1
|
Balcells C, Foguet C, Tarragó-Celada J, de Atauri P, Marin S, Cascante M. Tracing metabolic fluxes using mass spectrometry: Stable isotope-resolved metabolomics in health and disease. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Rutkowsky JM, Lee LL, Puchowicz M, Golub MS, Befroy DE, Wilson DW, Anderson S, Cline G, Bini J, Borkowski K, Knotts TA, Rutledge JC, on behalf of the Mouse Metabolic Phenotyping Center Imaging Working Group. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet. PLoS One 2018; 13:e0191909. [PMID: 29444171 PMCID: PMC5812615 DOI: 10.1371/journal.pone.0191909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways.
Collapse
Affiliation(s)
- Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| | - Linda L. Lee
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California, United States of America
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mari S. Golub
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Douglas E. Befroy
- Magnetic Resonance Research Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dennis W. Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Steven Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California, United States of America
| | - Gary Cline
- Department of Endocrinology, Yale University, New Haven, Connecticut, United States of America
| | - Jason Bini
- Yale PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, United States of America
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California, United States of America
| | - Trina A. Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - John C. Rutledge
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | | |
Collapse
|
3
|
Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation. Mol Cell 2018; 69:451-464.e6. [PMID: 29358078 DOI: 10.1016/j.molcel.2017.12.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling.
Collapse
Affiliation(s)
- Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ya-Juan Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Li Y, Lin G, Chen B, Zhang J, Wang L, Li Z, Cao Y, Wen C, Yang X, Cao G, Wang X, Cao G. Effect of alprazolam on rat serum metabolic profiles. Biomed Chromatogr 2017; 31. [PMID: 28187228 DOI: 10.1002/bmc.3956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 01/30/2023]
Abstract
We developed a serum metabolomic method by gas chromatography-mass spectrometry (GC-MS) to evaluate the effect of alprazolam in rats. The GC-MS with HP-5MS (0.25 μm × 30 m × 0.25 mm) mass was conducted in electron impact ionization (EI) mode with electron energy of 70 eV, and full-scan mode with m/z 50-550. The rats were randomly divided to four groups, three alprazolam-treated groups and a control group. The alprazolam-treated rats were given 5, 10 or 20 mg/kg (low, medium, high) of alprazolam by intragastric administration each day for 14 days. The serum samples were corrected on the seventh and fourteenth days for metabolomic study. The blood was collected for biochemical tests. Then liver and brain were rapidly isolated and immersed for pathological study. Compared with the control group, on the seventh and fourteen days, the levels of d-glucose, 9,12-octadecadienoic acid, butanoic acid, l-proline, d-mannose and malic acid had changed, indicating that alprazolam induced energy metabolism, fatty acid metabolism and amino acid metabolism perturbations in rats. There was no significant difference for alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea and uric acid between controls and alprazolam groups. According to the pathological results, alprazolam is not hepatotoxic. Metabolomics could distinguish different alprazolam doses in rats.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaotong Lin
- The Department of Pharmacy, Taizhou Cancer Hospital, Wenling, China
| | - Bingbao Chen
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, China
| | - Lingtian Wang
- School of Medicine, Shandong University, Jinan, China
| | - Zixia Li
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congcong Wen
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, China
| | - Xuezhi Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaozhong Cao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianqin Wang
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, China
| | - Guoquan Cao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Maitre M, Klein C, Mensah-Nyagan AG. Mechanisms for the Specific Properties of γ-Hydroxybutyrate in Brain. Med Res Rev 2016; 36:363-88. [PMID: 26739481 DOI: 10.1002/med.21382] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022]
Abstract
γ-Hydroxybutyrate (GHB) is both a natural brain compound with neuromodulatory properties at central GABAergic synapses (micromolar concentration range) and also a drug (Xyrem(R) ) clinically used for the treatment of various neurological symptoms (millimolar dose range). However, this drug has abuse potential and can be addictive for some patients. Here, we review the basic mechanistic role of endogenous GHB in brain as well as the properties and mechanisms of action for therapeutic clinical doses of exogenous GHB. Several hypotheses are discussed with a preference for a molecular mechanism that conciliates most of the findings available. This conciliatory model may help for the design of GHB-like drugs active at lower doses and devoid of major side effects.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67000, Strasbourg, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67000, Strasbourg, France
| | - Ayikoe G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67000, Strasbourg, France
| |
Collapse
|
6
|
Wen C, Zhang M, Zhang Y, Sun F, Ma J, Hu L, Lin G, Wang X. Brain metabolomics in rats after administration of ketamine. Biomed Chromatogr 2015; 30:81-4. [PMID: 26014584 DOI: 10.1002/bmc.3518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 11/08/2022]
Abstract
In this study, we developed a brain metabolomic method, based on gas chromatography-mass spectrometry (GC/MS), to evaluate the effect of ketamine on rats. Pattern recognition analysis, including both principal component analysis and partial least squares-discriminate analysis revealed that ketamine induced metabolic perturbations. Compared with the control group, the levels of glycerol, uridine, cholesterol in rat brain of the ketamine group (50 mg/kg, 14 days) decreased, while the urea levels increased. Our results indicate that metabolomic methods based on GC/MS may be useful to elucidate ketamine abuse through the exploration of biomarkers.
Collapse
Affiliation(s)
- Congcong Wen
- Laboratory Animal Centre of Wenzhou Medical University, Wenzhou, 325035, China
| | - Meiling Zhang
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China.,Forensic Toxicology Laboratory of Forensic Center, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuan Zhang
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China.,Forensic Toxicology Laboratory of Forensic Center, Wenzhou Medical University, Wenzhou, 325035, China
| | - Fa Sun
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianshe Ma
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China.,Forensic Toxicology Laboratory of Forensic Center, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lufeng Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianqin Wang
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, 325035, China.,Forensic Toxicology Laboratory of Forensic Center, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
7
|
Zhang Y, Zhang S, Marin-Valencia I, Puchowicz MA. Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain. J Neurochem 2014; 132:301-12. [PMID: 25314677 DOI: 10.1111/jnc.12965] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/27/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
8
|
Jin Z, Berthiaume JM, Li Q, Henry F, Huang Z, Sadhukhan S, Gao P, Tochtrop GP, Puchowicz MA, Zhang GF. Catabolism of (2E)-4-hydroxy-2-nonenal via ω- and ω-1-oxidation stimulated by ketogenic diet. J Biol Chem 2014; 289:32327-32338. [PMID: 25274632 DOI: 10.1074/jbc.m114.602458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress triggers the peroxidation of ω-6-polyunsaturated fatty acids to reactive lipid fragments, including (2E)-4-hydroxy-2-nonenal (HNE). We previously reported two parallel catabolic pathways of HNE. In this study, we report a novel metabolite that accumulates in rat liver perfused with HNE or 4-hydroxynonanoic acid (HNA), identified as 3-(5-oxotetrahydro-2-furanyl)propanoyl-CoA. In experiments using a combination of isotopic analysis and metabolomics studies, three catabolic pathways of HNE were delineated following HNE conversion to HNA. (i) HNA is ω-hydroxylated to 4,9-dihydroxynonanoic acid, which is subsequently oxidized to 4-hydroxynonanedioic acid. This is followed by the degradation of 4-hydroxynonanedioic acid via β-oxidation originating from C-9 of HNA breaking down to 4-hydroxynonanedioyl-CoA, 4-hydroxyheptanedioyl-CoA, or its lactone, 2-hydroxyglutaryl-CoA, and 2-ketoglutaric acid entering the citric acid cycle. (ii) ω-1-hydroxylation of HNA leads to 4,8-dihydroxynonanoic acid (4,8-DHNA), which is subsequently catabolized via two parallel pathways we previously reported. In catabolic pathway A, 4,8-DHNA is catabolized to 4-phospho-8-hydroxynonanoyl-CoA, 3,8-dihydroxynonanoyl-CoA, 6-hydroxyheptanoyl-CoA, 4-hydroxypentanoyl-CoA, propionyl-CoA, and acetyl-CoA. (iii) The catabolic pathway B of 4,8-DHNA leads to 2,6-dihydroxyheptanoyl-CoA, 5-hydroxyhexanoyl-CoA, 3-hydroxybutyryl-CoA, and acetyl-CoA. Both in vivo and in vitro experiments showed that HNE can be catabolically disposed via ω- and ω-1-oxidation in rat liver and kidney, with little activity in brain and heart. Dietary experiments showed that ω- and ω-1-hydroxylation of HNA in rat liver were dramatically up-regulated by a ketogenic diet, which lowered HNE basal level. HET0016 inhibition and mRNA expression level suggested that the cytochrome P450 4A are main enzymes responsible for the NADPH-dependent ω- and ω-1-hydroxylation of HNA/HNE.
Collapse
Affiliation(s)
- Zhicheng Jin
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jessica M Berthiaume
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106; Departments of Physiology and Biophysics, and Case Western Reserve University, Cleveland, Ohio 44106
| | - Qingling Li
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Fabrice Henry
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zhong Huang
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Sushabhan Sadhukhan
- Departments of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Peng Gao
- Departments of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Gregory P Tochtrop
- Departments of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michelle A Puchowicz
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Guo-Fang Zhang
- Departments of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
9
|
Li Q, Zhang S, Berthiaume JM, Simons B, Zhang GF. Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: discovery of acyl-dephospho-CoAs. J Lipid Res 2013; 55:592-602. [PMID: 24367045 DOI: 10.1194/jlr.d045112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80-114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs.
Collapse
Affiliation(s)
- Qingling Li
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | |
Collapse
|