1
|
Zhu F, Li K, Cao M, Zhang Q, Zhou Y, Chen H, AlKhazindar M, Ji Z. NbNAC1 enhances plant immunity against TMV by regulating isochorismate synthase 1 expression and the SA pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17242. [PMID: 39968571 DOI: 10.1111/tpj.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Salicylic acid (SA) plays important roles in plant local and systemic resistance. Isochorismate synthase 1 (ICS1) is a key enzyme in SA synthesis. Pathogens infection triggered the ICS1 expression and induced SA production. However, the molecular regulation mechanism of ICS1 against virus infection remains unclear. Here, we employed molecular genetics and physiobiochemical approaches to confirm a transcription factor NbNAC1 from Nicotiana benthamiana is a positive regulator of resistance against tobacco mosaic virus (TMV). The pathways NbNAC1 and NbICS1 can be triggered by TMV infection. Silencing NbNAC1 accelerated TMV-induced oxidative damage and increased reactive oxygen species (ROS) production. It also weakened both local and systemic resistance against TMV and decreased the expression of NbICS1, SA signaling gene NbNPR1, and SA defense-related genes. The effects of NbNAC1-silencing were restored by overexpression of NbICS1 or foliar SA applications. Overexpressing NbNAC1 prevented oxidative damage and reduced the production of ROS, enhanced plant resistance against viral pathogen, and activated NbICS1 expression, and SA downstream signaling and defense-related genes. NbNAC1 localized in nuclear and emerged the ability of transcriptional regulation. ChIP and EMSA results indicated that NbNAC1 directly binds to a fragment containing GAAATT motif of NbICS1 promoter. Luciferase reporter assays confirmed that NbNAC1 activates NbICS1 expression. Taken together, our results demonstrate that NbNAC1 plays a critical role in plant immunity through activation of SA production.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kainan Li
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Mengyao Cao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiping Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yangkai Zhou
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Zhaolin Ji
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
2
|
Dong B, Liu Y, Huang G, Song A, Chen S, Jiang J, Chen F, Fang W. Plant NAC transcription factors in the battle against pathogens. BMC PLANT BIOLOGY 2024; 24:958. [PMID: 39396978 PMCID: PMC11472469 DOI: 10.1186/s12870-024-05636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The NAC transcription factor family, which is recognized as one of the largest plant-specific transcription factor families, comprises numerous members that are widely distributed among various higher plant species and play crucial regulatory roles in plant immunity. RESULTS In this paper, we provided a detailed summary of the roles that NAC transcription factors play in plant immunity via plant hormone pathways and reactive oxygen species pathways. In addition, we conducted in-depth investigations into the interactions between NAC transcription factors and pathogen effectors to summarize the mechanism through which they regulate the expression of defense-related genes and ultimately affect plant disease resistance. CONCLUSIONS This paper presented a comprehensive overview of the crucial roles that NAC transcription factors play in regulating plant disease resistance through their involvement in diverse signaling pathways, acting as either positive or negative regulators, and thus provided references for further research on NAC transcription factors.
Collapse
Affiliation(s)
- Boxiao Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| | - Gan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
3
|
Nakamura S, Kinoshita A, Koga H, Tsukaya H. Expression analyses of CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS in the one-leaf plant Monophyllaea glabra reveal neoteny evolution of shoot meristem. Sci Rep 2024; 14:11148. [PMID: 38750143 PMCID: PMC11096313 DOI: 10.1038/s41598-024-62049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
The one-leaf plant Monophyllaea glabra exhibits a unique developmental manner in which only one cotyledon continues growing without producing new vegetative organs. This morphology is formed by specific meristems, the groove meristem (GM) and the basal meristem (BM), which are thought to be modified shoot apical meristem (SAM) and leaf meristem. In this study, we analysed the expression of the organ boundary gene CUP-SHAPED COTYLEDON (CUC) and the SAM maintenance gene SHOOT MERISTEMLESS (STM) orthologs by whole-mount in situ hybridisation. We found that CUCs did not show clear border patterns around GM and BM during the vegetative phase. Furthermore, double-colour detection analysis at the cellular level revealed that CUC and STM expression overlapped in the GM region during the vegetative phase. We also found that this overlap is dissolved in the reproductive phase when normal shoot organogenesis is observed. Since co-expression of these genes occurs during SAM initiation under embryogenesis in Arabidopsis, our results demonstrate that GM is a prolonged stage of pre-mature SAM. Therefore, we propose that neotenic meristems could be a novel plant trait acquired by one-leaf plants.
Collapse
Affiliation(s)
- Shunji Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ayaka Kinoshita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Song SS, Ran WX, Gao LH, Wang YC, Lv WY, Tao Y, Chen L, Li CF. A functional study reveals CsNAC086 regulated the biosynthesis of flavonols in Camellia sinensis. PLANTA 2024; 259:147. [PMID: 38714547 DOI: 10.1007/s00425-024-04426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/26/2024] [Indexed: 05/10/2024]
Abstract
MAIN CONCLUSION CsNAC086 was found to promote the expression of CsFLS, thus promoting the accumulation of flavonols in Camellia sinensis. Flavonols, the main flavonoids in tea plants, play an important role in the taste and quality of tea. In this study, a NAC TF gene CsNAC086 was isolated from tea plants and confirmed its regulatory role in the expression of flavonol synthase which is a key gene involved in the biosynthesis of flavonols in tea plant. Yeast transcription-activity assays showed that CsNAC086 has self-activation activity. The transcriptional activator domain of CsNAC086 is located in the non-conserved C-terminal region (positions 171-550), while the conserved NAC domain (positions 1-170) does not have self-activation activity. Silencing the CsNAC086 gene using antisense oligonucleotides significantly decreased the expression of CsFLS. As a result, the concentration of flavonols decreased significantly. In overexpressing CsNAC086 tobacco leaves, the expression of NtFLS was significantly increased. Compared with wild-type tobacco, the flavonols concentration increased. Yeast one-hybrid assays showed CsNAC086 did not directly regulate the gene expression of CsFLS. These findings indicate that CsNAC086 plays a role in regulating flavonols biosynthesis in tea plants, which has important implications for selecting and breeding of high-flavonols-concentration containing tea-plant cultivars.
Collapse
Affiliation(s)
- Sa-Sa Song
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wei-Xi Ran
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Long-Han Gao
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yu-Chun Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wu-Yun Lv
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yu Tao
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Chun-Fang Li
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, 311300, China.
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
5
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
6
|
Wang W, Chen S, Zhong G, Gao C, Zhang Q, Tang D. MITOGEN-ACTIVATED PROTEIN KINASE3 enhances disease resistance of edr1 mutants by phosphorylating MAPKKK5. PLANT PHYSIOLOGY 2023; 194:578-591. [PMID: 37638889 DOI: 10.1093/plphys/kiad472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades are key signaling modules that regulate plant immunity. ENHANCED DISEASE RESISTANCE1 (EDR1) encodes a Raf-like MAPK kinase kinase (MAPKKK) that negatively regulates plant defense in Arabidopsis (Arabidopsis thaliana). The enhanced resistance of edr1 requires MAPK KINASE4 (MKK4), MKK5, and MPK3. Although the edr1 mutant displays higher MPK3/6 activation, the mechanism by which plants increase MAPK cascade activation remains elusive. Our previous study showed that MAPKKK5 is phosphorylated at the Ser-90 residue in edr1 mutants. In this study, we demonstrated that the enhanced disease resistance of edr1 required MAPKKK5. Phospho-dead MAPKKK5S90A partially impaired the resistance of edr1, and the expression of phospho-mimetic MAPKKK5S90D in mapkkk5-2 resulted in enhanced resistance to the powdery mildew Golovinomyces cichoracearum strain UCSC1 and the bacterial pathogen Pseudomonas syringae pv. tomato (Pto) strain DC3000. Thus, Ser-90 phosphorylation in MAPKKK5 appears to play a crucial role in disease resistance. However, MAPKKK5-triggered cell death was not suppressed by EDR1. Furthermore, activated MPK3 phosphorylated the N terminus of MAPKKK5, and Ser-90 was one of the phosphorylated sites. Ser-90 phosphorylation increased MAPKKK5 stability, and EDR1 might negatively regulate MAPK cascade activation by suppressing the MPK3-mediated feedback regulation of MAPKKK5. Taken together, these results indicate that MPK3 phosphorylates MAPKKK5 to enhance MAPK cascade activation and disease resistance in edr1 mutants.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuling Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qin Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Shakir S, Mubin M, Nahid N, Serfraz S, Qureshi MA, Lee TK, Liaqat I, Lee S, Nawaz-ul-Rehman MS. REPercussions: how geminiviruses recruit host factors for replication. Front Microbiol 2023; 14:1224221. [PMID: 37799604 PMCID: PMC10548238 DOI: 10.3389/fmicb.2023.1224221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics Lab, Gembloux Agro-Bio Tech, University of Liѐge, Gembloux, Belgium
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saad Serfraz
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
8
|
Kasi Viswanath K, Hamid A, Ateka E, Pappu HR. CRISPR/Cas, Multiomics, and RNA Interference in Virus Disease Management. PHYTOPATHOLOGY 2023; 113:1661-1676. [PMID: 37486077 DOI: 10.1094/phyto-01-23-0002-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Plant viruses infect a wide range of commercially important crop plants and cause significant crop production losses worldwide. Numerous alterations in plant physiology related to the reprogramming of gene expression may result from viral infections. Although conventional integrated pest management-based strategies have been effective in reducing the impact of several viral diseases, continued emergence of new viruses and strains, expanding host ranges, and emergence of resistance-breaking strains necessitate a sustained effort toward the development and application of new approaches for virus management that would complement existing tactics. RNA interference-based techniques, and more recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technologies have paved the way for precise targeting of viral transcripts and manipulation of viral genomes and host factors. In-depth knowledge of the molecular mechanisms underlying the development of disease would further expand the applicability of these recent methods. Advances in next-generation/high-throughput sequencing have made possible more intensive studies into host-virus interactions. Utilizing the omics data and its application has the potential to expedite fast-tracking traditional plant breeding methods, as well as applying modern molecular tools for trait enhancement, including virus resistance. Here, we summarize the recent developments in the CRISPR/Cas system, transcriptomics, endogenous RNA interference, and exogenous application of dsRNA in virus disease management.
Collapse
Affiliation(s)
| | - Aflaq Hamid
- Department of Plant Pathology, Washington State University, Pullman, WA, U.S.A
| | - Elijah Ateka
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, U.S.A
| |
Collapse
|
9
|
Mazarei M, Routray P, Piya S, Stewart CN, Hewezi T. Overexpression of soybean GmNAC19 and GmGRAB1 enhances root growth and water-deficit stress tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1186292. [PMID: 37324708 PMCID: PMC10264791 DOI: 10.3389/fpls.2023.1186292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is an important crop in agricultural production where water shortage limits yields in soybean. Root system plays important roles in water-limited environments, but the underlying mechanisms are largely unknown. In our previous study, we produced a RNA-seq dataset generated from roots of soybean at three different growth stages (20-, 30-, and 44-day-old plants). In the present study, we performed a transcriptome analysis of the RNA-seq data to select candidate genes with probable association with root growth and development. Candidate genes were functionally examined in soybean by overexpression of individual genes using intact soybean composite plants with transgenic hairy roots. Root growth and biomass in the transgenic composite plants were significantly increased by overexpression of the GmNAC19 and GmGRAB1 transcriptional factors, showing up to 1.8-fold increase in root length and/or 1.7-fold increase in root fresh/dry weight. Furthermore, greenhouse-grown transgenic composite plants had significantly higher seed yield by about 2-fold than control plants. Expression profiling in different developmental stages and tissues showed that GmNAC19 and GmGRAB1 were most highly expressed in roots, displaying a distinct root-preferential expression. Moreover, we found that under water-deficit conditions, overexpression of GmNAC19 enhanced water stress tolerance in transgenic composite plants. Taken together, these results provide further insights into the agricultural potential of these genes for development of soybean cultivars with improved root growth and enhanced tolerance to water-deficit conditions.
Collapse
Affiliation(s)
- Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Pratyush Routray
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
10
|
Viswanath KK, Kuo SY, Tu CW, Hsu YH, Huang YW, Hu CC. The Role of Plant Transcription Factors in the Fight against Plant Viruses. Int J Mol Sci 2023; 24:ijms24098433. [PMID: 37176135 PMCID: PMC10179606 DOI: 10.3390/ijms24098433] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.
Collapse
Affiliation(s)
- Kotapati Kasi Viswanath
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Tu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
11
|
Zhou S, Luo Q, Nie Z, Wang C, Zhu W, Hong Y, Zhao J, Pei B, Ma W. CRK41 Modulates Microtubule Depolymerization in Response to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1285. [PMID: 36986973 PMCID: PMC10051889 DOI: 10.3390/plants12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The pivotal role of cysteine-rich receptor-like kinases (CRKs) in modulating growth, development, and responses to stress has been widely acknowledged in Arabidopsis. However, the function and regulation of CRK41 has remained unclear. In this study, we demonstrate that CRK41 is critical for modulating microtubule depolymerization in response to salt stress. The crk41 mutant exhibited increased tolerance, while overexpression of CRK41 led to hypersensitivity to salt. Further analysis revealed that CRK41 interacts directly with the MAP kinase3 (MPK3), but not with MPK6. Inactivation of either MPK3 or MPK6 could abrogate the salt tolerance of the crk41 mutant. Upon NaCl treatment, microtubule depolymerization was heightened in the crk41 mutant, yet alleviated in the crk41mpk3 and crk41mpk6 double mutants, indicating that CRK41 suppresses MAPK-mediated microtubule depolymerizations. Collectively, these results reveal that CRK41 plays a crucial role in regulating microtubule depolymerization triggered by salt stress through coordination with MPK3/MPK6 signalling pathways, which are key factors in maintaining microtubule stability and conferring salt stress resistance in plants.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Qiuling Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Changhui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baolei Pei
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
12
|
Valoroso MC, Lucibelli F, Aceto S. Orchid NAC Transcription Factors: A Focused Analysis of CUPULIFORMIS Genes. Genes (Basel) 2022; 13:genes13122293. [PMID: 36553560 PMCID: PMC9777940 DOI: 10.3390/genes13122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Plant transcription factors are involved in different developmental pathways. NAC transcription factors (No Apical Meristem, Arabidopsis thaliana Activating Factor, Cup-shaped Cotyledon) act in various processes, e.g., plant organ formation, response to stress, and defense mechanisms. In Antirrhinum majus, the NAC transcription factor CUPULIFORMIS (CUP) plays a role in determining organ boundaries and lip formation, and the CUP homologs of Arabidopsis and Petunia are involved in flower organ formation. Orchidaceae is one of the most species-rich families of angiosperms, known for its extraordinary diversification of flower morphology. We conducted a transcriptome and genome-wide analysis of orchid NACs, focusing on the No Apical Meristem (NAM) subfamily and CUP genes. To check whether the CUP homologs could be involved in the perianth formation of orchids, we performed an expression analysis on the flower organs of the orchid Phalaenopsis aphrodite at different developmental stages. The expression patterns of the CUP genes of P. aphrodite suggest their possible role in flower development and symmetry establishment. In addition, as observed in other species, the orchid CUP1 and CUP2 genes seem to be regulated by the microRNA, miR164. Our results represent a preliminary study of NAC transcription factors in orchids to understand the role of these genes during orchid flower formation.
Collapse
Affiliation(s)
- Maria Carmen Valoroso
- Department of Agricultural Sciences, University of Napoli Federico II, 80055 Portici, Italy
- Correspondence: (M.C.V.); (S.A.)
| | - Francesca Lucibelli
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
- Correspondence: (M.C.V.); (S.A.)
| |
Collapse
|
13
|
Song S, Willems LAJ, Jiao A, Zhao T, Eric Schranz M, Bentsink L. The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5514-5528. [PMID: 35604925 PMCID: PMC9467645 DOI: 10.1093/jxb/erac232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The NAC family of transcription factors is involved in plant development and various biotic and abiotic stresses. The Arabidopsis thaliana ANAC genes ANAC060, ANAC040, and ANAC089 are highly homologous based on protein and nucleotide sequence similarity. These three genes are predicted to be membrane bound transcription factors (MTFs) containing a conserved NAC domain, but divergent C-terminal regions. The anac060 mutant shows increased dormancy when compared with the wild type. Mutations in ANAC040 lead to higher seed germination under salt stress, and a premature stop codon in ANAC089 Cvi allele results in seeds exhibiting insensitivity to high concentrations of fructose. Thus, these three homologous MTFs confer distinct functions, although all related to germination. To investigate whether the differences in function are caused by a differential spatial or temporal regulation, or by differences in the coding sequence (CDS), we performed swapping experiments in which the promoter and CDS of the three MTFs were exchanged. Seed dormancy and salt and fructose sensitivity analyses of transgenic swapping lines in mutant backgrounds showed that there is functional redundancy between ANAC060 and ANAC040, but not between ANAC060 and ANAC089.
Collapse
Affiliation(s)
- Shuang Song
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Ao Jiao
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Tao Zhao
- Present address: State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, PB Wageningen, The Netherlands
| | | |
Collapse
|
14
|
Min JH, Park CR, Chung JS, Kim CS. Arabidopsis thaliana Ubiquitin-Associated Protein 1 (AtUAP1) Interacts with redundant RING Zinc Finger 1 (AtRZF1) to Negatively Regulate Dehydration Response. PLANT & CELL PHYSIOLOGY 2021; 62:1044-1057. [PMID: 34086919 DOI: 10.1093/pcp/pcab082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
Ubiquitination, one of the most frequently occurring post-translational modifications, is essential for regulating diverse cellular processes in plants during abiotic stress. The E3 ubiquitin (Ub) ligase Arabidopsis thaliana really interesting new gene (RING) zinc finger 1 (AtRZF1) mutation is known to enhance drought tolerance in A. thaliana seedlings. To further investigate the function of AtRZF1 in osmotic stress, we isolated Ub-associated protein 1 (AtUAP1) which interacts with AtRZF1 using a yeast two-hybrid system. AtUAP1, a Ub-associated motif containing protein, increased the amount of Ub-conjugated AtRZF1. Moreover, AtUAP1 RNA interference lines were more tolerant to osmotic stress than wild type, whereas AtUAP1-overexpressing (OX) transgenic lines showed sensitive responses, including cotyledon greening, water loss, proline accumulation and changes in stress-related genes expression, indicating that AtUAP1 could negatively regulate dehydration-mediated signaling. In addition, AtUAP1-green fluorescent protein fusion protein was observed in the nuclei of root cells of transgenic seedlings. Genetic studies showed that the AtRZF1 mutation could rescue the sensitive phenotype of AtUAP1-OX lines in response to osmotic stress, suggesting that AtRZF1 was epistatic to AtUAP1 in dehydration signaling. Taken together, our findings describe a new component in the AtRZF1 ubiquitination pathway which controls the dehydration response in A. thaliana.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843-2128, USA
| | - Cho-Rong Park
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung-Sung Chung
- Department of Agricultural Plant Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
15
|
Gupta N, Reddy K, Bhattacharyya D, Chakraborty✉ S. Plant responses to geminivirus infection: guardians of the plant immunity. Virol J 2021; 18:143. [PMID: 34243802 PMCID: PMC8268416 DOI: 10.1186/s12985-021-01612-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Geminiviruses are circular, single-stranded viruses responsible for enormous crop loss worldwide. Rapid expansion of geminivirus diversity outweighs the continuous effort to control its spread. Geminiviruses channelize the host cell machinery in their favour by manipulating the gene expression, cell signalling, protein turnover, and metabolic reprogramming of plants. As a response to viral infection, plants have evolved to deploy various strategies to subvert the virus invasion and reinstate cellular homeostasis. MAIN BODY Numerous reports exploring various aspects of plant-geminivirus interaction portray the subtlety and flexibility of the host-pathogen dynamics. To leverage this pool of knowledge towards raising antiviral resistance in host plants, a comprehensive account of plant's defence response against geminiviruses is required. This review discusses the current knowledge of plant's antiviral responses exerted to geminivirus in the light of resistance mechanisms and the innate genetic factors contributing to the defence. We have revisited the defence pathways involving transcriptional and post-transcriptional gene silencing, ubiquitin-proteasomal degradation pathway, protein kinase signalling cascades, autophagy, and hypersensitive responses. In addition, geminivirus-induced phytohormonal fluctuations, the subsequent alterations in primary and secondary metabolites, and their impact on pathogenesis along with the recent advancements of CRISPR-Cas9 technique in generating the geminivirus resistance in plants have been discussed. CONCLUSIONS Considering the rapid development in the field of plant-virus interaction, this review provides a timely and comprehensive account of molecular nuances that define the course of geminivirus infection and can be exploited in generating virus-resistant plants to control global agricultural damage.
Collapse
Affiliation(s)
- Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kishorekumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty✉
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
16
|
Wu X, Huang J, Cao Y, Gao Z. The resistance associated protein RIN4 promotes the extracellular transport of AtEXO70E2. Biochem Biophys Res Commun 2021; 555:40-45. [PMID: 33812057 DOI: 10.1016/j.bbrc.2021.03.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
RIN4 is an important immunomodulator in Arabidopsis, which is targeted by multiple pathogenic effectors, and consequently guarded by different immune receptors. Although RIN4 plays a significant role in plant immunity, its molecular function is not fully understood. We found that RIN4 interacts with the exocyst subunit EXO70E2. Transiently expressed RIN4 can recruits EXO70E2 vesicles to the plasma membrane, and promote the transport of the vesicles to the extracellular matrix. RIN4 also can decrease the protein level of EXO70E2. Base on the fact that EXO70 proteins positively mediates plant immunity, the function of RIN4 is to promote the extracellular export of defense related vesicles. Pathogens will secret effectors to modify or cleavage it to interfere this exocytosis.
Collapse
Affiliation(s)
- Xiaoqiu Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianzhong Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yajun Cao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
17
|
Transcriptome analysis of early stages of sorghum grain mold disease reveals defense regulators and metabolic pathways associated with resistance. BMC Genomics 2021; 22:295. [PMID: 33888060 PMCID: PMC8063297 DOI: 10.1186/s12864-021-07609-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background Sorghum grain mold is the most important disease of the crop. The disease results from simultaneous infection of the grain by multiple fungal species. Host responses to these fungi and the underlying molecular and cellular processes are poorly understood. To understand the genetic, molecular and biochemical components of grain mold resistance, transcriptome profiles of the developing grain of resistant and susceptible sorghum genotypes were studied. Results The developing kernels of grain mold resistant RTx2911 and susceptible RTx430 sorghum genotypes were inoculated with a mixture of fungal pathogens mimicking the species complexity of the disease under natural infestation. Global transcriptome changes corresponding to multiple molecular and cellular processes, and biological functions including defense, secondary metabolism, and flavonoid biosynthesis were observed with differential regulation in the two genotypes. Genes encoding pattern recognition receptors (PRRs), regulators of growth and defense homeostasis, antimicrobial peptides, pathogenesis-related proteins, zein seed storage proteins, and phytoalexins showed increased expression correlating with resistance. Notably, SbLYK5 gene encoding an orthologue of chitin PRR, defensin genes SbDFN7.1 and SbDFN7.2 exhibited higher expression in the resistant genotype. The SbDFN7.1 and SbDFN7.2 genes are tightly linked and transcribed in opposite orientation with a likely common bidirectional promoter. Interestingly, increased expression of JAZ and other transcriptional repressors were observed that suggested the tight regulation of plant defense and growth. The data suggest a pathogen inducible defense system in the developing grain of sorghum that involves the chitin PRR, MAPKs, key transcription factors, downstream components regulating immune gene expression and accumulation of defense molecules. We propose a model through which the biosynthesis of 3-deoxyanthocynidin phytoalexins, defensins, PR proteins, other antimicrobial peptides, and defense suppressing proteins are regulated by a pathogen inducible defense system in the developing grain. Conclusions The transcriptome data from a rarely studied tissue shed light into genetic, molecular, and biochemical components of disease resistance and suggested that the developing grain shares conserved immune response mechanisms but also components uniquely enriched in the grain. Resistance was associated with increased expression of genes encoding regulatory factors, novel grain specific antimicrobial peptides including defensins and storage proteins that are potential targets for crop improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07609-y.
Collapse
|
18
|
Wang J, Bao J, Zhou B, Li M, Li X, Jin J. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification. THE NEW PHYTOLOGIST 2021; 229:1566-1581. [PMID: 32964416 PMCID: PMC7821251 DOI: 10.1111/nph.16939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 05/22/2023]
Abstract
The specification of the meristem/organ boundary is critical for plant development. Here, we investigate two previously uncharacterized NAC transcription factors: the first, OsCUC1, which is negatively regulated by osa-miR164c, dimerizes with the second, OsCUC3, and functions partially redundantly in meristem/organ boundary specification in rice (Oryza sativa). We produced knockout lines for rice OsCUC1 (the homolog of Arabidopsis CUC1 and CUC2) and OsCUC3 (the homolog of Arabidopsis CUC3), as well as an overexpression line for osa-miR164c, to study the molecular mechanism of boundary specification in rice. A single mutation in either OsCUC1 or OsCUC3 leads to defects in the establishment of the meristem/organ boundary, resulting in reduced stamen numbers and the fusion of leaves and filaments, and the defects are greatly enhanced in the double mutant. Transgenic plants overexpressing osa-miR164c showed a phenotype similar to that of the OsCUC1 knockout line. In addition, knockout of OsCUC1 leads to multiple defects, including dwarf plant architecture, male sterility and twisted-rolling leaves. Further study indicated that OsCUC1 physically interacts with leaf-rolling related protein CURLED LEAF AND DWARF 1 (CLD1) and stabilizes it in the nucleus to control leaf morphology. This work demonstrated that the interplay of osa-miR164c, OsCUC1 and OsCUC3 controls boundary specification in rice.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Jinlin Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Beibei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Min Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Xizhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanning530005China
| |
Collapse
|
19
|
Comparative RNA-Seq analysis unfolds a complex regulatory network imparting yellow mosaic disease resistance in mungbean [Vigna radiata (L.) R. Wilczek]. PLoS One 2021; 16:e0244593. [PMID: 33434234 PMCID: PMC7802970 DOI: 10.1371/journal.pone.0244593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022] Open
Abstract
Yellow Mosaic Disease (YMD) in mungbean [Vigna radiata (L.) R. Wilczek] is one of the most damaging diseases in Asia. In the northern part of India, the YMD is caused by Mungbean Yellow Mosaic India Virus (MYMIV), while in southern India this is caused by Mungbean Yellow Mosaic Virus (MYMV). The molecular mechanism of YMD resistance in mungbean remains largely unknown. In this study, RNA-seq analysis was conducted between a resistant (PMR-1) and a susceptible (Pusa Vishal) mungbean genotype under infected and control conditions to understand the regulatory network operating between mungbean-YMV. Overall, 76.8 million raw reads could be generated in different treatment combinations, while mapping rate per library to the reference genome varied from 86.78% to 93.35%. The resistance to MYMIV showed a very complicated gene network, which begins with the production of general PAMPs (pathogen-associated molecular patterns), then activation of various signaling cascades like kinases, jasmonic acid (JA) and brassinosteroid (BR), and finally the expression of specific genes (like PR-proteins, virus resistance and R-gene proteins) leading to resistance response. The function of WRKY, NAC and MYB transcription factors in imparting the resistance against MYMIV could be established. The string analysis also revealed the role of proteins involved in kinase, viral movement and phytoene synthase activity in imparting YMD resistance. A set of novel stress-related EST-SSRs are also identified from the RNA-Seq data which may be used to find the linked genes/QTLs with the YMD resistance. Also, 11 defence-related transcripts could be validated through quantitative real-time PCR analysis. The identified gene networks have led to an insight about the defence mechanism operating against MYMIV infection in mungbean which will be of immense use to manage the YMD resistance in mungbean.
Collapse
|
20
|
Abstract
The regium-π interaction is an attractive noncovalent force between group 11 elements (Cu, Ag, and Au) acting as Lewis acids and aromatic surfaces. Herein, we report for the first time experimental (Protein Data Bank analysis) and theoretical (RI-MP2/def2-TZVP level of theory) evidence of regium-π bonds involving Au(I) and aromatic amino acids (Phe, Tyr, Trp, and His). These findings might be important in the field of drug design and for retrospectively understanding the role of gold in proteins.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| |
Collapse
|
21
|
Molin WT, Yaguchi A, Blenner M, Saski CA. The EccDNA Replicon: A Heritable, Extranuclear Vehicle That Enables Gene Amplification and Glyphosate Resistance in Amaranthus palmeri. THE PLANT CELL 2020; 32:2132-2140. [PMID: 32327538 PMCID: PMC7346551 DOI: 10.1105/tpc.20.00099] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 05/10/2023]
Abstract
Gene copy number variation is a predominant mechanism used by organisms to respond to selective pressures from the environment. This often results in unbalanced structural variations that perpetuate as adaptations to sustain life. However, the underlying mechanisms that give rise to gene proliferation are poorly understood. Here, we show a unique result of genomic plasticity in Amaranthus palmeri: a massive, ∼400-kb extrachromosomal circular DNA (eccDNA) that harbors the 5-ENOYLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) gene and 58 other genes whose encoded functions traverse detoxification, replication, recombination, transposition, tethering, and transport. Gene expression analysis under glyphosate stress showed transcription of 41 of these 59 genes, with high expression of EPSPS, as well as genes coding for aminotransferases, zinc finger proteins, and several uncharacterized proteins. The genomic architecture of the eccDNA replicon is composed of a complex arrangement of repeat sequences and mobile genetic elements interspersed among arrays of clustered palindromes that may be crucial for stability, DNA duplication and tethering, and/or a means of nuclear integration of the adjacent and intervening sequences. Comparative analysis of orthologous genes in grain amaranth (Amaranthus hypochondriacus) and waterhemp (Amaranthus tuberculatus) suggests that higher order chromatin interactions contribute to the genomic origins of the A. palmeri eccDNA replicon structure.
Collapse
Affiliation(s)
- William T Molin
- Crop Protection Systems Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Stoneville, Mississippi 38776
| | - Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina 29634
| |
Collapse
|
22
|
Li B, Fan R, Yang Q, Hu C, Sheng O, Deng G, Dong T, Li C, Peng X, Bi F, Yi G. Genome-Wide Identification and Characterization of the NAC Transcription Factor Family in Musa Acuminata and Expression Analysis during Fruit Ripening. Int J Mol Sci 2020; 21:ijms21020634. [PMID: 31963632 PMCID: PMC7013864 DOI: 10.3390/ijms21020634] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Banana (Musa acuminata, AAA group) is a representative climacteric fruit with essential nutrients and pleasant flavors. Control of its ripening determines both the fruit quality and the shelf life. NAC (NAM, ATAF, CUC2) proteins, as one of the largest superfamilies of transcription factors, play crucial roles in various functions, especially developmental processes. Thus, it is important to conduct a comprehensive identification and characterization of the NAC transcription factor family at the genomic level in M. acuminata. In this article, a total of 181 banana NAC genes were identified. Phylogenetic analysis indicated that NAC genes in M. acuminata, Arabidopsis, and rice were clustered into 18 groups (S1–S18), and MCScanX analysis disclosed that the evolution of MaNAC genes was promoted by segmental duplication events. Expression patterns of NAC genes during banana fruit ripening induced by ethylene were investigated using RNA-Seq data, and 10 MaNAC genes were identified as related to fruit ripening. A subcellular localization assay of selected MaNACs revealed that they were all localized to the nucleus. These results lay a good foundation for the investigation of NAC genes in banana toward the biological functions and evolution.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.P.)
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruiyi Fan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiaosong Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chunhua Hu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ou Sheng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guiming Deng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tao Dong
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (B.L.); (X.P.)
| | - Fangcheng Bi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (F.B.); (G.Y.)
| | - Ganjun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.F.); (Q.Y.); (C.H.); (O.S.); (G.D.); (T.D.); (C.L.)
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (F.B.); (G.Y.)
| |
Collapse
|
23
|
Sun D, Zhang X, Zhang Q, Ji X, Jia Y, Wang H, Niu L, Zhang Y. Comparative transcriptome profiling uncovers a Lilium regale NAC transcription factor, LrNAC35, contributing to defence response against cucumber mosaic virus and tobacco mosaic virus. MOLECULAR PLANT PATHOLOGY 2019; 20:1662-1681. [PMID: 31560826 PMCID: PMC6859495 DOI: 10.1111/mpp.12868] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cucumber mosaic virus (CMV) is a highly prevalent viral pathogen causing substantial damage to the bulb and cut-flower production of Lilium spp. Here, we performed an Illumina RNA sequencing (RNA-Seq) study on the leaf tissues of a virus-resistant species Lilium regale inoculated with mock control and CMV. A total of 1346 differentially expressed genes (DEGs) were identified in the leaves of L. regale upon CMV inoculation, which contained 34 up-regulated and 40 down-regulated DEGs that encode putative transcription factors (TFs). One up-regulated TF, LrNAC35, belonging to the NAM/ATAF/CUC (NAC) superfamily, was selected for further functional characterization. Aside from CMV, lily mottle virus and lily symptomless virus infections provoked a striking increase in LrNAC35 transcripts in both resistant and susceptible Lilium species. The treatments with low temperature and several stress-related hormones activated LrNAC35 expression, contrary to its reduced expression under salt stress. Ectopic overexpression of LrNAC35 in petunia (Petunia hybrida) resulted in reduced susceptibility to CMV and Tobacco mosaic virus infections, and enhanced accumulation of lignin in the cell walls. Four lignin biosynthetic genes, including PhC4H, Ph4CL, PhHCT and PhCCR, were found to be up-regulated in CMV-infected petunia lines overexpressing LrNAC35. In vivo promoter-binding tests showed that LrNAC35 specifically regulated the expression of Ph4CL. Taken together, our results suggest a positive role of transcriptome-derived LrNAC35 in transcriptional modulation of host defence against viral attack.
Collapse
Affiliation(s)
- Daoyang Sun
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Xinguo Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Qingyu Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Xiaotong Ji
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Yong Jia
- State Agricultural Biotechnology Centre, School of Veterinary and Life SciencesMurdoch UniversityPerth6150Australia
| | - Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Lixin Niu
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Yanlong Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| |
Collapse
|
24
|
Guérin C, Roche J, Allard V, Ravel C, Mouzeyar S, Bouzidi MF. Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLoS One 2019; 14:e0213390. [PMID: 30840709 PMCID: PMC6402696 DOI: 10.1371/journal.pone.0213390] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/19/2019] [Indexed: 02/01/2023] Open
Abstract
The NAC family is one of the largest plant-specific transcription factor families, and some of its members are known to play major roles in plant development and response to biotic and abiotic stresses. Here, we inventoried 488 NAC members in bread wheat (Triticum aestivum). Using the recent release of the wheat genome (IWGS RefSeq v1.0), we studied duplication events focusing on genomic regions from 4B-4D-5A chromosomes as an example of the family expansion and neofunctionalization of TaNAC members. Differentially expressed TaNAC genes in organs and in response to abiotic stresses were identified using publicly available RNAseq data. Expression profiling of 23 selected candidate TaNAC genes was studied in leaf and grain from two bread wheat genotypes at two developmental stages in field drought conditions and revealed insights into their specific and/or overlapping expression patterns. This study showed that, of the 23 TaNAC genes, seven have a leaf-specific expression and five have a grain-specific expression. In addition, the grain-specific genes profiles in response to drought depend on the genotype. These genes may be considered as potential candidates for further functional validation and could present an interest for crop improvement programs in response to climate change. Globally, the present study provides new insights into evolution, divergence and functional analysis of NAC gene family in bread wheat.
Collapse
Affiliation(s)
- Claire Guérin
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Jane Roche
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
- * E-mail:
| | - Vincent Allard
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Catherine Ravel
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Said Mouzeyar
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| | - Mohamed Fouad Bouzidi
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont Auvergne, INRA, Clermont–Ferrand, France
| |
Collapse
|
25
|
Chen H, Feng H, Zhang X, Zhang C, Wang T, Dong J. An Arabidopsis E3 ligase HUB2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:556-568. [PMID: 30117653 PMCID: PMC6381789 DOI: 10.1111/pbi.12998] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 05/02/2023]
Abstract
The HUB2 gene encoding histone H2B monoubiquitination E3 ligase is involved in seed dormancy, flowering timing, defence response and salt stress regulation in Arabidopsis thaliana. In this study, we used the cauliflower mosaic virus (CaMV) 35S promoter to drive AtHUB2 overexpression in cotton and found that it can significantly improve the agricultural traits of transgenic cotton plants under drought stress conditions, including increasing the fruit branch number, boll number, and boll-setting rate and decreasing the boll abscission rate. In addition, survival and soluble sugar, proline and leaf relative water contents were increased in transgenic cotton plants after drought stress treatment. In contrast, RNAi knockdown of GhHUB2 genes reduced the drought resistance of transgenic cotton plants. AtHUB2 overexpression increased the global H2B monoubiquitination (H2Bub1) level through a direct interaction with GhH2B1 and up-regulated the expression of drought-related genes in transgenic cotton plants. Furthermore, we found a significant increase in H3K4me3 at the DREB locus in transgenic cotton, although no change in H3K4me3 was identified at the global level. These results demonstrated that AtHUB2 overexpression changed H2Bub1 and H3K4me3 levels at the GhDREB chromatin locus, leading the GhDREB gene to respond quickly to drought stress to improve transgenic cotton drought resistance, but had no influence on transgenic cotton development under normal growth conditions. Our findings also provide a useful route for breeding drought-resistant transgenic plants.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hao Feng
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xueyan Zhang
- Key Laboratory of Cotton Genetic ImprovementMinistry of AgricultureCotton Research InstituteChinese Academy of Agriculture SciencesAnyangChina
| | - Chaojun Zhang
- Key Laboratory of Cotton Genetic ImprovementMinistry of AgricultureCotton Research InstituteChinese Academy of Agriculture SciencesAnyangChina
| | - Tao Wang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangli Dong
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
26
|
Wang W, Liu N, Gao C, Rui L, Tang D. The Pseudomonas Syringae Effector AvrPtoB Associates With and Ubiquitinates Arabidopsis Exocyst Subunit EXO70B1. FRONTIERS IN PLANT SCIENCE 2019; 10:1027. [PMID: 31555308 PMCID: PMC6726739 DOI: 10.3389/fpls.2019.01027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 05/20/2023]
Abstract
Many bacterial pathogens secret effectors into host cells to disable host defenses and thus promote infection. The exocyst complex functions in the transport and secretion of defense molecules, and loss of function of the EXO70B1 subunit leads to autoimmunity by activation of a truncated Toll/interleukin-1 receptor-nucleotide-binding sequence protein (TIR-NBS2; herein referred to as TN2). Here, we show that EXO70B1 is required for pathogen-associated molecular pattern-triggered immune responses in Arabidopsis thaliana. The effector AvrPtoB, an E3 ligase from Pseudomonas syringae pv. tomato (Pto) strain DC3000, associates with EXO70B1. AvrPtoB ubiquitinates EXO70B1 and mediates EXO70B1 degradation via the host's 26S proteasome in a manner requiring E3 ligase activity. AvrPtoB enhances Pto DC3000 virulence by overcoming EXO70B1-mediated resistance. Moreover, overexpression of AvrPtoB in Arabidopsis leads to autoimmunity, which is partially dependent on TN2. Expression of TN2 in tobacco (Nicotiana tabacum and Nicotiana benthamiana) triggers strong and rapid cell death, which is suppressed by co-expression with EXO70B1 but reoccurs when co-expressed with AvrPtoB. Taken together, our data highlight that AvrPtoB targets the Arabidopsis thaliana EXO70 protein family member EXO70B1 to manipulate the defense molecule secretion machinery or immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dingzhong Tang,
| |
Collapse
|
27
|
Sharma C, Saripalli G, Kumar S, Gautam T, Kumar A, Rani S, Jain N, Prasad P, Raghuvanshi S, Jain M, Sharma JB, Prabhu KV, Sharma PK, Balyan HS, Gupta PK. A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1046-1064. [PMID: 32291004 DOI: 10.1071/fp17326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/09/2018] [Indexed: 05/02/2023]
Abstract
Leaf rust disease causes severe yield losses in wheat throughout the world. During the present study, high-throughput RNA-Seq analysis was used to gain insights into the role of Lr28 gene in imparting seedling leaf rust resistance in wheat. Differential expression analysis was conducted using a pair of near-isogenic lines (NILs) (HD 2329 and HD 2329+Lr28) at early (0h before inoculation (hbi), 24 and 48h after inoculation (hai)) and late stages (72, 96 and 168 hai) after inoculation with a virulent pathotype of pathogen Puccinia triticina. Expression of a large number of genes was found to be affected due to the presence/absence of Lr28. Gene ontology analysis of the differentially expressed transcripts suggested enrichment of transcripts involved in carbohydrate and amino acid metabolism, oxidative stress and hormone metabolism, in resistant and/or susceptible NILs. Genes encoding receptor like kinases (RLKs) (including ATP binding; serine threonine kinases) and other kinases were the most abundant class of genes, whose expression was affected. Genes involved in reactive oxygen species (ROS) homeostasis and several genes encoding transcription factors (TFs) (most abundant being WRKY TFs) were also identified along with some ncRNAs and histone variants. Quantitative real-time PCR was also used for validation of 39 representative selected genes. In the long term, the present study should prove useful in developing leaf rust resistant wheat cultivars through molecular breeding.
Collapse
Affiliation(s)
- Chanchal Sharma
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Avneesh Kumar
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Sushma Rani
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Neelu Jain
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Pramod Prasad
- Regional Station, Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, 171002, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - J B Sharma
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - K V Prabhu
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| |
Collapse
|
28
|
Zhang H, Kang H, Su C, Qi Y, Liu X, Pu J. Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry. PLoS One 2018; 13:e0197892. [PMID: 29897926 PMCID: PMC5999216 DOI: 10.1371/journal.pone.0197892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/10/2018] [Indexed: 11/18/2022] Open
Abstract
The NAC transcription factors involved plant development and response to various stress stimuli. However, little information is available concerning the NAC family in the woodland strawberry. Herein, 37 NAC genes were identified from the woodland strawberry genome and were classified into 13 groups based on phylogenetic analysis. And further analyses of gene structure and conserved motifs showed closer relationship of them in every subgroup. Quantitative real-time PCR evaluation different tissues revealed distinct spatial expression profiles of the FvNAC genes. The comprehensive expression of FvNAC genes revealed under abiotic stress (cold, heat, drought, salt), signal molecule treatments (H2O2, ABA, melatonin, rapamycin), biotic stress (Colletotrichum gloeosporioides and Ralstonia solanacearum). Expression profiles derived from quantitative real-time PCR suggested that 5 FvNAC genes responded dramatically to the various abiotic and biotic stresses, indicating their contribution to abiotic and biotic stresses resistance in woodland strawberry. Interestingly, FvNAC genes showed greater extent responded to the cold treatment than other abiotic stress, and H2O2 exhibited a greater response than ABA, melatonin, and rapamycin. For biotic stresses, 3 FvNAC genes were up-regulated during infection with C. gloeosporioides, while 6 FvNAC genes were down-regulated during infection with R. solanacearum. In conclusion, this study identified candidate FvNAC genes to be used for the genetic improvement of abiotic and biotic stress tolerance in woodland strawberry.
Collapse
Affiliation(s)
- He Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, Hainan, China
| | - Hao Kang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, Hainan, China
| | - Chulian Su
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yanxiang Qi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, Hainan, China
| | - Xiaomei Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jinji Pu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, Hainan, China
| |
Collapse
|
29
|
Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virusdisease 2018; 30:66-73. [PMID: 31143833 DOI: 10.1007/s13337-018-0458-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Geminivirus infection has been a threat to cultivation worldwide by causing huge losses to the crop. The single-stranded DNA genome of a geminivirus possesses a limited coding potential and many of the open reading frames (ORFs) are overlapping. Out of 5-7 ORFs that a geminivirus genome codes for, the AC1 ORF encodes for the replication initiator protein (Rep) which is involved in the replication of virus within the infected plant cell. Rep is the only viral protein absolutely required for the in planta viral replication. Across different genera of the Geminiviridae family, the AC1 ORF exhibits a high degree of sequence conservation thus it has been used as an effective target for developing broad spectrum resistance against the invading geminiviruses. This multifunctional protein is required for initiation, elongation as well as termination of the viral replication process. Rep is also involved in stimulation of viral transcription. In addition, it also functions as suppressor of gene silencing and is involved in the process of transcription by regulating the expression of certain viral genes. Rep protein also interacts with few viral proteins such as coat protein, replication enhancer protein and with several host factors involved in different pathways and processes for its replication and efficient infection. This review will summarise our current understanding about the role of this early viral protein in viral propagation as well as in establishment of pathogenesis in a permissive host.
Collapse
Affiliation(s)
- Rajrani Ruhel
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
30
|
Abstract
SUPPRESSOR OF PHYB-4#5DOMINANT (sob5-D) was previously identified as a suppressor of the phyB-4 long-hypocotyl phenotype in Arabidopsis thaliana. Overexpression of SOB5 conferred dwarf phenotypes similar to those observed in plants containing elevated levels of cytokinin (CK) nucleotides and nucleosides. Two SOB-FIVE- LIKE (SOFL) proteins, AtSOFL1 and AtSOFL2, which are more similar at the protein level to each other than they are to SOB5, conferred similar phenotypes to the sob5-D mutant when overexpressed. We used protein sequences of founding SOFL gene family members to perform database searches and identified a total of 289 SOFL homologs in genomes of 89 angiosperm species. Phylogenetic analysis results implied that the SOFL gene family emerged during the expansion of angiosperms and later evolved into four distinct clades. Among the newly identified gene family members are four previously unreported Arabidopsis SOFLs. Multiple sequence alignment of the 289 SOFL protein sequences revealed two highly conserved domains; SOFL-A and SOFL-B. We used overexpression and site-directed mutagenesis studies to demonstrate that SOFL domains are necessary for SOB5 and AtSOFL1’s overexpression phenotypes. Examination of the subcellular localization patterns of founding Arabidopsis thaliana SOFLs suggested they may be localized in the cytoplasm and/or the nucleus. Overall, we report that SOFLs are a plant-specific gene family characterized by two conserved domains that are important for function.
Collapse
|
31
|
Zhou S, Chen Q, Sun Y, Li Y. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1512-1530. [PMID: 28337773 DOI: 10.1111/pce.12950] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 05/23/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes - DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen-activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress-induced MT depolymerization, and the PTP-MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
32
|
Tak H, Negi S, Ganapathi TR. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. PROTOPLASMA 2017; 254:803-816. [PMID: 27352311 DOI: 10.1007/s00709-016-0991-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/06/2016] [Indexed: 05/18/2023]
Abstract
Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
| |
Collapse
|
33
|
Genome wide analysis of NAC gene family ‘sequences’ in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize and Arabidopsis for prediction of stress associated NAC genes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Saidi MN, Mergby D, Brini F. Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:117-128. [PMID: 28064119 DOI: 10.1016/j.plaphy.2016.12.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 05/05/2023]
Abstract
The NAC (NAM, ATAF and CUC) proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. Our analysis led to the identification of 168 NAC genes in durum wheat, including nine putative membrane-bound TFs and 48 homeologous genes pairs. Phylogenetic analyses of TtNACs along with their Arabidopsis, grape, barley and rice counterparts divided these proteins into 8 phylogenetic groups and allowed the identification of TtNAC-A7, TtNAC-B35, TtNAC-A68, TtNAC-B69 and TtNAC-A43 as homologs of OsNAC1, OsNAC8, OsNTL2, OsNTL5 and ANAC025/NTL14, respectively. In silico expression analysis, using RNA-seq data, revealed tissue-specific and stress responsive TtNAC genes. The expression of ten selected genes was analyzed under salt and drought stresses in two contrasting tolerance cultivars. This analysis is the first report of NAC gene family in durum wheat and will be useful for the identification and selection of candidate genes associated with stress tolerance.
Collapse
Affiliation(s)
- Mohammed Najib Saidi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, PO Box 1177, Road Sidi Mansour 6 km, Sfax 3018, Tunisia.
| | - Dhawya Mergby
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, PO Box 1177, Road Sidi Mansour 6 km, Sfax 3018, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, PO Box 1177, Road Sidi Mansour 6 km, Sfax 3018, Tunisia
| |
Collapse
|
35
|
Yu F, Lou L, Tian M, Li Q, Ding Y, Cao X, Wu Y, Belda-Palazon B, Rodriguez PL, Yang S, Xie Q. ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. MOLECULAR PLANT 2016; 9:1570-1582. [PMID: 27856401 DOI: 10.1016/j.molp.2016.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/07/2016] [Accepted: 11/05/2016] [Indexed: 05/03/2023]
Abstract
Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to downregulate different types of receptors, but its role in plant hormone signaling is poorly understood. Here, we report that an ubiquitin E2-like protein, VPS23A, which is a key component of ESCRT-I, negatively regulates ABA signaling. VPS23A has epistatic relationship with PYR/PYL/RCAR-type ABA receptors and disruption of VPS23A enhanced the activity of key kinase OST1 in the ABA signaling pathway under ABA treatment. Moreover, VPS23A interacts with PYR1/PYLs and K63-linked diubiquitin, and PYL4 possesses K63-linked ubiquitinated modification in vivo. Further analysis revealed that VPS23A affects the subcellular localization of PYR1 and the stability of PYL4. Taken together, our results suggest that VPS23A affects PYR1/PYL4 via vacuole-mediated degradation, providing an advanced understanding of both the turnover of ABA receptors and ESCRTs in plant hormone signaling.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Qingliang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoqiang Cao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China.
| |
Collapse
|
36
|
Na C, Shuanghua W, Jinglong F, Bihao C, Jianjun L, Changming C, Jin J. Overexpression of the Eggplant (Solanum melongena) NAC Family Transcription Factor SmNAC Suppresses Resistance to Bacterial Wilt. Sci Rep 2016; 6:31568. [PMID: 27528282 PMCID: PMC4985710 DOI: 10.1038/srep31568] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Bacterial wilt (BW) is a serious disease that affects eggplant (Solanum melongena) production. Although resistance to this disease has been reported, the underlying mechanism is unknown. In this study, we identified a NAC family transcription factor (SmNAC) from eggplant and characterized its expression, its localization at the tissue and subcellular levels, and its role in BW resistance. To this end, transgenic eggplant lines were generated in which the expression of SmNAC was constitutively up regulated or suppressed using RNAi. The results indicated that overexpression of SmNAC decreases resistance to BW. Moreover, SmNAC overexpression resulted in the reduced accumulation of the plant immune signaling molecule salicylic acid (SA) and reduced expression of ICS1 (a gene that encode isochorismate synthase 1, which is involved in SA biosynthesis). We propose that reduced SA content results in increased bacterial wilt susceptibility in the transgenic lines. Our results provide important new insights into the regulatory mechanisms of bacterial wilt resistance in eggplant.
Collapse
Affiliation(s)
- Chen Na
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Wu Shuanghua
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Fu Jinglong
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Cao Bihao
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Lei Jianjun
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Chen Changming
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Jiang Jin
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| |
Collapse
|
37
|
Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, Xie Q, Zhou X. Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus-Encoded βC1. MOLECULAR PLANT 2016; 9:911-25. [PMID: 27018391 DOI: 10.1016/j.molp.2016.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 05/19/2023]
Abstract
The βC1 protein encoded by the Tomato yellow leaf curl China virus-associated betasatellite functions as a pathogenicity determinant. To better understand the molecular basis whereby βC1 functions in pathogenicity, a yeast two-hybrid screen of a tobacco cDNA library was carried out using βC1 as the bait. The screen revealed that βC1 interacts with a tobacco RING-finger protein designated NtRFP1, which was further confirmed by the bimolecular fluorescence complementation and co-immunoprecipitation assays in Nicotiana benthamiana cells. Expression of NtRFP1 was induced by βC1, and in vitro ubiquitination assays showed that NtRFP1 is a functional E3 ubiquitin ligase that mediates βC1 ubiquitination. In addition, βC1 was shown to be ubiquitinated in vivo and degraded by the plant 26S proteasome. After viral infection, plants overexpressing NtRFP1 developed attenuated symptoms, whereas plants with silenced expression of NtRFP1 showed severe symptoms. Other lines of evidence showed that NtRFP1 attenuates βC1-induced symptoms through promoting its degradation by the 26S proteasome. Taken together, our results suggest that tobacco RING E3 ligase NtRFP1 attenuates disease symptoms by interacting with βC1 to mediate its ubiquitination and degradation via the ubiquitin/26S proteasome system.
Collapse
Affiliation(s)
- Qingtang Shen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Min Bao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linge Cao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huawei Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengmin Song
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
38
|
A disulphide isomerase gene (PDI-V) from Haynaldia villosa contributes to powdery mildew resistance in common wheat. Sci Rep 2016; 6:24227. [PMID: 27071705 PMCID: PMC4829865 DOI: 10.1038/srep24227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/22/2016] [Indexed: 12/17/2022] Open
Abstract
In this study, we report the contribution of a PDI-like gene from wheat wild relative Haynaldia villosa in combating powdery mildew. PDI-V protein contains two conserved thioredoxin (TRX) active domains (a and a′) and an inactive domain (b). PDI-V interacted with E3 ligase CMPG1-V protein, which is a positive regulator of powdery mildew response. PDI-V was mono-ubiquitinated by CMPG1-V without degradation being detected. PDI-V was located on H. villosa chromosome 5V and encoded for a protein located in the endoplasmic reticulum. Bgt infection in leaves of H. villosa induced PDI-V expression. Virus induced gene silencing of PDIs in a T. durum-H. villosa amphiploid compromised the resistance. Single cell transient over-expression of PDI-V or a truncated version containing the active TXR domain a decreased the haustorial index in moderately susceptible wheat cultivar Yangmai 158. Stable transgenic lines over-expressing PDI-V in Yangmai 158 displayed improved powdery mildew resistance at both the seedling and adult stages. By contrast over-expression of point-mutated PDI-VC57A did not increase the level of resistance in Yangmai 158. The above results indicate a pivotal role of PDI-V in powdery mildew resistance and showed that conserved TRX domain a is critical for its function.
Collapse
|
39
|
Abstract
NAC transcription factors comprise a large plant-specific gene family. Increasing evidence suggests that members of this family have diverse functions in plant growth and development. In this study, we performed a genomewide survey of NAC type genes in maize (Zea mays L.). A complete set of 148 nonredundant NAC genes (ZmNAC1-ZmNAC148) were identifiedin the maize genome using Blast search tools, and divided into 12 groups (a-l) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental and tandem duplication contributed largely to the expansion of the maize NAC gene family. The Ka/Ks ratio suggested that the duplicated genes of maize NAC family mainly experienced purifying selection, with limited functional divergence after duplication events.Microarray analysis indicated most of the maize NAC genes were expressed across different developmental stages. Moreover,19 maize NAC genes grouped with published stress-responsive genes from other plants were found to contain putative stress-responsive cis-elements in their promoter regions. All these stress-responsive genes belonged to the group d (stress-related).Further, these genes showed differential expression patterns over time in response to drought treatments by quantitative real-time PCR analysis. Our results reveal a comprehensive overview of the maize NAC, and form the foundation for future functional research to uncover their roles in maize growth and development.
Collapse
|
40
|
Baranwal VK, Khurana P. Genome-wide analysis, expression dynamics and varietal comparison of NAC gene family at various developmental stages in Morus notabilis. Mol Genet Genomics 2016; 291:1305-17. [PMID: 26942603 DOI: 10.1007/s00438-016-1186-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Abstract
NAC genes are important transcription factors and forms a large family in plants. They have shown to play an important role in growth and development and have also been shown to involve in regulation of stress-responsive genes. In the present study, a repertoire of NAC genes in recently published mulberry genome has been identified which consists of a total of 79 members. Structural analysis revealed that most of the NAC genes in mulberry contain two introns. The proteins encoded by them show a wide range of isoelectric points suggestive of their varied roles in varying microcellular environment. Phylogenetic and conserved motif analysis elucidate the presence of 15 sub-groups of these genes along with two novel sub-groups having distinct conserved motifs which are not present in Arabidopsis. Gene ontology term enrichment analysis and cis-element identification from their putative 1 K upstream regulatory region indicates their possible role in important biological processes like organ formation, meristem establishment, senescence, and various biotic and abiotic stresses. Expression analysis across various developmental stages led to identification of their preferential expression in diverse tissues. Taken together, this work provides a solid background information related to structure, function, expression and evolution of NAC gene family in mulberry.
Collapse
Affiliation(s)
- Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
41
|
Divya D, Singh YT, Nair S, Bentur JS. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes. Funct Integr Genomics 2016; 16:153-69. [DOI: 10.1007/s10142-016-0474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
|
42
|
Singh N, Srivastava S, Sharma A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 2016; 575:570-576. [PMID: 26392033 DOI: 10.1016/j.gene.2015.09.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 09/16/2015] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are a large family of endogenous small RNAs derived from the non-protein coding genes. miRNA regulates the gene expression at the post-transcriptional level and plays an important role in plant development. Zingiber officinale is an important medicinal plant having numerous therapeutic properties. Its bioactive compound gingerol and essential oil posses important pharmacological and physiological activities. In this study, we used a homology search based computational approach for identifying miRNAs in Z. officinale. A total of 16 potential miRNA families (miR167, miR407, miR414, miR5015, miR5021, miR5644, miR5645, miR5656, miR5658, miR5664, miR827, miR838, miR847, miR854, miR862 and miR864) were predicted in ginger. Phylogenetic and conserved analyses were performed for predicted miRNAs. Thirteen miRNA families were found to regulate 300 target transcripts and play an important role in cell signaling, reproduction, metabolic process and stress. To understand the miRNA mediated gene regulatory control and to validate miRNA target predictions, a biological network was also constructed. Gene ontology and pathway analyses were also done. miR5015 was observed to regulate the biosynthesis of gingerol by inhibiting phenyl ammonia lyase (PAL), a precursor enzyme in the biosynthesis of gingerol. Our results revealed that most of the predicted miRNAs were involved in the regulation of rhizome development. miR5021, miR854 and miR838 were identified to regulate the rhizome development and the essential oil biosynthesis in ginger.
Collapse
Affiliation(s)
- Noopur Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India
| | - Swati Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India.
| |
Collapse
|
43
|
Fang J, Lin A, Qiu W, Cai H, Umar M, Chen R, Ming R. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya. FRONTIERS IN PLANT SCIENCE 2016; 7:855. [PMID: 27379138 PMCID: PMC4909764 DOI: 10.3389/fpls.2016.00855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 05/18/2023]
Abstract
Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya.
Collapse
Affiliation(s)
- Jingping Fang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Aiting Lin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Weijing Qiu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hanyang Cai
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muhammad Umar
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Rukai Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Plant Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- *Correspondence: Ray Ming
| |
Collapse
|
44
|
Vivek PJ, Resmi MS, Sreekumar S, Sivakumar KC, Tuteja N, Soniya EV. Calcium-Dependent Protein Kinase in Ginger Binds with Importin-α through Its Junction Domain for Nuclear Localization, and Further Interacts with NAC Transcription Factor. FRONTIERS IN PLANT SCIENCE 2016; 7:1909. [PMID: 28133460 PMCID: PMC5233720 DOI: 10.3389/fpls.2016.01909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/02/2016] [Indexed: 05/11/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are important sensors of Ca2+ elevations in plant cells regulating the gene expression linked with various cellular processes like stress response, growth and development, metabolism, and cytoskeleton dynamics. Ginger is an extensively used spice due to its unique flavor and immense medicinal value. The two major threats that interfere with the large scale production of ginger are the salinity and drought stress. ZoCDPK1 (Zingiber officinale Calcium-dependent protein kinase 1) is a salinity and drought-inducible CDPK gene isolated from ginger and undergoes dynamic subcellular localization during stress conditions. ZoCDPK1, with signature features of a typical Ca2+ regulated kinase, also possesses a bipartite nuclear localization sequence (NLS) in its junction domain (JD). A striking feature in ZoCDPK1 is the rare occurrence of a coupling between the NLS in JD and consensus sequences in regulatory domain. Here, we further identified its nature of nuclear localization and its interaction partners. In the homology model generated for ZoCDPK1, the regulatory domain mimics the crystal structure of the regulatory domain in Arabidopsis CDPK1. Molecular docking simulation of importin (ZoIMPα), an important protein involved in nuclear translocation, into the NLS of ZoCDPK1 was well-visualized. Furthermore, the direct interaction of ZoCDPK1 and ZoIMPα proteins was studied by the yeast 2-hybrid (Y2H) system, which confirmed that junction domain (JD) is an important interaction module required for ZoCDPK1 and ZoIMPα binding. The probable interacting partners of ZoCDPK1 were also identified using Y2H experiment. Of the 10 different stress-related interacting partners identified for ZoCDPK1, NAC transcription factor (TF) needs special mention, especially in the context of ZoCDPK1 function. The interaction between ZoCDPK1 and NAC TF, in fact, corroborate with the results of gene expression and over-expression studies of ZoCDPK1. Hence ZoCDPK1 is operating through NAC TF mediated ABA-independent, cold non-responsive stress signaling pathway in ginger.
Collapse
Affiliation(s)
| | | | - Sweda Sreekumar
- Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - K. C. Sivakumar
- Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| | - Eppurathu Vasudevan Soniya
- Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
- *Correspondence: Eppurathu Vasudevan Soniya
| |
Collapse
|
45
|
Takasaki H, Maruyama K, Takahashi F, Fujita M, Yoshida T, Nakashima K, Myouga F, Toyooka K, Yamaguchi-Shinozaki K, Shinozaki K. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1114-23. [PMID: 26518251 DOI: 10.1111/tpj.13067] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 05/19/2023]
Abstract
Leaf senescence is the terminal phenotype of plant leaf development, and ethylene is a major plant hormone inducing leaf senescence. Recent studies have shown that abscisic acid (ABA) also induces leaf senescence. However, the detailed mechanisms of ABA-induced leaf senescence remain unclear. We focused on the A subfamily of stress-responsive NAC (SNAC-A) transcription factors, the expression of which is induced by abiotic stresses, particularly ABA. Gene expression analysis revealed that seven SNAC-A genes including ANAC055, ANAC019, ANAC072/RD26, ANAC002/ATAF1, ANAC081/ATAF2, ANAC102 and ANAC032 were induced by long-term treatment with ABA and/or during age-dependent senescence. The SNAC-A septuple mutant clearly showed retardation of ABA-inducible leaf senescence. Microarray analysis indicated that SNAC-As induce ABA- and senescence-inducible genes. In addition, comparison of the expression profiles of the downstream genes of SNAC-As and ABA-responsive element (ABRE)-binding protein (AREB)/ABRE-binding factor (ABF) (AREB/ABFs) indicates that SNAC-As induce a different set of ABA-inducible genes from those mediated by AREB/ABFs. These results suggest that SNAC-As play crucial roles in ABA-induced leaf senescence signaling. We also discuss the function of SNAC-As in the transcriptional change of leaf senescence as well as in ABA response under abiotic stress conditions.
Collapse
Affiliation(s)
- Hironori Takasaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kyonoshin Maruyama
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Miki Fujita
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Takuya Yoshida
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Nakashima
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Fumiyoshi Myouga
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kiminori Toyooka
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
46
|
Pandurangaiah M, Lokanadha Rao G, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C. Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 2015; 56:758-69. [PMID: 24748414 DOI: 10.1007/s12033-014-9754-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The NAC family being the largest plant-specific transcription factors functions in diverse and vital physiological processes during development. NAC proteins are known to be crucial in imparting tolerance to plants against abiotic stresses, such as drought and salinity, but the functions of most of them are still elusive. In this study, we report for the first time expression of the MuNAC4, a member of NAC transcription factor from horsegram (Macrotyloma uniflorum) conferring drought tolerance. The groundnut (Arachis hypogaea) transgenics were generated using recombinant MuNAC4 binary vector transformation approach. Molecular analysis of these transgenic lines confirmed the stable gene integration and expression of the MuNAC4 gene. Twelve lines of T5 generation exhibited significantly enhanced tolerance to drought stress with proliferated lateral root growth as compared to wild types. Transgenics exposed to long-term desiccation stress assays showed increased lateral roots and greenish growth. The physiological parameters analysis also suggests that overexpression of MuNAC4 plays a significant role in improving the water stress tolerance of transgenic groundnut, reducing the damage to membrane structures and enhancing osmotic adjustment and antioxidative enzyme regulation under stress. This study validates MuNAC4 as an important candidate gene for future phytoengineering approaches for drought tolerance in crop plants.
Collapse
Affiliation(s)
- Merum Pandurangaiah
- Department of Botany, Sri Krishnadevaraya University, Anantapuram, 515003, India
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nuruzzaman M, Sharoni AM, Satoh K, Karim MR, Harikrishna JA, Shimizu T, Sasaya T, Omura T, Haque MA, Hasan SMZ, Ahmad A, Kikuchi S. NAC transcription factor family genes are differentially expressed in rice during infections with Rice dwarf virus, Rice black-streaked dwarf virus, Rice grassy stunt virus, Rice ragged stunt virus, and Rice transitory yellowing virus. FRONTIERS IN PLANT SCIENCE 2015; 6:676. [PMID: 26442000 PMCID: PMC4563162 DOI: 10.3389/fpls.2015.00676] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/15/2015] [Indexed: 05/17/2023]
Abstract
Expression levels of the NAC gene family were studied in rice infected with Rice dwarf virus (RDV), Rice black-streaked dwarf virus (RBSDV), Rice grassy stunt virus (RGSV), Rice ragged stunt virus (RRSV), and Rice transitory yellowing virus (RTYV). Microarray analysis showed that 75 (68%) OsNAC genes were differentially regulated during infection with RDV, RBSDV, RGSV, and RRSV compared with the control. The number of OsNAC genes up-regulated was highest during RGSV infection, while the lowest number was found during RTYV infection. These phenomena correlate with the severity of the syndromes induced by the virus infections. Most of the genes in the NAC subgroups NAC22, SND, ONAC2, ANAC34, and ONAC3 were down-regulated for all virus infections. These OsNAC genes might be related to the health stage maintenance of the host plants. Interestingly, most of the genes in the subgroups TIP and SNAC were more highly expressed during RBSDV and RGSV infections. These results suggested that OsNAC genes might be related to the responses induced by the virus infection. All of the genes assigned to the TIP subgroups were highly expressed during RGSV infection when compared with the control. For RDV infection, the number of activated genes was greatest during infection with the S-strain, followed by the D84-strain and the O-strain, with seven OsNAC genes up-regulated during infection by all three strains. The Os12g03050 and Os11g05614 genes showed higher expression during infection with four of the five viruses, and Os11g03310, Os11g03370, and Os07g37920 genes showed high expression during at least three viral infections. We identified some duplicate genes that are classified as neofunctional and subfunctional according to their expression levels in different viral infections. A number of putative cis-elements were identified, which may help to clarify the function of these key genes in network pathways.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
- Faculty of Science, Centre for Research for Biotechnology for Agriculture, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
- Post Harvest Technology, School of Food Science and Technology, University Malaysia TerengganuKuala Terengganu, Malaysia
- Department of Agronomy and Agricultural Extension, Faculty of Agriculture, University of RajshahiRajshahi, Bangladesh
| | - Akhter M. Sharoni
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | - Kouji Satoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
- Research Team for Vector-Borne Plant Pathogens, National Agricultural Research CenterTsukuba, Japan
| | - Mohammad Rezaul Karim
- Faculty of Science, Centre for Research for Biotechnology for Agriculture, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Jennifer A. Harikrishna
- Faculty of Science, Centre for Research for Biotechnology for Agriculture, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Takumi Shimizu
- Research Team for Vector-Borne Plant Pathogens, National Agricultural Research CenterTsukuba, Japan
| | - Takahide Sasaya
- Research Team for Vector-Borne Plant Pathogens, National Agricultural Research CenterTsukuba, Japan
| | - Toshihiro Omura
- Research Team for Vector-Borne Plant Pathogens, National Agricultural Research CenterTsukuba, Japan
| | - Mohammad A. Haque
- Department of Agronomy and Agricultural Extension, Faculty of Agriculture, University of RajshahiRajshahi, Bangladesh
| | - Sayed M. Z. Hasan
- Post Harvest Technology, School of Food Science and Technology, University Malaysia TerengganuKuala Terengganu, Malaysia
| | - Aziz Ahmad
- Centre for Fundamental and Liberal Education, School of Science and Food Technology, Universiti Malaysia TerengganuKuala Terengganu, Malaysia
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| |
Collapse
|
48
|
Hu W, Wei Y, Xia Z, Yan Y, Hou X, Zou M, Lu C, Wang W, Peng M. Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Cassava. PLoS One 2015; 10:e0136993. [PMID: 26317631 PMCID: PMC4552662 DOI: 10.1371/journal.pone.0136993] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
NAC [no apical meristem (NAM), Arabidopsis transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins is one of the largest groups of plant specific transcription factors and plays a crucial role in plant growth, development, and adaption to the environment. Currently, no information is known about the NAC family in cassava. In this study, 96 NAC genes (MeNACs) were identified from the cassava genome. Phylogenetic analysis of the NACs from cassava and Arabidopsis showed that MeNAC proteins can be clustered into 16 subgroups. Gene structure analysis found that the number of introns of MeNAC genes varied from 0 to 5, with the majority of MeNAC genes containing two introns, indicating a small gene structure diversity of cassava NAC genes. Conserved motif analysis revealed that all of the identified MeNACs had the conserved NAC domain and/or NAM domain. Global expression analysis suggested that MeNAC genes exhibited different expression profiles in different tissues between wild subspecies and cultivated varieties, indicating their involvement in the functional diversity of different accessions. Transcriptome analysis demonstrated that MeNACs had a widely transcriptional response to drought stress and that they had differential expression profiles in different accessions, implying their contribution to drought stress resistance in cassava. Finally, the expression of twelve MeNAC genes was analyzed under osmotic, salt, cold, ABA, and H2O2 treatments, indicating that cassava NACs may represent convergence points of different signaling pathways. Taken together, this work found some excellent tissue-specific and abiotic stress-responsive candidate MeNAC genes, which would provide a solid foundation for functional investigation of the NAC family, crop improvement and improved understanding of signal transduction in plants. These data bring new insight on the complexity of the transcriptional control of MeNAC genes and support the hypothesis that NACs play an important role in plant growth, development, and adaption of environment.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
- * E-mail: (WH); (WQW); (MP)
| | - Yunxie Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Zhiqiang Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Xiaowan Hou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Meiling Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Cheng Lu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
| | - Wenquan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
- * E-mail: (WH); (WQW); (MP)
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, 571101, People’s Republic of China
- * E-mail: (WH); (WQW); (MP)
| |
Collapse
|
49
|
Guo W, Zhang J, Zhang N, Xin M, Peng H, Hu Z, Ni Z, Du J. The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis. PLoS One 2015; 10:e0135667. [PMID: 26305210 PMCID: PMC4549282 DOI: 10.1371/journal.pone.0135667] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/24/2015] [Indexed: 01/01/2023] Open
Abstract
Heat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim. In this study, we examine the wheat (Triticum aestivum) NAC transcription factor gene TaNAC2L. High temperature induced TaNAC2L expression in wheat and overexpression of TaNAC2L in Arabidopsis thaliana enhanced acquired heat tolerance without causing obvious alterations in phenotype compared with wild type under normal conditions. TaNAC2L overexpression also activated the expression of heat-related genes in the transgenic Arabidopsis plants, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes. Notably, TaNAC2L is also regulated at the post-translational level and might be degraded via a proteasome-mediated pathway. Thus, this wheat transcription factor may have potential uses in enhancing thermotolerance in crops.
Collapse
Affiliation(s)
- Weiwei Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Jinxia Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Ning Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre (Beijing), Beijing, 100193, China
- * E-mail:
| |
Collapse
|
50
|
Wang F, Lin R, Feng J, Chen W, Qiu D, Xu S. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:108. [PMID: 25774162 PMCID: PMC4342887 DOI: 10.3389/fpls.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/10/2015] [Indexed: 05/20/2023]
Abstract
Plant-specific NAC transcription factors (TFs) constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS) is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a TF localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid (SA), methyl jasmonate, and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis thaliana plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.
Collapse
Affiliation(s)
| | - Ruiming Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | | | | | | | | |
Collapse
|