1
|
Han JH, Amri C, Lee H, Hur J. Pathological Mechanisms of Particulate Matter-Mediated Ocular Disorders: A Review. Int J Mol Sci 2024; 25:12107. [PMID: 39596177 PMCID: PMC11594968 DOI: 10.3390/ijms252212107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Air pollution presents a severe risk to public health, with particulate matter (PM) identified as a significant hazardous element. However, despite the eye organ being constantly exposed to air pollution, only recently has the impact of PM on ocular health caught the attention of researchers and healthcare professionals. By compiling pertinent data, this paper aims to enhance our understanding of the underlying pathological mechanisms of PM-mediated ocular disorders and facilitate the development of effective treatment strategies. Recent data support the association between exposure to PM and the development of ocular pathologies such as dry eye syndrome, retinal atherosclerosis, and glaucoma. Based on the results of multiple studies, PM exposure can lead to oxidative stress, inflammation, autophagy, cell death, and, ultimately, the development of ophthalmic diseases. This review aims to consolidate the latest findings on PM-mediated ocular diseases by summarizing the outcomes from epidemiological, in vitro, and in vivo studies on ocular surface and retinal disorders as well as other relevant ophthalmic disorders.
Collapse
Affiliation(s)
- Jung-Hwa Han
- Department of Convergence Medicine, Pusan National University School of Medicine, Busan 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Chaima Amri
- Department of Convergence Medicine, Pusan National University School of Medicine, Busan 50612, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Busan 50612, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Busan 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
2
|
Chuang SH, Kuo YJ, Huang SW, Zhang HW, Peng HC, Chen YP. Association Between Long‑Term Exposure to Air Pollution and the Rate of Mortality After Hip Fracture Surgery in Patients Older Than 60 Years: Nationwide Cohort Study in Taiwan. JMIR Public Health Surveill 2024; 10:e46591. [PMID: 38342504 PMCID: PMC10985614 DOI: 10.2196/46591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/08/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND To enhance postoperative patient survival, particularly in older adults, understanding the predictors of mortality following hip fracture becomes paramount. Air pollution, a prominent global environmental issue, has been linked to heightened morbidity and mortality across a spectrum of diseases. Nevertheless, the precise impact of air pollution on hip fracture outcomes remains elusive. OBJECTIVE This retrospective study aims to comprehensively investigate the profound influence of a decade-long exposure to 12 diverse air pollutants on the risk of post-hip fracture mortality among older Taiwanese patients (older than 60 years). We hypothesized that enduring long-term exposure to air pollution would significantly elevate the 1-year mortality rate following hip fracture surgery. METHODS From Taiwan's National Health Insurance Research Database, we obtained the data of patients who underwent hip fracture surgery between July 1, 2003, and December 31, 2013. Using patients' insurance registration data, we estimated their cumulative exposure levels to sulfur dioxide (SO2), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), particulate matter having a size of <10 μm (PM10), particulate matter having a size of <2.5 μm (PM2.5), nitrogen oxides (NOX), nitrogen monoxide (NO), nitrogen dioxide (NO2), total hydrocarbons (THC), nonmethane hydrocarbons (NMHC), and methane (CH4). We quantified the dose-response relationship between these air pollutants and the risk of mortality by calculating hazard ratios associated with a 1 SD increase in exposure levels over a decade. RESULTS Long-term exposure to SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 demonstrated significant associations with heightened all-cause mortality risk within 1 year post hip fracture surgery among older adults. For older adults, each 1 SD increment in the average exposure levels of SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 corresponded to a substantial escalation in mortality risk, with increments of 14%, 49%, 18%, 12%, 41%, 33%, 38%, 20%, 9%, and 26%, respectively. We further noted a 35% reduction in the hazard ratio for O3 exposure suggesting a potential protective effect, along with a trend of potentially protective effects of CO2. CONCLUSIONS This comprehensive nationwide retrospective study, grounded in a population-based approach, demonstrated that long-term exposure to specific air pollutants significantly increased the risk of all-cause mortality within 1 year after hip fracture surgery in older Taiwanese adults. A reduction in the levels of SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 may reduce the risk of mortality after hip fracture surgery. This study provides robust evidence and highlights the substantial impact of air pollution on the outcomes of hip fractures.
Collapse
Affiliation(s)
- Shu-Han Chuang
- Division of General Practice, Department of Medical Education, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Applied Science, National Taitung University, Taitung City, Taitung County, Taiwan
| | - Han-Wei Zhang
- MetaTrial Research Center, Biomedica Corporation, New Taipei, Taiwan
- Program for Aging, China Medical University, Taichung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Electrical and Computer Engineering, Institute of Electrical Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiao-Ching Peng
- MetaTrial Research Center, Biomedica Corporation, New Taipei, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Jang YJ, Han JH, Min KS. Ferromagnetic chloro-bridged copper(II) coordination polymer: Synthesis, structure, magnetism, and DNA cleavage effects. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Yin J, Gates KS, Wang Y. N-Methyl- N-nitrosourea Induced 3'-Glutathionylated DNA-Cleavage Products in Mammalian Cells. Anal Chem 2022; 94:15595-15603. [PMID: 36332130 PMCID: PMC9869666 DOI: 10.1021/acs.analchem.2c02003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apurinic/apyrimidinic (AP) sites, that is, abasic sites, are among the most frequently induced DNA lesions. Spontaneous or DNA glycosylase-mediated β-elimination of the 3'-phosphoryl group can lead to strand cleavages at AP sites to yield a highly reactive, electrophilic 3'-phospho-α,β-unsaturated aldehyde (3'-PUA) remnant. The latter can react with amine or thiol groups of biological small molecules, DNA, and proteins to yield various damaged 3'-end products. Considering its high intracellular concentration, glutathione (GSH) may conjugate with 3'-PUA to yield 3-glutathionyl-2,3-dideoxyribose (GS-ddR), which may constitute a significant, yet previously unrecognized endogenous lesion. Here, we developed a liquid chromatography tandem mass spectroscopy method, in combination with the use of a stable isotope-labeled internal standard, to quantify GS-ddR in genomic DNA of cultured human cells. Our results revealed the presence of GS-ddR in the DNA of untreated cells, and its level was augmented in cells upon exposure to an alkylating agent, N-methyl-N-nitrosourea (MNU). In addition, inhibition of AP endonuclease (APE1) led to an elevated level of GS-ddR in the DNA of MNU-treated cells. Together, we reported here, for the first time, the presence of appreciable levels of GS-ddR in cellular DNA, the induction of GS-ddR by a DNA alkylating agent, and the role of APE1 in modulating its level in human cells.
Collapse
Affiliation(s)
- Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
5
|
Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022; 11:2237. [PMID: 36421423 PMCID: PMC9687037 DOI: 10.3390/antiox11112237] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants. They often promote an increase in inflammatory activities in the airways that manifest themselves as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive oxygen species (ROS), including superoxide anions (O2-), hydroxyl radicals (OH) and hydrogen peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions. In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory and structural cells. In this review, we describe the most relevant knowledge concerning the functional interrelation between the mechanisms of OS and inflammation in airway diseases.
Collapse
|
6
|
Penning TM, Su AL, El-Bayoumy K. Nitroreduction: A Critical Metabolic Pathway for Drugs, Environmental Pollutants, and Explosives. Chem Res Toxicol 2022; 35:1747-1765. [PMID: 36044734 PMCID: PMC9703362 DOI: 10.1021/acs.chemrestox.2c00175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitro group containing xenobiotics include drugs, cancer chemotherapeutic agents, carcinogens (e.g., nitroarenes and aristolochic acid) and explosives. The nitro group undergoes a six-electron reduction to form sequentially the nitroso-, N-hydroxylamino- and amino-functional groups. These reactions are catalyzed by nitroreductases which, rather than being enzymes with this sole function, are enzymes hijacked for their propensity to donate electrons to the nitro group either one at a time via a radical mechanism or two at time via the equivalent of a hydride transfer. These enzymes include: NADPH-dependent flavoenzymes (NADPH: P450 oxidoreductase, NAD(P)H-quinone oxidoreductase), P450 enzymes, oxidases (aldehyde oxidase, xanthine oxidase) and aldo-keto reductases. The hydroxylamino group once formed can undergo conjugation reactions with acetate or sulfate catalyzed by N-acetyltransferases or sulfotransferases, respectively, leading to the formation of intermediates containing a good leaving group which in turn can generate a nitrenium or carbenium ion for covalent DNA adduct formation. The intermediates in the reduction sequence are also prone to oxidation and produce reactive oxygen species. As a consequence, many nitro-containing xenobiotics can be genotoxic either by forming stable covalent adducts or by oxidatively damaging DNA. This review will focus on the general chemistry of nitroreduction, the enzymes responsible, the reduction of xenobiotic substrates, the regulation of nitroreductases, the ability of nitrocompounds to form DNA adducts and act as mutagens as well as some future directions.
Collapse
Affiliation(s)
| | | | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033-2360, United States
| |
Collapse
|
7
|
Kim DH, Lee H, Hwangbo H, Kim SY, Ji SY, Kim MY, Park SK, Park SH, Kim MY, Kim GY, Cheong J, Nam SW, Choi YH. Particulate matter 2.5 promotes inflammation and cellular dysfunction via reactive oxygen species/p38 MAPK pathway in primary rat corneal epithelial cells. Cutan Ocul Toxicol 2022; 41:273-284. [PMID: 36097682 DOI: 10.1080/15569527.2022.2122489] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Numerous studies have linked particulate matter 2.5 (PM2.5) to ocular surface diseases, but few studies have been conducted on the biological effect of PM2.5 on the cornea. The objective of the present study was to evaluate the harmful effect of PM2.5 on primary rat corneal epithelial cells (RCECs) in vitro and identify the toxic mechanism involved. MATERIALS AND METHODS Primary cultured RCECs were characterized by pan-cytokeratin (CK) staining. In PM2.5-exposed RCECs, cell viability, microarray gene expression, inflammatory cytokine levels, mitochondrial damage, DNA double-strand break and signaling pathway were investigated. RESULTS Exposure to PM2.5 induced cytotoxicity and morphological changes in RCECs. In addition, PM2.5 markedly up-regulated pro-inflammatory mediators but down-regulated the wound healing-related transforming growth factor-β. Furthermore, PM2.5 promoted mitochondrial reactive oxygen species (ROS) production and mediated cellular damage to mitochondria and DNA, whereas these cellular alterations induced by PM2.5 were markedly suppressed by a potential ROS scavenger. Noteworthy, removal of ROS selectively down-regulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of the nuclear factor-κB (NF-κB) p65 in PM2.5-stimulated cells. Additionally, SB203580, a p38 MAPK inhibitor, markedly suppressed these PM2.5-mediated cellular dysfunctions. CONCLUSIONS Taken together, our findings show that PM2.5 can promote the ROS/p38 MAPK/NF-κB signaling pathway and lead to mitochondrial damage and DNA double-strand break, which is ultimately caused inflammation and cytotoxicity in RCECs. These findings indicate that the ROS/p38 MAPK/NF-κB signaling pathway is one mechanism involved in PM2.5-induced ocular surface disorders.
Collapse
Affiliation(s)
- Da Hye Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Molecular Biology, xxxx, Busan 46241, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Convergence Medicine, xxxx, Yangsan 50612, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - So Young Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Seh-Kwang Park
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Sung-Ho Park
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Mi-Young Kim
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, xxxx, Jeju 63243, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, xxxx, Busan 46241, Republic of Korea
| | - Soo-Wan Nam
- Department of Smart Bio-Health, xxxx, Busan 47340, Republic of Korea.,Department of Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, xxxx, Busan 47340, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea.,Department of Smart Bio-Health, xxxx, Busan 47340, Republic of Korea.,Core-Facility Center for Tissue Regeneration, xxxx, Busan 47340, Republic of Korea
| |
Collapse
|
8
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
9
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
10
|
Sleight TW, Sexton CN, Mpourmpakis G, Gilbertson LM, Ng CA. A Classification Model to Identify Direct-Acting Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products. Chem Res Toxicol 2021; 34:2273-2286. [PMID: 34662518 DOI: 10.1021/acs.chemrestox.1c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a complex group of environmental contaminants, many having long environmental half-lives. As these compounds degrade, the changes in their structure can result in a substantial increase in mutagenicity compared to the parent compound. Over time, each individual PAH can potentially degrade into several thousand unique transformation products, creating a complex, constantly evolving set of intermediates. Microbial degradation is the primary mechanism of their transformation and ultimate removal from the environment, and this process can result in mutagenic activation similar to the metabolic activation that can occur in multicellular organisms. The diversity of the potential intermediate structures in PAH-contaminated environments renders hazard assessment difficult for both remediation professionals and regulators. A mixture of structural and energetic descriptors has proven effective in existing studies for classifying which PAH transformation products will be mutagenic. However, most existing studies of environmental PAH mutagens primarily focus on nitrogenated derivatives, which are prevalent in the atmosphere and not as relevant in soil. Additionally, PAH products commonly found in the environment can range from as large as five rings to as small as a single ring, requiring a broadly inclusive methodology to comprehensively evaluate mutagenic potential. We developed a combination of supervised and unsupervised machine learning methods to predict environmentally induced PAH mutagenicity with improved performance over currently available tools. K-means clustering with principal component analysis allows us to identify molecular clusters that we hypothesize to have similar mechanisms of action. Recursive feature elimination identifies the most influential descriptors. The cluster-specific regression outperforms available classifiers in predicting direct-acting mutagens resulting from the microbial biodegradation of PAHs and provides direction for future studies evaluating the environmental hazards resulting from PAH biodegradation.
Collapse
Affiliation(s)
- Trevor W Sleight
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Caitlin N Sexton
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Leanne M Gilbertson
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carla A Ng
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
11
|
Han JH, Kim JH, Jung M, Kim SK, Jang YJ. Effects of the Ligand Structure of Cu(
II
) Complexes on Oxidative
DNA
Cleavage. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ji Hoon Han
- Department of Chemistry Yeungnam University Gyeongsan City 38541 Republic of Korea
- Present address: Department of Applied Chemistry Andong National University Andong‐si 1375 Republic of Korea
| | - Ji Hoon Kim
- Department of Chemistry Yeungnam University Gyeongsan City 38541 Republic of Korea
| | - Maeng‐Joon Jung
- Department of Chemistry Kyungpook National University Daegu 41566 Republic of Korea
| | - Seog K. Kim
- Department of Chemistry Yeungnam University Gyeongsan City 38541 Republic of Korea
| | - Yoon Jung Jang
- College of Basic Education Yeungnam University Gyeongsan City 38541 Republic of Korea
| |
Collapse
|
12
|
Chan TK, Bramono D, Bourokba N, Krishna V, Wang ST, Neo BH, Lim RYX, Kim H, Misra N, Lim S, Betts RJ. Polycyclic aromatic hydrocarbons regulate the pigmentation pathway and induce DNA damage responses in keratinocytes, a process driven by systemic immunity. J Dermatol Sci 2021; 104:83-94. [PMID: 34690024 DOI: 10.1016/j.jdermsci.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Urban pollution is correlated with an increased prevalence of skin pigmentation disorders, however the physiological processes underlying this association are unclear. OBJECTIVES To delineate the relationship between polycyclic aromatic hydrocarbons (PAHs), a key constituent of atmospheric pollution, and immunity/skin pigmentation pathways. METHODS We exposed peripheral blood mononuclear cells (PBMC) to PAHs and performed cytokines/chemokine profiling. We then examined the effect of immune activation on pigmentation by co-culturing PBMC and Benzo(a)pyrene (BaP) with reconstructed human pigmented epidermis (RHPE). To study the mechanism, we treated keratinocytes with conditioned medium from BaP-exposed PBMC and studied DNA damage responses, aryl hydrocarbon receptor (AhR) activation and pro-pigmentation factor, proopiomelanocortin (POMC) secretion. RESULTS PAHs induced up-regulation of inflammatory cytokines/chemokine in PBMC. Co-culturing of RHPE with PBMC+BaP resulted in increased melanin content and localization. BaP-conditioned medium significantly increased DNA damage, p53 stabilization, AhR activation and POMC secretion in keratinocytes. We found that IFNγ induced DNA damage, while TNFα and IL-8 potentiated POMC secretion in keratinocytes. Importantly, BaP-conditioned medium-induced DNA damage and POMC secretion is prevented by antioxidants vitamin E, vitamin C and sulforaphane, as well as the prototypical corticosteroid dexamethasone. Finally, vitamin C and sulforaphane enhanced the genome protective and depigmentation effects of dexamethasone, providing proof-of-concept for a combinatorial approach for the prevention and/or correction of PAH-induced pigment spots formation. CONCLUSION Our study reveals the importance of systemic immunity in regulating PAH-induced skin pigmentation, and provide a new keratinocyte DNA damage response mechanistic target for the prevention or reversal of pollution-associated skin pigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hyoju Kim
- L'Oréal Research & Innovation, Singapore
| | - Namita Misra
- L'Oréal Research & Innovation, Aulnay sous Bois, France
| | - Shawn Lim
- L'Oréal Research & Innovation, Singapore
| | | |
Collapse
|
13
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
14
|
Chen R, Yang C, Li P, Wang J, Liang Z, Wang W, Wang Y, Liang C, Meng R, Wang HY, Peng S, Sun X, Su Z, Kong G, Wang Y, Zhang L. Long-Term Exposure to Ambient PM 2.5, Sunlight, and Obesity: A Nationwide Study in China. Front Endocrinol (Lausanne) 2021; 12:790294. [PMID: 35069443 PMCID: PMC8777285 DOI: 10.3389/fendo.2021.790294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Accumulated researches revealed that both fine particulate matter (PM2.5) and sunlight exposure may be a risk factor for obesity, while researches regarding the potential effect modification by sunlight exposure on the relationship between PM2.5 and obesity are limited. We aim to investigate whether the effect of PM2.5 on obesity is affected by sunlight exposure among the general population in China. METHODS A sample of 47,204 adults in China was included. Obesity and abdominal obesity were assessed based on body mass index, waist circumference and waist-to-hip ratio, respectively. The five-year exposure to PM2.5 and sunlight were accessed using the multi-source satellite products and a geochemical transport model. The relationship between PM2.5, sunshine duration, and the obesity or abdominal obesity risk was evaluated using the general additive model. RESULTS The proportion of obesity and abdominal obesity was 12.6% and 26.8%, respectively. Levels of long-term PM2.5 ranged from 13.2 to 72.1 μg/m3 with the mean of 46.6 μg/m3. Each 10 μg/m3 rise in PM2.5 was related to a higher obesity risk [OR 1.12 (95% CI 1.09-1.14)] and abdominal obesity [OR 1.10 (95% CI 1.07-1.13)]. The association between PM2.5 and obesity varied according to sunshine duration, with the highest ORs of 1.56 (95% CI 1.28-1.91) for obesity and 1.66 (95% CI 1.34-2.07) for abdominal obesity in the bottom quartile of sunlight exposure (3.21-5.34 hours/day). CONCLUSION Long-term PM2.5 effect on obesity risk among the general Chinese population are influenced by sunlight exposure. More attention might be paid to reduce the adverse impacts of exposure to air pollution under short sunshine duration conditions.
Collapse
Affiliation(s)
- Rui Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ze Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wanzhou Wang
- School of Public Health, Peking University, Beijing, China
| | - Yueyao Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Chenyu Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ruogu Meng
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Huai-yu Wang
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Suyuan Peng
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Xiaoyu Sun
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Zaiming Su
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Guilan Kong
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
- National Institute of Health Data Science at Peking University, Beijing, China
| | - Yang Wang
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Luxia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
- National Institute of Health Data Science at Peking University, Beijing, China
- *Correspondence: Luxia Zhang,
| |
Collapse
|
15
|
Chang Y, Huynh CTT, Bastin KM, Rivera BN, Siddens LK, Tilton SC. Classifying polycyclic aromatic hydrocarbons by carcinogenic potency using in vitro biosignatures. Toxicol In Vitro 2020; 69:104991. [PMID: 32890658 PMCID: PMC7572825 DOI: 10.1016/j.tiv.2020.104991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 01/26/2023]
Abstract
One of the most difficult challenges for risk assessment is evaluation of chemicals that predominately co-occur in mixtures like polycyclic aromatic hydrocarbons (PAHs). We previously developed a classification model in which systems biology data collected from mice short-term after chemical exposure accurately predict tumor outcome. The present study demonstrates translation of this approach into a human in vitro model in which chemical-specific bioactivity profiles from 3D human bronchial epithelial cells (HBEC) classify PAHs by carcinogenic potency. Gene expression profiles were analyzed from HBEC exposed to carcinogenic and non-carcinogenic PAHs and classification accuracies were identified for individual pathway-based gene sets. Posterior probabilities of best performing gene sets were combined via Bayesian integration resulting in a classifier with four gene sets, including aryl hydrocarbon receptor signaling, regulation of epithelial mesenchymal transition, regulation of angiogenesis, and cell cycle G2-M. In addition, transcriptional benchmark dose modeling of benzo[a]pyrene (BAP) showed that the most sensitive gene sets to BAP regulation were largely dissimilar from those that best classified PAH carcinogenicity challenging current assumptions that BAP carcinogenicity (and subsequent mode of action) is reflective of overall PAH carcinogenicity. These results illustrate utility of using systems toxicology approaches to analyze global gene expression towards carcinogenic hazard assessment.
Collapse
Affiliation(s)
- Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Celine Thanh Thu Huynh
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Kelley M Bastin
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Brianna N Rivera
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Susan C Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
16
|
Luo K, Carmella SG, Zhao Y, Tang MK, Hecht SS. Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115342. [PMID: 32805605 PMCID: PMC8892176 DOI: 10.1016/j.envpol.2020.115342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Although human exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with in vivo oxidative damage, and hydroxyPAH metabolites have been used as biomarkers to assess PAH-induced oxidative stress, few studies have looked at the likely causative compounds for oxidative stress in humans - PAH quinones. We developed a method using pre-column derivatization - liquid chromatography-heated electrospray ionization-tandem mass spectrometry (LC-HESI-MS/MS) to analyze ortho-phenanthrene quinones (PheQs) in human urine. 1,2-PheQ and 3,4-PheQ were identified and quantified in 3 mL of human urine; their total concentrations were higher in cigarette smokers (0.79 ± 0.98 nmol/6h urine) than in nonsmokers (0.20 ± 0.98 nmol/6h urine) (p < 0.01). The total of 1,2-PheQ and 3,4-PheQ were more strongly correlated with urinary (Z)-7-[1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid (8-iso-PGF2α), a biomarker of lipid peroxidation (R2 = 0.53, p < 0.001), than the other phenanthrene metabolites including phenanthrene tetraol (PheT), phenanthrene-1,2-dihydrodiol (1,2-PheD), and total phenanthrene phenols (OHPhe), consistent with the concept that PheQs and likely other PAH quinones play a causal role in the generation of reactive oxygen species (ROS) in humans. Thus, PheQs may be suitable as biomarkers to assess human exposure to oxygenated PAH and the subsequent oxidative damage. This study provides unique support, by analysis of human urinary metabolites, for the PAH quinone mediated oxidative damage hypothesis of PAH carcinogenesis.
Collapse
Affiliation(s)
- Kai Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mei Kuen Tang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Kankanamage RNT, Ghosh AB, Jiang D, Gkika K, Keyes T, Achola LA, Suib S, Rusling JF. Metabolites of Tobacco- and E-Cigarette-Related Nitrosamines Can Drive Cu 2+-Mediated DNA Oxidation. Chem Res Toxicol 2020; 33:2072-2086. [PMID: 32672941 PMCID: PMC7510339 DOI: 10.1021/acs.chemrestox.0c00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitrosamine metabolites resulting from cigarette smoking and E-cigarette (E-cig) vaping cause DNA damage that can lead to genotoxicity. While DNA adducts of metabolites of nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN) are well-known tobacco-related cancer biomarkers, only a few studies implicate NNN and NNK in DNA oxidation in humans. NNK and NNN were found in the urine of E-cigarette users who never smoked cigarettes. This paper proposes the first chemical pathways of DNA oxidation driven by NNK and NNN metabolites in redox reactions with Cu2+ and NADPH leading to reactive oxygen species (ROS). A microfluidic array with thin films of DNA and metabolic enzymes that make metabolites of NNN and NNK in the presence of Cu2+ and NADPH was used to estimate relative rates of DNA oxidation. Detection by electrochemiluminescence (ECL) employed a new ECL dye [Os(tpy-benz-COOH)2]2+ that is selective for and sensitive to the primary DNA oxidation product 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) in DNA. Enzyme-DNA films on magnetic beads were used to produce nitrosamine metabolites that enter ROS-forming redox cycles with Cu2+ and NADPH, and liquid chromatography-mass spectrometry (LC-MS) was used to quantify 8-oxodG and identify metabolites. ROS were detected by optical sensors. Metabolites of NNK and NNN + Cu2+ + NADPH generated relatively high rates of DNA oxidation. Lung is the exposure route in smoking and vaping, human lung tissue contains Cu2+ and NADPH, and lung microsomal enzymes gave the highest rates of DNA oxidation in this study. Also, E-cigarette vapor contains 6-fold more copper than that in cigarette smoke, which could exacerbate DNA oxidation.
Collapse
Affiliation(s)
- Rumasha N T Kankanamage
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abhisek Brata Ghosh
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Di Jiang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Karmel Gkika
- School of Chemical Sciences, Dublin City University, Dublin D9, Ireland
| | - Tia Keyes
- School of Chemical Sciences, Dublin City University, Dublin D9, Ireland
| | - Laura A Achola
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven Suib
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Material Science, Storrs, Connecticut 06269, United States
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Material Science, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06032, United States
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
| |
Collapse
|
18
|
Beal MA, Meier MJ, Williams A, Rowan-Carroll A, Gagné R, Lindsay SJ, Fitzgerald T, Hurles ME, Marchetti F, Yauk CL. Paternal exposure to benzo(a)pyrene induces genome-wide mutations in mouse offspring. Commun Biol 2019; 2:228. [PMID: 31240266 PMCID: PMC6586636 DOI: 10.1038/s42003-019-0476-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the effects of environmental exposures on germline mutation rates has been a decades-long pursuit in genetics. We used next-generation sequencing and comparative genomic hybridization arrays to investigate genome-wide mutations in the offspring of male mice exposed to benzo(a)pyrene (BaP), a common environmental pollutant. We demonstrate that offspring developing from sperm exposed during the mitotic or post-mitotic phases of spermatogenesis have significantly more de novo single nucleotide variants (1.8-fold; P < 0.01) than controls. Both phases of spermatogenesis are susceptible to the induction of heritable mutations, although mutations arising from post-fertilization events are more common after post-mitotic exposure. In addition, the mutation spectra in sperm and offspring of BaP-exposed males are consistent. Finally, we report a significant increase in transmitted copy number duplications (P = 0.001) in BaP-exposed sires. Our study demonstrates that germ cell mutagen exposures induce genome-wide mutations in the offspring that may be associated with adverse health outcomes.
Collapse
Affiliation(s)
- Marc A. Beal
- Carleton University, Ottawa, Ontario K1S 5B6 Canada
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Sarah J. Lindsay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Tomas Fitzgerald
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Matthew E. Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| |
Collapse
|
19
|
Sar D, Kim B, Ostadhossein F, Misra SK, Pan D. Revisiting Polyarenes and Related Molecules: An Update of Synthetic Approaches and Structure-Activity-Mechanistic Correlation for Carcinogenesis. CHEM REC 2018; 18:619-658. [DOI: 10.1002/tcr.201700110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dinabandhu Sar
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Biomedical Research Center, Office 3304; 3rd Floor, Mills Breast Cancer Institute, Carle Foundation Hospital; 502 N. Busey Urbana IL 61801 USA
- Mills Breast Cancer Institute and Carle Foundation Hospital; 502 North Busey Urbana, Illinois 61801 USA
| | | | - Fatemeh Ostadhossein
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Biomedical Research Center, Office 3304; 3rd Floor, Mills Breast Cancer Institute, Carle Foundation Hospital; 502 N. Busey Urbana IL 61801 USA
- Mills Breast Cancer Institute and Carle Foundation Hospital; 502 North Busey Urbana, Illinois 61801 USA
| | - Santosh K. Misra
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Biomedical Research Center, Office 3304; 3rd Floor, Mills Breast Cancer Institute, Carle Foundation Hospital; 502 N. Busey Urbana IL 61801 USA
- Mills Breast Cancer Institute and Carle Foundation Hospital; 502 North Busey Urbana, Illinois 61801 USA
| | - Dipanjan Pan
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Biomedical Research Center, Office 3304; 3rd Floor, Mills Breast Cancer Institute, Carle Foundation Hospital; 502 N. Busey Urbana IL 61801 USA
- Mills Breast Cancer Institute and Carle Foundation Hospital; 502 North Busey Urbana, Illinois 61801 USA
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign, Urbana, Illinois; 61801 USA
- Beckman Institute; University of Illinois at Urbana-Champaign; Urbana, Illinois 61801 USA
| |
Collapse
|
20
|
Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. CHEMOSPHERE 2017; 188:32-48. [PMID: 28865791 DOI: 10.1016/j.chemosphere.2017.08.076] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Humans are exposed to various complex mixtures of particulate matter (PM) from different sources. Long-term exposure to high levels of these particulates has been linked to a diverse range of respiratory and cardiovascular diseases that have resulted in hospital admission. The evaluation of the effects of PM exposure on the mechanisms related to cell death has been a challenge for many researchers. Therefore, in this review, we have discussed the effects of airborne PM exposure on mechanisms related to cell death. For this purpose, we have compiled literature data on PM sources, the effects of exposure, and the assays and models used for evaluation, in order to establish comparisons between various studies. The analysis of this collected data suggested divergent responses to PM exposure that resulted in different cell death types (apoptosis, autophagy, and necrosis). In addition, PM induced oxidative stress within cells, which appeared to be an important factor in the determination of cell fate. When the levels of reactive oxygen species were overpowering, the cellular fate was directed toward cell death. This may be the underlying mechanism of the development or exacerbation of respiratory diseases, such as emphysema and chronic obstructive pulmonary diseases. In addition, PM was shown to cause DNA damage and the resulting mutations increased the risk of cancer. Furthermore, several conditions should be considered in the assessment of cell death in PM-exposed models, including the cell culture line, PM composition, and the interaction of the different cells types in in vivo models.
Collapse
Affiliation(s)
- Milena Simões Peixoto
- Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Marcos Felipe de Oliveira Galvão
- Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | |
Collapse
|
21
|
Penning TM. Genotoxicity of ortho-quinones: reactive oxygen species versus covalent modification. Toxicol Res (Camb) 2017. [PMID: 29527287 DOI: 10.1039/c7tx00223h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
o-Quinones are formed metabolically from natural and synthetic estrogens as well as upon exposure to polycyclic aromatic hydrocarbons (PAH) and contribute to estrogen and PAH carcinogenesis by genotoxic mechanisms. These mechanisms include the production of reactive oxygen species to produce DNA strand breaks and oxidatively damaged nucleobases; and the formation of covalent depurinating and stable DNA adducts. Unrepaired DNA-lesions can lead to mutation in critical growth control genes and cellular transformation. The genotoxicity of the o-quinones is exacerbated by nuclear translocation of estrogen o-quinones by the estrogen receptor and by the nuclear translocation of PAH o-quinones by the aryl hydrocarbon receptor. The properties of o-quinones, their formation and detoxication mechanisms, quinone-mediated DNA lesions and their mutagenic properties support an important role in hormonal and chemical carcinogenesis.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
22
|
Jiang J, Xu H, Wang H, Zhang Y, Ya P, Yang C, Li F. Protective effects of lemongrass essential oil against benzo(a)pyrene-induced oxidative stress and DNA damage in human embryonic lung fibroblast cells. Toxicol Mech Methods 2016; 27:121-127. [DOI: 10.1080/15376516.2016.1266541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jiao Jiang
- Department of Chemistry, College of Medical Laboratory, Dalian Medical University, Dalian, LiaoNing Province, PR China
- Department of Clinical Laboratory, Liaocheng Infectious Disease Hospital, LiaoCheng, ShanDong Province, PR China
| | - Henggui Xu
- Department of Chemistry, College of Medical Laboratory, Dalian Medical University, Dalian, LiaoNing Province, PR China
| | - Hetong Wang
- Department of Chemistry, College of Medical Laboratory, Dalian Medical University, Dalian, LiaoNing Province, PR China
| | - Yining Zhang
- Department of Chemistry, College of Medical Laboratory, Dalian Medical University, Dalian, LiaoNing Province, PR China
| | - Ping Ya
- Department of Chemistry, College of Medical Laboratory, Dalian Medical University, Dalian, LiaoNing Province, PR China
| | - Chun Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, LiaoNing Province, PR China
| | - Fasheng Li
- Department of Chemistry, College of Medical Laboratory, Dalian Medical University, Dalian, LiaoNing Province, PR China
| |
Collapse
|
23
|
Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol 2016; 30:13-37. [PMID: 27617882 PMCID: PMC5241708 DOI: 10.1021/acs.chemrestox.6b00256] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose-response curve.
Collapse
Affiliation(s)
- Judy L Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha Dunlap
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
24
|
Ambroz A, Vlkova V, Rossner P, Rossnerova A, Svecova V, Milcova A, Pulkrabova J, Hajslova J, Veleminsky M, Solansky I, Sram RJ. Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns. Int J Hyg Environ Health 2016; 219:545-56. [DOI: 10.1016/j.ijheh.2016.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 05/30/2016] [Indexed: 01/30/2023]
|
25
|
Effects of Fine Particulate Matter (PM2.5) on Systemic Oxidative Stress and Cardiac Function in ApoE(-/-) Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050484. [PMID: 27187431 PMCID: PMC4881109 DOI: 10.3390/ijerph13050484] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022]
Abstract
Aim: In this study, we aimed to explore the toxic mechanisms of cardiovascular injuries induced by ambient fine particulate matter (PM2.5) in atherosclerotic-susceptible ApoE−/− mice. An acute toxicological animal experiment was designed with PM2.5 exposure once a day, every other day, for three days. Methods: ApoE−/− and C57BL/6 mice were randomly categorized into four groups, respectively (n = 6): one control group, three groups exposed to PM2.5 alone at low-, mid-, and high-dose (3, 10, or 30 mg/kg b.w.). Heart rate (HR) and electrocardiogram (ECG) were monitored before instillation of PM2.5 and 24 h after the last instillation, respectively. Cardiac function was monitored by echocardiography (Echo) after the last instillation. Biomarkers of systemic oxidative injuries (MDA, SOD), heart oxidative stress (MDA, SOD), and NAD(P)H oxidase subunits (p22phox, p47phox) mRNA and protein expression were analyzed in mice. The results showed that PM2.5 exposure could trigger the significant increase of MDA, and induce the decrease of heart rate variability (HRV), a marker of cardiac autonomic nervous system (ANS) function with a dose–response manner. Meanwhile, abnormal ECG types were monitored in mice after exposure to PM2.5. The expression of cytokines related with oxidative injuries, and mRNA and protein expression of NADPH, increased significantly in ApoE−/− mice in the high-dose group when compared with the dose-matched C57BL6 mice, but no significant difference was observed at Echo. In conclusion, PM2.5 exposure could cause oxidative and ANS injuries, and ApoE−/− mice displayed more severe oxidative effects induced by PM2.5.
Collapse
|
26
|
Wang Y, Hu Y, Wu T, Zhang L, Liu H, Zhou X, Shao Y. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:645-650. [PMID: 26454091 DOI: 10.1016/j.saa.2015.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/26/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Yuehua Hu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Tao Wu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Lihua Zhang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Hua Liu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Xiaoshun Zhou
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Yong Shao
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| |
Collapse
|
27
|
Fougère B, Vellas B, Billet S, Martin PJ, Gallucci M, Cesari M. Air Pollution modifies the association between successful and pathological aging throughout the frailty condition. Ageing Res Rev 2015; 24:299-303. [PMID: 26462883 DOI: 10.1016/j.arr.2015.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/27/2023]
Abstract
The rapid growth in the number of older adults has many implications for public health, including the need to better understand the risks posed by environmental exposures. Aging leads to a decline and deterioration of functional properties at the cellular, tissue and organ level. This loss of functional properties yields to a loss of homeostasis and decreased adaptability to internal and external stress. Frailty is a geriatric syndrome characterized by weakness, weight loss, and low activity that is associated with adverse health outcomes. Frailty manifests as an age-related, biological vulnerability to stressors and decreased physiological reserves. Ambient air pollution exposure affects human health, and elderly people appear to be particularly susceptible to its adverse effects. The aim of this paper is to discuss the role of air pollution in the modulation of several biological mechanisms involved in aging. Evidence is presented on how air pollution can modify the bidirectional association between successful and pathological aging throughout the frailty conditions.
Collapse
Affiliation(s)
- Bertrand Fougère
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France.
| | - Bruno Vellas
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Sylvain Billet
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA4492), Université du Littoral Côte d'Opale, Dunkerque, France
| | - Perrine J Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA4492), Université du Littoral Côte d'Opale, Dunkerque, France
| | - Maurizio Gallucci
- Cognitive Impairment Centre, General Hospital of Treviso, Piazza Ospedale, 1, I-31100 Treviso, Italy; FORGEI, Interdisciplinary Geriatric Research Foundation, Viale Trento Trieste 19, I-31100 Treviso, Italy
| | - Matteo Cesari
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
28
|
Jeng HA, Pan CH, Chao MR, Lin WY. Sperm DNA oxidative damage and DNA adducts. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:75-82. [PMID: 26653986 DOI: 10.1016/j.mrgentox.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 11/15/2022]
Abstract
The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm.
Collapse
Affiliation(s)
- Hueiwang Anna Jeng
- School of Community and Environmental Health, College of Health Sciences, Old Dominion University, 4608 Hampton Boulevard, Health Sciences Building Room 3140 Norfolk, VA, USA.
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, Taipei, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Yi Lin
- Department of Occupational Medicine and Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Thomson PF, Parrish D, Pradhan P, Lakshman MK. Modular, Metal-Catalyzed Cycloisomerization Approach to Angularly Fused Polycyclic Aromatic Hydrocarbons and Their Oxidized Derivatives. J Org Chem 2015; 80:7435-46. [PMID: 26196673 PMCID: PMC4541800 DOI: 10.1021/acs.joc.5b00931] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Palladium-catalyzed cross-coupling reactions of 2-bromobenzaldehyde and 6-bromo-2,3-dimethoxybenzaldehyde with 4-methyl-1-naphthaleneboronic acid and acenaphthene-5-boronic acid gave corresponding o-naphthyl benzaldehydes. Corey-Fuchs olefination followed by reaction with n-BuLi led to various 1-(2-ethynylphenyl)naphthalenes. Cycloisomerization of individual 1-(2-ethynylphenyl)naphthalenes to various benzo[c]phenanthrene (BcPh) analogues was accomplished smoothly with catalytic PtCl2 in PhMe. In the case of 4,5-dihydrobenzo[l]acephenanthrylene, oxidation with DDQ gave benzo[l]acephenanthrylene. The dimethoxy-substituted benzo[c]phenanthrenes were demethylated with BBr3 and oxidized to the o-quinones with PDC. Reduction of these quinones with NaBH4 in THF/EtOH in an oxygen atmosphere gave the respective dihydrodiols. Exposure of the dihydrodiols to N-bromoacetamide in THF-H2O led to bromohydrins that were cyclized with Amberlite IRA 400 HO(-) to yield the series 1 diol epoxides. Epoxidation of the dihydrodiols with mCPBA gave the isomeric series 2 diol epoxides. All of the hydrocarbons as well as the methoxy-substituted ones were crystallized and analyzed by X-ray crystallography, and these data are compared to other previously studied BcPh derivatives. The methodology described is highly modular and can be utilized for the synthesis of a wide variety of angularly fused polycyclic aromatic hydrocarbons and their putative metabolites and/or other derivatives.
Collapse
Affiliation(s)
- Paul F. Thomson
- Department of Chemistry, The City College and The City University of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Damon Parrish
- Naval Research Laboratory, Code 6030, 4555 Overlook Avenue, Washington D.C. 20375, United States
| | - Padmanava Pradhan
- Department of Chemistry, The City College and The City University of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Mahesh K. Lakshman
- Department of Chemistry, The City College and The City University of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
30
|
Oxidative DNA cleavage by Cu(II) complexes: Effect of periphery substituent groups. J Inorg Biochem 2015; 153:143-149. [PMID: 26239544 DOI: 10.1016/j.jinorgbio.2015.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/05/2015] [Accepted: 07/15/2015] [Indexed: 01/10/2023]
Abstract
A series of structurally-related [Cu(R-benzyl-dipicolylamine)(NO3)2] complexes, where R=methoxy- (1), methyl- (2), H- (3), fluoro- (4), and nitro-group (5), were synthesized, and their activity on DNA cleavage was investigated by linear dichroism (LD) and electrophoresis. The addition of a benzyl group to the dipicolylamine ligand of the [Cu(dipicolylamine)(NO3)2] complex (A), i.e., the [Cu(benzyl-dipicolylamine)(NO3)2] complex (3), caused significant enhancement in the efficiency of oxidative cleavage of both super-coiled (sc) and double stranded (ds) DNA, as evidenced by the electrophoresis pattern and faster decrease in the LD intensity at 260nm. The efficiency in DNA cleavage was also altered with further modifications of the benzyl group by the introduction of various substituents at the para-position. The cleavage efficiency appeared to be the largest when the methyl group was attached. The order of efficiency in DNA cleavage was methyl>methoxy≈H>fluoro≈nitro group. When an electron-withdrawing group was introduced, the cleavage efficiency decreased remarkably. The reactive oxygen species involved in the cleavage process were the superoxide radical and singlet oxygen. A possible mechanism for this variation in the DNA cleavage efficiency was proposed.
Collapse
|
31
|
López J, de la Cruz F, Alcaraz Y, Delgado F, Vázquez MA. Quinoid systems in chemistry and pharmacology. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1412-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Topinka J, Rossner P, Milcová A, Schmuczerová J, Pěnčíková K, Rossnerová A, Ambrož A, Štolcpartová J, Bendl J, Hovorka J, Machala M. Day-to-day variability of toxic events induced by organic compounds bound to size segregated atmospheric aerosol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:135-45. [PMID: 25818093 DOI: 10.1016/j.envpol.2015.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 05/06/2023]
Abstract
This study quantified the temporal variability of concentration of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), genotoxicity, oxidative DNA damage and dioxin-like activity of the extractable organic matter (EOM) of atmospheric aerosol particles of aerodynamic diameter (dae, μm) coarse (1 < dae < 10), upper- (0.5 < dae < 1) and lower-accumulation (0.17 < dae < 0.5) and ultrafine (<0.17) fractions. The upper accumulation fraction formed most of the aerosol mass for 22 of the 26 study days and contained ∼44% of total c-PAHs, while the ultrafine fraction contained only ∼11%. DNA adduct levels suggested a crucial contribution of c-PAHs bound to the upper accumulation fraction. The dioxin-like activity was also driven primarily by c-PAH concentrations. In contrast, oxidative DNA damage was not related to c-PAHs, as a negative correlation with c-PAHs was observed. These results suggest that genotoxicity and dioxin-like activity are the major toxic effects of organic compounds bound to size segregated aerosol, while oxidative DNA damage is not induced by EOM.
Collapse
Affiliation(s)
- Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Pavel Rossner
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Alena Milcová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jana Schmuczerová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Kateřina Pěnčíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Andrea Rossnerová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Antonín Ambrož
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jitka Štolcpartová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Jan Bendl
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Jan Hovorka
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| |
Collapse
|
33
|
Lemieux CL, Long AS, Lambert IB, Lundstedt S, Tysklind M, White PA. In vitro mammalian mutagenicity of complex polycyclic aromatic hydrocarbon mixtures in contaminated soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1787-1796. [PMID: 25419852 DOI: 10.1021/es504465f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study employed an in vitro version of the lacZ transgenic rodent mutation assay to assess the mutagenicity of nonpolar neutral and semipolar aromatic soil fractions from 10 PAH-contaminated sites, and evaluated the assumption of dose additivity that is routinely employed to calculate the risk posed by PAH mixtures. Significant mutagenic activity was detected in all nonpolar neutral fractions, and 8 of 10 semipolar aromatic fractions (nonpolar > semipolar). Mutagenic activity of synthetic PAH mixtures that mimic the PAH content of the soils (i.e., 5-PAH or 16-PAH mix) were greater than that of the PAH-containing soil fractions, with 5-PAH mix >16-PAH-mix. Predictions of mutagenic activity, calculated as the sum of the contributions from the mutagenic mixture components, were all within 2-fold of the observed activity of the nonpolar neutral fractions, with one exception. Observed differences in mutagenic activity are likely the result of dynamic metabolic processes, involving a complex interplay of AhR agonsim and saturation of metabolic machinery by competitive inhibition of mixture components. The presence of hitherto unidentified polar compounds present in PAH-contaminated soils may also contribute to overall hazard; however, these compounds are generally not included in current contaminated site risk assessment protocols.
Collapse
Affiliation(s)
- Christine L Lemieux
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Tunney's Pasture 0803A, Ottawa, Ontario Canada , K1A 0K9
| | | | | | | | | | | |
Collapse
|
34
|
Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem Res Toxicol 2014; 27:1901-17. [PMID: 25279998 PMCID: PMC4237494 DOI: 10.1021/tx500298n] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Aldo-keto reductases (AKRs) are promiscuous
NAD(P)(H) dependent
oxidoreductases implicated in the metabolic activation of polycyclic
aromatic hydrocarbons (PAH). These enzymes catalyze the oxidation
of non-K-region trans-dihydrodiols to the corresponding o-quinones with the concomitant production of reactive oxygen
species (ROS). The PAH o-quinones are Michael acceptors
and can form adducts but are also redox-active and enter into futile
redox cycles to amplify ROS formation. Evidence exists to support
this metabolic pathway in humans. The human recombinant AKR1A1 and
AKR1C1–AKR1C4 enzymes all catalyze the oxidation of PAH trans-dihydrodiols to PAH o-quinones. Many
human AKRs also catalyze the NADPH-dependent reduction of the o-quinone products to air-sensitive catechols, exacerbating
ROS formation. Moreover, this pathway of PAH activation occurs in
a panel of human lung cell lines, resulting in the production of ROS
and oxidative DNA damage in the form of 8-oxo-2′-deoxyguanosine.
Using stable-isotope dilution liquid chromatography tandem mass spectrometry,
this pathway of benzo[a]pyrene (B[a]P) metabolism was found to contribute equally with the diol-epoxide
pathway to the activation of this human carcinogen in human lung cells.
Evaluation of the mutagenicity of anti-B[a]P-diol epoxide with B[a]P-7,8-dione on
p53 showed that the o-quinone produced by AKRs was
the more potent mutagen, provided that it was permitted to redox cycle,
and that the mutations observed were G to T transversions, reminiscent
of those observed in human lung cancer. It is concluded that there
is sufficient evidence to support the role of human AKRs in the metabolic
activation of PAH in human lung cell lines and that they may contribute
to the causation of human lung cancer.
Collapse
|
35
|
Kurhanewicz N, McIntosh-Kastrinsky R, Tong H, Walsh L, Farraj AK, Hazari MS. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses. Part Fibre Toxicol 2014; 11:54. [PMID: 25318591 PMCID: PMC4203862 DOI: 10.1186/s12989-014-0054-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022] Open
Abstract
Background Studies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM) and gas, to determine whether pollutant interactions alter (e.g. synergistically, antagonistically) the health response. This study examines the independent effects of fine (FCAPs) and ultrafine (UFCAPs) concentrated ambient particles on cardiac function, and determine the impact of ozone (O3) co-exposure on the response. We hypothesized that UFCAPs would cause greater decrement in mechanical function and electrical dysfunction than FCAPs, and that O3 co-exposure would enhance the effects of both particle-types. Methods Conscious/unrestrained radiotelemetered mice were exposed once whole-body to either 190 μg/m3 FCAPs or 140 μg/m3 UFCAPs with/without 0.3 ppm O3; separate groups were exposed to either filtered air (FA) or O3 alone. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure, and cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 hrs post-exposure. Results FCAPs alone caused a significant decrease in baseline left ventricular developed pressure (LVDP) and contractility, whereas UFCAPs did not; neither FCAPs nor UFCAPs alone caused any ECG changes. O3 co-exposure with FCAPs caused a significant decrease in heart rate variability when compared to FA but also blocked the decrement in cardiac function. On the other hand, O3 co-exposure with UFCAPs significantly increased QRS-interval, QTc and non-conducted P-wave arrhythmias, and decreased LVDP, rate of contractility and relaxation when compared to controls. Conclusions These data suggest that particle size and gaseous interactions may play a role in cardiac function decrements one day after exposure. Although FCAPs + O3 only altered autonomic balance, UFCAPs + O3 appeared to be more serious by increasing cardiac arrhythmias and causing mechanical decrements. As such, O3 appears to interact differently with FCAPs and UFCAPs, resulting in varied cardiac changes, which suggests that the cardiovascular effects of particle-gas co-exposures are not simply additive or even generalizable. Additionally, the mode of toxicity underlying this effect may be subtle given none of the exposures described here impaired post-ischemia recovery. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0054-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Kurhanewicz
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Rachel McIntosh-Kastrinsky
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Leon Walsh
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Mehdi S Hazari
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| |
Collapse
|
36
|
Li X, Wei J, Xu P, Yin X, Hu D, Zhang X, Liu L, Zhang K, Zhou C, Wang T, Zhang X, He M, Wu T, Yang M, Guo H. The interaction of APEX1 variant with polycyclic aromatic hydrocarbons on increasing chromosome damage and lung cancer risk among male Chinese. Mol Carcinog 2014; 54 Suppl 1:E103-11. [PMID: 25156607 DOI: 10.1002/mc.22195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 12/31/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most significant contributors to tobacco-induced lung carcinogenesis. Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the removal of apurinic/apyrimidinic sites caused by DNA damaging agents. This study aimed to investigate the potential interaction of APEX1 polymorphisms and PAHs on genetic damage and lung cancer risk among male Chinese. We recruited an occupational cohort of 922 male coke oven workers and determined their DNA damage levels by calculating the lymphocytic micronucleus (MN) frequencies. Two well-studied APEX1 polymorphisms (-307A > C and Asp148Glu) and their associations with MN frequencies were examined. The impact of MN-related single nucleotide polymorphism (SNP) on lung cancer risk was further investigated in two case-control studies including 1634 male lung cancer patients and 1678 controls. It was shown that, the APEX1 148Glu allele was associated with significantly higher MN frequencies than 148Asp allele, with strongest associations among the highest PAH-exposure workers (P = 0.008). The APEX1 148Glu allele was also associated with increased lung cancer risk among male smokers, especially among heavy smokers in both case-control studies (odd ratio: 4.40, 95%CI: 3.29-5.72). In addition, APEX1 148Glu variant interacts with smoking in increasing male lung cancer risk, as measured by the attributable proportion due to interaction, which was 0.23 (95%CI: 0.06-0.39). This study showed evidence on interaction between APEX1 148Glu variant and cigarette smoking in increasing lung cancer susceptibility among male Chinese, which may be due to the synergistic effects of APEX1 148Glu and PAHs in increasing chromosome damage levels. The results provide a new insight into gene-interactions in lung carcinogenesis.
Collapse
Affiliation(s)
- Xiaoliang Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ping Xu
- Department of Oncology, the Second Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Xiangqian Yin
- Department of Oncology, the Second Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Die Hu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Oncology, Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Department of Oncology, Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Changchun Zhou
- Clinical Laboratory, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Tian Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Singh V, Kumari B, Maity B, Seth D, Das P. Direct observation of preferential processing of clustered abasic DNA damages with APE1 in TATA box and CpG island by reaction kinetics and fluorescence dynamics. Mutat Res 2014; 766-767:56-65. [PMID: 25847273 DOI: 10.1016/j.mrfmmm.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 06/16/2014] [Indexed: 06/04/2023]
Abstract
Sequences like the core element of TATA box and CpG island are frequently encountered in the genome and related to transcription. The fate of repair of clustered abasic sites in such sequences of genomic importance is largely unknown. This prompted us to investigate the sequence dependence of cleavage efficiency of APE1 enzyme at abasic sites within the core sequences of TATA box and CpG island using fluorescence dynamics and reaction kinetics. Simultaneous molecular dynamics study through steady state and time resolved fluorescence spectroscopy using unique ethidium bromide dye release assay confirmed an elevated amount of abasic site cleavage of the TATA box sequence as compared to the core CpG island. Reaction kinetics showed that catalytic efficiency of APE1 for abasic site cleavage of core CpG island sequence was ∼4 times lower as compared to that of the TATA box. Higher value of Km was obtained from the core CpG island sequence than the TATA box sequence. This suggests a greater binding effect of APE1 enzyme on TATA sequence that signifies a prominent role of the sequence context of the DNA substrate. Evidently, a faster response from APE1 was obtained for clustered abasic damage repair of TATA box core sequences than CpG island consensus sequences. The neighboring bases of the abasic sites in the complementary DNA strand were found to have significant contribution in addition to the flanking bases in modulating APE1 activity. The repair refractivity of the bistranded clustered abasic sites arise from the slow processing of the second abasic site, consequently resulting in decreased overall production of potentially lethal double strand breaks.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Bhavini Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Banibrata Maity
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India.
| |
Collapse
|
38
|
Jarvis IWH, Dreij K, Mattsson Å, Jernström B, Stenius U. Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment. Toxicology 2014; 321:27-39. [PMID: 24713297 DOI: 10.1016/j.tox.2014.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 01/27/2023]
Abstract
In this review we discuss the effects of exposure to complex PAH mixtures in vitro and in vivo on mechanisms related to carcinogenesis. Of particular concern regarding exposure to complex PAH mixtures is how interactions between different constituents can affect the carcinogenic response and how these might be included in risk assessment. Overall the findings suggest that the responses resulting from exposure to complex PAH mixtures is varied and complicated. More- and less-than additive effects on bioactivation and DNA damage formation have been observed depending on the various mixtures studied, and equally dependent on the different test systems that are used. Furthermore, the findings show that the commonly used biological end-point of DNA damage formation is insufficient for studying mixture effects. At present the assessment of the risk of exposure to complex PAH mixtures involves comparison to individual compounds using either a surrogate or a component-based potency approach. We discuss how future risk assessment strategies for complex PAH mixtures should be based around whole mixture assessment in order to account for interaction effects. Inherent to this is the need to incorporate different experimental approaches using robust and sensitive biological endpoints. Furthermore, the emphasis on future research should be placed on studying real life mixtures that better represent the complex PAH mixtures that humans are exposed to.
Collapse
Affiliation(s)
- Ian W H Jarvis
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Åse Mattsson
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Bengt Jernström
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
39
|
O’Hagan HM. Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:278-91. [PMID: 24259318 PMCID: PMC4020002 DOI: 10.1002/em.21830] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 05/22/2023]
Abstract
Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure.
Collapse
Affiliation(s)
- Heather M. O’Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|
40
|
DNA cleavage induced by [Cu(L)x(NO3)2] (L=2,2′-dipyridylamine, 2,2′-bipyridine, dipicolylamine, x=1 or 2): Effect of the ligand structure. J Inorg Biochem 2014; 131:79-86. [DOI: 10.1016/j.jinorgbio.2013.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 10/28/2013] [Indexed: 02/08/2023]
|
41
|
Zhang L, Huang M, Blair IA, Penning TM. Interception of benzo[a]pyrene-7,8-dione by UDP glucuronosyltransferases (UGTs) in human lung cells. Chem Res Toxicol 2013; 26:1570-8. [PMID: 24047243 PMCID: PMC3829198 DOI: 10.1021/tx400268q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Polycyclic
aromatic hydrocarbons (PAHs) are environmental and tobacco
carcinogens. Proximate carcinogenic PAH trans-dihydrodiols
are activated by human aldo-keto reductases (AKRs) to yield electrophilic
and redox-active o-quinones. Interconversion among
benzo[a]pyrene (B[a]P)-7,8-dione,
a representative PAH o-quinone, and its corresponding
catechol generates a futile redox-cycle with the concomitant production
of reactive oxygen species (ROS). We investigated whether glucuronidation
of B[a]P-7,8-catechol by human UDP glucuronosyltransferases
(UGTs) could intercept the catechol in three different human lung
cells. RT-PCR showed that UGT1A1, 1A3, and 2B7 were only expressed
in human lung adenocarcinoma A549 cells. The corresponding recombinant
UGTs were examined for their kinetic constants and product profile
using B[a]P-7,8-catechol as a substrate. B[a]P-7,8-dione was reduced to B[a]P-7,8-catechol
by dithiothreitol under anaerobic conditions and then further glucuronidated
by the UGTs in the presence of uridine-5′-diphosphoglucuronic
acid as a glucuronic acid group donor. UGT1A1 catalyzed the glucuronidation
of B[a]P-7,8-catechol and generated two isomeric O-monoglucuronsyl-B[a]P-7,8-catechol products
that were identified by RP-HPLC and by LC-MS/MS. By contrast, UGT1A3
and 2B7 catalyzed the formation of only one monoglucuronide, which
was identical to that formed in A549 cells. The kinetic profiles of
three UGTs followed Michaelis–Menten kinetics. On the basis
of the expression levels of UGT1A3 and UGT2B7 and the observation
that a single monoglucuronide was produced in A549 cells, we suggest
that the major UGT isoforms in A549 cells that can intercept B[a]P-7,8-catechol are UGT1A3 and 2B7.
Collapse
Affiliation(s)
- Li Zhang
- Center of Excellence in Environmental Toxicology and ‡Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6160, United States
| | | | | | | |
Collapse
|
42
|
Kanaly RA, Hamamura N. 9,10-Phenanthrenedione biodegradation by a soil bacterium and identification of transformation products by LC/ESI-MS/MS. CHEMOSPHERE 2013; 92:1442-1449. [PMID: 23611246 DOI: 10.1016/j.chemosphere.2013.03.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Transformation of 9,10-phenanthrenedione, a cytotoxic derivative of phenanthrene, was shown to occur by a soil bacterium belonging to the genus Sphingobium. Phenanthrene-grown cells of this strain were exposed to 50mgL(-1) 9,10-phenanthrenedione in liquid cultures, extracted, and extracts were analyzed by liquid chromatography electrospray ionization mass spectrometry in negative ionization mode. Full scan analyses of exposed cells over the range from m/z 50 to m/z 500 were compared to abiotic and biotic controls. Product and precursor ion scan mode analyses indicated that at least three aromatic ring-cleavage transformation products of 9,10-phenanthrenedione were present and structures for these products, corresponding to [M-H](-)=271, [M-H](-)=241, and [M-H](-)=339 were proposed to be 4-(1-hydroxy-3,4-dioxo-2-naphthyl)-2-oxo-but-3-enoic acid, 2,2'-diphenic acid and 2-[(6-carboxy-2,3-dihydroxy-phenyl)-hydroxy-methyl]-5-oxo-hex-3-enedioic acid. The identity of 2,2'-diphenic acid was confirmed by comparison to an authentic standard and when the strain was exposed to 50mgL(-1) 2,2'-diphenic acid in separate assays, a transformation product with a similar mass spectrum as 9,10-phenanthrenedione-derived [M-H](-)=339 was revealed. Based upon these results, pathways for the transformation of 9,10-phenanthrenedione by strain KK22 were proposed. Strain KK22 appeared unable to use 9,10-phenanthrenedione as a growth substrate under these conditions. This is the first report of potential biotransformation pathways of 9,10-phenanthrenedione by a bacterium.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome System Science, Faculty of Bionanosciences, Yokohama City University, Yokohama 236-0027, Japan.
| | | |
Collapse
|
43
|
Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3886-907. [PMID: 23985773 PMCID: PMC3799517 DOI: 10.3390/ijerph10093886] [Citation(s) in RCA: 518] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM), at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc.) play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM₁₀ and PM₂.₅) are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Athanasios Valavanidis
- Department of Chemistry, University of Athens, University Campus Zografou, Athens 15784, Greece.
| | | | | | | |
Collapse
|
44
|
Park HJ, Kwon JH, Cho TS, Kim JM, Hwang IH, Kim C, Kim S, Kim J, Kim SK. Real-time detection of DNA cleavage induced by [M(2,2'-bipyridine)2(NO3)](NO3) (M=Cu(II), Zn(II) and Cd(II)) complexes using linear dichroism technique. J Inorg Biochem 2013; 127:46-52. [PMID: 23850668 DOI: 10.1016/j.jinorgbio.2013.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
The catalytic effect of [M(2,2'-bipyridine)2(NO3)](NO3) (M(bpy)2, M=Cu(II), Zn(II) and Cd(II)) on the super-coiled and double stranded DNA (scDNA and dsDNA) was examined by electrophoresis and a real-time detection linear dichroism (LD) technique. Although the Cu(bpy)2 complex effectively cleaved both types of DNA, the other two complexes were inactive. This was explained by the electrochemical properties of the metal complexes. The Cu(bpy)2 complex exhibited a redox potential at -0.222V with a peak to peak separation of 0.201V, whereas the other two metal complexes did not undergo any redox reaction. Both electrophoresis and LD measurements revealed the superoxide radical, ·O2(-), to be responsible for DNA cleavage. A kinetic study using the LD technique showed that the cleavage of dsDNA consisted of two first order reactions. The fast reaction is believed to reflect the cleavage of one strand, whereas the slow reaction involves the cleavage of the complementary strand at or near the first cleaved site.
Collapse
Affiliation(s)
- Hee-Jin Park
- Department of Chemistry, Yeungnam University, Gyeongsan City, Gyeong-buk 712-749, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abedin Z, Louis-Juste M, Stangl M, Field J. The role of base excision repair genes OGG1, APN1 and APN2 in benzo[a]pyrene-7,8-dione induced p53 mutagenesis. Mutat Res 2013; 750:121-8. [PMID: 23117049 PMCID: PMC3931135 DOI: 10.1016/j.mrgentox.2012.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022]
Abstract
Lung cancer is primarily caused by exposure to tobacco smoke. Tobacco smoke contains numerous carcinogens, including polycyclic aromatic hydrocarbons (PAH). The most common PAH studied is benzo[a]pyrene (B[a]P). B[a]P is metabolically activated through multiple routes, one of which is catalyzed by aldo-keto reductase (AKR) to B[a]P-7,8-dione (BPQ). BPQ undergoes a futile redox cycle in the presence of NADPH to generate reactive oxygen species (ROS). ROS, in turn, damages DNA. Studies with a yeast p53 mutagenesis system found that the generation of ROS by PAH o-quinones may contribute to lung carcinogenesis because of similarities between the patterns (types of mutations) and spectra (location of mutations) and those seen in lung cancer. The patterns were dominated by G to T transversions, and the spectra in the experimental system have mutations at lung cancer hotspots. To address repair mechanisms that are responsible for BPQ induced damage we observed the effect of mutating two DNA repair genes OGG1 and APE1 (APN1 in yeast) and tested them in a yeast reporter system for p53 mutagenesis. There was an increase in both the mutant frequency and the number of G:C/T:A transversions in p53 treated with BPQ in ogg1 yeast but not in apn1 yeast. Knocking out APN2 increased mutagenesis in the apn1 cells. In addition, we did not find a strand bias on p53 treated with BPQ in ogg1 yeast. These studies suggest that Ogg1 is involved in repairing the oxidative damage caused by BPQ, Apn1 and Apn2 have redundant functions and that the stand bias seen in lung cancer may not be due to impaired repair of oxidative lesions.
Collapse
Affiliation(s)
- Zahidur Abedin
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Melissa Louis-Juste
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Melissa Stangl
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Jeffrey Field
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| |
Collapse
|
46
|
Johnson KM, Price NE, Wang J, Fekry MI, Dutta S, Seiner DR, Wang Y, Gates KS. On the formation and properties of interstrand DNA-DNA cross-links forged by reaction of an abasic site with the opposing guanine residue of 5'-CAp sequences in duplex DNA. J Am Chem Soc 2013; 135:1015-25. [PMID: 23215239 DOI: 10.1021/ja308119q] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5'-CAp sequence under conditions of reductive amination (NaCNBH(3), pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions, and the cross-link, once formed, was stable to a variety of workup conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LC-MS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N(2)-amino group of the opposing guanine residue in 5'-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH(3)/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N(2)-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH(3).
Collapse
Affiliation(s)
- Kevin M Johnson
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang L, Jin Y, Huang M, Penning TM. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones. Front Pharmacol 2012; 3:193. [PMID: 23162467 PMCID: PMC3499756 DOI: 10.3389/fphar.2012.00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/27/2012] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.
Collapse
Affiliation(s)
- Li Zhang
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | | | |
Collapse
|
48
|
Sen S, Bhojnagarwala P, Francey L, Lu D, Jeffrey Field TMP. p53 Mutagenesis by benzo[a]pyrene derived radical cations. Chem Res Toxicol 2012; 25:2117-26. [PMID: 22768918 PMCID: PMC3650728 DOI: 10.1021/tx300201p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9,10-epoxide pathway (P450/epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. On the basis of B[a]P-1,6 and 3,6-dione formation, approximately 4 μM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 μM to 10 μM B[a]P with no significant increase seen with further escalation to 50 μM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7-8-dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones.
Collapse
Affiliation(s)
- Sushmita Sen
- Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Pratik Bhojnagarwala
- Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Lauren Francey
- Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Ding Lu
- Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Trevor M. Penning Jeffrey Field
- Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| |
Collapse
|
49
|
Kimura T, Yoshida K, Yamamoto C, Suzuki M, Uno T, Isobe M, Naka H, Yasuike S, Satoh M, Kaji T, Uchiyama M. Bis(L-cysteinato)zincate(lI) as a coordination compound that induces metallothionein gene transcription without inducing cell-stress-related gene transcription. J Inorg Biochem 2012; 117:140-6. [PMID: 23085594 DOI: 10.1016/j.jinorgbio.2012.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/25/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022]
Abstract
Zinc is an essential micronutrient, deficiency of which results in growth retardation, immunodeficiency, and neurological diseases such as dysgeusia. Several zinc coordination compounds are used for zinc supplementation; however, supplemented zinc ions have no specificity and interact with various groups of molecules. Here, we found that, from a library of 30 zinc coordination compounds, bis(L-cysteinato)zincate(II), designated Z01, functioned as a metallothionein (MT) inducer. Z01 induced MT expression mediated by the transcription factor MTF-1, without inducing cell-stress-related heme oxygenase-1 gene expression at specific concentration. The zinc ion was necessary for the MT induction. (65)Zn incorporation following treatment with (65)Zn-labeled Z01 suggested that Z01 did not act as zinc ionophore despite its hydrophilicity. Electrophoretic mobility shift assays revealed that Z01 facilitates MTF-1-MRE complex formation, and, by inference, transfer of zinc from Z01 to MTF-1. Phosphorylated ERK levels were increased by ZnSO(4) treatment but not by Z01. Although our data do not definitely prove that Z01 is an MTF-1-specific activator, our observations suggest that zinc coordination compounds can regulate zinc distribution and act as zinc donors for specific molecules.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang L, Huang M, Blair IA, Penning TM. Detoxication of benzo[a]pyrene-7,8-dione by sulfotransferases (SULTs) in human lung cells. J Biol Chem 2012; 287:29909-20. [PMID: 22782890 DOI: 10.1074/jbc.m112.386052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.
Collapse
Affiliation(s)
- Li Zhang
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6084, USA
| | | | | | | |
Collapse
|