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: an array-based analysis. Reprod Biomed Online 2016; 33:709-719. [DOI: 10.1016/j.rbmo.2016.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/09/2023]
|
4
|
Lin YL, Huang YJ, Teerapanich P, Leïchlé T, Chou CF. Multiplexed immunosensing and kinetics monitoring in nanofluidic devices with highly enhanced target capture efficiency. BIOMICROFLUIDICS 2016; 10:034114. [PMID: 27375819 PMCID: PMC4902814 DOI: 10.1063/1.4953140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 05/21/2023]
Abstract
Nanofluidic devices promise high reaction efficiency and fast kinetic responses due to the spatial constriction of transported biomolecules with confined molecular diffusion. However, parallel detection of multiple biomolecules, particularly proteins, in highly confined space remains challenging. This study integrates extended nanofluidics with embedded protein microarray to achieve multiplexed real-time biosensing and kinetics monitoring. Implementation of embedded standard-sized antibody microarray is attained by epoxy-silane surface modification and a room-temperature low-aspect-ratio bonding technique. An effective sample transport is achieved by electrokinetic pumping via electroosmotic flow. Through the nanoslit-based spatial confinement, the antigen-antibody binding reaction is enhanced with ∼100% efficiency and may be directly observed with fluorescence microscopy without the requirement of intermediate washing steps. The image-based data provide numerous spatially distributed reaction kinetic curves and are collectively modeled using a simple one-dimensional convection-reaction model. This study represents an integrated nanofluidic solution for real-time multiplexed immunosensing and kinetics monitoring, starting from device fabrication, protein immobilization, device bonding, sample transport, to data analysis at Péclet number less than 1.
Collapse
|
5
|
Liu Y, Li X, Xie C, Luo X, Bao Y, Wu B, Hu Y, Zhong Z, Liu C, Li M. Prevention Effects and Possible Molecular Mechanism of Mulberry Leaf Extract and its Formulation on Rats with Insulin-Insensitivity. PLoS One 2016; 11:e0152728. [PMID: 27054886 PMCID: PMC4824359 DOI: 10.1371/journal.pone.0152728] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/18/2016] [Indexed: 11/24/2022] Open
Abstract
For centuries, mulberry leaf has been used in traditional Chinese medicine for the treatment of diabetes. This study aims to test the prevention effects of a proprietary mulberry leaf extract (MLE) and a formula consisting of MLE, fenugreek seed extract, and cinnamon cassia extract (MLEF) on insulin resistance development in animals. MLE was refined to contain 5% 1-deoxynojirimycin by weight. MLEF was formulated by mixing MLE with cinnamon cassia extract and fenugreek seed extract at a 6:5:3 ratio (by weight). First, the acute toxicity effects of MLE on ICR mice were examined at 5 g/kg BW dose. Second, two groups of normal rats were administrated with water or 150 mg/kg BW MLE per day for 29 days to evaluate MLE’s effect on normal animals. Third, to examine the effects of MLE and MLEF on model animals, sixty SD rats were divided into five groups, namely, (1) normal, (2) model, (3) high-dose MLE (75 mg/kg BW) treatment; (4) low-dose MLE (15 mg/kg BW) treatment; and (5) MLEF (35 mg/kg BW) treatment. On the second week, rats in groups (2)-(5) were switched to high-energy diet for three weeks. Afterward, the rats were injected (ip) with a single dose of 105 mg/kg BW alloxan. After four more days, fasting blood glucose, post-prandial blood glucose, serum insulin, cholesterol, and triglyceride levels were measured. Last, liver lysates from animals were screened with 650 antibodies for changes in the expression or phosphorylation levels of signaling proteins. The results were further validated by Western blot analysis. We found that the maximum tolerance dose of MLE was greater than 5 g/kg in mice. The MLE at a 150 mg/kg BW dose showed no effect on fast blood glucose levels in normal rats. The MLE at a 75 mg/kg BW dose and MLEF at a 35 mg/kg BW dose, significantly (p < 0.05) reduced fast blood glucose levels in rats with impaired glucose and lipid metabolism. In total, 34 proteins with significant changes in expression and phosphorylation levels were identified. The changes of JNK, IRS1, and PDK1 were confirmed by western blot analysis. In conclusion, this study demonstrated the potential protective effects of MLE and MLEF against hyperglycemia induced by high-energy diet and toxic chemicals in rats for the first time. The most likely mechanism is the promotion of IRS1 phosphorylation, which leads to insulin sensitivity restoration.
Collapse
Affiliation(s)
- Yan Liu
- Research and Development Center of Amway (China), Shanghai, China
| | - Xuemei Li
- Beijing Institute for Drug Control (Beijing Center For Health Food And Cosmetics Control), Beijing, China
| | - Chen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiuzhen Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | | | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yuchi Hu
- Beijing Institute for Drug Control (Beijing Center For Health Food And Cosmetics Control), Beijing, China
| | - Zhong Zhong
- Botanic Century (Beijing) Co., Ltd, Beijing, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
- * E-mail: (CL); (MJL)
| | - MinJie Li
- Research and Development Center of Amway (China), Shanghai, China
- * E-mail: (CL); (MJL)
| |
Collapse
|
6
|
Ohtake J, Sakurai M, Hoshino Y, Tanemura K, Sato E. Expression of focal adhesion kinase in mouse cumulus-oocyte complexes, and effect of phosphorylation at Tyr397 on cumulus expansion. Mol Reprod Dev 2015; 82:218-31. [PMID: 25692763 DOI: 10.1002/mrd.22464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 01/16/2015] [Indexed: 01/22/2023]
Abstract
We investigated the expression of focal adhesion kinase (FAK) in mouse cumulus-oocyte complexes (COCs), as well as the role of FAK phosphorylation at Tyr397 during oocyte maturation. The effect of inhibiting FAK phosphorylation at Tyr397 during in vitro maturation (IVM) on subsequent fertilization and preimplantation embryo development was also examined. Western blotting analyses revealed that total and Tyr397-phosphorylated FAK were expressed in vivo in both cumulus cells and oocytes. Immunocytochemical studies localized this kinase throughout the cytoplasm of cumulus cells and oocytes; in particular, Tyr397-phosphorylated FAK tended to accumulate in regions where cumulus cells contact each other. Interestingly, the in vivo level of Tyr397 phosphorylation in cumulus cells was significantly lower after compared to before cumulus expansion. Addition of FAK inhibitor 14, which specifically blocks phosphorylation at Tyr397, stimulated oocyte meiotic maturation and cumulus expansion during IVM in the absence of follicle-stimulating hormone (FSH). Reverse-transcriptase PCR showed that the mRNA expression of hyaluronan synthase 2 (Has2), a marker of cumulus expansion, was significantly induced in cumulus cells. Subsequent in vitro fertilization and culture showed that more oocytes developed to the blastocyst stage when they were treated with FAK inhibitor 14 during IVM, although the blastocyst total cell number was lower than in oocytes stimulated with FSH. These results indicate that FAK is involved in the maturation of COCs; specifically, phosphorylation at Tyr397 may regulate cumulus expansion via the expression of Has2 mRNA in cumulus cells, which could affect the developmental competence of oocytes.
Collapse
Affiliation(s)
- Jun Ohtake
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
7
|
McGinnis LK, Pelech S, Kinsey WH. Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol Reprod Dev 2014; 81:928-45. [PMID: 25242074 DOI: 10.1002/mrd.22413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022]
Abstract
Post-ovulatory aging of oocytes results in the progressive loss of fertilization and developmental competence. This degradation of oocyte quality has been the object of numerous investigations, primarily focused on individual signaling pathways which provide limited insight into the status of global signaling events. The purpose of the present investigation was to comprehensively assess broad patterns of signaling pathway activity during in vitro aging as an initial step in defining control points that can be targeted to prevent the reduction in oocyte quality during prolonged culture. An antibody microarray-based phospho-proteome analysis performed on oocytes before and after eight hours of culture revealed significant changes in the abundance or activation state of 43 proteins that function in a wide variety of protein kinase-mediated signaling pathways. Several of the most significantly affected kinases were studied by Western blot and confocal immunofluorescence to corroborate the array results. Prolonged culture resulted in global changes in the abundance and activity of protein kinases that regulate the response to calcium, stress, and cell-cycle control. Examination of intracellular structures revealed a previously unrecognized increase in the abundance of large autophogagic lysosomes, which correlates with changes in protein kinase pathways. These results provide insight into the stresses experienced by oocytes during culture and the diversity of responses that results from them. The observed increase in autophagy-related activity, together with the disruptions in calcium signaling, cell-cycle, and stress-response pathways, have the potential to negatively impact oocyte quality by interfering with the normal sequence of biochemical changes that constitute egg activation following fertilization.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | |
Collapse
|
8
|
Proteomes of animal oocytes: what can we learn for human oocytes in the in vitro fertilization programme? BIOMED RESEARCH INTERNATIONAL 2014; 2014:856907. [PMID: 24804254 PMCID: PMC3996292 DOI: 10.1155/2014/856907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Oocytes are crucial cells for mammalian reproduction, yet the molecular principles underlying oocyte development are only partially understood. Therefore, contemporary proteomic approaches have been used increasingly to provide new insights into oocyte quality and maturation in various species such as mouse, pig, and cow. Especially, animal studies have helped in elucidating the molecular status of oocytes during in vitro maturation and other procedures of assisted reproduction. The aim of this review is to summarize the literature on mammalian oocyte proteome and secretome research in the light of natural and assisted reproduction and on lessons to be learned for human oocytes, which have so far remained inaccessible for proteome analysis.
Collapse
|
9
|
Kupcova Skalnikova H, Navarro R, Marsala S, Hrabakova R, Vodicka P, Gadher SJ, Kovarova H, Marsala M. Signaling proteins in spinal parenchyma and dorsal root ganglion in rat with spinal injury-induced spasticity. J Proteomics 2013; 91:41-57. [DOI: 10.1016/j.jprot.2013.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/31/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022]
|
10
|
Kohata C, Izquierdo-Rico MJ, Romar R, Funahashi H. Development competence and relative transcript abundance of oocytes derived from small and medium follicles of prepubertal gilts. Theriogenology 2013; 80:970-8. [PMID: 23987988 DOI: 10.1016/j.theriogenology.2013.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 11/29/2022]
Abstract
The objective of this study was to examine the competence of mature oocytes aspirated from small follicles (SF, <2 mm in diameter) and medium follicles (MF, 3-6 mm) of abattoir-derived prepubertal gilt ovaries. Oocytes were selected by the presence of the first polar body (1pb) after IVM in a chemically defined medium, for sperm penetration, pronuclear formation, cleavage rate, and development to the blastocyst stage. Relative transcript abundance of genes associated with regulation of oocyte maturation (AURKA, AURKB, and MOS), fertilization (ZP3 and ZP4), maternal effect (NALP9 and HSF1), and anti-apoptosis (BCL2) were also examined in oocytes at germinal vesicle (GV) and metaphase-II (MII) stages. In SF, compared with MF, the maturation rate post-IVM was lower (P < 0.05), but there were no differences in sperm penetration rate (78.2% and 68.5% at 6 hours after insemination and 90.8% and 91.9% at 9 hours after insemination, P = 0.51 and P = 0.67, respectively), the percentage of oocytes that formed both female and male pronuclei (27.9% and 25.8% at 6 hours after insemination and 79.4% and 76.1% at 9 hours after insemination), or cleavage rate at 48 hours after insemination (85.9% and 89.7%, respectively, P = 0.46), whereas blastocyst formation rate was lower (P < 0.05) in oocytes from SF versus MF (14.7% and 31.0%). Transcript abundances decreased (P < 0.05) in all genes examined between the GV and MII stages, although only transcript abundance for MOS was lower (P < 0.05) in GV oocytes from SF versus MF. In conclusion, mature oocytes from SF and MF of prepubertal gilts with a visible 1pb had similar fertilizability in vitro and relative transcript abundance of nine genes. However, follicle size affected meiotic competence, early embryonic development to the blastocyst stage, and transcript abundance of the MOS gene.
Collapse
Affiliation(s)
- Chiyuki Kohata
- Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-Ku, Okayama, Japan
| | | | | | | |
Collapse
|
11
|
Wang H, Liu J, Wang F, Chen M, Xiao Z, Ouyang R, Fei A, Shen Y, Pan S. The role of charged multivesicular body protein 5 in programmed cell death in leukemic cells. Acta Biochim Biophys Sin (Shanghai) 2013; 45:383-90. [PMID: 23619569 DOI: 10.1093/abbs/gmt028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Homo sapiens charged multivesicular body protein 5 (CHMP5) is a member of the multivesicular body, which serves as an anti-apoptotic protein and is thought to participate in leukemogenesis. In this study, a short-hairpin RNA-based RNA interference approach was used to inhibit the expression of CHMP5 in the leukemic cell line U937. After CHMP5 was inhibited, antibody microarray and western blot analysis were used to study the changes in the programmed cell death (PCD) pathway. PCD can be classified into three types: apoptosis, necrosis, and autophagy. Results showed that caspase 3 was activated in CHMP5-deficient U937 cells, indicating that the apoptotic pathway was activated, although neither the intrinsic nor the extrinsic apoptotic pathways were activated. Our results also showed that the Granzyme B/Perforin apoptotic pathway was activated by CHMP5 silencing. Necrosis is activated by caspase-independent executioners. In this study, we showed that the apoptosis-inducing protein-mediated necrotic PCD pathway is activated after CHMP5 inhibition. It was found that autophagic PCD did not occur in CHMP5-deficient U937 cells. In conclusion, after CHMP5 inhibition, both Granzyme B/Perforin apoptotic pathway and apoptosis-inducing factor-mediated necrotic pathway were activated, while autophagic pathway was not activated.
Collapse
Affiliation(s)
- Hairong Wang
- Emergency Department, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kinsey WH. Intersecting roles of protein tyrosine kinase and calcium signaling during fertilization. Cell Calcium 2012. [PMID: 23201334 DOI: 10.1016/j.ceca.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
13
|
Carter CA, Misra M, Maronpot RR. Tracheal Morphologic and Protein Alterations FollowingShort-Term Cigarette Mainstream Smoke Exposure to Rats. J Toxicol Pathol 2012; 25:201-7. [PMID: 22988338 PMCID: PMC3434335 DOI: 10.1293/tox.25.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/20/2012] [Indexed: 11/19/2022] Open
Abstract
A short-term 5-day nose-only cigarette smoke exposure study was conducted in Fisher 344
rats to identify smoke-induced tracheal protein changes. Groups of 10 male and female 5
week old rats were assigned to 1 of 4 exposure groups. Animals received filtered air, or
75, 200 or 400 mg total particulate matter (TPM)/m3 of diluted 3R4F Kentucky
reference cigarette mainstream smoke. Exposures were conducted for 3 hrs/day, for 5
consecutive days. Tracheas from half the rats were processed for pathology, and tracheas
from the other half of the rats frozen immediately for proteomics. We hypothesized that
smoke will activate tracheal inflammatory, apoptotic, proliferative, and stress-induced
pathways. Mucosal epithelial toxicity from the inhaled material was evidenced by cilia
shortening and loss of tracheal mucosal epithelium in smoke-exposed animals. Mucosal
thinning occurred in all smoke-exposed groups with hyperplastic reparative responses in
the 200 and 400 mg TPM/m3 groups. Tracheal lysates from control vs. treated
animals were screened for 800 proteins using antibody-based microarray technology and
subsequently the most changed proteins evaluated by Western blot. Tracheal proteins
expressed at high levels that were markedly increased or decreased by smoke exposure
depended on dose and gender and included caspase 5, ERK 1/2 and p38. Signaling pathways
common between the morphologic and protein changes were stress, apoptosis, cell cycle
control, cell proliferation and survival. Changes in identified proteins affected by smoke
exposure were associated with tracheal mucosal pathology, may induce functional tracheal
changes, and could serve as early indicators of tracheal damage and associated
disease.
Collapse
Affiliation(s)
- Charleata A Carter
- A. W. Spears Research Center, 420 N. English Street, Lorillard Tobacco Company, Greensboro, NC 27405, USA
| | | | | |
Collapse
|
14
|
Zhang H, Pelech S. Using protein microarrays to study phosphorylation-mediated signal transduction. Semin Cell Dev Biol 2012; 23:872-82. [DOI: 10.1016/j.semcdb.2012.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 01/18/2023]
|
15
|
Alhamdani MSS, Hoheisel JD. Antibody Microarrays in Proteome Profiling. MOLECULAR ANALYSIS AND GENOME DISCOVERY 2011:219-243. [DOI: 10.1002/9781119977438.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Li XC, Zhuo JL. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats. Kidney Int 2011; 80:620-32. [PMID: 21697807 PMCID: PMC3164930 DOI: 10.1038/ki.2011.161] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The signaling mechanisms underlying the effects of angiotensin II in proximal tubules of the kidney are not completely understood. Here we measured signal protein phosphorylation in isolated proximal tubules using pathway-specific proteomic analysis in rats continuously infused with pressor or non-pressor doses of angiotensin II over a 2-week period. Of the 38 phosphoproteins profiled, 14 were significantly altered by the pressor dose. This included increased phosphorylation of the protein kinase C isoenzymes, PKCα and PKCβII, and the glycogen synthase kinases, GSK3α and GSK3β. Phosphorylation of the cAMP-response element binding protein 1 and PKCδ were decreased, whereas PKCɛ remained unchanged. By contrast, the phosphorylation of only seven proteins was altered by the non-pressor dose, which increased that of PKCα, PKCδ, and GSKα. Phosphorylation of MAP kinases, ERK1/2, was not increased in proximal tubules in vivo by the pressor dose, but was in proximal tubule cells in vitro. Infusion of the pressor dose decreased, whereas the non-pressor dose of angiotensin II increased the phosphorylation of the sodium and hydrogen exchanger 3 (NHE-3) in membrane fractions of proximal tubules. Losartan largely blocked the signaling responses induced by the pressor dose. Thus, PKCα and PKCβII, GSK3α and GSK3β, and cAMP-dependent signaling pathways may have important roles in regulating proximal tubular sodium and fluid transport in Ang II-induced hypertensive rats.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, 1500 North State Street, Jackson, MS 39216, USA
| | | |
Collapse
|
17
|
Carter CA, Misra M, Pelech S. Proteomic analyses of lung lysates from short-term exposure of Fischer 344 rats to cigarette smoke. J Proteome Res 2011; 10:3720-31. [PMID: 21627322 DOI: 10.1021/pr200345y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A short-term 5 day mainstream cigarette smoke exposure study was conducted in Fischer 344 rats to identify changes in lung proteins. Groups of 10 male and female rats at 5 weeks of age were assigned to one of four exposure groups. Animals received either nose-only filtered air (Air Control) or 75, 200, or 400 mg total particulate matter (TPM)/m(3) of diluted cigarette smoke. Exposures were conducted for 3 h per day, for 5 consecutive days. One lung per animal was frozen in liquid nitrogen and processed for proteomic analyses. Lung lysates from control verses treated animals were screened with 650 antibodies for changes in signaling protein levels and phosphorylation using antibody microarray technology, and then over 100 of the top protein hits were assessed by immunoblotting. The top smoke-altered proteins were further evaluated using reverse lysate microarrays. Major protein changes showed medium to strong bands on Western blots, depended on dose and gender, and included protein-serine kinases (Cot/Tpl2, ERK1/2, GSK3α/β, MEK6, PKCα/γ, RSK1), protein phosphatases (PP4/A'2, PP1Cβ), and other proteins (caspase 5, CRMP2, Hsc70, Hsp60, Rac1 and STAT2). The most pronounced changes occurred with 75 mg TPM/m(3) exposed females and 200 mg TPM/m(3) exposed males. Smoke-altered proteins regulate apoptosis, stress response, cell structure, and inflammation. Changes in identified proteins may serve as early indicators of lung damage.
Collapse
Affiliation(s)
- Charleata A Carter
- A. W. Spears Research Center, 420 N. English Street, Lorillard Tobacco Company, Greensboro, North Carolina 27405, USA
| | | | | |
Collapse
|
18
|
McGinnis LK, Carroll DJ, Kinsey WH. Protein tyrosine kinase signaling during oocyte maturation and fertilization. Mol Reprod Dev 2011; 78:831-45. [PMID: 21681843 DOI: 10.1002/mrd.21326] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/30/2011] [Indexed: 11/11/2022]
Abstract
The oocyte is a highly specialized cell capable of accumulating and storing energy supplies as well as maternal transcripts and pre-positioned signal transduction components needed for zygotic development, undergoing meiosis under control of paracrine signals from the follicle, fusing with a single sperm during fertilization, and zygotic development. The oocyte accomplishes this diverse series of events by establishing an array of signal transduction pathway components that include a select collection of protein tyrosine kinases (PTKs) that are expressed at levels significantly higher than most other cell types. This array of PTKs includes cytosolic kinases such as SRC-family PTKs (FYN and YES), and FAK kinases, as well as FER. These kinases typically exhibit distinct patterns of localization and in some cases are translocated from one subcellular compartment to another during meiosis. Significant differences exist in the extent to which PTK-mediated pathways are used by oocytes from species that fertilize externally versus internally. The PTK activation profiles as well as calcium signaling pattern seems to correlate with the extent to which a rapid block to polyspermy is required by the biology of each species. Suppression of each of the SRC-family PTKs as well as FER kinase results in failure of meiotic maturation or zygote development, indicating that these PTKs are important for oocyte quality and developmental potential. Future studies will hopefully reveal the extent to which these factors impact clinical assisted reproductive techniques in domestic animals and humans.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
19
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
20
|
Brumbaugh K, Johnson W, Liao WC, Lin MS, Houchins JP, Cooper J, Stoesz S, Campos-Gonzalez R. Overview of the generation, validation, and application of phosphosite-specific antibodies. Methods Mol Biol 2011; 717:3-43. [PMID: 21370022 DOI: 10.1007/978-1-61779-024-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation is a universal key posttranslational modification that affects the activity and other properties of intracellular proteins. Phosphosite-specific antibodies can be produced as polyclonals or monoclonals in different animal species, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is key for their use in proteomics and profiling of disease.
Collapse
|
21
|
Adriaenssens T, Wathlet S, Segers I, Verheyen G, De Vos A, Van der Elst J, Coucke W, Devroey P, Smitz J. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum Reprod 2010; 25:1259-70. [PMID: 20228394 DOI: 10.1093/humrep/deq049] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene expression of cumulus cells (CC) could predict oocyte developmental quality. Knowledge of the genes involved in determining oocyte quality is scanty. The aim was to correlate clinical and biological characteristics during ovarian stimulation with the expression of 10 selected genes in CC. METHODS Sixty-three ICSI patients were stimulated with GnRH-agonist plus highly purified hMG (n = 35) or recombinant FSH (n = 28). Thirteen variables were analyzed: Age, BMI, duration of stimulation, serum concentrations of progesterone, 17beta-estradiol, FSH and LH on day of hCG, Ovarian Response, Oocyte Maturity, 2 pronuclei and three embryo morphology related variables: > or =7 cells, Low Fragmentation, Good Quality Embryos score. Expression of HAS2, VCAN, SDC4, ALCAM, GREM1, PTGS1, PTGS2, DUSP16, SPROUTY4 and RPS6KA2 was analyzed in pooled CC using quantitative PCR, and the relationship to the 13 variables was evaluated by multivariable analysis. RESULTS All 10 genes are expressed at oocyte retrieval, with PTGS1, SPROUTY4, DUSP16 and RPS6KA2 described in human ovary for the first time. The three variables that correlated most often with differential expression were Age, BMI and serum FSH level. Significant correlation was found with Oocyte Maturity (VCAN, P < 0.005), Low Fragmentation (RPS6KA2, P < 0.05), Embryos with > or =7 cells (ALCAM and GREM1, P < 0.05). The expression of the other genes was also correlated to oocyte developmental quality but to a less extent. SDC4, VCAN, GREM1, SPROUTY4 and RPS6KA2 showed gonadotrophin preparation-dependent expression and/or interactions (all P < 0.05). CONCLUSION The expression of ovulation related genes in CC is associated with patient and treatment characteristics, oocyte developmental potential and differs with the type of gonadotrophin used.
Collapse
Affiliation(s)
- T Adriaenssens
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 101, B 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McGinnis LK, Albertini DF. Dynamics of protein phosphorylation during meiotic maturation. J Assist Reprod Genet 2010; 27:169-82. [PMID: 20174967 DOI: 10.1007/s10815-010-9391-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/14/2010] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To ask whether distinct kinase signaling pathways mediate cytoplasmic or nuclear maturation of mouse oocytes and if in vitro maturation influences the distribution and timing of these phosphorylation events. METHODS Mouse cumulus oocyte complexes (COCs) were matured under conditions known to influence oocyte quality (basal or supplemented media) and assayed with epitope specific antibodies that would distinguish between Cdk1 or tyrosine kinase targets at 0, 2, 4, 8, and 16 hrs. Semi-quantitative image analysis was used to assess the topographical patterns of protein phosphorylation during in vitro maturation. In vitro fertilization and embryo culture were used to examine the effects of culture conditions on developmental potential. RESULTS Protein tyrosine phosphorylation increased during meiotic progression from methaphase-I to metaphase-II. Levels were significantly higher in the oocyte cortex. Levels of cortical staining are enhanced in oocytes matured in supplemented media that displayed higher developmental competence. In contrast, bulk substrates for Cdk1 kinase localize to the meiotic spindle while cytoplasmic levels of kinase activity increase throughout meiotic progression; culture media had no measurable effect. Ablation of the tyrosine kinase Fyn significantly reduced cortical levels of tyrosine phosphorylation. CONCLUSIONS The findings indicate that distinct signaling pathways mediate nuclear and cytoplasmic maturation during in vitro maturation in a fashion consistent with a role for tyrosine kinases in cortical maturation and oocyte quality.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., mail stop 3038, Kansas City, KS 66160, USA.
| | | |
Collapse
|
23
|
Becker S, Wandel E, Wobus M, Schneider R, Amasheh S, Sittig D, Kerner C, Naumann R, Hamann J, Aust G. Overexpression of CD97 in intestinal epithelial cells of transgenic mice attenuates colitis by strengthening adherens junctions. PLoS One 2010; 5:e8507. [PMID: 20084281 PMCID: PMC2801611 DOI: 10.1371/journal.pone.0008507] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 11/24/2022] Open
Abstract
The adhesion G-protein-coupled receptor CD97 is present in normal colonic enterocytes but overexpressed in colorectal carcinoma. To investigate the function of CD97 in colorectal carcinogenesis, transgenic Tg(villin-CD97) mice overexpressing CD97 in enterocytes were generated and subjected to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated tumorigenesis. Unexpectedly, we found a CD97 cDNA copy number-dependent reduction of DSS-induced colitis in Tg compared to wild-type (WT) mice that was confirmed by applying a simple DSS protocol. Ultrastructural analysis revealed that overexpression of CD97 strengthened lateral cell-cell contacts between enterocytes, which, in contrast, were weakened in CD97 knockout (Ko) mice. Transepithelial resistance was not altered in Tg and Ko mice, indicating that tight junctions were not affected. In Tg murine and normal human colonic enterocytes as well as in colorectal cell lines CD97 was localized preferentially in E-cadherin-based adherens junctions. CD97 overexpression upregulated membrane-bound but not cytoplasmic or nuclear β-catenin and reduced phospho-β-catenin, labeled for degradation. This was associated with inactivation of glycogen synthase kinase-3β (GSK-3β) and activation of Akt. In summary, CD97 increases the structural integrity of enterocytic adherens junctions by increasing and stabilizing junctional β-catenin, thereby regulating intestinal epithelial strength and attenuating experimental colitis.
Collapse
Affiliation(s)
- Susann Becker
- Research Laboratories, Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Elke Wandel
- Research Laboratories, Department of Surgery, University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Manja Wobus
- Research Laboratories, Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Rick Schneider
- Research Laboratories, Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Salah Amasheh
- Institute of Clinical Physiology, Charité, Berlin, Germany
| | - Doreen Sittig
- Research Laboratories, Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Christiane Kerner
- Research Laboratories, Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Ronald Naumann
- Transgenic Core Facility, MPI for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joerg Hamann
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gabriela Aust
- Research Laboratories, Department of Surgery, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
24
|
Uzbekova S, Salhab M, Perreau C, Mermillod P, Dupont J. Glycogen synthase kinase 3B in bovine oocytes and granulosa cells: possible involvement in meiosis during in vitro maturation. Reproduction 2009; 138:235-46. [DOI: 10.1530/rep-09-0136] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) regulates cellular metabolism and cell cycle via different signalling pathways. In response to insulin and growth factors GSK3 is serine-phosphorylated and inactivated. We analysed GSK3B expression and activation in bovine cumulus cells (CC) and oocytes at different meiotic stagesin vitroin parallel with MAP kinases ERK (MAPK3/MAPK1) and p38 (MAPK14). GSK3B localised to cytoplasm in granulosa cells and in oocytes throughout folliculogenesis. In mature metaphase-II (MII) oocytes, GSK3B was concentrated to the region of midzone between the oocyte and the first polar body, as well as active phospho-Thr Aurora A kinase (AURKA). Duringin vitromaturation (IVM), in oocytes, phospho-Ser9-GSK3B level increased as well as phospho-MAPK3/MAPK1, while phospho-MAPK14 decreased. In CC, phospho-MAPK14 increased upon germinal vesicle breakdown (GVBD)/metaphase-I (MI) and then decreased during transition to MII. Administration of inhibitors of GSK3 activity (lithium chloride or 2′Z,3′E -6-bromoindirubin-3′-oxime) rapidly increased phospho-Ser9-GSK3B, and led to transient decrease of phospho-MAPK3/MAPK1 and to durable enhancing of phospho-MAPK14 in granulosa primary cell culture. GSK3 inhibitors during IVM diminished cumulus expansion and delayed meiotic progression. In cumulus, phospho-MAPK14 level was significantly higher in the presence of inhibitors, comparing with control, through the time of MI/MII transition. In oocytes, phospho-GSK3B was increased and phospho-MAPK3/MAPK1 was decreased before GVBD and oocytes were mainly arrested at MI. Therefore, GSK3B might regulate oocyte meiosis, notably MI/MII transition being the part of MAPK3/1 and MAPK14 pathways in oocytes and CC. GSK3B might be also involved in the local activation of AURKA that controls this transition.
Collapse
|
25
|
Tedford NC, Hall AB, Graham JR, Murphy CE, Gordon NF, Radding JA. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics. Proteomics 2009; 9:1469-87. [PMID: 19294625 DOI: 10.1002/pmic.200800468] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein phosphorylation is a primary form of information transfer in cell signaling pathways and plays a crucial role in regulating biological responses. Aberrant phosphorylation has been implicated in a number of diseases, and kinases and phosphatases, the cellular enzymes that control dynamic phosphorylation events, present attractive therapeutic targets. However, the innate complexity of signaling networks has presented many challenges to therapeutic target selection and successful drug development. Approaches in phosphoproteomics can contribute functional, systems-level datasets across signaling networks that can provide insight into suitable drug targets, more broadly profile compound activities, and identify key biomarkers to assess clinical outcomes. Advances in MS-based phosphoproteomics efforts now provide the ability to quantitate phosphorylation with throughput and sensitivity to sample a significant portion of the phosphoproteome in clinically relevant systems. This review will discuss recent work and examples of application data that demonstrate the utility of MS, with a particular focus on the use of quantitative phosphoproteomics and phosphotyrosine-directed signaling analyses to provide robust measurement for functional biological interpretation of drug action on signaling and phenotypic outcomes.
Collapse
|