1
|
Nourazarian A, Aghaei-Zarch SM, Panahi Y. Delayed complications of sulfur mustard poisoning: a focus on inflammation and telomere footprint. Arch Toxicol 2025:10.1007/s00204-025-04033-z. [PMID: 40335638 DOI: 10.1007/s00204-025-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025]
Abstract
Sulfur mustard (SM), a potent alkylating agent, has been widely used in chemical warfare, causing severe acute and long-term health complications. While its immediate toxic effects are well documented, the late-onset complications remain poorly understood. Chronic exposure to SM has been linked to persistent oxidative stress, inflammation, and genomic instability, contributing to the progression of various diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), and cancer. This review explores the emerging role of telomere biology in the delayed pathophysiology of SM exposure. Evidence suggests that telomere shortening and dysregulation of telomeric repeat-containing RNA (TERRA) may serve as key molecular indicators of SM-induced aging and cellular dysfunction. Furthermore, inflammatory pathways, particularly NF-κB and TGF-β signaling, appear to be closely associated with telomere attrition, perpetuating chronic inflammation and fibrosis. By integrating oxidative stress, inflammation, and telomere dynamics, we propose a novel model linking telomere biology to SM-induced late complications. Understanding these mechanisms could pave the way for targeted therapeutic strategies, including antioxidant and epigenetic interventions, to mitigate long-term effects. Future research should focus on validating telomere-based biomarkers for early detection and exploring novel interventions to alleviate SM-induced chronic health conditions.
Collapse
Affiliation(s)
- Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasin Panahi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, 58147-43343, Iran.
| |
Collapse
|
2
|
Cheng J, Liu H, Yu W, Dong X, Sai Y, Ye F, Dan G, Chen M, Zhao Y, Zhang X, Zou Z. Nitrogen mustard induces dynamic nuclear protein spectrum change and DNA-protein crosslinking, with p97 mediating repair. Heliyon 2024; 10:e37401. [PMID: 39290288 PMCID: PMC11407038 DOI: 10.1016/j.heliyon.2024.e37401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrogen mustard (NM) is a chemotherapeutic agent capable of alkylating nucleophilic proteins and DNA, causing severe cell damage. However, no reports have been on the dynamic changes in proteomics induced by NM. In this study, we established a model of acute exposure to NM for 1 h and a continuous cultured model for 24 h after NM removal (repair stage) using 16HBE cells. The nuclear protein spectrum and nuclear proteins crosslinked with DNA were analyzed, and the function of p97 during NM damage was examined. An hour of NM exposure resulted in severe changes in the nuclear protein spectrum and protein into the cell nucleus, which is mainly involved in nuclear acid-related issues. After 24 h, the return to normal process of the types and amounts of differentially expressed proteins was inhibited by si-p97. The main processes involved in si-p97 intervention were nucleocytoplasmic transport, processing in the endoplasmic reticulum, metabolic abnormalities, and DNA-response; however. An hour of exposure to NM increased DNA-protein crosslinking (DPC), total-H2AX, and p-H2AX. In contrast, si-p97 only further increased or maintained their levels at 24 h yet not at 1 h. The effect of the proteasome inhibitor, MG132, was similar to that of si-p97. The siRNA of DVC1, a partner of p97, also increased the DPC content. Both si-p97 and si-DVC1 increased the cytoplasmic levels of the proteasome (PSMD2). These results suggest acute NM exposure induces severe nuclear protein spectral changes, rapid protein influx into the nucleus, DPC formation, and DNA double-strand breaks. Furthermore, our data indicated that p97 is involved in normal protein spectrum maintenance and DPC removal after NM withdrawal, requiring the participation of DVC1 and the proteasome.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
- Department of Clinic, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Haoyin Liu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Xunhu Dong
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Feng Ye
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Laskin JD, Ozkuyumcu K, Zhou P, Croutch CR, Heck DE, Laskin DL, Joseph LB. Skin Models Used to Define Mechanisms of Action of Sulfur Mustard. Disaster Med Public Health Prep 2023; 17:e551. [PMID: 37849329 PMCID: PMC11420828 DOI: 10.1017/dmp.2023.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Sulfur mustard (SM) is a threat to both civilian and military populations. Human skin is highly sensitive to SM, causing delayed erythema, edema, and inflammatory cell infiltration, followed by the appearance of large fluid-filled blisters. Skin wound repair is prolonged following blistering, which can result in impaired barrier function. Key to understanding the action of SM in the skin is the development of animal models that have a pathophysiology comparable to humans such that quantitative assessments of therapeutic drugs efficacy can be assessed. Two animal models, hairless guinea pigs and swine, are preferred to evaluate dermal products because their skin is morphologically similar to human skin. In these animal models, SM induces degradation of epidermal and dermal tissues but does not induce overt blistering, only microblistering. Mechanisms of wound healing are distinct in these animal models. Whereas a guinea pig heals by contraction, swine skin, like humans, heals by re-epithelialization. Mice, rats, and rabbits are also used for SM mechanistic studies. However, healing is also mediated by contraction; moreover, only microblistering is observed. Improvements in animal models are essential for the development of therapeutics to mitigate toxicity resulting from dermal exposure to SM.
Collapse
Affiliation(s)
- Jeffrey D. Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Kevin Ozkuyumcu
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | | | - Diane E. Heck
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Laurie B. Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| |
Collapse
|
4
|
Wu H, Zhang Y, Xu H, Xu B, Chen J, Guo L, Liu Q, Xie J. Urinary Profile of Alkylated DNA Adducts and DNA Oxidative Damage in Sulfur Mustard-Exposed Rats Revealed by Mass Spectrometry Quantification. Chem Res Toxicol 2023; 36:1495-1502. [PMID: 37625021 DOI: 10.1021/acs.chemrestox.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alkylation reagents, represented by sulfur mustard (SM), can damage DNA molecules directly as well as lead to oxidative stress, causing DNA lesions indirectly. Correspondingly, two types of biomarkers including alkylated DNA adducts and oxidative DNA adducts are commonly involved in the research of DNA damage evaluation caused by these agents. However, the correlations and differences of the occurrence, duration, severity, and traceability between alkylation and oxidation lesions on the DNA molecular level reflected by these two types of biomarkers have not been systematically studied. A simultaneous determination method for four alkylated DNA adducts, i.e., N7-(2-hydroxyethylthioethyl)2'-guanine (N7-HETEG), O6-(2-hydroxyethylthioethyl)-2'-guanine (O6-HETEG), N3-(2-hydroxyethylthioethyl)-2'-adenine (N3-HETEA), and bis(2-ethyl-N7-guanine)thioether (Bis-G), and the oxidative adduct 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in urine samples by isotope-dilution high-performance liquid chromatography-tandem mass spectrometry (ID-HPLC-MS/MS) was built with a lower limit of detection of 0.02 ng/mL (except Bis-G, 0.05 ng/mL) and a recovery of 79-111%. The profile of these adducts was simultaneously monitored in urine samples after SD rats' dermal exposure to SM in three dose levels (1, 3, and 10 mg/kg). The time-effect and dose-effect experiments revealed that when exposed to SM, DNA alkylation lesions would happen earlier than those of oxidation. For the two types of biomarkers, alkylated DNA adducts showed an obvious dose-effect relationship and could be used as internal exposure dose and effect biomarkers, while 8-OH-dG did not show a correlation with exposure dose, demonstrating that it was more suitable as a biomarker for DNA oxidative lesions but not an indicator for the extent of cytotoxicity and internal exposure.
Collapse
Affiliation(s)
- Haijiang Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Qin Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
5
|
Jiang N, Zhang P, Shen W, Zhang Y, Zhou W. Clinical and experimental research progress on neurotoxicity of sulfur mustard and its possible mechanisms. Toxicology 2023; 483:153372. [PMID: 36356660 DOI: 10.1016/j.tox.2022.153372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Sulfur mustard (SM), an extremely reactive alkylating toxicant, which poses a continuing threat to both military and civilian populations. SM targets three major organs including skin, eyes and lungs. In recent years, more and more clinical findings have shown that cognitive and emotional disorders in veterans intoxicated with SM, such as anxiety, depression, apathy, cognitive decline and so on, which indicated the long time toxic effects on mental and neurological health of SM. The experimental studies in animal and cell models have also found neurotoxicity which are similar to clinical results. However, these neuropsychological problems are not studied well in victims of SM and the mental and neurological complications are often not subjected to treatment or undertreated. Until now, the exact mechanism of the action of SM toxicity has not been elucidated and no specific therapy for its poisoning exists. Therefore, the studies on neurotoxicity of SM should be strengthened. This review summarizes the main progress of clinical and experimental researches on neurotoxicity of SM for the past few years.
Collapse
Affiliation(s)
- Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Pei Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; School of Pharmacy, Yantai University, Shandong 264005, China
| | - Wei Shen
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - WenXia Zhou
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; School of Pharmacy, Yantai University, Shandong 264005, China.
| |
Collapse
|
6
|
Chen B, Ren Z, Zhang T, Yu H, Shu Z, Liu C, Yang Y, Xu P, Liu S. Simultaneous quantification of multiple amino acid adducts from sulfur mustard-modified human serum albumin in plasma at trace exposure levels by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry after propionyl derivatization. J Chromatogr A 2022; 1678:463354. [PMID: 35901667 DOI: 10.1016/j.chroma.2022.463354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Sulfur mustard (HD) is a highly toxic vesicant and is prohibited by the Organisation for the Prohibition of Chemical Weapons (OPCW). HD can modify human serum albumin (HSA) to generate hydroxyethylthioethyl (HETE) adducts, which could be utilized as biomarkers for verifying HD exposure in forensic analysis. Here, five amino acid adducts generated from pronase digestion of HD-exposed human serum albumin (HD-HSA) in plasma were selected as biomarkers to retrospectively detect HD exposure. HD-HSA was precipitated from plasma with acetone, digested by pronase, derivatized with propionic anhydride (PA), and analysed with ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-TQ MS). The limits of detection (LODs) and limits of quantification (LOQs) of the HD exposure concentrations were evaluated as 1.00 ng/mL at S/N≥3 and 3.00 ng/mL at S/N≥10, respectively, which are approximately 60 times lower than those of the reported method. The approach shows good linearity (R2≥0.997) from 3.00 ng/mL to 10.0 µg/mL of HD-exposed human plasma with satisfactory precision and accuracy. The developed approach was applied to analysing samples from the 6th OPCW Biomedical Proficiency Test (BioPT). The study showed that the developed approach was also suitable for analysing human plasma samples that were exposed to six of HD analogues, which were common impurities in sulfur mustard mixtures. Moreover, the method was successfully applied to plasma from other species, including rabbits, rats and cattle. This study provides a reliable and sensitive tool for the retrospective detection of vesicants exposure based on multiple biomarkers.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Zhe Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology, Nanjing, 210094, P. R. China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - ZhiBin Shu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, P. R. China.
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China.
| |
Collapse
|
7
|
Chen B, Zhang Q, Ren Z, Zhang T, Yu H, Liu C, Yang Y, Xu P, Liu S. A proteomics strategy for the identification of multiple sites in sulfur mustard-modified HSA and screening potential biomarkers for retrospective analysis of exposed human plasma. Anal Bioanal Chem 2022; 414:4179-4188. [PMID: 35478034 DOI: 10.1007/s00216-022-04070-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022]
Abstract
A major challenge for the unequivocal verification of alleged exposure to sulfur mustard (HD) lies in identifying its multiple modifications on endogenous proteins and utilizing these modified proteins to achieve accurate, sensitive, and rapid detection for retrospective analysis of HD exposure. As the most abundant protein in human plasma, human serum albumin (HSA) can react with many xenobiotics, such as HD, to protect the body from damage. The HSA adducts induced by HD have been used as biomarkers for the verification of HD exposure. In this study, the modification sites on HSA by HD were identified through application of the bottom-up strategy used in proteomics, and 41 modified sites were discovered with seven types of amino acids, of which 3 types were not previously reported. Then, different enzymes, including pepsin, endoproteinase Glu-C, and pronase, were applied to digest HD-HSA to produce adducts with hydroxyethylthioethyl (HETE) groups, which may be used as potential biomarkers for HD exposure. As candidates for retrospective analysis, sixteen adducts were obtained and characterized with ultra-high-pressure liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry (UHPLC-QE Focus MS). These potential biomarkers were evaluated in human plasma that was exposed in vitro to HD and five of its analogues. This study integrated the identification of modification sites through application of the bottom-up strategy of proteomics and screening biomarkers, providing a novel strategy for retrospective detection of the exposure of xenobiotic chemicals.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Qiaoli Zhang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Zhe Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology, Nanjing, 210094, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research, Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, People's Republic of China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research, Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, People's Republic of China.
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China.
| |
Collapse
|
8
|
Sun J, Li C, Shan W, Wei Y, Liu R, Li H, Cao D, Guo Q, Zhao H, Liu R, Shao B. Construction of a Degradation-Free DNA Conjugated Nanoprobe and Its Application in Rapid Field Screening for Sulfur Mustard. Anal Chem 2021; 93:16735-16740. [PMID: 34874160 DOI: 10.1021/acs.analchem.1c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur mustard (SM) is a notorious blistering chemical warfare agent. Rapid field screening for trace SM is of vital significance for the detection of antiterrorism and timely treatment. Here, a visual assay for SM was constructed on the basis of its inhibition for the G-quadruplexes/hemin DNAzyme. Specifically, multiple guanine (G)-rich single stranded oligonucleotides (ssODN) named S1 (80% of G in the total bases), i.e., the precursor for G-quadruplex, which could oxide tetramethylbenzidine (TMB) to its green product, were conjugated on the nonfouling polymer brush grafted magnetic beads (MB@P(C-H)). SM could specifically alkylate the N7 and O6 sites of G in the S1; thus, it failed to form the DNAzyme based signal reporter. It was demonstrated that the nonfouling P(C-H) interface on the magnetic bead (MB) could protect the conjugated ssODN from nuclease degradation, thus ensuring its well sensing performance in complex samples. Under the optimized conditions, this method achieved good sensitivity and selectivity with a limit of detection (LOD) as low as 0.26 μmol L-1, and the recoveries ranging from 86% to 117% were obtained for different SM spiked real samples. Above all, this method combining low cost and ready operation could be suited for rapid field SM screening in a wide range of environmental matrices.
Collapse
Affiliation(s)
- Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Chunzheng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wenchong Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaohua Wei
- Department of Biomaterials Science and Technology, MIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede 7500AE, Netherlands
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runqing Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.,School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
9
|
Schmeißer W, Lüling R, Steinritz D, Thiermann H, Rein T, John H. Transthyretin as a target of alkylation and a potential biomarker for sulfur mustard poisoning: Electrophoretic and mass spectrometric identification and characterization. Drug Test Anal 2021; 14:80-91. [PMID: 34397154 DOI: 10.1002/dta.3146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022]
Abstract
For the verification of exposure to the banned blister agent sulfur mustard (SM) and the better understanding of its pathophysiology, protein adducts formed with endogenous proteins represent an important field of toxicological research. SM and its analogue 2-chloroethyl ethyl sulfide (CEES) are well known to alkylate nucleophilic amino acid side chains, for example, free-thiol groups of cysteine residues. The specific two-dimensional thiol difference gel electrophoresis (2D-thiol-DIGE) technique making use of maleimide dyes allows the staining of free cysteine residues in proteins. As a consequence of alkylation by, for example, SM or CEES, this staining intensity is reduced. 2D-thiol-DIGE analysis of human plasma incubated with CEES and subsequent matrix-assisted laser desorption/ionization time-of-flight (tandem) mass-spectrometry, MALDI-TOF MS(/MS), revealed transthyretin (TTR) as a target of alkylating agents. TTR was extracted from SM-treated plasma by immunomagnetic separation (IMS) and analyzed after tryptic cleavage by microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS). It was found that the Cys10 -residue of TTR present in the hexapeptide C(-HETE)PLMVK was alkylated by the hydroxyethylthioethyl (HETE)-moiety, which is characteristic for SM exposure. It was shown that alkylated TTR is stable in plasma in vitro at 37°C for at least 14 days. In addition, C(-HETE)PLMVK can be selectively detected, is stable in the autosampler over 24 h, and shows linearity in a broad concentration range from 15.63 μM to 2 mM SM in plasma in vitro. Accordingly, TTR might represent a complementary protein marker molecule for the verification of SM exposure.
Collapse
Affiliation(s)
| | - Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Bundeswehr Medical Service Academy, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
10
|
Cheng X, Liu C, Yang Y, Liang L, Chen B, Yu H, Xia J, Liu S, Li Y. Advances in sulfur mustard-induced DNA adducts: Characterization and detection. Toxicol Lett 2021; 344:46-57. [PMID: 33705862 DOI: 10.1016/j.toxlet.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion. Various methods have been used to analyze DNA damage caused by SM. Among these methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology stands out and makes it possible to observe damage in view of biomarkers induced by SM. Sample preparation is critical for detection by LC-MS/MS and mainly includes DNA isolation, adduct hydrolysis, and adduct purification. Moreover, optimization of chromatographic conditions, selection of MS transitions, and quantitative strategies are also essential. SM-DNA adducts are generally considered to be N7-HETEG, O6-HETEG, N7-BisG, and N3-HETEA. This article proposes some other possibilities of SM-DNA adducts for the identification of SM genotoxicity.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Longhui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Yihe Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China.
| |
Collapse
|
11
|
Chromatographic analysis of chemical warfare agents and their metabolites in biological samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Orlova OI, Karakashev GV, Savel’eva EI. Simultaneous Determination of Sulfur Mustard Adducts with Guanine and Acetylcysteine in Urine by High-Resolution High-Performance Liquid Chromatography–Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820060155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
DNA damage signaling in the cellular responses to mustard vesicants. Toxicol Lett 2020; 326:78-82. [PMID: 32173488 DOI: 10.1016/j.toxlet.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023]
Abstract
Mustard vesicants, including sulfur mustard (2,2'-dichlorodiethyl sulfide, SM) and nitrogen mustard (bis(2-chloroethyl)methylamine, HN2) are cytotoxic blistering agents synthesized for chemical warfare. Because they contain highly reactive electrophilic chloroethyl side chains, they readily react with cellular macromolecules like DNA forming monofunctional and bifunctional adducts. By targeting DNA, mustards can compromise genomic integrity, disrupt the cell cycle, and cause mutations and cytotoxicity. To protect against genotoxicity following exposure to mustards, cells initiate a DNA damage response (DDR). This involves activation of signaling cascades including ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3-related) and DNA-PKcs (DNA-dependent protein kinase, catalytic unit). Signaling induced by the DDR leads to the recruitment and activation of repair related proteins such as phospho H2AX and phospho p53 to sites of DNA lesions. Excessive DNA modifications by mustards can overwhelm DNA repair leading to single and double strand DNA breaks, cytotoxicity and tissue damage, sometimes leading to cancer. Herein we summarize DDR signaling pathways induced by SM, HN2 and the half mustard, 2-chloroethyl ethyl sulfide (CEES). At the present time, little is known about how mustard-induced DNA damage leads to the activation of DDR signaling. A better understanding of mechanisms by which mustard vesicants induce the DDR may lead to the development of countermeasures effective in mitigating tissue injury.
Collapse
|
14
|
A sensitive quantification approach for detection of HETE-CP adduct after benzyl chloroformate derivatization using ultra-high-pressure liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2019; 411:3405-3415. [DOI: 10.1007/s00216-019-01820-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
|
15
|
Siegert M, Gandor F, Kranawetvogl A, Börner H, Thiermann H, John H. Methionine
329
in human serum albumin: A novel target for alkylation by sulfur mustard. Drug Test Anal 2019; 11:659-668. [DOI: 10.1002/dta.2548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Siegert
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Felix Gandor
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Andreas Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Hans Börner
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| |
Collapse
|
16
|
A mass spectrometric platform for the quantitation of sulfur mustard-induced nucleic acid adducts as mechanistically relevant biomarkers of exposure. Arch Toxicol 2018; 93:61-79. [PMID: 30324314 DOI: 10.1007/s00204-018-2324-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Despite its worldwide ban, the warfare agent sulfur mustard (SM) still represents a realistic threat, due to potential release in terroristic attacks and asymmetric conflicts. Therefore, the rigorous and quantitative detection of SM exposure is crucial for diagnosis, health risk assessment, and surveillance of international law. Alkylation adducts of nucleic acids can serve as valuable toxicologically relevant 'biomarkers of SM exposure'. Here, we developed a robust and versatile bioanalytical platform based on isotope dilution UPLC-MS/MS to quantify major SM-induced DNA and RNA adducts, as well as adducts induced by the monofunctional mustard 2-chloroethyl ethyl sulfide. We synthesized 15N/13C-labeled standards, which allowed absolute quantitation with full chemical specificity and subfemtomole sensitivities. DNA and RNA mono-alkylation adducts and crosslinks were carefully analyzed in a dose- and time-dependent manner in various matrices, including human cancer and primary cells, derived of the main SM-target tissues. Nucleic acid adducts were detected up to 6 days post-exposure, indicating long persistence, which highlights their toxicological relevance and proves their suitability as forensic and medical biomarkers. Finally, we investigated ex vivo-treated rat skin biopsies and human blood samples, which set the basis for the implementation into the method portfolio of Organization for the Prohibition of Chemical Weapons-designated laboratories to analyze authentic samples from SM-exposed victims.
Collapse
|
17
|
Timperley CM, Forman JE, Abdollahi M, Al-Amri AS, Alonso IP, Baulig A, Borrett V, Cariño FA, Curty C, Berrutti DG, Kovarik Z, Martínez-Álvarez R, Mikulak R, Mourão NMF, Ponnadurai R, Neffe S, Raza SK, Rubaylo V, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Zaitsev V, Waqar F, Zina MS, Blum MM, Gregg H, Fischer E, Sun S, Yang P. Advice on chemical weapons sample stability and storage provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons to increase investigative capabilities worldwide. Talanta 2018; 188:808-832. [DOI: 10.1016/j.talanta.2018.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 01/12/2023]
|
18
|
Zubel T, Bürkle A, Mangerich A. Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: Are DNA adducts suitable biomarkers of exposure? Toxicol Lett 2018; 293:21-30. [DOI: 10.1016/j.toxlet.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/10/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
|
19
|
Xu H, Gao Z, Wang P, Xu B, Zhang Y, Long L, Zong C, Guo L, Jiang W, Ye Q, Wang L, Xie J. Biological effects of adipocytes in sulfur mustard induced toxicity. Toxicology 2017; 393:140-149. [PMID: 29129815 DOI: 10.1016/j.tox.2017.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/14/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
Sulphur mustard (2,2'-dichloroethyl sulfide; SM) is a vesicant chemical warfare agent whose mechanism of acute or chronic action is not known with any certainty and to date there is no effective antidote. SM accumulation in adipose tissue (AT) has been originally verified in our previous study. To evaluate the biological effect caused by the presence of abundant SM in adipocyte and assess the biological role of AT in SM poisoning, in vitro and in vivo experiments were performed. High content analysis revealed multi-cytotoxicity in SM exposed cells in a time and dose dependent manner, and adipocytes showed a relative moderate damage compared with non-adipocytes. Cell co-culture model was established and revealed the adverse effect of SM-exposed adipocyte supernatant on the growth of co-cultured cells. The pathological changes in AT from 10mg/kg SM percutaneously exposed rats were checked and inflammation phenomena were observed. The mRNA and protein levels of inflammation-related adipokines secreted from AT in rats exposed to 1, 3 and 10mg/kg doses of SM were determined by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assays. The expressions of proinflammatory and anti-inflammatory adipokines together promoted the inflammation development in the body. The positive correlations between AT and serum adipokine levels were explored, which demonstrated a substantial role of AT in systemic inflammation responding to SM exposure. Thus, AT is not only a target of SM but also a modulator in the SM toxicity.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Zhongcai Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China; The Rocket Force General Hospital, PLA, No. 16, Xinjiekouwai Street, Xicheng District, Beijing 100088, China
| | - Peng Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Long Long
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Cheng Zong
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Weijian Jiang
- The Rocket Force General Hospital, PLA, No. 16, Xinjiekouwai Street, Xicheng District, Beijing 100088, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Lili Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Lv S, Zhang Y, Xu B, Xu H, Zhao Y, Chen J, Gao Z, Wu J, Xie J. Synthesis, Characterization, and Identification of New in Vitro Covalent DNA Adducts of Divinyl Sulfone, an Oxidative Metabolite of Sulfur Mustard. Chem Res Toxicol 2017; 30:1874-1882. [DOI: 10.1021/acs.chemrestox.7b00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shanshan Lv
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Yumei Zhao
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Zhongcai Gao
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology
and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute
of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
21
|
Orlova OI, Savel’eva EI, Karakashev GV. Methods of determination of sulfur yperite–DNA adducts. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Giesche R, John H, Kehe K, Schmidt A, Popp T, Balzuweit F, Thiermann H, Gudermann T, Steinritz D. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA. Chem Biol Interact 2016; 262:12-18. [PMID: 27923644 DOI: 10.1016/j.cbi.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 01/27/2023]
Abstract
Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus crucial for DNA quantification with fluorescent dyes in the presence of alkylating compounds.
Collapse
Affiliation(s)
- Robert Giesche
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Kai Kehe
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; Bundeswehr Medical Academy, 80937 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Frank Balzuweit
- Comprehensive Pneumology Center Munich (CPCM), German Center for Lung Research, 81377 Munich, Germany; Bundeswehr Medical Command, 56070 Koblenz, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; Comprehensive Pneumology Center Munich (CPCM), German Center for Lung Research, 81377 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
23
|
Joseph LB, Composto GM, Heck DE. Tissue injury and repair following cutaneous exposure of mice to sulfur mustard. Ann N Y Acad Sci 2016; 1378:118-123. [PMID: 27371823 DOI: 10.1111/nyas.13125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022]
Abstract
In mouse skin, sulfur mustard (SM) is a potent vesicant, damaging both the epidermis and the dermis. The extent of wounding is dependent on the dose of SM and the duration of exposure. Initial responses include erythema, pruritus, edema, and xerosis; this is followed by an accumulation of inflammatory leukocytes in the tissue, activation of mast cells, and the release of mediators, including proinflammatory cytokines and bioactive lipids. These proinflammatory mediators contribute to damaging the epidermis, hair follicles, and sebaceous glands and to disruption of the epidermal basement membrane. This can lead to separation of the epidermis from the dermis, resulting in a blister, which ruptures, leading to the formation of an eschar. The eschar stimulates the formation of a neoepidermis and wound repair and may result in persistent epidermal hyperplasia. Epidermal damage and repair is associated with upregulation of enzymes generating proinflammatory and pro-growth/pro-wound healing mediators, including cyclooxygenase-2, which generates prostanoids, inducible nitric oxide synthase, which generates nitric oxide, fibroblast growth factor receptor 2, and galectin-3. Characterization of the mediators regulating structural changes in the skin during SM-induced tissue damage and wound healing will aid in the development of therapeutic modalities to mitigate toxicity and stimulate tissue repair processes.
Collapse
Affiliation(s)
- Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.
| | - Gabriella M Composto
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Diane E Heck
- Department of Environmental Science, New York Medical College, Valhalla, New York
| |
Collapse
|
24
|
Xu B, Zong C, Zhang Y, Zhang T, Wang X, Qi M, Wu J, Guo L, Wang P, Chen J, Liu Q, Xu H, Xie J, Zhang Z. Accumulation of intact sulfur mustard in adipose tissue and toxicokinetics by chemical conversion and isotope-dilution liquid chromatography-tandem mass spectrometry. Arch Toxicol 2016; 91:735-747. [PMID: 27351766 DOI: 10.1007/s00204-016-1774-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/20/2016] [Indexed: 11/26/2022]
Abstract
Sulfur mustard (SM) is a powerful vesicant and one of the most harmful chemical warfare agents. Although having been studied for a long time, it is still difficult to fully elucidate the mechanisms of SM poisoning, and there is no effective antidote or specific treatment for SM injury. The investigations on toxicokinetics and tissue distribution of SM will help to understand its toxicity and provide a theoretical basis for pretreatment and therapy of SM poisoning. But the metabolic trajectory or fate of intact SM in vivo remains unclear, and there are insufficient experimental data to elucidate, due to its high reactivity and difficulty in biomedical sample analysis. In this paper, a sensitive method for the detection and quantification of intact SM in blood or tissues using isotope-dilution LC-MS/MS coupled with chemical conversion was developed. By transforming highly reactive SM into stable derivative product, the real concentration of intact SM in biological samples was obtained accurately. The toxicokinetics and tissue distribution studies of intact SM in rats were successfully profiled by the novel method after intravenous (10 mg/kg) or cutaneous administration (1, 3 and 10 mg/kg). The SM level in blood with peak time at 30-60 min determined in cutaneous exposure experiment was found much higher than previously reported, and the mean residence time in blood extended to 1-1.5 h. A significant accumulation of intact SM was observed in adipose tissues, including the perirenal fat, epididymal fat, subcutaneous fat and brown fat, in which the concentrations of SM were at least 15 times greater than those in non-adipose tissues in cutaneous exposed rats. The recovery of SM in body fat was calculated as 3.3 % of bioavailable SM (the bioavailability after cutaneous exposure was evaluated as 16 %). Thus, the adipose tissue was important for SM distribution and toxicity, which may pioneer a new model for both the prevention and treatment of SM exposure.
Collapse
Affiliation(s)
- Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Cheng Zong
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Xiaoying Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Meiling Qi
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Peng Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Qin Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|
25
|
Liu F, Jiang N, Xiao ZY, Cheng JP, Mei YZ, Zheng P, Wang L, Zhang XR, Zhou XB, Zhou WX, Zhang YX. Effects of poly (ADP-ribose) polymerase-1 (PARP-1) inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo. PeerJ 2016; 4:e1890. [PMID: 27077006 PMCID: PMC4830333 DOI: 10.7717/peerj.1890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/14/2016] [Indexed: 01/13/2023] Open
Abstract
Early studies with first-generation poly (ADP-ribose) polymerase (PARP) inhibitors have already indicated some therapeutic potential for sulfur mustard (SM) injuries. The available novel and more potential PARP inhibitors, which are undergoing clinical trials as drugs for cancer treatment, bring it back to the centre of interest. However, the role of PARP-1 in SM-induced injury is not fully understood. In this study, we selected a high potent specific PARP inhibitor ABT-888 as an example to investigate the effect of PARP inhibitor in SM injury. The results showed that in both the mouse ear vesicant model (MEVM) and HaCaT cell model, PARP inhibitor ABT-888 can reduce cell damage induced by severe SM injury. ABT-888 significantly reduced SM induced edema and epidermal necrosis in MEVM. In the HaCaT cell model, ABT-888 can reduce SM-induced NAD(+)/ATP depletion and apoptosis/necrosis. Then, we studied the mechanism of PARP-1 in SM injury by knockdown of PARP-1 in HaCaT cells. Knockdown of PARP-1 protected cell viability and downregulated the apoptosis checkpoints, including p-JNK, p-p53, Caspase 9, Caspase 8, c-PARP and Caspase 3 following SM-induced injury. Furthermore, the activation of AKT can inhibit autophagy via the regulation of mTOR. Our results showed that SM exposure could significantly inhibit the activation of Akt/mTOR pathway. Knockdown of PARP-1 reversed the SM-induced suppression of the Akt/mTOR pathway. In summary, the results of our study indicated that the protective effects of downregulation of PARP-1 in SM injury may be due to the regulation of apoptosis, necrosis, energy crisis and autophagy. However, it should be noticed that PARP inhibitor ABT-888 further enhanced the phosphorylation of H2AX (S139) after SM exposure, which indicated that we should be very careful in the application of PARP inhibitors in SM injury treatment because of the enhancement of DNA damage.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Zhi-Yong Xiao
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Jun-Ping Cheng
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Yi-Zhou Mei
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Pan Zheng
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Li Wang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Xiao-Rui Zhang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Xin-Bo Zhou
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Wen-Xia Zhou
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Yong-Xiang Zhang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
26
|
Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature. Toxicol Lett 2016; 241:71-81. [DOI: 10.1016/j.toxlet.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 11/23/2022]
|
27
|
Mangerich A, Debiak M, Birtel M, Ponath V, Balszuweit F, Lex K, Martello R, Burckhardt-Boer W, Strobelt R, Siegert M, Thiermann H, Steinritz D, Schmidt A, Bürkle A. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicol Lett 2015; 244:56-71. [PMID: 26383629 DOI: 10.1016/j.toxlet.2015.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of N7-ETE-guanine DNA adducts, the excision rate of CEES-induced DNA adducts was not affected by PARP inhibition. Furthermore, while CEES induced moderate changes in cellular NAD(+) levels, annexin V/PI flow cytometry analysis revealed that these changes did not affect CEES-induced short-term cytotoxicity 24h after treatment. In contrast, PARP inhibition impaired cell proliferation and clonogenic survival, and potentiated micronuclei formation of HaCaT cells upon CEES treatment. Similarly, PARP inhibition affected clonogenic survival of cells treated with bi-functional mustards such as SM and HN2. In conclusion, we demonstrate that PARylation plays a functional role in mustard-induced cellular stress response with substance-specific differences. Since PARP inhibitors exhibit therapeutic potential to treat SM-related pathologies and to sensitize cancer cells for mustard-based chemotherapy, potential long-term effects of PARP inhibition on genomic stability and carcinogenesis should be carefully considered when pursuing such a strategy.
Collapse
Affiliation(s)
- Aswin Mangerich
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Malgorzata Debiak
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Matthias Birtel
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Viviane Ponath
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Frank Balszuweit
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Kirsten Lex
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Rita Martello
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Waltraud Burckhardt-Boer
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Romano Strobelt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, 80336 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Alexander Bürkle
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany.
| |
Collapse
|
28
|
Gruppi F, Hejazi L, Christov PP, Krishnamachari S, Turesky RJ, Rizzo CJ. Characterization of nitrogen mustard formamidopyrimidine adduct formation of bis(2-chloroethyl)ethylamine with calf thymus DNA and a human mammary cancer cell line. Chem Res Toxicol 2015; 28:1850-60. [PMID: 26285869 DOI: 10.1021/acs.chemrestox.5b00297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A robust, quantitative ultraperformance liquid chromatography ion trap multistage scanning mass spectrometric (UPLC/MS(3)) method was established to characterize and measure five guanine adducts formed by reaction of the chemotherapeutic nitrogen mustard (NM) bis(2-chloroethyl)ethylamine with calf thymus (CT) DNA. In addition to the known N7-guanine (NM-G) adduct and its cross-link (G-NM-G), the ring-opened formamidopyrimidine (FapyG) monoadduct (NM-FapyG) and cross-links in which one (FapyG-NM-G) or both (FapyG-NM-FapyG) guanines underwent ring-opening to FapyG units were identified. Authentic standards of all adducts were synthesized and characterized by NMR and mass spectrometry. These adducts were quantified in CT DNA treated with NM (1 μM) as their deglycosylated bases. A two-stage neutral thermal hydrolysis was developed to mitigate the artifactual formation of ring-opened FapyG adducts involving hydrolysis of the cationic adduct at 37 °C, followed by hydrolysis of the FapyG adducts at 95 °C. The limit of quantification values ranged between 0.3 and 1.6 adducts per 10(7) DNA bases when the equivalent of 5 μg of DNA hydrolysate was assayed on column. The principal adduct formed was the G-NM-G cross-link, followed by the NM-G monoadduct; the FapyG-NM-G cross-link adduct; and the FapyG-NM-FapyG was below the limit of detection. The NM-FapyG adducts were formed in CT DNA at a level ∼20% that of the NM-G adduct. NM-FapyG has not been previously quanitified, and the FapyG-NM-G and FapyG-NM-FapyG adducts have not been previously characterized. Our validated analytical method was then applied to measure DNA adduct formation in the MDA-MB-231 mammary tumor cell line exposed to NM (100 μM) for 24 h. The major adduct formed was NM-G (970 adducts per 10(7) bases), followed by G-NM-G (240 adducts per 10(7) bases), NM-FapyG (180 adducts per 10(7) bases), and, last, the FapyG-NM-G cross-link adduct (6.0 adducts per 10(7) bases). These lesions are expected to contribute to NM-mediated toxicity and genotoxicity in vivo.
Collapse
Affiliation(s)
- Francesca Gruppi
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Leila Hejazi
- Masonic Cancer Center and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota , 2231 Sixth Street South East, Minneapolis, Minnesota 55455, United States
| | - Plamen P Christov
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Sesha Krishnamachari
- Masonic Cancer Center and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota , 2231 Sixth Street South East, Minneapolis, Minnesota 55455, United States
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota , 2231 Sixth Street South East, Minneapolis, Minnesota 55455, United States
| | - Carmelo J Rizzo
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
29
|
Wang P, Zhang Y, Chen J, Guo L, Xu B, Wang L, Xu H, Xie J. Analysis of different fates of DNA adducts in adipocytes post-sulfur mustard exposure in vitro and in vivo using a simultaneous UPLC-MS/MS quantification method. Chem Res Toxicol 2015; 28:1224-33. [PMID: 25955432 DOI: 10.1021/acs.chemrestox.5b00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur mustard (SM) is a powerful alkylating vesicant that can rapidly penetrate skin, ocular, and lung bronchus mucous membranes and react with numerous nucleophiles in vivo. Although the lesion mechanisms of SM remain unclear, DNA damage is believed to be the most crucial factor in initiating SM-induced toxicity. Four major DNA adducts were identified for retrospective detection and DNA lesion evaluation, namely, N(7)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (N(7)-HETEG), bis(2-ethyl-N(7)-guanine)thioether (Bis-G), N(3)-(2-hydroxyethylthioethyl)-2'-adenine (N(3)-HETEA), and O(6)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (O(6)-HETEG). Because of previous observations that the levels of SM-DNA adducts were relatively higher in adipose-rich organs, such as the brain, we focused on the in vitro and in vivo fates of the DNA adducts in exposed adipocytes. A UPLC-MS/MS method developed in our laboratory was used to profile the N(7)-HETEG, Bis-G, and N(3)-HETEA levels in human mature adipocytes (HA-s) that had differentiated from human subcutaneous preadipocytes (HPA-s). This method was also used to profile three other cell lines related to the targeting of major tissues, including human keratinocytes (HaCaT), human hepatocytes (L-02), and human lung fibroblasts (HLF). Long-lasting adduct persistence and a high proportion of Bis-G were found in exposed adipocytes in vitro. The survival properties of exposed adipocytes were also tested. At the same time, the fate of SM-DNA adducts in vivo was characterized using a rat model exposed to 1 and 10 mg/kg doses of SM. The level of DNA adducts in the exposed adipose tissue (AT) was much lower than those in other organs studied in our previous work. The adduct persistence behavior was observed in AT with an extremely high proportion of Bis-G, which was higher than N(7)-HETEG. In light of these results, we suggest that an adipose-rich environment may promote the formation of Bis-G and that adipocyte-specific DNA repair mechanisms may result in adduct persistence and the survival of adipocytes after SM exposure. These conclusions should be further investigated.
Collapse
Affiliation(s)
- Peng Wang
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yajiao Zhang
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jia Chen
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Bin Xu
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lili Wang
- ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Hua Xu
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jianwei Xie
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|
30
|
Yue L, Zhang Y, Chen J, Zhao Z, Liu Q, Wu R, Guo L, He J, Zhao J, Xie J, Peng S. Distribution of DNA adducts and corresponding tissue damage of Sprague-Dawley rats with percutaneous exposure to sulfur mustard. Chem Res Toxicol 2015; 28:532-40. [PMID: 25650027 DOI: 10.1021/tx5004886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sulfur mustard (SM) is a highly reactive alkylation vesicant and cytotoxic agent that has been recognized as an animal and human carcinogen. Although the exact mechanism of toxicology is vague, DNA alkylation seems to be responsible for the triggering of apoptosis. In this study, after male adult Sprague-Dawley rats were cutaneous exposed to a low concentration of SM at parts-per-million levels, their lungs, livers, pancreases, spleens, marrow, and brains were collected at 11 different time points and analyzed. N7-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (N7-HETEG), N3-[2-[(2-hydroxyethyl)thio]-ethyl]adenine (N3-HETEA), and bis[2-(guanin-7-yl)ethyl]sulfide (Bis-G) as the biomarkers for DNA damage were measured in the vital tissues by isotope dilution ultraperformance liquid chromatography tandem mass spectrometry (ID-UPLC-MS/MS). At the same time, general variations and pathological changes were monitored and detected to evaluate the tissue damage. Time- and dose-dependent data showed that SM had strong permeability and reactivity and that three SM-DNA adducts were detected in all investigated tissues only after 10 min after exposure. Obvious dose-dependency was observed except in the brain and pancreas. Most times to peak (tmax) of all three adducts were less than 3 h, while half-lifetimes (t1/2) were less than 24 h. We also suggested that the lipophilic SM can easily pass through the blood-brain barrier and can be stored in the fatty organs. To the best of our knowledge, the abundant adducts in marrow were found and reported for the first time. The surveillance of N7-HETEG in vivo, which was the most abundant adduct, may be the most efficient indicator to validate SM exposure even without any symptoms. Bis-G can be regarded as a biomarker of effect, which is directly related to the extent of damage. The most abundant Bis-G was found in the most sensitive tissues, marrow, spleen, and lung, which is in good accordance with histopathologic results. General variations and pathological changes were evaluated as well. After cutaneous exposure to SM, the body weights of rats heavily decreased in the first 4 days and were inversely proportional to the applied doses, and then recovered at the last experimental day except for those of the rats at the highest dosing level, in which the relative weights of rat spleens were obviously lost. Moreover, we found remarkable histological changes of the lung and skin, such as encephalemia, at the very beginning of the sampling procedure, and plentiful mononuclear cells in marrow appeared 6 h after exposure. The micronucleus test of marrow cells showed that the micronucleus rate had a positively dose-dependent effect.
Collapse
Affiliation(s)
- Lijun Yue
- State Key Laboratory for Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , No. 27 Taiping Road, Haidian District, 100850, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Batal M, Rebelo-Moreira S, Hamon N, Bayle PA, Mouret S, Cléry-Barraud C, Boudry I, Douki T. A guanine-ethylthioethyl-glutathione adduct as a major DNA lesion in the skin and in organs of mice exposed to sulfur mustard. Toxicol Lett 2015; 233:1-7. [PMID: 25562541 DOI: 10.1016/j.toxlet.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 01/10/2023]
Abstract
Sulfur mustard (SM) is an old chemical warfare but it remains a threat to both militaries and civilians. SM mainly targets skin, eyes and lungs and diffuses to internal organs. At the molecular level, SM is able to damage DNA through the formation of monoadducts and biadduct. Glutathione (GSH) is another critical target of SM in cells since it is part of the detoxification mechanism against alkylating agents. In the present work, we investigated whether SM could form covalent bonds simultaneously with a DNA base and the sulfhydryl group of GSH. The expected guanine adduct, S-[2-(N7-guanyl)-ethylthioethyl]-glutathione (N7Gua-ETE-GSH), was synthesized and detected in several tissues of SKH-1 mice exposed to 60mg/kg of SM in the dorsal-lumbar region. N7Gua-ETE-GSH was detected in all organs studied, except in the liver. The tissue exhibiting the highest levels of N7Gua-ETE-GSH was skin, followed by brain, lungs, kidneys and spleen. N7Gua-ETE-GSH was detected in skin, brain and lungs as long as two weeks after exposure. The persistence was less in other organs. The observation of the formation of N7Gua-ETE-GSH in vivo confirms the variety of damages induced by SM in DNA. It also provides another example of the formation of DNA adducts involving glutathione following in vivo exposure to bifunctional alkylating compounds.
Collapse
Affiliation(s)
- Mohamed Batal
- Univ. Grenoble Alpes, INAC, LCIB, LAN, F-38000 Grenoble, France; CEA, INAC, SCIB, LAN, F-38000 Grenoble, France; Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex, France
| | - Silvestre Rebelo-Moreira
- Univ. Grenoble Alpes, INAC, LCIB, LAN, F-38000 Grenoble, France; CEA, INAC, SCIB, LAN, F-38000 Grenoble, France
| | - Nadège Hamon
- Univ. Grenoble Alpes, INAC, LCIB, LAN, F-38000 Grenoble, France; CEA, INAC, SCIB, LAN, F-38000 Grenoble, France
| | - Pierre-Alain Bayle
- Univ. Grenoble Alpes, INAC, LCIB, LAN, F-38000 Grenoble, France; CEA, INAC, SCIB, LRM, F-38000 Grenoble, France
| | - Stéphane Mouret
- Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex, France
| | - Cécile Cléry-Barraud
- Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex, France
| | - Isabelle Boudry
- Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, BP87, F-38702 La Tronche Cedex, France
| | - Thierry Douki
- Univ. Grenoble Alpes, INAC, LCIB, LAN, F-38000 Grenoble, France; CEA, INAC, SCIB, LAN, F-38000 Grenoble, France.
| |
Collapse
|
32
|
Xu H, Nie Z, Zhang Y, Li C, Yue L, Yang W, Chen J, Dong Y, Liu Q, Lin Y, Wu B, Feng J, Li H, Guo L, Xie J. Four sulfur mustard exposure cases: Overall analysis of four types of biomarkers in clinical samples provides positive implication for early diagnosis and treatment monitoring. Toxicol Rep 2014; 1:533-543. [PMID: 28962267 PMCID: PMC5598347 DOI: 10.1016/j.toxrep.2014.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 11/23/2022] Open
Abstract
In one event, Chinese male individuals accidentally exposed to unknown chemicals and emerged erythema or blisters on contacted organism derma, then hospitalized. To identify the causative agents, blood, urine and exudate samples were collected from the patients during the therapeutic course. Five established liquid chromatography-mass spectrometry (LC-MS) and gas chromatography (GC)-MS methods were employed to analyze the samples. Here, an overall analysis of four types of sulfur mustard biomarkers, including the hydrolysis/oxidation products, β-lyase metabolites, DNA adducts and hemoglobin adducts, was conducted toward the samples from exposed individuals. The results of all the four types of biomarkers in different biomedical matrices showed high relevance, and verified that this exposure is indeed originated from sulfur mustard. The concentrations of the biomarkers in specimens revealed a good correlation with the severity of the patient's symptom. The concentration-time profile demonstrated that most of the biomarkers quickly achieved maximum at the beginning of the course, and then decreased and kept a detectable level until the 7th day after exposure. The DNA adducts in urine samples still appeared on the 30th day, and the N-terminal valine adducts in hemoglobin could be monitored for over 90 days, which was meaningful for the concurrent study of clinical samples. To the best of our knowledge, this work provides the total analysis and profile of four categories of biomarkers in human specimens for the first time, and the good accordance between concentration and level of burns, between time course and biomarkers will be of great importance for early diagnosis and medical treatment monitoring of sulfur mustard exposure.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Chunzheng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Lijun Yue
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | | | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Yuan Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Qin Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Ying Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Bidong Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Jianlin Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Hua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 100850 Beijing, China
| |
Collapse
|