1
|
Li Q, Li F, Wang T. Limonin alleviates imiquimod-induced psoriasis-like skin inflammation in mice model by downregulating inflammatory responses. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6901-6914. [PMID: 39702598 DOI: 10.1007/s00210-024-03655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
Psoriasis is a chronic inflammatory condition affecting 1-2% of the global population. Phytomedicine, which uses plant-based compounds, is emerging as a promising approach to managing such inflammatory diseases. Limonin, a phytochemical found in citrus fruits and known for its bitter taste, possesses significant pharmacological properties. In this study, we evaluated the anti-psoriatic effects of limonin using a psoriasis-induced mice model. BALB/c mice were treated with imiquimod to induce psoriasis and then administered limonin at doses of 20 and 40 mg/kg/day for 6 days. Tacrolimus ointment served as a positive control. We assessed the hematological profile to determine limonin's impact on leukocytes in the psoriasis model. Additionally, histomorphometric analysis of ear and skin tissues was conducted to evaluate the therapeutic effects of limonin. We further investigated the antioxidant properties of limonin by measuring levels of antioxidants and oxidative stress markers. The anti-inflammatory effects were evaluated by quantifying inflammatory cytokines and signaling proteins. In vitro, the cytotoxicity and anti-inflammatory potential of limonin were assessed using murine macrophage RAW264.7 cells. Our findings showed that limonin significantly reduced leukocyte counts, decreased inflammatory cell infiltration, and improved skin histoarchitecture in psoriasis-induced mice. Limonin also effectively scavenged free radicals and reduced levels of inflammatory cytokines and proteins without causing cytotoxicity in RAW264.7 cells. Overall, our in vivo and in vitro results confirm that limonin is a potent anti-inflammatory agent that effectively ameliorates imiquimod-induced psoriasis.
Collapse
Affiliation(s)
- Qiang Li
- Department of Dermatology, Air Force Medicine Center, Air Force Military Medical University, Beijing, 100147, China
| | - Fangmei Li
- Department of Dermatology, Guangxi International Zhuang Medicine Hospital, Nanning, 530201, Guangxi, China
| | - Ting Wang
- Department of Dermatology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
2
|
Jiang F, Tu J, Luo W, Jia Y, Luo Q, Ye J. Identification of circulating metabolites associated with chronic rhinosinusitis using Mendelian randomization analysis. Braz J Otorhinolaryngol 2025; 91:101626. [PMID: 40286593 PMCID: PMC12056403 DOI: 10.1016/j.bjorl.2025.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVE This study aims to employ Mendelian Randomization (MR) analysis to investigate causal relationships between serum metabolites and CRS, identifying key pathogenic and protective factors and analyzing their mechanisms of action. METHODS Utilizing data from the Genome-Wide Association Studies (GWAS) database, employing two-sample MR analysis to investigate the potential causal relationship between 233 circulating metabolites with the occurrence of CRS. Inverse Variance Weighted (IVW) model, MR-Egger method, Weighted Median, and Weighted model were employed. Sensitivity analyses were conducted with Bonferroni correction. This research aims to elucidate the impact of metabolites on the development and progression of CRS, providing valuable insights into the underlying mechanisms. RESULTS Following MR analysis, two metabolites were significantly associated with CRS: Tyrosine (OR = 1.223; 95% CI 1.115-1.341; p = 1.96E-05) and Creatinine (OR = 1.208; 95% CI 1.103-1.322; p = 4.11E-05). These two key risk factors may be further studied for their pathogenesis and could be targeted for modulation in the treatment of CRS. However, there are several protective factors also worth exploring, among which the correlation is more significant: Ratio of conjugated linoleic acid to total fatty acids (OR = 0.809; 95% CI 0.708‒0.923; p = 1.73E-03), Albumin (OR = 0.787; 95% CI 0.670‒0.926; p = 3.76E-03),Conjugated linoleic acid (OR = 0.664; 95% CI 0.491‒0.898; p = 7.85E-03), Diacylglycerol (OR = 0.804; 95% CI 0.654‒0.989; p = 3.87E-02), Apolipoprotein A-I (OR = 0.915; 95% CI 0.845‒0.991; p = 2.89E-02). CONCLUSION In our MR study, we discovered 28 circulating metabolites linked to CRS. Importantly, tyrosine and creatinine were identified as the most significant contributors to the pathogenesis of CRS, highlighting their potential as therapeutic targets. Additionally, several protective factors may offer new avenues for preventive strategies and therapeutic interventions. These findings underscore the clinical relevance of targeting these metabolites to modulate CRS progression and improve patient outcomes. LEVEL OF EVIDENCE Level 2*.1.
Collapse
Affiliation(s)
- Fan Jiang
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China
| | - Junhao Tu
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China
| | - Wenqi Luo
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China
| | - Yizhen Jia
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China; Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Allergy, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi Province, China; Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Allergy, Nanchang, Jiangxi Province, China; Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Institute of Otorhinolaryngology, Nanchang, Jiangxi Province, China.
| |
Collapse
|
3
|
Pousa S, Ramos-Bermúdez PE, Besada V, Cabrales-Rico A, Guirola Cruz O, Garay HE, Rodríguez-Mallón A, Zettl K, Wiśniewski JR, González LJ. Characterization by LC-MS/MS analysis of KLH vaccine conjugated with a tick antigen peptide. Analyst 2025; 150:1091-1102. [PMID: 39817672 DOI: 10.1039/d4an01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Keyhole limpet haemocyanins (KLH1 and KLH2) from Megathura crenulata, are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of Rhipicephalus sp. ticks using maleimide-thiol chemistry to obtain a broad-spectrum anti-tick vaccine. The resulting KLH1- and KLH2-Cys1pP0 conjugate vaccines were efficiently digested using the Multiple-Enzymatic Digestion Filter Aided Sample Preparation and analyzed by LC-MS/MS, enabling a sequence coverage of approximately 85% of both conjugates. Seventy-three and sixty-five percent of all lysine residues in KLH1 and KLH2, respectively, were partially conjugated to Cys1pP0. In the quaternary structures, we found no bias toward conjugation of lysine residues exposed to either the outer surface or the inner channel. The latter may not contribute to a protective humoral response because B cell entry into the inner channel is incompatible with the entrance hole diameter. The Cys-His thioether bonds in both KLHs were determined by identifying type 1 cross-linked peptides. New post-translational modifications undescribed for the KLH such as oxidized species, were identified. This is the first report of the identification of conjugation sites of two KLH-based vaccines. These results will help translate the KLH-based conjugates into well-characterized biotechnology products.
Collapse
Affiliation(s)
- Satomy Pousa
- Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
| | - Pablo E Ramos-Bermúdez
- Bioinformatics, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Vladimir Besada
- Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
| | - Ania Cabrales-Rico
- Purification and Analytic Group, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Osmany Guirola Cruz
- Bioinformatics, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Hilda Elisa Garay
- Laboratory of Peptide Synthesis, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Alina Rodríguez-Mallón
- Animal Biotechnology, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Katharina Zettl
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Munich, Germany
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Munich, Germany
| | - Luis Javier González
- Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
| |
Collapse
|
4
|
Johnsen M, Lehmann M. [Physiological and pathophysiological changes of the ageing lung]. Z Gerontol Geriatr 2025; 58:85-90. [PMID: 39833352 DOI: 10.1007/s00391-024-02401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Due to age-related changes the lung function decreases. At the same time there is an increase in pulmonary diseases that lead to restrictions in mobility and autonomy. RESEARCH QUESTION What are the underlying changes in lung ageing? To what extent do they affect lung function and are there factors that can be influenced? METHOD Literature search. RESULTS Ageing of the lungs is associated with a loss of elasticity and distensibility. Senescence-associated factors play an important role at the molecular level. Accumulation of damaged DNA and proteins, oxidative stress and chronic inflammation are major factors. Avoidance of harmful environmental factors can reduce the disease burden. CONCLUSION Age-related pathophysiological changes lead to increased work of breathing with decreasing muscle strength. Patients should be encouraged to avoid inhaling noxious agents as these are associated with a diminution of lung function loss even in older age.
Collapse
Affiliation(s)
- Marc Johnsen
- Altersmedizinisches Zentrum Köln, Cellitinnen-Krankenhaus St. Marien, Köln, Deutschland.
| | - Mareike Lehmann
- Institut für Lungenforschung, Philipps-Universität Marburg, Deutsches Zentrum für Lungenforschung (DZL), Marburg, Deutschland
- Comprehensive Pneumology Center, Institut für Lungengesundheit und Immunität, Helmholtz Zentrum München, München, Deutschland
- Institut für Lungengesundheit (ILH), Gießen, Deutschland
| |
Collapse
|
5
|
Saini S, Sharma P, Pooja P, Sharma A. An updated mechanistic overview of nitric oxide in drought tolerance of plants. Nitric Oxide 2024; 153:82-97. [PMID: 39395712 DOI: 10.1016/j.niox.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
6
|
Kumari R, Kapoor P, Mir BA, Singh M, Parrey ZA, Rakhra G, Parihar P, Khan MN, Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide 2024; 150:1-17. [PMID: 38972538 DOI: 10.1016/j.niox.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Maninder Singh
- Department of Biotechnology and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121004, India
| | - Parul Parihar
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
7
|
Wei H, Yang F. Ultraviolet irradiation enhances the nitration of allergens. CHEMOSPHERE 2024; 364:143256. [PMID: 39233290 DOI: 10.1016/j.chemosphere.2024.143256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Ultraviolet (UV) light is widely used for disinfection in indoor environments. Some wavelengths of UV light can produce high concentration of O3. UV irradiation combined with O3 may have great potential for nitration of allergens in the presence of NO2 in the air. In this study, the effects of UV irradiation on the nitration of three major indoor allergens including group Ⅰ allergens of house dust mite (Der p 1 and Der f 1) and group Ⅰ allergen of dog (Can f 1) in the presence of NO2 and O3 were investigated by analysis of the protein quantity, tyrosine, peptides, and nitration degree. The results showed that UV irradiation induced a significant increase in the quantity of 3-nitrotyrosine in the allergens from 0.4 ± 0.4 ng to 4.0 ± 0.8 ng. After 12 h of UV-O3 co-exposure, the total nitration degrees of the three allergens ranged from 0.1% to 0.5%, which were significantly higher than those after only O3 exposure (p < 0.05). The analysis of peptides revealed that the nitration of tyrosine was site-specific. The tyrosine Y231, which was adjacent to aspartic acid, posed the highest nitration degree of 41.1 ± 24.0% in Der p 1. The nitration degree of tyrosine Y162 was the highest (1.7 ± 0.1%) in Der f 1. Overall, this study demonstrated that UV irradiation enhanced the O3-related nitration of allergens in the air, which provides an experimental basis for the impact of daily disinfection behavior on allergens.
Collapse
Affiliation(s)
- Huiying Wei
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiashan, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiashan, China.
| |
Collapse
|
8
|
Li J, Zhan X. Mass spectrometry analysis of phosphotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2024; 43:857-887. [PMID: 36789499 DOI: 10.1002/mas.21836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Tyrosine phosphorylation is a crucial posttranslational modification that is involved in various aspects of cell biology and often has functions in cancers. It is necessary not only to identify the specific phosphorylation sites but also to quantify their phosphorylation levels under specific pathophysiological conditions. Because of its high sensitivity and accuracy, mass spectrometry (MS) has been widely used to identify endogenous and synthetic phosphotyrosine proteins/peptides across a range of biological systems. However, phosphotyrosine-containing proteins occur in extremely low abundance and they degrade easily, severely challenging the application of MS. This review highlights the advances in both quantitative analysis procedures and enrichment approaches to tyrosine phosphorylation before MS analysis and reviews the differences among phosphorylation, sulfation, and nitration of tyrosine residues in proteins. In-depth insights into tyrosine phosphorylation in a wide variety of biological systems will offer a deep understanding of how signal transduction regulates cellular physiology and the development of tyrosine phosphorylation-related drugs as cancer therapeutics.
Collapse
Affiliation(s)
- Jiajia Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
| |
Collapse
|
9
|
Yin X, Ni G, Zhang X, Fu S, Li H, Gao Z. Tyrosine nitration of glucagon impairs its function: Extending the role of heme in T2D pathogenesis. J Inorg Biochem 2024; 255:112519. [PMID: 38507994 DOI: 10.1016/j.jinorgbio.2024.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
New studies raise the possibility that the higher glucagon (GCG) level present in type 2 diabetes (T2D) is a compensatory mechanism to enhance β-cell function, rather than induce dysregulated glucose homeostasis, due to an important role for GCG that acts directly within the pancreas on insulin secretion by intra-islet GCG signaling. However, in states of poorly controlled T2D, pancreatic α cell mass increases (overproduced GCG) in response to insufficient insulin secretion, indicating decreased local GCG activity. The reason for this decrease is not clear. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. Considering that protein tyrosine nitration in diabetic islets increases and glucose-stimulated insulin secretion (GSIS) decreases, we speculated that heme modulates GSIS by transient interaction with GCG and catalyzing its tyrosine nitration, and the tyrosine nitration may impair GCG activity, leading to loss of intra-islet GCG signaling and markedly impaired insulin secretion. Data presented here elucidate a novel role for heme in disrupting local GCG signaling in diabetes. Heme bound to GCG and induced GCG tyrosine nitration. Two tyrosine residues in GCG were both sensitive to the nitrating species. Further, GCG was also demonstrated to be a preferred target peptide for tyrosine nitration by co-incubation with BSA. Tyrosine nitration impaired GCG stimulated cAMP-dependent signaling in islet β cells and decreased insulin release. Our results provided a new role of heme for impaired GSIS in the pathological process of diabetes.
Collapse
Affiliation(s)
- Xiaoying Yin
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Guoqi Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Chen L, Yang T, Sun X, Wong CC, Yang D. Protein Tyrosine Amination: Detection, Imaging, and Chemoproteomic Profiling with Synthetic Probes. J Am Chem Soc 2024; 146:11944-11954. [PMID: 38622919 PMCID: PMC11066840 DOI: 10.1021/jacs.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Protein tyrosine nitration (PTN) by oxidative and nitrative stress is a well-known post-translational modification that plays a role in the initiation and progression of various diseases. Despite being recognized as a stable modification for decades, recent studies have suggested the existence of a reduction in PTN, leading to the formation of 3-aminotyrosine (3AT) and potential denitration processes. However, the vital functions of 3AT-containing proteins are still unclear due to the lack of selective probes that directly target the protein tyrosine amination. Here, we report a novel approach to label and enrich 3AT-containing proteins with synthetic salicylaldehyde (SAL)-based probes: SALc-FL with a fluorophore and SALc-Yn with an alkyne tag. These probes exhibit high selectivity and efficiency in labeling and can be used in cell lysates and live cells. More importantly, SALc-Yn offers versatility when integrated into multiple platforms by enabling proteome-wide quantitative profiling of cell nitration dynamics. Using SALc-Yn, 355 proteins were labeled, enriched, and identified to carry the 3AT modification in oxidatively stressed RAW264.7 cells. These findings provide compelling evidence supporting the involvement of 3AT as a critical intermediate in nitrated protein turnover. Moreover, our probes serve as powerful tools to investigate protein nitration and denitration processes, and the identification of 3AT-containing proteins contributes to our understanding of PTN dynamics and its implications in cellular redox biology.
Collapse
Affiliation(s)
- Lei Chen
- Morningside
Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Tonghua Yang
- Morningside
Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xue Sun
- First
School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100871, China
| | - Catherine C.L. Wong
- First
School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100871, China
- State
Key Laboratory of Complex, Severe and Rare Diseases, Clinical Research
Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- Tsinghua-Peking
University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Yang
- Laboratory
of Chemical Biology and Molecular Medicine, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
11
|
Datta S, Nabeel Asim M, Dengel A, Ahmed S. NTpred: a robust and precise machine learning framework for in silico identification of Tyrosine nitration sites in protein sequences. Brief Funct Genomics 2024; 23:163-179. [PMID: 37248673 DOI: 10.1093/bfgp/elad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Post-translational modifications (PTMs) either enhance a protein's activity in various sub-cellular processes, or degrade their activity which leads toward failure of intracellular processes. Tyrosine nitration (NT) modification degrades protein's activity that initiates and propagates various diseases including neurodegenerative, cardiovascular, autoimmune diseases and carcinogenesis. Identification of NT modification supports development of novel therapies and drug discoveries for associated diseases. Identification of NT modification in biochemical labs is expensive, time consuming and error-prone. To supplement this process, several computational approaches have been proposed. However these approaches fail to precisely identify NT modification, due to the extraction of irrelevant, redundant and less discriminative features from protein sequences. This paper presents the NTpred framework that is competent in extracting comprehensive features from raw protein sequences using four different sequence encoders. To reap the benefits of different encoders, it generates four additional feature spaces by fusing different combinations of individual encodings. Furthermore, it eradicates irrelevant and redundant features from eight different feature spaces through a Recursive Feature Elimination process. Selected features of four individual encodings and four feature fusion vectors are used to train eight different Gradient Boosted Tree classifiers. The probability scores from the trained classifiers are utilized to generate a new probabilistic feature space, which is used to train a Logistic Regression classifier. On the BD1 benchmark dataset, the proposed framework outperforms the existing best-performing predictor in 5-fold cross validation and independent test evaluation with combined improvement of 13.7% in MCC and 20.1% in AUC. Similarly, on the BD2 benchmark dataset, the proposed framework outperforms the existing best-performing predictor with combined improvement of 5.3% in MCC and 1.0% in AUC. NTpred is publicly available for further experimentation and predictive use at: https://sds_genetic_analysis.opendfki.de/PredNTS/.
Collapse
Affiliation(s)
- Sourajyoti Datta
- Department of Computer Science, Rheinland Pfälzische Technische Universität, Kaiserslautern, 67663, Germany
| | - Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany
| | - Andreas Dengel
- Department of Computer Science, Rheinland Pfälzische Technische Universität, Kaiserslautern, 67663, Germany
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany
| |
Collapse
|
12
|
Bhat FA, Mangalaparthi KK, Ding H, Jain A, Hsu JS, Peterson JA, Zenka RM, Mun DG, Kandasamy RK, Pandey A. Exploration of Nitrotyrosine-Containing Proteins and Peptides by Antibody-Based Enrichment Strategies. Mol Cell Proteomics 2024; 23:100733. [PMID: 38342410 PMCID: PMC10950883 DOI: 10.1016/j.mcpro.2024.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Nitrotyrosine, or 3-nitrotyrosine, is an oxidative post-translational modification induced by reactive nitrogen species. Although nitrotyrosine is considered a marker of oxidative stress and has been associated with inflammation, neurodegeneration, cardiovascular disease, and cancer, identification of nitrotyrosine-modified proteins remains challenging owing to its low stoichiometric levels in biological samples. To facilitate a comprehensive analysis of proteins and peptides containing nitrotyrosine, we optimized an immunoprecipitation-based enrichment workflow using a cell line model. The identification of proteins and peptides containing nitrotyrosine residues was carried out after peroxynitrite treatment of cell lysates, which generated modified nitrotyrosine residues on susceptible sites on proteins. We evaluated the efficacy of enriching nitrotyrosine-modified proteins and peptides by employing four different commercially available monoclonal antibodies directed against nitrotyrosine. LC-MS/MS analysis resulted in the identification of 1377 and 1624 nitrotyrosine-containing peptides from protein- and peptide-based enrichment experiments, respectively. Although the yield of nitrotyrosine-containing peptides was higher in experiments where peptides rather than proteins were enriched, we found a substantial proportion (37-65%) of identified nitrotyrosine-containing peptides contained nitrotyrosine at the N-terminus. However, in protein-based immunoprecipitation <9% of nitrotyrosine-containing peptides had nitrotyrosine modification at the N-terminus of the peptide. Overall, our study resulted in the identification of 2603 nitrotyrosine-containing peptides of which >2000 have not previously been reported. We synthesized 101 novel nitrotyrosine-containing peptides identified in our analysis and analyzed them by LC-MS/MS to validate our findings. We have confirmed the validity of 70% of these peptides, as they demonstrated a similarity score exceeding 0.7 when compared to peptides identified through experimental methods. Finally, we also validated the presence of nitrotyrosine modification on PKM and EF2 proteins in peroxynitrite-treated samples by immunoblot analysis. The large catalog presented in this study along with the workflow should facilitate the investigation of nitrotyrosine as an oxidative modification in a variety of settings in greater detail.
Collapse
Affiliation(s)
- Firdous A Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kiran K Mangalaparthi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Husheng Ding
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel-Sean Hsu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Roman M Zenka
- Proteomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Manipal Academy of Higher Education, Manipal, Karnataka, India; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
13
|
Bashyal A, Brodbelt JS. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation. MASS SPECTROMETRY REVIEWS 2024; 43:289-326. [PMID: 36165040 PMCID: PMC10040477 DOI: 10.1002/mas.21811] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications (PTMs) are covalent modifications of proteins that modulate the structure and functions of proteins and regulate biological processes. The development of various mass spectrometry-based proteomics workflows has facilitated the identification of hundreds of PTMs and aided the understanding of biological significance in a high throughput manner. Improvements in sample preparation and PTM enrichment techniques, instrumentation for liquid chromatography-tandem mass spectrometry (LC-MS/MS), and advanced data analysis tools enhance the specificity and sensitivity of PTM identification. Highly prevalent PTMs like phosphorylation, glycosylation, acetylation, ubiquitinylation, and methylation are extensively studied. However, the functions and impact of less abundant PTMs are not as well understood and underscore the need for analytical methods that aim to characterize these PTMs. This review focuses on the advancement and analytical challenges associated with the characterization of three less common but biologically relevant PTMs, specifically, adenosine diphosphate-ribosylation, tyrosine sulfation, and tyrosine nitration. The advantages and disadvantages of various enrichment, separation, and MS/MS techniques utilized to identify and localize these PTMs are described.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
14
|
Chavarría C, Ivagnes R, Zeida A, Piñeyro MD, Souza JM. Revisiting the role of 3-nitrotyrosine residues in the formation of alpha-synuclein oligomers and fibrils. Arch Biochem Biophys 2024; 752:109858. [PMID: 38104957 DOI: 10.1016/j.abb.2023.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nitration of tyrosine residues in alpha-synuclein (a-syn) has been detected in different synucleinopathies, including Parkinson's disease. The potential role of 3-nitrotyrosine formation in a-syn, as an oxidative post-translational modification, is still elusive. In this work, we generated well-characterized tyrosine nitrated a-syn monomers and studied their capability to form oligomers and fibrils. We constructed tyrosine to phenylalanine mutants, containing a single tyrosine residue, a-syn mutant Y(125/133/136)F and Y(39/125/133)F) and assessed the impact in a-syn biophysical properties. Nitrated wild-type a-syn and the Y-F mutants, with one 3-nitrotyrosine residue in either the protein's N-terminal or C-terminal region, showed inhibition of fibril formation but retained the capacity of oligomer formation. The inhibition of a-syn fibrillation occurs even when an important amount of unmodified a-syn is still present. We characterized oligomers from both nitrated and non-nitrated forms of the wild-type protein and the mutant forms obtained. Our results indicate that the formation of 3-nitrotyrosine in a-syn could induce an off-pathway oligomer formation which may have an important impact in the development of synucleinopathies.
Collapse
Affiliation(s)
- Cecilia Chavarría
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay
| | - Rodrigo Ivagnes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay
| | - María Dolores Piñeyro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - José M Souza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay.
| |
Collapse
|
15
|
Fröhlich-Nowoisky J, Bothen N, Backes AT, Weller MG, Pöschl U. Oligomerization and tyrosine nitration enhance the allergenic potential of the birch and grass pollen allergens Bet v 1 and Phl p 5. FRONTIERS IN ALLERGY 2023; 4:1303943. [PMID: 38125293 PMCID: PMC10732249 DOI: 10.3389/falgy.2023.1303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide (environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied.
Collapse
Affiliation(s)
| | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael G. Weller
- Division 1.5 - Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
16
|
Jia W, Gong X, Ye Z, Li N, Zhan X. Nitroproteomics is instrumental for stratification and targeted treatments of astrocytoma patients: expert recommendations for advanced 3PM approach with improved individual outcomes. EPMA J 2023; 14:673-696. [PMID: 38094577 PMCID: PMC10713973 DOI: 10.1007/s13167-023-00348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2024]
Abstract
Protein tyrosine nitration is a selectively and reversible important post-translational modification, which is closely related to oxidative stress. Astrocytoma is the most common neuroepithelial tumor with heterogeneity and complexity. In the past, the diagnosis of astrocytoma was based on the histological and clinical features, and the treatment methods were nothing more than surgery-assisted radiotherapy and chemotherapy. Obviously, traditional methods short falls an effective treatment for astrocytoma. In late 2021, the World Health Organization (WHO) adopted molecular biomarkers in the comprehensive diagnosis of astrocytoma, such as IDH-mutant and DNA methylation, which enabled the risk stratification, classification, and clinical prognosis prediction of astrocytoma to be more correct. Protein tyrosine nitration is closely related to the pathogenesis of astrocytoma. We hypothesize that nitroproteome is significantly different in astrocytoma relative to controls, which leads to establishment of nitroprotein biomarkers for patient stratification, diagnostics, and prediction of disease stages and severity grade, targeted prevention in secondary care, treatment algorithms tailored to individualized patient profile in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Nitroproteomics based on gel electrophoresis and tandem mass spectrometry is an effective tool to identify the nitroproteins and effective biomarkers in human astrocytomas, clarifying the biological roles of oxidative/nitrative stress in the pathophysiology of astrocytomas, functional characteristics of nitroproteins in astrocytomas, nitration-mediated signal pathway network, and early diagnosis and treatment of astrocytomas. The results finds that these nitroproteins are enriched in mitotic cell components, which are related to transcription regulation, signal transduction, controlling subcellular organelle events, cell perception, maintaining cell homeostasis, and immune activity. Eleven statistically significant signal pathways are identified in astrocytoma, including remodeling of epithelial adherens junctions, germ cell-sertoli cell junction signaling, 14-3-3-mediated signaling, phagosome maturation, gap junction signaling, axonal guidance signaling, assembly of RNA polymerase III complex, and TREM1 signaling. Furthermore, protein tyrosine nitration is closely associated with the therapeutic effects of protein drugs, and molecular mechanism and drug targets of cancer. It provides valuable data for studying the protein nitration biomarkers, molecular mechanisms, and therapeutic targets of astrocytoma towards PPPM (3P medicine) practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00348-y.
Collapse
Affiliation(s)
- Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
17
|
Zeng L, Zhang X, Xia M, Ye H, Li H, Gao Z. Heme and Cu 2+-induced vasoactive intestinal peptide (VIP) tyrosine nitration: A possible molecular mechanism for the attenuated anti-inflammatory effect of VIP in inflammatory diseases. Biochimie 2023; 214:176-187. [PMID: 37481062 DOI: 10.1016/j.biochi.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide that play an important role in immunoregulation and anti-inflammation. Numerous inflammatory/autoimmune disorders are associated with decreased VIP binding ability to receptors and diminished VIP activation of cAMP generation in immune cells. However, the mechanisms linking oxidative/nitrative stress to VIP immune dysfunction remain unknown. It has been reported that the elevated heme or Cu2+ in inflammatory diseases can cause oxidative and nitrative damage to nearby biological targets under high oxidative stress conditions, which affects the structure and activity of linked peptides or proteins. Thus, the VIP down-regulated immune response may be interfered by redox metal catalyzed VIP tyrosine nitration. To explore this, we systematically investigated the possibility of heme or Cu2+ to catalyze VIP tyrosine nitration. The results showed that Tyr10 and Tyr22 of VIP can both be nitrated in heme/H2O2/NO2- system as well as in Cu2+/H2O2/NO2- system. Then, we used synthetic mutant VIPs with tyrosine residues substituted by 3-nitrotyrosine to study the impact of tyrosine nitration on VIP activity in SHSY-5Y cells. Our findings demonstrated that VIP nitration dramatically decreased the content of its α-helix and random coil, suggesting that VIP nitration might reduce its affinity to the receptor. This was further confirmed in the cAMP assay. The results showed that 10 nM of these tyrosine nitrated VIPs could significantly (p < 0.01) decrease cAMP secretion compared to the wild type VIP. Our data reveal that the attenuation of the neuroprotective effect of VIP in inflammation-related diseases might be attributed to metal-catalyzed VIP tyrosine nitration.
Collapse
Affiliation(s)
- Lizhen Zeng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Mengyang Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Huixian Ye
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| |
Collapse
|
18
|
Griswold-Prenner I, Kashyap AK, Mazhar S, Hall ZW, Fazelinia H, Ischiropoulos H. Unveiling the human nitroproteome: Protein tyrosine nitration in cell signaling and cancer. J Biol Chem 2023; 299:105038. [PMID: 37442231 PMCID: PMC10413360 DOI: 10.1016/j.jbc.2023.105038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Covalent amino acid modification significantly expands protein functional capability in regulating biological processes. Tyrosine residues can undergo phosphorylation, sulfation, adenylation, halogenation, and nitration. These posttranslational modifications (PTMs) result from the actions of specific enzymes: tyrosine kinases, tyrosyl-protein sulfotransferase(s), adenylate transferase(s), oxidoreductases, peroxidases, and metal-heme containing proteins. Whereas phosphorylation, sulfation, and adenylation modify the hydroxyl group of tyrosine, tyrosine halogenation and nitration target the adjacent carbon residues. Because aberrant tyrosine nitration has been associated with human disorders and with animal models of disease, we have created an updated and curated database of 908 human nitrated proteins. We have also analyzed this new resource to provide insight into the role of tyrosine nitration in cancer biology, an area that has not previously been considered in detail. Unexpectedly, we have found that 879 of the 1971 known sites of tyrosine nitration are also sites of phosphorylation suggesting an extensive role for nitration in cell signaling. Overall, the review offers several forward-looking opportunities for future research and new perspectives for understanding the role of tyrosine nitration in cancer biology.
Collapse
Affiliation(s)
| | | | | | - Zach W Hall
- Nitrase Therapeutics, Brisbane, California, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Zoanni B, Brioschi M, Mallia A, Gianazza E, Eligini S, Carini M, Aldini G, Banfi C. Novel insights about albumin in cardiovascular diseases: Focus on heart failure. MASS SPECTROMETRY REVIEWS 2023; 42:1113-1128. [PMID: 34747521 DOI: 10.1002/mas.21743] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/07/2023]
Abstract
The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease. Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.
Collapse
Affiliation(s)
| | | | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | | | | | - Marina Carini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Milan, Italy
| | - Giancarlo Aldini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Milan, Italy
| | | |
Collapse
|
20
|
Graska J, Fidler J, Gietler M, Prabucka B, Nykiel M, Labudda M. Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. BIOLOGY 2023; 12:927. [PMID: 37508359 PMCID: PMC10376146 DOI: 10.3390/biology12070927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological processes in plants, including responses to biotic and abiotic stresses. Changes in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging pathways in plant cells and highlights the role of NO in post-translational modifications of proteins (S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental conditions. Particular attention was paid to the interactions of NO with other signaling molecules: reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic acid. In addition, potential common patterns of NO-dependent defense responses against attack and feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were characterized. Our review definitely highlights the need for further research on the involvement of NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.
Collapse
Affiliation(s)
- Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| | | | | | | | | | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| |
Collapse
|
21
|
Tian J, Yang F. Site-specific tyrosine nitration of group 1 allergens of house dust mite Dermatophagoides farinae (der f 1) and Dermatophagoides pteronyssinus (der p 1) in indoor dusts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121716. [PMID: 37142204 DOI: 10.1016/j.envpol.2023.121716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Nitration can enhance the allergenicity of proteins. The nitration status of house dust mite (HDM) allergens in indoor dusts, however, remains to be elucidated. In the study, site-specific tyrosine nitration degrees of the two important HDM allergens Der f 1 and Der p 1 in indoor dust samples were investigated by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The measured concentrations of native and nitrated allergens in the dusts were in the range of 0.86-29 μg g-1 for Der f 1 and from below the detection limit to 29 μg g-1 for Der p 1. Site-specific analysis revealed that all ten tyrosine residues in Der f 1 and Der p 1 were nitrated to different degrees in the investigated samples. The preferred nitration sites were Y56 in Der f 1 and Y37 in Der p 1 with the nitration degrees of 7.6-84% and 17-96% among the detected tyrosine residues, respectively. The measurements reveal high site-specific nitration degrees for tyrosine in Der f 1 and Der p 1 detected in the indoor dust samples. Further investigations are required to find out if the nitration really aggravates the health effects of HDM allergens and if the effects are tyrosine site-dependent.
Collapse
Affiliation(s)
- Jingyi Tian
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
22
|
Beygmoradi A, Homaei A, Hemmati R, Fernandes P. Recombinant protein expression: Challenges in production and folding related matters. Int J Biol Macromol 2023; 233:123407. [PMID: 36708896 DOI: 10.1016/j.ijbiomac.2023.123407] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Protein folding is a biophysical process by which proteins reach a specific three-dimensional structure. The amino acid sequence of a polypeptide chain contains all the information needed to determine the final three-dimensional structure of a protein. When producing a recombinant protein, several problems can occur, including proteolysis, incorrect folding, formation of inclusion bodies, or protein aggregation, whereby the protein loses its natural structure. To overcome such limitations, several strategies have been developed to address each specific issue. Identification of proper protein refolding conditions can be challenging, and to tackle this high throughput screening for different recombinant protein folding conditions can prove a sound solution. Different approaches have emerged to tackle refolding issues. One particular approach to address folding issues involves molecular chaperones, highly conserved proteins that contribute to proper folding by shielding folding proteins from other proteins that could hinder the process. Proper protein folding is one of the main prerequisites for post-translational modifications. Incorrect folding, if not dealt with, can lead to a buildup of protein misfoldings that damage cells and cause widespread abnormalities. Said post-translational modifications, widespread in eukaryotes, are critical for protein structure, function and biological activity. Incorrect post-translational protein modifications may lead to individual consequences or aggregation of therapeutic proteins. In this review article, we have tried to examine some key aspects of recombinant protein expression. Accordingly, the relevance of these proteins is highlighted, major problems related to the production of recombinant protein and to refolding issues are pinpointed and suggested solutions are presented. An overview of post-translational modification, their biological significance and methods of identification are also provided. Overall, the work is expected to illustrate challenges in recombinant protein expression.
Collapse
Affiliation(s)
- Azadeh Beygmoradi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Pedro Fernandes
- DREAMS and Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
23
|
Guo L, Zhao P, Jia Y, Li T, Huang L, Wang Z, Liu D, Hou Z, Zhao Y, Zhang L, Li H, Kong Y, Li J, Wang X, Rong M. Efficient inactivation of the contamination with pathogenic microorganisms by a combination of water spray and plasma-activated air. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130686. [PMID: 36610342 PMCID: PMC9796360 DOI: 10.1016/j.jhazmat.2022.130686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The global pandemic caused by SARS-CoV-2 has lasted two and a half years and the infections caused by the viral contamination are still occurring. Developing efficient disinfection technology is crucial for the current epidemic or infectious diseases caused by other pathogenic microorganisms. Gas plasma can efficiently inactivate different microorganisms, therefore, in this study, a combination of water spray and plasma-activated air was established for the disinfection of pathogenic microorganisms. The combined treatment efficiently inactivated the Omicron-pseudovirus through caused the nitration modification of the spike proteins and also the pathogenic bacteria. The combined treatment was improved with a funnel-shaped nozzle to form a temporary relatively sealed environment for the treatment of the contaminated area. The improved device could efficiently inactivate the Omicron-pseudovirus and bacteria on the surface of different materials including quartz, metal, leather, plastic, and cardboard and the particle size of the water spray did not affect the inactivation effects. This study supplied a disinfection strategy based on plasma-activated air for the inactivation of contaminated pathogenic microorganisms.
Collapse
Affiliation(s)
- Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Pengyu Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yikang Jia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tianhui Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Lingling Huang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Zhanwu Hou
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yizhen Zhao
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Lei Zhang
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hua Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yu Kong
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Juntang Li
- Research Centre for Occupation and Environment Medicine, Collaborative Innovation Centre for Medical Equipment, Key Laboratory of Biological Damage Effect and Protection, Luoyang 471031, PR China.
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
24
|
Biojone C, C Casarotto P, Cannarozzo C, Fred SM, Herrera-Rodríguez R, Lesnikova A, Voipio M, Castrén E. nNOS-induced tyrosine nitration of TRKB impairs BDNF signaling and restrains neuronal plasticity. Prog Neurobiol 2023; 222:102413. [PMID: 36682419 DOI: 10.1016/j.pneurobio.2023.102413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) has been long recognized as an important modulator of neural plasticity, but characterization of the molecular mechanisms involved - specially the guanylyl cyclase-independent ones - has been challenging. There is evidence that NO could modify BDNF-TRKB signaling, a key mediator of neuronal plasticity. However, the mechanism underlying the interplay of NO and TRKB remains unclear. Here we show that NO induces nitration of the tyrosine 816 in the TRKB receptor in vivo and in vitro, and that post-translational modification inhibits TRKB phosphorylation and binding of phospholipase Cγ1 (PLCγ1) to this same tyrosine residue. Additionally, nitration triggers clathrin-dependent endocytosis of TRKB through the adaptor protein AP-2 and ubiquitination, thereby increasing translocation of TRKB away from the neuronal surface and directing it towards lysosomal degradation. Accordingly, inhibition of nitric oxide increases TRKB phosphorylation and TRKB-dependent neurite branching in neuronal cultures. In vivo, chronic inhibition of neuronal nitric oxide synthase (nNOS) dramatically reduced TRKB nitration and facilitated TRKB signaling in the visual cortex, and promoted a shift in ocular dominance upon monocular deprivation - an indicator of increased plasticity. Altogether, our data describe and characterize a new molecular brake on plasticity, namely nitration of TRKB receptors.
Collapse
Affiliation(s)
- Caroline Biojone
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Aarhus University, Department of Biomedicine, Faculty of Health, and Translational Neuropsychiatry Unit, Department of Clinical Medicine.
| | - Plinio C Casarotto
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Cecilia Cannarozzo
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Senem Merve Fred
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | - Angelina Lesnikova
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko Voipio
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
25
|
Reinmuth-Selzle K, Bellinghausen I, Leifke AL, Backes AT, Bothen N, Ziegler K, Weller MG, Saloga J, Schuppan D, Lucas K, Pöschl U, Fröhlich-Nowoisky J. Chemical modification by peroxynitrite enhances TLR4 activation of the grass pollen allergen Phl p 5. FRONTIERS IN ALLERGY 2023; 4:1066392. [PMID: 36873048 PMCID: PMC9975604 DOI: 10.3389/falgy.2023.1066392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
The chemical modification of aeroallergens by reactive oxygen and nitrogen species (ROS/RNS) may contribute to the growing prevalence of respiratory allergies in industrialized countries. Post-translational modifications can alter the immunological properties of proteins, but the underlying mechanisms and effects are not well understood. In this study, we investigate the Toll-like receptor 4 (TLR4) activation of the major birch and grass pollen allergens Bet v 1 and Phl p 5, and how the physiological oxidant peroxynitrite (ONOO-) changes the TLR4 activation through protein nitration and the formation of protein dimers and higher oligomers. Of the two allergens, Bet v 1 exhibited no TLR4 activation, but we found TLR4 activation of Phl p 5, which increased after modification with ONOO- and may play a role in the sensitization against this grass pollen allergen. We attribute the TLR4 activation mainly to the two-domain structure of Phl p 5 which may promote TLR4 dimerization and activation. The enhanced TLR4 signaling of the modified allergen indicates that the ONOO--induced modifications affect relevant protein-receptor interactions. This may lead to increased sensitization to the grass pollen allergen and thus contribute to the increasing prevalence of allergies in the Anthropocene, the present era of globally pervasive anthropogenic influence on the environment.
Collapse
Affiliation(s)
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Lena Leifke
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Kira Ziegler
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael G. Weller
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, USA
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | |
Collapse
|
26
|
Grujić-Milanović J, Jaćević V, Miloradović Z, Milanović SD, Jovović D, Ivanov M, Karanović D, Vajić UJ, Mihailović-Stanojević N. Resveratrol improved kidney function and structure in malignantly hypertensive rats by restoration of antioxidant capacity and nitric oxide bioavailability. Biomed Pharmacother 2022; 154:113642. [PMID: 36942598 DOI: 10.1016/j.biopha.2022.113642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The main cause of death among patients with malignant hypertension is a kidney failure. The promising field in essential and malignant hypertension therapy could be centered on the amelioration of oxidative stress using antioxidant molecules like resveratrol. Resveratrol is a potent antioxidative agent naturally occurred in many plants that possess health-promoting properties. METHODS In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with anti-oxidative activity, in NG-L-Arginine Methyl Ester (L-NAME) treated spontaneously hypertensive rats (SHR) - malignantly hypertensive rats (MHR). RESULTS Resveratrol significantly improves oxidative damages by modulation of antioxidant enzymes and suppression of prooxidant factors in the kidney tissue of MHR. Enhanced antioxidant defense in the kidney improves renal function and ameliorates the morphological changes in this target organ. Besides, protective properties of resveratrol are followed by the restoration of the nitrogen oxide (NO) pathway. 4) Conclusion: Antioxidant therapy with resveratrol could represent promising therapeutical approach in hypertension, especially malignant, against kidney damage.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia.
| | - Zoran Miloradović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Sladjan D Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, biomedical engineering and physics of complex systems, Belgrade, Serbia.
| | - Djurdjica Jovović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Milan Ivanov
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Danijela Karanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Una-Jovana Vajić
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Nevena Mihailović-Stanojević
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| |
Collapse
|
27
|
Elgaabari A, Imatomi N, Kido H, Seki M, Tanaka S, Matsuyoshi Y, Nakashima T, Sawano S, Mizunoya W, Suzuki T, Nakamura M, Anderson JE, Tatsumi R. A pilot study on nitration/dysfunction of NK1 segment of myogenic stem cell activator HGF. Biochem Biophys Rep 2022; 31:101295. [PMID: 35721345 PMCID: PMC9198319 DOI: 10.1016/j.bbrep.2022.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Protein tyrosine residue (Y) nitration, a post-translational chemical-modification mode, has been associated with changes in protein activity and function; hence the accumulation of specific nitrated proteins in tissues may be used to monitor the onset and progression of pathological disorders. To verify the possible impact of nitration on postnatal muscle growth and regeneration, a pilot study was designed to examine the nitration/dysfunction of hepatocyte growth factor (HGF), a key ligand that is released from the extracellular tethering and activates myogenic stem satellite cells to enter the cell cycle upon muscle stretch and injury. Exposure of recombinant HGF (a hetero-dimer of α- and β-chains) to peroxynitrite induces Y nitration in HGF α-chain under physiological conditions. Physiological significance of this finding was emphasized by Western blotting that showed the NK1 segment of HGF (including a K1 domain critical for signaling-receptor c-met binding) undergoes nitration with a primary target of Y198. Peroxynitrite treatment abolished HGF-agonistic activity of the NK1 segment, as revealed by in vitro c-met binding and bromodeoxyuridine-incorporation assays. Importantly, direct-immunofluorescence microscopy of rat lower hind-limb muscles from two aged-groups (2-month-old “young” and 12-month-old “retired/adult”) provided in vivo evidence for age-related nitration of extracellular HGF (Y198). Overall, findings provide the insight that HGF/NK1 nitration/dysfunction perturbs myogenic stem cell dynamics and homeostasis; hence NK1 nitration may stimulate progression of muscular disorders and diseases including sarcopenia. NK1 segment of hepatocyte growth factor (HGF) undergoes tyrosine (Y) nitration. Y198 was identified as a primary target for nitration of NK1. NK1 nitration may abolish HGF-agonistic activity that activates myogenic stem cells. Nitration of extracellular HGF-Y198 was detected in vivo at early aging-phase of rat. Findings may provide a possible strategy to combat progressive muscle-atrophy.
Collapse
Affiliation(s)
- Alaa Elgaabari
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh 33516, Egypt
| | - Nana Imatomi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirochika Kido
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miyumi Seki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Sakiho Tanaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuji Matsuyoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takashi Nakashima
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Corresponding author. Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture (West#5 bldg.), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
28
|
Stimulation of Akt Phosphorylation and Glucose Transport by Metalloporphyrins with Peroxynitrite Decomposition Catalytic Activity. Catalysts 2022; 12. [PMID: 37123089 PMCID: PMC10138784 DOI: 10.3390/catal12080849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Iron porphyrin molecules such as hemin and iron(III) 4,4′,4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (FeTBAP) have previously been shown to influence insulin signaling and glucose metabolism. We undertook this study to determine whether a catalytic action of iron porphyrin compounds would be related to their stimulation of insulin signaling and glucose uptake in C2C12 myotubes. FeTBAP did not display nitrite reductase activity or alter protein S-nitrosylation in myotubes, eliminating this as a candidate mode by which FeTBAP could act. FeTBAP displayed peroxynitrite decomposition catalytic activity in vitro. Additionally, in myotubes FeTBAP decreased protein nitration. The peroxynitrite decomposition catalyst Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride (FeTPPS) also decreased protein nitration in myotubes, but the iron porphyrin Fe(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachlorideporphyrin pentachloride (FeTMPyP) did not. FeTBAP and FeTPPS, but not FeTMPyP, showed in vitro peroxidase activity. Further, FeTBAP and FeTPPs, but not FeTMPyP, increased Akt phosphorylation and stimulated glucose uptake in myotubes. These findings suggest that iron porphyrin compounds with both peroxynitrite decomposition activity and peroxidase activity can stimulate insulin signaling and glucose transport in skeletal muscle cells.
Collapse
|
29
|
Kakkanas A, Karamichali E, Koufogeorgou EI, Kotsakis SD, Georgopoulou U, Foka P. Targeting the YXXΦ Motifs of the SARS Coronaviruses 1 and 2 ORF3a Peptides by In Silico Analysis to Predict Novel Virus-Host Interactions. Biomolecules 2022; 12:1052. [PMID: 36008946 PMCID: PMC9405953 DOI: 10.3390/biom12081052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
The emerging SARS-CoV and SARS-CoV-2 belong to the family of "common cold" RNA coronaviruses, and they are responsible for the 2003 epidemic and the current pandemic with over 6.3 M deaths worldwide. The ORF3a gene is conserved in both viruses and codes for the accessory protein ORF3a, with unclear functions, possibly related to viral virulence and pathogenesis. The tyrosine-based YXXΦ motif (Φ: bulky hydrophobic residue-L/I/M/V/F) was originally discovered to mediate clathrin-dependent endocytosis of membrane-spanning proteins. Many viruses employ the YXXΦ motif to achieve efficient receptor-guided internalisation in host cells, maintain the structural integrity of their capsids and enhance viral replication. Importantly, this motif has been recently identified on the ORF3a proteins of SARS-CoV and SARS-CoV-2. Given that the ORF3a aa sequence is not fully conserved between the two SARS viruses, we aimed to map in silico structural differences and putative sequence-driven alterations of regulatory elements within and adjacently to the YXXΦ motifs that could predict variations in ORF3a functions. Using robust bioinformatics tools, we investigated the presence of relevant post-translational modifications and the YXXΦ motif involvement in protein-protein interactions. Our study suggests that the predicted YXXΦ-related features may confer specific-yet to be discovered-functions to ORF3a proteins, significant to the new virus and related to enhanced propagation, host immune regulation and virulence.
Collapse
Affiliation(s)
- Athanassios Kakkanas
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Eirini Karamichali
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Efthymia Ioanna Koufogeorgou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Stathis D. Kotsakis
- Laboratory of Bacteriology, Hellenic Pasteur Institute, 115-21 Athens, Greece;
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Pelagia Foka
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| |
Collapse
|
30
|
Patra SK, Sinha N, Molla F, Sengupta A, Chakraborty S, Roy S, Ghosh S. In-vivo protein nitration facilitates Vibrio cholerae cell survival under anaerobic, nutrient deprived conditions. Arch Biochem Biophys 2022; 728:109358. [PMID: 35872323 DOI: 10.1016/j.abb.2022.109358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Protein tyrosine nitration (PTN), a highly selective post translational modification, occurs in both prokaryotic and eukaryotic cells under nitrosative stress. However, its physiological function is not yet clear. Like many gut pathogens, Vibrio cholerae also faces nitrosative stress, which makes proteome more vulnerable to PTN. Here, we report for the first time in-vivo PTN in V. cholerae by immunoblotting and LC-ESI-MS/MS proteomic analysis. Our results indicated that in-vivo PTN in V. cholerae was culture media independent. Surprisingly, in-vivo PTN was reduced in V. cholerae proteome under anaerobic or hypoxic condition in a nutrient deprived state. Interestingly, intracellular nitrate content was more than the nitrite content in V. cholerae under anaerobic conditions. Additionally, biochemical measurement of GSH/GSSG ratio, activities of catalase and SOD, ROS and RNS imaging by confocal microscopy confirmed a relative intracellular oxidizing environment in V. cholerae under anaerobic conditions. This altered redox environment favors the oxidation of nitrite which may be generated from protein denitration enriching the intracellular nitrate pool. The cell survival of V. cholerae can finally be facilitated by nitrate reductase (NapA) utilizing that nitrate pool. Our cell viability study using wild type and ΔnapA strain of V. cholerae also supported the role of NapA mediated cell survival under nutrient deprived anaerobic conditions. In spite of having nitrate reductase (NapA), V. cholerae lacks any nitrite reductase (NiR). Hence, in-vivo nitration may provide an avenue for toxic nitrite storage and also may help in nitrosative stress tolerance mechanism preventing further unnecessary protein nitration in V. cholerae proteome.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Nilanjan Sinha
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Firoz Molla
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Ayantika Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhamoy Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Souvik Roy
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
31
|
Chakraborty S, Mukherjee P, Sengupta R. Ribonucleotide reductase: Implications of thiol S-nitrosylation and tyrosine nitration for different subunits. Nitric Oxide 2022; 127:26-43. [PMID: 35850377 DOI: 10.1016/j.niox.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Ribonucleotide reductase (RNR) is a multi-subunit enzyme responsible for catalyzing the rate-limiting step in the production of deoxyribonucleotides essential for DNA synthesis and repair. The active RNR complex is composed of multimeric R1 and R2 subunits. The RNR catalysis involves the formation of tyrosyl radicals in R2 subunits and thiyl radicals in R1 subunits. Despite the quaternary structure and cofactor diversity, all the three classes of RNR have a conserved cysteine residue at the active site which is converted into a thiyl radical that initiates the substrate turnover, suggesting that the catalytic mechanism is somewhat similar for all three classes of the RNR enzyme. Increased RNR activity has been associated with malignant transformation, cancer cell growth, and tumorigenesis. Efforts concerning the understanding of RNR inhibition in designing potent RNR inhibitors/drugs as well as developing novel approaches for antibacterial, antiviral treatments, and cancer therapeutics with improved radiosensitization have been made in clinical research. This review highlights the precise and potent roles of NO in RNR inhibition by targeting both the subunits. Under nitrosative stress, the thiols of the R1 subunits have been found to be modified by S-nitrosylation and the tyrosyl radicals of the R2 subunits have been modified by nitration. In view of the recent advances and progresses in the field of nitrosative modifications and its fundamental role in signaling with implications in health and diseases, the present article focuses on the regulations of RNR activity by S-nitrosylation of thiols (R1 subunits) and nitration of tyrosyl residues (R2 subunits) which will further help in designing new drugs and therapies.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Prerona Mukherjee
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
32
|
Sokolová M, Šestáková H, Truksa M, Šafařík M, Hadravová R, Bouř P, Šebestík J. Photochemical synthesis of pink silver and its use for monitoring peptide nitration via surface enhanced Raman spectroscopy (SERS). Amino Acids 2022; 54:1261-1274. [PMID: 35731286 DOI: 10.1007/s00726-022-03178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
Oxidative stress may cause extended tyrosine posttranslational modifications of peptides and proteins. The 3-nitro-L-tyrosine (Nit), which is typically formed, affects protein behavior during neurodegenerative processes, such as Alzheimer's and Parkinson's diseases. Such metabolic products may be conveniently detected at very low concentrations by surface enhanced Raman spectroscopy (SERS). Previously, we have explored the SERS detection of the Nit NO2 bending vibrational bands in a presence of hydrogen chloride (Niederhafner et al., Amino Acids 53:517-532, 2021, ibid). In this article, we describe performance of a new SERS substrate, "pink silver", synthesized photochemically. It provides SERS even without the HCl induction, and the acid further decreases the detection limit about 9 times. Strong SERS bands were observed in the asymmetric (1550-1475 cm-1) and symmetric (1360-1290 cm-1) NO stretching in the NO2 group. The bending vibration was relatively weak, but appeared stronger when HCl was added. The band assignments were supported by density functional theory modeling.
Collapse
Affiliation(s)
- Marina Sokolová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Hana Šestáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Martin Truksa
- Mensa Gymnázium O.P.S., Španielova 1111/19, 163 00, Prague 6, Czech Republic
| | - Martin Šafařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic. .,Mensa Gymnázium O.P.S., Španielova 1111/19, 163 00, Prague 6, Czech Republic.
| |
Collapse
|
33
|
Sengupta S, Nath R, Bhuyan R, Bhattacharjee A. Variation in glucose metabolism under acidified sodium nitrite mediated nitrosative stress in Saccharomyces cerevisiae. J Appl Microbiol 2022; 133:1660-1675. [PMID: 35702895 DOI: 10.1111/jam.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
AIMS The work aimed to understand the important changes during glucose metabolism in Saccharomyces cerevisiae under acidified sodium nitrite (ac.NaNO2 ) mediated nitrosative stress. METHODS AND RESULTS Confocal microscopy and fluorescence-activated cell sorting analysis were performed to investigate the generation of reactive nitrogen and oxygen species, and redox homeostasis under nitrosative stress was also characterized. Quantitative PCR analysis revealed that the expression of ADH genes was upregulated under such condition, whereas the ACO2 gene was downregulated. Some of the enzymes of the tricarboxylic acid cycle were partially inhibited, whereas malate metabolism and alcoholic fermentation were increased under nitrosative stress. Kinetics of ethanol production was also characterized. A network analysis was conducted to validate our findings. In the presence of ac.NaNO2 , in vitro protein tyrosine nitration formation was checked by western blotting using pure alcohol dehydrogenase and aconitase. CONCLUSIONS Alcoholic fermentation rate was increased under stress condition and this altered metabolism might be conjoined with the defence machinery to overcome the nitrosative stress. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first work of this kind where the role of metabolism under nitrosative stress has been characterized in S. cerevisiae and it will provide a base to develop an alternative method of industrial ethanol production.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rohan Nath
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rajabrata Bhuyan
- Department of Bio-Science and Biotechnology, Banasthali Vidyapith (Deemed) University, Banasthali, Rajasthan, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| |
Collapse
|
34
|
Characterization of a novel affinity binding ligand for tyrosine nitrated peptides from a phage-displayed peptide library. Talanta 2022; 241:123225. [DOI: 10.1016/j.talanta.2022.123225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
|
35
|
León J. Protein Tyrosine Nitration in Plant Nitric Oxide Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:859374. [PMID: 35360296 PMCID: PMC8963475 DOI: 10.3389/fpls.2022.859374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO), which is ubiquitously present in living organisms, regulates many developmental and stress-activated processes in plants. Regulatory effects exerted by NO lies mostly in its chemical reactivity as a free radical. Proteins are main targets of NO action as several amino acids can undergo NO-related post-translational modifications (PTMs) that include mainly S-nitrosylation of cysteine, and nitration of tyrosine and tryptophan. This review is focused on the role of protein tyrosine nitration on NO signaling, making emphasis on the production of NO and peroxynitrite, which is the main physiological nitrating agent; the main metabolic and signaling pathways targeted by protein nitration; and the past, present, and future of methodological and strategic approaches to study this PTM. Available information on identification of nitrated plant proteins, the corresponding nitration sites, and the functional effects on the modified proteins will be summarized. However, due to the low proportion of in vivo nitrated peptides and their inherent instability, the identification of nitration sites by proteomic analyses is a difficult task. Artificial nitration procedures are likely not the best strategy for nitration site identification due to the lack of specificity. An alternative to get artificial site-specific nitration comes from the application of genetic code expansion technologies based on the use of orthogonal aminoacyl-tRNA synthetase/tRNA pairs engineered for specific noncanonical amino acids. This strategy permits the programmable site-specific installation of genetically encoded 3-nitrotyrosine sites in proteins expressed in Escherichia coli, thus allowing the study of the effects of specific site nitration on protein structure and function.
Collapse
|
36
|
Tyminski M, Ciacka K, Staszek P, Gniazdowska A, Krasuska U. Toxicity of meta-Tyrosine. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122800. [PMID: 34961269 PMCID: PMC8707607 DOI: 10.3390/plants10122800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 05/15/2023]
Abstract
L-Tyrosine (Tyr) is one of the twenty proteinogenic amino acids and also acts as a precursor for secondary metabolites. Tyr is prone to modifications, especially under conditions of cellular redox imbalance. The oxidation of Tyr precursor phenylalanine leads to the formation of Tyr non-proteinogenic isomers, including meta-Tyr (m-Tyr), a marker of oxidative stress. The aim of this review is to summarize the current knowledge on m-Tyr toxicity. The direct m-Tyr mode of action is linked to its incorporation into proteins, resulting in their improper conformation. Furthermore, m-Tyr produced by some plants as an allelochemical impacts the growth and development of neighboring organisms. In plants, the direct harmful effect of m-Tyr is due to its modification of the proteins structure, whereas its indirect action is linked to the disruption of reactive oxygen and nitrogen species metabolism. In humans, the elevated concentration of m-Tyr is characteristic of various diseases and ageing. Indeed, m-Tyr is believed to play an important role in cancer physiology. Thus, since, in animal cells, m-Tyr is formed directly in response to oxidative stress, whereas, in plants, m-Tyr is also synthesized enzymatically and serves as a chemical weapon in plant-plant competition, the general concept of m-Tyr role in living organisms should be specified.
Collapse
|
37
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
39
|
Cioffi F, Adam RHI, Bansal R, Broersen K. A Review of Oxidative Stress Products and Related Genes in Early Alzheimer's Disease. J Alzheimers Dis 2021; 83:977-1001. [PMID: 34420962 PMCID: PMC8543250 DOI: 10.3233/jad-210497] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is associated with the progression of Alzheimer’s disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
40
|
Griesser E, Vemula V, Mónico A, Pérez-Sala D, Fedorova M. Dynamic posttranslational modifications of cytoskeletal proteins unveil hot spots under nitroxidative stress. Redox Biol 2021; 44:102014. [PMID: 34062408 PMCID: PMC8170420 DOI: 10.1016/j.redox.2021.102014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The cytoskeleton is a supramolecular structure consisting of interacting protein networks that support cell dynamics in essential processes such as migration and division, as well as in responses to stress. Fast cytoskeletal remodeling is achieved with the participation of regulatory proteins and posttranslational modifications (PTMs). Redox-related PTMs are emerging as critical players in cytoskeletal regulation. Here we used a cellular model of mild nitroxidative stress in which a peroxynitrite donor induced transient changes in the organization of three key cytoskeletal proteins, i.e., vimentin, actin and tubulin. Nitroxidative stress-induced reconfiguration of intermediate filaments, microtubules and actin structures were further correlated with their PTM profiles and dynamics of the PTM landscape. Using high-resolution mass spectrometry, 62 different PTMs were identified and relatively quantified in vimentin, actin and tubulin, including 12 enzymatic, 13 oxidative and 2 nitric oxide-derived modifications as well as 35 modifications by carbonylated lipid peroxidation products, thus evidencing the occurrence of a chain reaction with formation of numerous reactive species and activation of multiple signaling pathways. Our results unveil the presence of certain modifications under basal conditions and their modulation in response to stress in a target-, residue- and reactive species-dependent manner. Thus, some modifications accumulated during the experiment whereas others varied transiently. Moreover, we identified protein PTM "hot spots", such as the single cysteine residue of vimentin, which was detected in seven modified forms, thus, supporting its role in PTM crosstalk and redox sensing. Finally, identification of novel PTMs in these proteins paves the way for unveiling new cytoskeleton regulatory mechanisms.
Collapse
Affiliation(s)
- Eva Griesser
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Venukumar Vemula
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Andreia Mónico
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
41
|
Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects. Int J Mol Sci 2021; 22:ijms22147616. [PMID: 34299235 PMCID: PMC8303544 DOI: 10.3390/ijms22147616] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO-). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution.
Collapse
|
42
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
43
|
Bayarri MA, Milara J, Estornut C, Cortijo J. Nitric Oxide System and Bronchial Epithelium: More Than a Barrier. Front Physiol 2021; 12:687381. [PMID: 34276407 PMCID: PMC8279772 DOI: 10.3389/fphys.2021.687381] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a physical barrier that protects the lung from the entrance of inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble mediators or proteins between apical and basolateral cell surfaces. This apical junctional complex also participates in several signaling pathways involved in gene expression, cell proliferation and cell differentiation. In addition, the airway epithelium can produce chemokines and cytokines that trigger the activation of the immune response. Disruption of this complex by some inflammatory, profibrotic, and carcinogens agents can provoke epithelial barrier dysfunction that not only contributes to an increase of viral and bacterial infection, but also alters the normal function of epithelial cells provoking several lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or lung cancer, among others. While nitric oxide (NO) molecular pathway has been linked with endothelial function, less is known about the role of the NO system on the bronchial epithelium and airway epithelial cells function in physiological and different pathologic scenarios. Several data indicate that the fraction of exhaled nitric oxide (FENO) is altered in lung diseases such as asthma, COPD, lung fibrosis, and cancer among others, and that reactive oxygen species mediate uncoupling NO to promote the increase of peroxynitrite levels, thus inducing bronchial epithelial barrier dysfunction. Furthermore, iNOS and the intracellular pathway sGC-cGMP-PKG are dysregulated in bronchial epithelial cells from patients with lung inflammation, fibrosis, and malignancies which represents an attractive drug molecular target. In this review we describe in detail current knowledge of the effect of NOS-NO-GC-cGMP-PKG pathway activation and disruption in bronchial epithelial cells barrier integrity and its contribution in different lung diseases, focusing on bronchial epithelial cell permeability, inflammation, transformation, migration, apoptosis/necrosis, and proliferation, as well as the specific NO molecular pathways involved.
Collapse
Affiliation(s)
- María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
44
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
45
|
Zhao J, Shi Q, Zheng Y, Liu Q, He Z, Gao Z, Liu Q. Insights Into the Mechanism of Tyrosine Nitration in Preventing β-Amyloid Aggregation in Alzheimer's Disease. Front Mol Neurosci 2021; 14:619836. [PMID: 33658911 PMCID: PMC7917295 DOI: 10.3389/fnmol.2021.619836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
Nitration of tyrosine at the tenth residue (Tyr10) in amyloid-β (Aβ) has been reported to reduce its aggregation and neurotoxicity in our previous studies. However, the exact mechanism remains unclear. Here, we used Aβ1-42 peptide with differently modified forms at Tyr10 to investigate the molecular mechanism to fill this gap. By using immunofluorescent assay, we confirmed that nitrated Aβ was found in the cortex of 10-month-old female triple transgenic mice of Alzheimer's disease (AD). And then, we used the surface-enhanced Raman scattering (SERS) method and circular dichroism (CD) to demonstrate that the modification and mutation of Tyr10 in Aβ have little impact on conformational changes. Then, with the aids of fluorescence assays of thioflavin T and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid, transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS), we found that adding a large group to the phenolic ring of Tyr10 of Aβ could not inhibit Aβ fibrilization and aggregation. Nitration of Aβ reduces its aggregation mainly because it could induce the deprotonation of the phenolic hydroxyl group of Tyr10 of Aβ at physiological pH. We proposed that the negatively charged Tyr10 caused by nitration at physiological pH could interact with the salt bridge between Glu11 and His6 or His13 and block the kink around Tyr10, thereby preventing Aβ fibrilization and aggregation. These findings provide us new insights into the relationship between Tyr10 nitration and Aβ aggregation, which would help to further understand that keeping the balance of nitric oxide in vivo is important for preventing AD.
Collapse
Affiliation(s)
- Jie Zhao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Qihui Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ye Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiulian Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhijun He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
46
|
Li J, Wei J, Gao Z, Yin G, Li H. The oxidative reactivity of three manganese(III) porphyrin complexes with hydrogen peroxide and nitrite toward catalytic nitration of protein tyrosine. Metallomics 2021; 13:6134099. [PMID: 33576808 DOI: 10.1093/mtomcs/mfab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 11/12/2022]
Abstract
Understanding the toxicological properties of MnIII-porphyrins (MnTPPS, MnTMPyP, or MnTBAP) can provide important biochemical rationales in developing them as the therapeutic drugs against protein tyrosine nitration-induced inflammation diseases. Here, we present a comprehensive understanding of the pH-dependent redox behaviors of these MnIII-porphyrins and their structural effects on catalyzing bovine serum albumin (BSA) nitration in the presence of H2O2 and NO2-. It was found that both MnTPPS and MnTBAP stand out in catalyzing BSA nitration at physiologically close condition (pH 8), yet they are less effective at pH 6 and 10. MnTMPyP was shown to have no ability to catalyze BSA nitration under all tested pHs (pH 6, 8, and 10). The kinetics and active intermediate determination through electrochemistry method revealed that both the pH-dependent redox behavior of the central metal cation and the antioxidant capability of porphin derivative contribute to the catalytic activities of three MnIII-porphyrins in BSA nitration in the presence of H2O2/NO2-. These comprehensive studies on the oxidative reactivity of MnIII-porphyrins toward BSA nitration may provide new clues for searching the manganese-based therapeutic drugs against the inflammation-related diseases.
Collapse
Affiliation(s)
- Jiayu Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingjing Wei
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhonghong Gao
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hailing Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
47
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:830-847. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
48
|
Kohutiar M, Eckhardt A. A Method for Analysis of Nitrotyrosine-Containing Proteins by Immunoblotting Coupled with Mass Spectrometry. Methods Mol Biol 2021; 2276:383-396. [PMID: 34060056 DOI: 10.1007/978-1-0716-1266-8_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrotyrosine formation is caused by presence of reactive oxygen and nitrogen species. Nitration is a very selective process leading to specific modification of only a few tyrosines in protein molecule. 2D electrophoresis and western blotting techniques coupled with mass spectrometry are common methods used in analysis of proteome. Here we describe protocol for analysis of peroxynitrite-induced protein nitration in isolated mitochondria. Mitochondrial proteins are separated by 2D electrophoresis and transferred to nitrocellulose membrane. Membranes are then incubated with antibodies against nitrotyrosine. Positive spots are compared with corresponding Coomassie-stained gels, and protein nitration is confirmed with mass spectrometry techniques.
Collapse
Affiliation(s)
- Matej Kohutiar
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic.
| | - Adam Eckhardt
- Department of Translational metabolism, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
49
|
Tyrosine Nitration of Flagellins: a Response of Sinorhizobium meliloti to Nitrosative Stress. Appl Environ Microbiol 2020; 87:AEM.02210-20. [PMID: 33067191 DOI: 10.1128/aem.02210-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Rhizobia are bacteria which can either live as free organisms in the soil or interact with plants of the legume family with, as a result, the formation of root organs called nodules in which differentiated endosymbiotic bacteria fix atmospheric nitrogen to the plant's benefit. In both lifestyles, rhizobia are exposed to nitric oxide (NO) which can be perceived as a signaling or toxic molecule. NO can act at the transcriptional level but can also modify proteins by S-nitrosylation of cysteine or nitration of tyrosine residues. However, only a few molecular targets of NO have been described in bacteria and none of them have been characterized in rhizobia. Here, we examined tyrosine nitration of Sinorhizobium meliloti proteins induced by NO. We found three tyrosine-nitrated proteins in S. meliloti grown under free-living conditions, in response to an NO donor. Two nitroproteins were identified by mass spectrometry and correspond to flagellins A and B. We showed that one of the nitratable tyrosines is essential to flagellin function in motility.IMPORTANCE Rhizobia are found as free-living bacteria in the soil or in interaction with plants and are exposed to nitric oxide (NO) in both environments. NO is known to have many effects on animals, plants, and bacteria where only a few molecular targets of NO have been described so far. We identified flagellin A and B by mass spectrometry as tyrosine-nitrated proteins in Sinorhizobium meliloti in vivo We also showed that one of the nitratable tyrosines is essential to flagellin function in motility. The results enhanced our understanding of NO effects on rhizobia. Identification of bacterial flagellin nitration opens a new possible role of NO in plant-microbe interactions.
Collapse
|
50
|
Monitoring peptide tyrosine nitration by spectroscopic methods. Amino Acids 2020; 53:517-532. [PMID: 33205301 DOI: 10.1007/s00726-020-02911-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress can lead to various derivatives of the tyrosine residue in peptides and proteins. A typical product is 3-nitro-L-tyrosine residue (Nit), which can affect protein behavior during neurodegenerative processes, such as those associated with Alzheimer's and Parkinson's diseases. Surface enhanced Raman spectroscopy (SERS) is a technique with potential for detecting peptides and their metabolic products at very low concentrations. To explore the applicability to Nit, we use SERS to monitor tyrosine nitration in Met-Enkephalin, rev-Prion protein, and α-synuclein models. Useful nitration indicators were the intensity ratio of two tyrosine marker bands at 825 and 870 cm-1 and a bending vibration of the nitro group. During the SERS measurement, a conversion of nitrotyrosine to azobenzene containing peptides was observed. The interpretation of the spectra has been based on density functional theory (DFT) simulations. The CAM-B3LYP and ωB97XD functionals were found to be most suitable for modeling the measured data. The secondary structure of the α-synuclein models was monitored by electronic and vibrational circular dichroism (ECD and VCD) spectroscopies and modeled by molecular dynamics (MD) simulations. The results suggest that the nitration in these peptides has a limited effect on the secondary structure, but may trigger their aggregation.
Collapse
|