1
|
Youngson NA, Lin PC, Lin SS. The convergence of autophagy, small RNA and the stress response – implications for transgenerational epigenetic inheritance in plants. Biomol Concepts 2014; 5:1-8. [DOI: 10.1515/bmc-2013-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022] Open
Abstract
AbstractRecent discoveries in eukaryotes have shown that autophagy-mediated degradation of DICER and ARGONAUTE (AGO), the proteins involved in post-transcriptional gene silencing (PTGS), can occur in response to viral infection and starvation. In plants, a virally encoded protein P0 specifically interacts with AGO1 and enhances degradation through autophagy, resulting in suppression of gene silencing. In HeLa cells, DICER and AGO2 protein levels decreased after nutrient starvation or after treatment to increase autophagy. Environmental exposures to viral infection and starvation have also recently been shown to sometimes not only induce a stress response in the exposed plant but also in their unexposed progeny. These, and other cases of inherited stress response in plants are thought to be facilitated through transgenerational epigenetic inheritance, and the mechanism involves the PTGS and transcriptional gene silencing (TGS) pathways. These recent discoveries suggest that the environmentally-induced autophagic degradation of the PTGS and TGS components may have significant effects on inherited stress responses.
Collapse
Affiliation(s)
- Neil A. Youngson
- 1Department of Pharmacology, School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Pin-Chun Lin
- 2Institute of Biotechnology, National Taiwan University, 81, Chang-Xing St., Taipei, Taiwan 106
| | | |
Collapse
|
2
|
Md. Ali E, Kobayashi K, Yamaoka N, Ishikawa M, Nishiguchi M. Graft transmission of RNA silencing to non-transgenic scions for conferring virus resistance in tobacco. PLoS One 2013; 8:e63257. [PMID: 23717405 PMCID: PMC3661558 DOI: 10.1371/journal.pone.0063257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/31/2013] [Indexed: 11/19/2022] Open
Abstract
RNA silencing is a mechanism of gene regulation by sequence specific RNA degradation and is involved in controlling endogenous gene expression and defense against invasive nucleic acids such as viruses. RNA silencing has been proven to be transmitted between scions and rootstocks through grafting, mostly using transgenic plants. It has been reported that RNA silencing of tobacco endogenous genes, NtTOM1 and NtTOM3, that are required for tobamovirus multiplication, resulted in high resistance against several tobamoviruses. In the present study, we examined the graft transmission of RNA silencing for conferring virus resistance to non-transgenic scions of the same and different Nicotiana species grafted onto rootstocks in which both NtTOM1 and NtTOM3 were silenced. Non-transgenic Nicotiana tabacum (cvs. Samsun and Xanthi nc) and N. benthamiana were used as scions for grafting onto the rootstocks silenced with both genes. Short interfering RNA (siRNA) of NtTOM1 and NtTOM3 was detected in both the scions and the rootstocks eight weeks after grafting. The leaves were detached from the scions and inoculated with several tobamoviruses. The virus accumulation was tested by ELISA and northern blot analysis. The viruses were detected in grafted scions at extremely low levels, showing that virus resistance was conferred. These results suggest that RNA silencing was induced in and virus resistance was conferred to the non-transgenic scions by grafting onto silenced rootstocks. The effect of low temperature on siRNA accumulation and virus resistance was not significantly observed in the scions.
Collapse
Affiliation(s)
- Emran Md. Ali
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan
| | - Kappei Kobayashi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan
| | - Naoto Yamaoka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan
| | - Masayuki Ishikawa
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
3
|
|
4
|
Spirin PV, Nikitenko NA, Lebedev TD, Rubtsov PM, Stocking C, Prasolov VS. Modulation of activated oncogene c-kit expression with RNA-interference. Mol Biol 2011. [DOI: 10.1134/s0026893311060136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Li J, Todd TC, Lee J, Trick HN. Biotechnological application of functional genomics towards plant-parasitic nematode control. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:936-944. [PMID: 21362123 DOI: 10.1111/j.1467-7652.2011.00601.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant-parasitic nematodes are primary biotic factors limiting the crop production. Current nematode control strategies include nematicides, crop rotation and resistant cultivars, but each has serious limitations. RNA interference (RNAi) represents a major breakthrough in the application of functional genomics for plant-parasitic nematode control. RNAi-induced suppression of numerous genes essential for nematode development, reproduction or parasitism has been demonstrated, highlighting the considerable potential for using this strategy to control damaging pest populations. In an effort to find more suitable and effective gene targets for silencing, researchers are employing functional genomics methodologies, including genome sequencing and transcriptome profiling. Microarrays have been used for studying the interactions between nematodes and plant roots and to measure both plants and nematodes transcripts. Furthermore, laser capture microdissection has been applied for the precise dissection of nematode feeding sites (syncytia) to allow the study of gene expression specifically in syncytia. In the near future, small RNA sequencing techniques will provide more direct information for elucidating small RNA regulatory mechanisms in plants and specific gene silencing using artificial microRNAs should further improve the potential of targeted gene silencing as a strategy for nematode management.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | | | | |
Collapse
|
6
|
Abstract
RNA interference (RNAi) is a powerful research tool that has enabled molecular insights into gene activity, pathway analysis, partial loss-of-function phenotypes, and large-scale genomic discovery of gene function. While RNAi works extremely well in the non-parasitic nematode C. elegans, it is also especially useful in organisms that lack facile genetic analysis. Extensive genetic analysis of the mechanisms, delivery and regulation of RNAi in C. elegans has provided mechanistic and phenomenological insights into why RNAi is so effective in this species. These insights are useful for the testing and development of RNAi in other nematodes, including parasitic nematodes where more effective RNAi would be extremely useful. Here, we review the current advances in C. elegans for RNA delivery methods, regulation of cell autonomous and systemic RNAi phenomena, and implications of enhanced RNAi mutants. These discussions, with a focus on mechanism and cross-species application, provide new perspectives for optimizing RNAi in other species.
Collapse
|
7
|
Senshu H, Yamaji Y, Minato N, Shiraishi T, Maejima K, Hashimoto M, Miura C, Neriya Y, Namba S. A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M. J Virol 2011; 85:10269-78. [PMID: 21752911 PMCID: PMC3196401 DOI: 10.1128/jvi.05273-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/30/2011] [Indexed: 11/20/2022] Open
Abstract
Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.
Collapse
Affiliation(s)
- Hiroko Senshu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nami Minato
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Shiraishi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihiro Miura
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Melnyk CW, Molnar A, Bassett A, Baulcombe DC. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol 2011; 21:1678-83. [PMID: 21962713 DOI: 10.1016/j.cub.2011.08.065] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/01/2011] [Accepted: 08/31/2011] [Indexed: 12/12/2022]
Abstract
RNA silencing in flowering plants generates a signal that moves between cells and through the phloem [1, 2]. Nucleotide sequence specificity of the signal is conferred by 21, 22, and 24 nucleotide (nt) sRNAs that are generated by Dicer-like (DCL) proteins [3]. In the recipient cells these sRNAs bind to Argonaute (AGO) effectors of silencing and the 21 nt sRNAs mediate posttranscriptional regulation (PTGS) via mRNA cleavage [4] whereas the 24 nt sRNAs are associated with RNA-dependent DNA methylation (RdDM) [5] that may underlie transcriptional gene silencing (TGS). Intriguingly, genes involved in TGS are required for graft-transmissible gene silencing associated with PTGS [6]. However, some of the same genes were also required for spread of a PTGS silencing signal out of the veins of Arabidopsis [7], and grafting tests failed to demonstrate direct transmission of TGS signals [8-10]. It seemed likely, therefore, that mobile silencing is associated only with PTGS. To address this possibility, we grafted TGS-inducing wild-type Arabidopsis and a mutant that is compromised in 24 nt sRNA production onto a wild-type reporter line. The 21-24 nt sRNAs from the TGS construct were transmitted across a graft union but only the 24 nt sRNAs directed RdDM and TGS of a transgene promoter in meristematic cells. These data extend the significance of an RNA silencing signal to embrace epigenetics and transcriptional gene silencing and support the hypothesis that these signals transmit information to meristematic cells where they initiate persistent epigenetic changes that may influence growth, development, and heritable phenotypes.
Collapse
Affiliation(s)
- Charles W Melnyk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
9
|
Spirin PV, Baskaran D, Orlova NN, Rulina AV, Nikitenko NA, Chernolovskaya EL, Zenkova MA, Vlassov VV, Rubtsov PM, Chumakov PM, Stocking C, Prassolov VS. Downregulation of activated leukemic oncogenes AML1-ETO and RUNX1(K83N) expression with RNA-interference. Mol Biol 2010. [DOI: 10.1134/s0026893310050146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Di Serio F, Martínez de Alba AE, Navarro B, Gisel A, Flores R. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 2010; 84:2477-89. [PMID: 20015979 PMCID: PMC2820905 DOI: 10.1128/jvi.02336-09] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/08/2009] [Indexed: 12/23/2022] Open
Abstract
The detection of viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs (siRNAs, 21 to 24 nucleotides [nt]) in plants infected by nuclear-replicating members of the family Pospiviroidae (type species, Potato spindle tuber viroid [PSTVd]) indicates that they are inducers and targets of the RNA-silencing machinery of their hosts. RNA-dependent RNA polymerase 6 (RDR6) catalyzes an amplification circuit producing the double-stranded precursors of secondary siRNAs. Recently, the role of RDR6 in restricting systemic spread of certain RNA viruses and precluding their invasion of the apical growing tip has been documented using RDR6-silenced Nicotiana benthamiana (NbRDR6i) plants. Here we show that RDR6 is also engaged in regulating PSTVd levels: accumulation of PSTVd genomic RNA was increased in NbRDR6i plants with respect to the wild-type controls (Nbwt) early in infection, whereas this difference decreased or disappeared in later infection stages. Moreover, in situ hybridization revealed that RDR6 is involved in restricting PSTVd access in floral and vegetative meristems, thus providing firm genetic evidence for an antiviroid RNA silencing mechanism. RNA gel blot hybridization and deep sequencing showed in wt and RDR6i backgrounds that PSTVd sRNAs (i) accumulate to levels paralleling their genomic RNA, (ii) display similar patterns with prevailing 22- or 21-nt plus-strand species, and (iii) adopt strand-specific hot spot profiles along the genomic RNA. Therefore, the surveillance mechanism restraining entry of some RNA viruses into meristems likely also controls PSTVd access in N. benthamiana. Unexpectedly, deep sequencing also disclosed in NbRDR6i plants a profile of RDR6-derived siRNA dominated by 21-nt plus-strand species mapping within a narrow window of the hairpin RNA stem expressed transgenically for silencing RDR6, indicating that minus-strand siRNAs silencing the NbRDR6 mRNA represent a minor fraction of the total siRNA population.
Collapse
Affiliation(s)
- Francesco Di Serio
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Angel-Emilio Martínez de Alba
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Beatriz Navarro
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Andreas Gisel
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Ricardo Flores
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
11
|
Alvarado V, Scholthof HB. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol 2009; 20:1032-40. [PMID: 19524057 DOI: 10.1016/j.semcdb.2009.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 05/29/2009] [Accepted: 06/04/2009] [Indexed: 11/29/2022]
Abstract
RNA silencing is a common strategy shared by eukaryotic organisms to regulate gene expression, and also operates as a defense mechanism against invasive nucleic acids such as viral transcripts. The silencing pathway is quite sophisticated in higher eukaryotes but the distinct steps and nature of effector complexes vary between and even within species. To counteract this defense mechanism viruses have evolved the ability to encode proteins that suppress silencing to protect their genomes from degradation. This review focuses on our current understanding of how individual components of the plant RNA silencing mechanism are directed against viruses, and how in turn virus-encoded suppressors target one or more key events in the silencing cascade.
Collapse
Affiliation(s)
- Veria Alvarado
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States
| | | |
Collapse
|
12
|
Chen H, Samadder PP, Tanaka Y, Ohira T, Okuizumi H, Yamaoka N, Miyao A, Hirochika H, Ohira T, Tsuchimoto S, Ohtsubo H, Nishiguchi M. OsRecQ1, a QDE-3 homologue in rice, is required for RNA silencing induced by particle bombardment for inverted repeat DNA, but not for double-stranded RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:274-286. [PMID: 18564381 DOI: 10.1111/j.1365-313x.2008.03587.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Based on the nucleotide sequence of QDE-3 in Neurospora crassa, which is involved in RNA silencing, rice (Oryza sativa) mutant lines disrupted by the insertion of the rice retrotransposon Tos17 were selected. Homozygous individuals from the M(1) and M(2) generations were screened and used for further analyses. The expression of the gene was not detected in leaves or calli of the mutant lines, in contrast to the wild type (WT). Induction of RNA silencing by particle bombardment was performed to investigate any effects of the OsRecQ1 gene on RNA silencing with silencing inducers of the GFP (green fluorescence protein)/GUS (beta-glucuronidase) gene in the mutant lines. The results showed that OsRecQ1 is required for RNA silencing induced by particle bombardment for inverted-repeat DNA, but not for double-stranded RNA (dsRNA). The levels of transcripts from inverted-repeat DNA were much lower in the mutant lines than those in the WT. Furthermore, no effects were observed in the accumulation of endogenous microRNAs (miR171 and miR156) and the production of the short interspersed nuclear element retroelement by small interfering RNA. On the basis of these results, we propose that OsRecQ1 may participate in the process that allows inverted repeat DNA to be transcribed into dsRNA, which can trigger RNA silencing.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- DNA Helicases/genetics
- Fungal Proteins/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Green Fluorescent Proteins
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oryza/genetics
- Plant Epidermis/genetics
- Plants, Genetically Modified/genetics
- Plasmids
- RNA Interference
- RNA, Double-Stranded/genetics
- RNA, Plant/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Short Interspersed Nucleotide Elements
Collapse
Affiliation(s)
- Hui Chen
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Partha P Samadder
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Yoshikazu Tanaka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Tatsuya Ohira
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hisato Okuizumi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Naoto Yamaoka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Akio Miyao
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hirohiko Hirochika
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Takayuki Ohira
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Suguru Tsuchimoto
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Hisako Ohtsubo
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Masamichi Nishiguchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, JapanNational Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, JapanInstitute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
13
|
Vogler H, Kwon MO, Dang V, Sambade A, Fasler M, Ashby J, Heinlein M. Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLoS Pathog 2008; 4:e1000038. [PMID: 18389061 PMCID: PMC2270343 DOI: 10.1371/journal.ppat.1000038] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 03/06/2008] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA.
Collapse
Affiliation(s)
- Hannes Vogler
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Myoung-Ok Kwon
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vy Dang
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Adrian Sambade
- Institut Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), Strasbourg, France
| | - Monika Fasler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jamie Ashby
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Manfred Heinlein
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Institut Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), Strasbourg, France
| |
Collapse
|
14
|
Distefano G, La Malfa S, Vitale A, Lorito M, Deng Z, Gentile A. Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 2008; 17:873-9. [PMID: 18306055 DOI: 10.1007/s11248-008-9172-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 02/08/2008] [Indexed: 11/28/2022]
Abstract
Constitutive over-expression of antifungal genes from microorganisms involved in plant defence mechanisms represents a promising strategy for conferring genetic resistance against a broad range of plant pathogenic fungi. In the present work, two transgenic lemon clones with the chit42 gene from Trichoderma harzianum were tested for resistance to fungal disease and expression level of defence-related genes was evaluated. Different resistance-related processes, such as production of reactive oxygen species (ROS), systemic acquired resistance (SAR) and induced systemic resistance (ISR), were monitored in transgenic and wild type lemon clones inoculated with Botrytis cinerea, the causal agent of grey mould in citrus. Expression of genes that encode gluthatione peroxidase (GPX), a producer of ROS, chitinases, glucanases (SAR), PAL, HPL, and AOS (ISR) was measured by quantitative PCR during the first 24 h after leaf inoculation. Leaves of transgenic lemon plants inoculated with B. cinerea showed significantly less lesion development than wild type leaves. Tissues from detached leaves of different transgenic lemon clones showed a significant correlation between resistance and transgene expression. On the other hand, the over-expression of the transgenic fungal gene enhanced by two-three folds transcript levels of genes associated with enhanced ROS production and ISR establishment, while the expression of native chitinase and glucanase genes involved in SAR was down-regulated.
Collapse
Affiliation(s)
- Gaetano Distefano
- Dipartimento di OrtoFloroArboricoltura e Tecnologie Agroalimentari, University of Catania, Via Valdisavoia 5, Catania, 95123, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Alisch RS, Jin P, Epstein M, Caspary T, Warren ST. Argonaute2 is essential for mammalian gastrulation and proper mesoderm formation. PLoS Genet 2007; 3:e227. [PMID: 18166081 PMCID: PMC2323323 DOI: 10.1371/journal.pgen.0030227] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 11/05/2007] [Indexed: 11/19/2022] Open
Abstract
Mammalian Argonaute proteins (EIF2C1-4) play an essential role in RNA-induced silencing. Here, we show that the loss of eIF2C2 (Argonaute2 or Ago2) results in gastrulation arrest, ectopic expression of Brachyury (T), and mesoderm expansion. We identify a genetic interaction between Ago2 and T, as Ago2 haploinsufficiency partially rescues the classic T/+ short-tail phenotype. Finally, we demonstrate that the ectopic T expression and concomitant mesoderm expansion result from disrupted fibroblast growth factor signaling, likely due to aberrant expression of Eomesodermin. Together, these data indicate that a factor best known as a key component of the RNA-induced silencing complex is required for proper fibroblast growth factor signaling during gastrulation, suggesting a possible micro-RNA function in the formation of a mammalian germ layer.
Collapse
Affiliation(s)
- Reid S Alisch
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Michael Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Haque AKMN, Tanaka Y, Sonoda S, Nishiguchi M. Analysis of transitive RNA silencing after grafting in transgenic plants with the coat protein gene of Sweet potato feathery mottle virus. PLANT MOLECULAR BIOLOGY 2007; 63:35-47. [PMID: 17160454 DOI: 10.1007/s11103-006-9070-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 08/02/2006] [Indexed: 05/09/2023]
Abstract
We have previously reported the graft transmission of target specificity for RNA silencing using transgenic Nicotiana benthamiana plants expressing the coat protein gene (CP, including the 3' non-translated region) of Sweet potato feathery mottle virus. Transgenic plants carrying the 5' 200 and 400 bp regions of CP were newly produced. From these plants, two silenced and two non-silenced lines were selected to investigate the manifestation of transitive RNA silencing by graft experiments. Non-silenced scions carrying the entire transgene were grafted onto either 5' or 3' silencing inducer rootstocks. When non-silenced scions were grafted onto 5' silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions and spread toward the 3' region of the transgene mRNA. Similarly, when non-silenced scions were grafted onto 3' silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions, but was restricted to the 3' region of the transgene and did not spread to the 5' region. In addition, results from crossing experiments, involving non-silenced and 3' silencing inducer plants, confirmed the above finding. This indicates that RNA silencing spreads in the 5'-3' direction, not in the 3'-5' direction, along the transgene mRNA.
Collapse
Affiliation(s)
- A K M Nazmul Haque
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | | | | | | |
Collapse
|
17
|
Tournier B, Tabler M, Kalantidis K. Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:383-94. [PMID: 16771840 DOI: 10.1111/j.1365-313x.2006.02796.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The term 'RNA silencing' describes a process that results in the specific degradation of an RNA target. In plants, silenced tissues can initiate the spreading of the process into non-silenced regions by a mobile signal that can be transmitted over long distances. In the present work, we made use of a modified grafting approach to elucidate the driving force behind long-distance transport of the silencing signal. We made reciprocal grafts of two GFP-transgenic Nicotiana benthamiana lines, the non-silenced line 16c (sensor) and the silenced line 6.4 (inducer). We show that the direction of systemic spread of silencing from inducer to sensor can be manipulated by altering sink/source relations in the plant. Using radioactive phosphate as a phloem tracer, we demonstrated that plants that transmitted silencing from silenced scion to non-silenced rootstock had developed a persisting phloem flow from scion to rootstock. These data provide experimental proof of what has been hypothesized so far, that the silencing signal travels via phloem from source to sink. We present here evidence that the appearance of systemic silencing is not an accidental stochastic process, but can be predicted on the basis of the direction of phloem flow.
Collapse
Affiliation(s)
- Barthélémy Tournier
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, GR-71110 Heraklion/Crete, Greece.
| | | | | |
Collapse
|
18
|
Jones L, Keining T, Eamens A, Vaistij FE. Virus-induced gene silencing of argonaute genes in Nicotiana benthamiana demonstrates that extensive systemic silencing requires Argonaute1-like and Argonaute4-like genes. PLANT PHYSIOLOGY 2006; 141:598-606. [PMID: 16632593 PMCID: PMC1475458 DOI: 10.1104/pp.105.076109] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 03/31/2006] [Accepted: 04/06/2006] [Indexed: 05/08/2023]
Abstract
Several distinct pathways of RNA silencing operate in plants with roles including the suppression of virus accumulation, control of endogenous gene expression, and direction of DNA and chromatin modifications. Proteins of the Dicer-Like and Argonaute (AGO) families have key roles within these silencing pathways and have distinct biochemical properties. We are interested in the relationships between different silencing pathways and have used Nicotiana benthamiana as a model system. While not being an amenable plant for traditional genetics, N. benthamiana is extensively used for RNA-silencing studies. Using virus-induced gene silencing technology we demonstrate that both NbAGO1- and NbAGO4-like genes are required for full systemic silencing but not for silencing directed by an inverted repeat transgene. Phenotypic differences between the virus-induced gene silencing plants indicate that NbAGO1 and NbAGO4 like act at different stages of the silencing pathways. Suppression of NbAGO1 expression recapitulated the hypomorphic mutant phenotype of certain Arabidopsis (Arabidopsis thaliana) ago1 alleles, however, suppression of NbAgo4 like resulted in phenotypes differing in some respects from those reported for Arabidopsis ago4. We suggest that the small interfering RNA amplification step required for full systemic silencing is dependent upon a nuclear event requiring the activity of NbAGO4 like.
Collapse
Affiliation(s)
- Louise Jones
- Department of Biology , University of York, York YO10 5YW, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Abstract
RNA silencing controls numerous developmental processes in eukaryotic organisms from fungi, plants, to animals. In plants as well as in animals, this system of RNA regulation functions as part of an immune response against invading viruses. From transitive RNA silencing to virus-induced gene silencing (VIGS), the systemic effects are proven to be the core of RNA silencing. This article reviews the latest advances in view of the effect of cellular RDR6, an RNA-dependent RNA polymerase (RdRp), on systemic RNA silencing, systemic virus silencing, and discusses the abilities of viral suppressors in modulating RNA silencing efficiency to establish effective infection.
Collapse
Affiliation(s)
- Qi Xie
- National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | |
Collapse
|
20
|
Vilgelm AE, Chumakov SP, Prassolov VS. RNA interference: Biology and prospects of application in biomedicine and biotechnology. Mol Biol 2006. [DOI: 10.1134/s0026893306030010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Kalantidis K, Tsagris M, Tabler M. Spontaneous short-range silencing of a GFP transgene in Nicotiana benthamiana is possibly mediated by small quantities of siRNA that do not trigger systemic silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:1006-16. [PMID: 16507090 DOI: 10.1111/j.1365-313x.2006.02664.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A green fluorescent protein (GFP) transgene under the control of the 35S cauliflower mosaic virus (CaMV) promoter was introduced by Agrobacterium-mediated transformation into Nicotiana benthamiana to generate fourteen transgenic lines. Homozygous lines that contained one or two copies of the transgene showed great variation of GFP expression under ultraviolet (UV) light, which allowed classification into three types of transgenic plants. Plants from more than half of the transgenic lines underwent systemic RNA silencing and produced short interfering RNA (siRNA) as young seedlings, while plants of the remaining lines developed, in a spontaneous manner, defined GFP-silenced zones on their leaves, mostly in the form of circular spots that expanded to about 4-7 mm in size. In some of the latter lines, the GFP-silenced spots remained stable, but no systemic silencing occurred. Here we characterize this phenomenon, which we term spontaneous short-range silencing (SSRS). Biochemical analysis of silenced spot tissue did not reveal detectable levels of siRNA. However, agro-infiltration with the suppressor proteins P19 of cymbidium ring spot virus (CymRSV), HC-Pro of tobacco etch virus (TEV), and crosses to a P19 transgenic line, nevertheless suggests that low concentrations of siRNA may have a functional role in the locally silenced zone. We propose that small alterations in the steady-state concentration of siRNAs and their cognate mRNA are decisive with regard to whether silencing remains local or spreads in a systemic manner.
Collapse
Affiliation(s)
- Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1527, GR-71110 Heraklion, Crete, Greece.
| | | | | |
Collapse
|
22
|
Abstract
RNA silencing refers to a broad range of phenomena sharing the common feature that large, double-stranded RNAs or stem-loop precursors are processed to ca. 21-26 nucleotide small RNAs, which then guide the cleavage of cognate RNAs, block productive translation of these RNAs, or induce methylation of specific target DNAs. Although the core mechanisms are evolutionarily conserved, epigenetic maintenance of silencing by amplification of small RNAs and the elaboration of mobile, RNA-based silencing signals occur predominantly in plants. Plant RNA silencing systems are organized into a network with shared components and overlapping functions. MicroRNAs, and probably trans-acting small RNAs, help regulate development at the posttranscriptional level. Small interfering RNAs associated with transgene- and virus-induced silencing function primarily in defending against foreign nucleic acids. Another system, which is concerned with RNA-directed methylation of DNA repeats, seems to have roles in epigenetic silencing of certain transposable elements and genes under their control.
Collapse
Affiliation(s)
- Frederick Meins
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | | | |
Collapse
|
23
|
Hileman LC, Drea S, Martino G, Litt A, Irish VF. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:334-41. [PMID: 16212610 DOI: 10.1111/j.1365-313x.2005.02520.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Virus-induced gene silencing (VIGS) is an attractive method for assaying gene function in species that are resistant to conventional genetic approaches. However, VIGS has been shown to be effective in only a few, closely related plant species. Tobacco rattle virus (TRV), a bipartite RNA virus, has a wide host range and so in principle could serve as an efficient vector for VIGS in a diverse array of plant species. Here we show that a vector based on TRV sequences is effective at silencing the endogenous phytoene desaturase (PapsPDS) gene in Papaver somniferum (opium poppy). We show that this vector does not compromise the growth or reproduction of poppy and the plants did not display viral symptoms. The silencing of PapsPDS resulted in a significant reduction in PapsPDS mRNA and a concomitant photobleached phenotype. The ability to rapidly assay gene function in P. somniferum will be valuable in manipulation of the opiate pathway in this pharmaceutically important species. We suggest that our vacuum infiltration method used to deliver TRV-based vectors into poppy is a promising approach for expanding VIGS to diverse angiosperm species in which traditional delivery methods fail to induce VIGS. Furthermore, these studies demonstrate the utility of TRV-VIGS for probing gene function in a basal eudicot species that is phylogenetically distant from model plant species.
Collapse
Affiliation(s)
- Lena C Hileman
- Department of Molecular, Cellular and Developmental Biology, PO Box 208104, Yale University, New Haven, CT 06520-8104, USA
| | | | | | | | | |
Collapse
|
24
|
Schwach F, Vaistij FE, Jones L, Baulcombe DC. An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. PLANT PHYSIOLOGY 2005; 138:1842-52. [PMID: 16040651 PMCID: PMC1183376 DOI: 10.1104/pp.105.063537] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 05/03/2023]
Abstract
One of the functions of RNA silencing in plants is antiviral defense. A hallmark of RNA silencing is spreading of the silenced state through the plant. Little is known about the nature of the systemic silencing signal and the proteins required for its production, transport, and reception in plant tissues. Here, we show that the RNA-dependent RNA polymerase RDR6 in Nicotiana benthamiana is involved in defense against potato virus X at the level of systemic spreading and in exclusion of the virus from the apical growing point. It has no effect on primary replication and cell-to-cell movement of the virus and does not contribute significantly to the formation of virus-derived small interfering (si) RNA in a fully established potato virus X infection. In grafting experiments, the RDR6 homolog was required for the ability of a cell to respond to, but not to produce or translocate, the systemic silencing signal. Taking these findings together, we suggest a model of virus defense in which RDR6 uses incoming silencing signal to generate double-stranded RNA precursors of secondary siRNA. According to this idea, the secondary siRNAs mediate RNA silencing as an immediate response that slows down the systemic spreading of the virus into the growing point and newly emerging leaves.
Collapse
Affiliation(s)
- Frank Schwach
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
25
|
Kidner CA, Martienssen RA. The developmental role of microRNA in plants. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:38-44. [PMID: 15653398 DOI: 10.1016/j.pbi.2004.11.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded RNA molecules of around 22 nucleotides (nt) in length that are associated with the RNA-induced silencing complex (RISC). They play an important role in plant development, either by targeting mRNA for cleavage or by inhibiting translation. Over the past year, the list of known miRNAs, confirmed targets and developmental effects has expanded, as has the realization that they are conserved during evolution and that small RNAs can play a direct role in cell-cell signaling.
Collapse
Affiliation(s)
- Catherine A Kidner
- Institute of Molecular Plant Sciences, Edinburgh University, EH9 3JR, UK
| | | |
Collapse
|
26
|
Hewezi T, Alibert G, Kallerhoff J. Local infiltration of high- and low-molecular-weight RNA from silenced sunflower (Helianthus annuus L.) plants triggers post-transcriptional gene silencing in non-silenced plants. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:81-9. [PMID: 17168901 DOI: 10.1111/j.1467-7652.2004.00103.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Using grafting procedures, we have characterized post-transcriptional gene silencing (PTGS) in transgenic sunflower expressing beta-glucuronidase (GUS) activity. Silencing was observed as early as 2 weeks after grafting of non-silenced scions on to silenced rootstock. Transmission of the systemic signal occurs solely from stock to scion, is independent of the physiological age of the rootstock and is not heritable. Furthermore, we report, for the first time in plants, an easy and low-cost method of activating RNA silencing by infiltration of purified RNA from silenced plants. Local application of total RNA derived from silenced sunflower plants to leaves of non-silenced plants induces PTGS in newly developed leaves above the point of infiltration, as shown by reduced GUS activity and mRNA levels. Silenced plants contain 21-23-nucleotide RNAs hybridizing to transgene target sequences, in contrast with leaves of non-silenced plants. However, de novo production of GUS-specific short RNA in non-silenced plants can be activated by leaf infiltration of low-molecular-weight RNAs isolated from leaves of silenced plants. Significant levels were detected as early as 2 weeks after infiltration, peaked at 3 weeks and declined 5 weeks after infiltration. Our results provide evidence that RNA infiltration in sunflower induces transient silencing and is not transmitted to offspring. This approach could be of major use in dissecting the mechanisms involved in PTGS.
Collapse
Affiliation(s)
- Tarek Hewezi
- Laboratoire de Biotechnologies et Amélioration des Plantes, Ecole Nationale Supérieure Agronomique de Toulouse, Avenue de l'Agrobiopôle, BP 107, Auzeville Tolosane, 31326 Castanet Tolosan, France
| | | | | |
Collapse
|
27
|
Abstract
Grafting is a powerful but complex means to study the spread of RNA silencing
Collapse
Affiliation(s)
- Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.
| |
Collapse
|
28
|
Muangsan N, Beclin C, Vaucheret H, Robertson D. Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:1004-1014. [PMID: 15165191 DOI: 10.1111/j.1365-313x.2004.02103.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Virus-induced gene silencing (VIGS) is a sequence-specific RNA degradation process that can be used to downregulate plant gene expression. Both RNA and DNA viruses have been used for VIGS, but they differ in their mode of replication, gene expression, and cellular location. This study examined silencing mediated by a DNA virus, cabbage leaf curl virus (CaLCuV), in several silencing-deficient Arabidopsis mutants. A DNA VIGS vector derived from CaLCuV, which silenced chlorata42 (ChlI) needed for chlorophyll formation, was used to test endogenous gene silencing responses in suppressor of gene silencing (sgs)1, sgs2, sgs3, and Argonaute (ago)1 mutants defective in sense transgene-mediated post-transcriptional silencing (S-PTGS). SGS2/silencing defective (SDE)1, SGS3, and AGO1 are each dispensable for silencing mediated by transgenes containing inverted repeats (IR-PTGS), and SGS2/SDE1 is dispensable for RNA VIGS. We show that DNA VIGS requires both SGS2/SDE1 and SGS3, regardless of the orientation of 362 nt ChlI transcripts produced from the viral DNA promoter. Viral DNA accumulation is slightly higher, and viral symptoms increase in sgs2 and sgs3, whereas overexpression of SGS2/SDE1 mRNA results in decreased viral symptoms. Mutants affected in SGS1 and AGO1 function are only delayed in the onset of silencing, and have a small effect on chlorophyll accumulation. DNA VIGS is unaffected in defective DNA methylation (ddm)1/somniferous (som)8 and maintenance of methylation (mom)1 mutants, impaired for TGS. These results demonstrate that SGS2/SDE1 and SGS3 are needed for endogenous gene silencing from DNA viruses, and suggest that SGS2/SDE1 may reduce geminivirus symptoms by targeting viral mRNAs.
Collapse
Affiliation(s)
- Nooduan Muangsan
- Department of Botany, North Carolina State University, Raleigh, NC 27695-7612, USA
| | | | | | | |
Collapse
|
29
|
Han Y, Griffiths A, Li H, Grierson D. The effect of endogenous mRNA levels on co-suppression in tomato. FEBS Lett 2004; 563:123-8. [PMID: 15063735 DOI: 10.1016/s0014-5793(04)00280-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 11/25/2022]
Abstract
Introduction of truncated polygalacturonase (PG) transgenes into tomato plants caused the production of small interfering RNAs (siRNAs) and co-suppression of both the endogenous and PG transgenes in ripening fruits by post-transcriptional gene silencing. In order to test the possible effect on co-suppression of the endogenous PG mRNA level, we transferred the PG transgenes from a PG-silenced line (wild type background) by crossing to two ripening regulatory mutants with reduced PG: Never-ripe (Nr, approximately 10% endogenous PG mRNA compared to wild type) and ripening-inhibitor (rin, approximately 1% endogenous PG mRNA) and to wild type (as a control). The PG transgenes caused strong co-suppression of the transgenes and the endogenous PG gene in cells with high PG mRNA background (wild type) and silencing appeared to be linked with higher transgene copy number and/or a particular transgene locus. In cells with low endogenous PG mRNA accumulation (Nr), the endogenous PG gene was preferentially suppressed compared to the transgenes, whose expression was not reduced significantly. The expression of the transgenes was also not reduced in the very low PG background (rin), in which endogenous PG was barely detectable. In all the analysed lines with all three PG background levels, siRNAs accumulated in leaves and green fruits, in which the endogenous PG gene is not transcribed. The relatively abundant production of siRNAs in most of the lines was linked with a particular transgene insert. These results suggest that a certain threshold level of endogenous PG mRNA is required for the co-suppression of the truncated PG transgenes and the endogenous PG gene or for extensive silencing of the transgenes.
Collapse
MESH Headings
- Crosses, Genetic
- Gene Dosage
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant
- Solanum lycopersicum/genetics
- Mutagenesis, Insertional
- Plants, Genetically Modified
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/biosynthesis
- Suppression, Genetic
- Transgenes
Collapse
Affiliation(s)
- Yuanhuai Han
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | | | |
Collapse
|
30
|
García-Pérez RD, Houdt HV, Depicker A. Spreading of post-transcriptional gene silencing along the target gene promotes systemic silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:594-602. [PMID: 15125766 DOI: 10.1111/j.1365-313x.2004.02067.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Transitive silencing and grafting-induced gene silencing phenomena were combined to investigate whether a primary target beta-glucuronidase (gus) gene could promote the generation of systemic transitive silencing signals. Tobacco plants with hemizygous or homozygous silencer locus and in trans silenced primary target were used as a source of post-transcriptionally silenced rootstocks and tobacco plants with or without a secondary target locus as scion source. The silencer locus harbored two identical neomycin phosphotransferase II (nptII)-containing T-DNAs, integrated as an inverted repeat. The primary target locus carried a gus gene with homology to the transcribed region of the nptII gene only in the 3' untranslated region, whereas the secondary target locus had two or more copies of a gus gene without homology to transcribed sequences of the silencer locus. The upstream region of the initially targeted sequences of the in trans silenced gus gene could induce the production of a systemic signal. This signal was capable of triggering post-transcriptional gene silencing (PTGS) of the secondary target gus genes in the scion. In addition, the induction of systemic silencing was strikingly dosage dependent for the silencer as well as the primary target loci in the rootstock. Moreover, in the scions, the secondary target gus genes had to be present to generate detectable amounts of short interfering RNAs.
Collapse
Affiliation(s)
- Rubén Darío García-Pérez
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | |
Collapse
|
31
|
Heinlein M, Epel BL. Macromolecular Transport and Signaling Through Plasmodesmata. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:93-164. [PMID: 15219782 DOI: 10.1016/s0074-7696(04)35003-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plasmodesmata (Pd) are channels in the plant cell wall that in conjunction with associated phloem form an intercellular communication network that supports the cell-to-cell and long-distance trafficking of a wide spectrum of endogenous proteins and ribonucleoprotein complexes. The trafficking of such macromolecules is of importance in the orchestration of non-cell autonomous developmental and physiological processes. Plant viruses encode movement proteins (MPs) that subvert this communication network to facilitate the spread of infection. These viral proteins thus represent excellent experimental keys for exploring the mechanisms involved in intercellular trafficking and communication via Pd.
Collapse
Affiliation(s)
- Manfred Heinlein
- Botanical Institute, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | |
Collapse
|
32
|
Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67:657-85. [PMID: 14665679 PMCID: PMC309050 DOI: 10.1128/mmbr.67.4.657-685.2003] [Citation(s) in RCA: 782] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.
Collapse
Affiliation(s)
- Neema Agrawal
- International Center for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
33
|
Mitter N, Sulistyowati E, Dietzgen RG. Cucumber mosaic virus infection transiently breaks dsRNA-induced transgenic immunity to Potato virus Y in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:936-44. [PMID: 14558695 DOI: 10.1094/mpmi.2003.16.10.936] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Post-transcriptional gene silencing (PTGS), an intrinsic plant defense mechanism, can be efficiently triggered by double stranded (ds)RNA-producing transgenes and can provide high level virus resistance by specific targeting of cognate viral RNA. The discovery of virus-encoded suppressors of PTGS led to concerns about the stability of such resistance. Here, we show that Cucumber mosaic virus (CMV) is able to suppress dsRNA-induced PTGS and the associated Potato virus Y (PVY) immunity in tobacco. CMV suppression supported only a transient PVY accumulation and did not prevent recovery of the transgenic plants from PVY infection. CMV inoculation resulted in strongly increased transgene mRNA levels due to suppression of PTGS, but accumulation of PVY-specific small interfering (si)RNA was unaffected. However, PVY accumulation in previously immune plants resulted in increased PVY siRNA levels and transgene mRNA was no longer detected, despite the presence of CMV. Transgene mRNA returned to high levels once PVY was no longer detected in CMV-infected plants. Recovered and chronically CMV-infected tissues were immune to further PVY infection.
Collapse
Affiliation(s)
- Neena Mitter
- Queensland Department of Primary Industries, Agency for Food and Fibre Sciences, Agricultural Biotechnology and Cooperative Research Centre for Tropical Plant Protection, The University of Queensland, St. Lucia Qld 4072, Australia
| | | | | |
Collapse
|
34
|
Mallory AC, Mlotshwa S, Bowman LH, Vance VB. The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:82-92. [PMID: 12834404 DOI: 10.1046/j.1365-313x.2003.01785.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA silencing is a conserved eukaryotic pathway in which double-stranded RNA (dsRNA) triggers destruction of homologous target RNA via production of short-interfering RNA (siRNA). In plants, at least some cases of RNA silencing can spread systemically. The signal responsible for systemic spread is expected to include an RNA component to account for the sequence specificity of the process, and transient silencing assays have shown that the capacity for systemic silencing correlates with the accumulation of a particular class of small RNA. Here, we report the results of grafting experiments to study transmission of silencing from stably transformed tobacco lines in the presence or absence of helper component-proteinase (HC-Pro), a viral suppressor of silencing. The studied lines carry either a tail-to-tail inverted repeat, the T4-IR transgene locus, or one of two different amplicon transgene loci encoding replication-competent viral RNA. We find that the T4-IR locus, like many sense-transgene-silenced loci, can send a systemic silencing signal, and this ability is not detectably altered by HC-Pro. Paradoxically, neither amplicon locus effectively triggers systemic silencing except when suppressed for silencing by HC-Pro. In contrast to results from transient assays, these grafting experiments reveal no consistent correlation between capacity for systemic silencing and accumulation of any particular class of small RNA. In addition, although all transgenic lines used to transmit systemic silencing signals were methylated at specific sites within the transgene locus, silencing in grafted scions occurred without detectable methylation at those sites in the target locus of the scion.
Collapse
Affiliation(s)
- Allison C Mallory
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
35
|
Abstract
In Caenorhabditis elegans the timing of many developmental events is regulated by heterochronic genes. Such genes orchestrate the timing of cell divisions and fates appropriate for the developmental stage of an organism. Analyses of heterochronic mutations in the nematode C. elegans have revealed a genetic pathway that controls the timing of post-embryonic cell divisions and fates. Two of the genes in this pathway encode small regulatory RNAs. The 22 nucleotide (nt) RNAs downregulate the expression of protein-coding mRNAs of target heterochronic genes. Analogous variations in the timing of appearance of particular features have been noted among closely related species, suggesting that such explicit control of developmental timing may not be exclusive to C. elegans. In fact, some of the genes that globally pattern the temporal progression of C. elegans development, including one of the tiny RNA genes, are conserved and temporally regulated across much of animal phylogeny, suggesting that the molecular mechanisms of temporal control are ancient and universal. A very large family of tiny RNA genes called microRNAs, which are similar in structure to the heterochronic regulatory RNAs, have been detected in diverse animal species and are likely to be present in most metazoans. Functions of the newly discovered microRNAs are not yet known. Other examples of temporal programs during growth include the exquisitely choreographed temporal sequences of developmental fates in neurogenesis in Drosophila and the sequential programs of epidermal coloration in insect wing patterning. An interesting possibility is that microRNAs mediate transitions on a variety of time scales to pattern the activities of particular target protein-coding genes and in turn generate sets of cells over a period of time. Plasticity in these microRNA genes or their targets may lead to changes in relative developmental timing between related species, or heterochronic change. Instead of inventing new gene functions, even subtle changes in temporal expression of pre-existing control genes can result in speciation by altering the time at which they function.
Collapse
Affiliation(s)
- Amy E Pasquinelli
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
36
|
Guo HS, Fei JF, Xie Q, Chua NH. A chemical-regulated inducible RNAi system in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:383-92. [PMID: 12713544 DOI: 10.1046/j.1365-313x.2003.01723.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Constitutive expression of an intron-containing self-complementary 'hairpin' RNA (ihpRNA) has recently been shown to efficiently silence target genes in transgenic plants. However, this technique cannot be applied to genes whose silencing may block plant regeneration or result in embryo lethality. To obviate these potential problems, we have used a chemical-inducible Cre/loxP (CLX) recombination system to trigger the expression of an intron-containing inverted-repeat RNA (RNAi) in plants. A detailed characterization of the inducible RNAi system in transgenic Arabidopsis thaliana and Nicotiana benthamiana plants demonstrated that this system is stringently controlled. Moreover, it can be used to induce silencing of both transgenes and endogenous genes at different developmental stages and at high efficiency and without any detectable secondary affects. In addition to inducing complete silencing, the RNAi can be produced at various times after germination to initiate and obtain different degrees of gene silencing. Upon induction, transgenic plants with genetic chimera were obtained as demonstrated by PCR analysis. Such chimeric plants may provide a useful system to study signaling mechanisms of gene silencing in Arabidopsis as well as other cases of long-distance signaling without grafting. The merits of using the inducible CLX system for RNAi expression are discussed.
Collapse
Affiliation(s)
- Hui-Shan Guo
- Laboratory of Molecular Cell Biology, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore
| | | | | | | |
Collapse
|
37
|
Yelina NE, Savenkov EI, Solovyev AG, Morozov SY, Valkonen JPT. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 2002; 76:12981-91. [PMID: 12438624 PMCID: PMC136670 DOI: 10.1128/jvi.76.24.12981-12991.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA silencing is a natural defense mechanism against genetic stress factors, including viruses. A mutant hordeivirus (Barley stripe mosaic virus [BSMV]) lacking the gammab gene was confined to inoculated leaves in Nicotiana benthamiana, but systemic infection was observed in transgenic N. benthamiana expressing the potyviral silencing suppressor protein HCpro, suggesting that the gammab protein may be a long-distance movement factor and have antisilencing activity. This was shown for gammab proteins of both BSMV and Poa semilatent virus (PSLV), a related hordeivirus. Besides the functions in RNA silencing suppression, gammab and HCpro had analogous effects on symptoms induced by the hordeiviruses. Severe BSMV-induced symptoms were correlated with high HCpro concentrations in the HCpro-transgenic plants, and substitution of the gammab cistron of BSMV with that of PSLV led to greatly increased symptom severity and an altered pattern of viral gene expression. The efficient systemic infection with the chimera was followed by the development of dark green islands (localized recovery from infection) in leaves and exemption of new developing leaves from infection. Recovery and the accumulation of short RNAs diagnostic of RNA silencing in the recovered tissues in wild-type N. benthamiana were suppressed in HCpro-transgenic plants. These results provide evidence that potyviral HCpro and hordeivirus gammab proteins contribute to systemic viral infection, symptom severity, and RNA silencing suppression. HCpro's ability to suppress the recovery of plants from viral infection emphasizes recovery as a manifestation of RNA silencing.
Collapse
Affiliation(s)
- Natalia E Yelina
- Department of Virology and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | | | | | |
Collapse
|
38
|
Klahre U, Crété P, Leuenberger SA, Iglesias VA, Meins F. High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl Acad Sci U S A 2002; 99:11981-6. [PMID: 12181491 PMCID: PMC129380 DOI: 10.1073/pnas.182204199] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2002] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional gene silencing (PTGS) in transgenic plants is an epigenetic form of RNA degradation related to PTGS and RNA interference (RNAi) in fungi and animals. Evidence suggests that transgene loci and RNA viruses can generate double-stranded RNAs similar in sequence to the transcribed region of target genes, which then undergo endonucleolytic cleavage to generate small interfering RNAs (siRNA) that promote degradation of cognate RNAs. The silent state in transgenic plants and in Caenorhabditis elegans can spread systemically, implying that mobile silencing signals exist. Neither the chemical nature of these signals nor their exact source in the PTGS pathway is known. Here, we use a positive marker system and real-time monitoring of green fluorescent protein expression to show that large sense, antisense, and double-stranded RNAs as well as double-stranded siRNAs delivered biolistically into plant cells trigger silencing capable of spreading locally and systemically. Systemically silenced leaves show greatly reduced levels of target RNA and accumulate siRNAs, confirming that RNA can induce systemic PTGS. The induced siRNAs represent parts of the target RNA that are outside of the region of homology with the triggering siRNA. Our results imply that siRNAs themselves or intermediates induced by siRNAs could comprise silencing signals and that these signals induce self-amplifying production of siRNAs.
Collapse
Affiliation(s)
- Ulrich Klahre
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Abstract
RNA silencing in plants is a form of antiviral defense that was originally discovered from the anomalous effects of transgenes. The process is associated with a systemic signal, presumed to be RNA, and is suppressed by plant virus-encoded proteins. One of these proteins, the 2b protein of cucumber mosaic virus, prevents systemic spread of the signal molecule but, curiously, is located in the nucleus of infected cells. The antiviral role of silencing might also apply in animals because a suppressor of silencing encoded by an insect virus was identified recently.
Collapse
Affiliation(s)
- David Baulcombe
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| |
Collapse
|
40
|
Abstract
Recent studies of gene silencing in plants have revealed two RNA-mediated epigenetic processes, RNA-directed RNA degradation and RNA-directed DNA methylation. These natural processes have provided new avenues for developing high-efficiency, high-throughput technology for gene suppression in plants.
Collapse
Affiliation(s)
- Ming-Bo Wang
- CSIRO Plant Industry, GPO Box 1600, Australian Capital Territory 2601, Australia.
| | | |
Collapse
|
41
|
Turnage MA, Muangsan N, Peele CG, Robertson D. Geminivirus-based vectors for gene silencing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:107-14. [PMID: 11967097 DOI: 10.1046/j.1365-313x.2002.01261.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gene silencing, or RNA interference, is a powerful tool for elucidating gene function in Caenorhabditis elegans and Drosophila melanogaster. The vast genetic, developmental and sequence information available for Arabidopsis thaliana makes this an attractive organism in which to develop reliable gene-silencing tools for the plant world. We have developed a system based on the bipartite geminivirus cabbage leaf curl virus (CbLCV) that allows silencing of endogenous genes singly or in combinations in Arabidopsis. Two vectors were tested: a gene-replacement vector derived from the A component; and an insertion vector derived from the B component. Extensive silencing was produced in new growth from the A component vectors, while only minimal silencing and symptoms were seen in the B component vector. Two endogenous genes were silenced simultaneously from the A component vector and silencing of the genes was maintained throughout new growth. Because the CbLCV vectors are DNA vectors they can be inoculated directly from plasmid DNA. Introduction of these vectors into intact plants bypasses transformation and extends the kinds of silencing studies that can be carried out in Arabidopsis.
Collapse
Affiliation(s)
- Michael A Turnage
- Department of Botany, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
42
|
Boutla A, Kalantidis K, Tavernarakis N, Tsagris M, Tabler M. Induction of RNA interference in Caenorhabditis elegans by RNAs derived from plants exhibiting post-transcriptional gene silencing. Nucleic Acids Res 2002; 30:1688-94. [PMID: 11917031 PMCID: PMC101830 DOI: 10.1093/nar/30.7.1688] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 01/04/2002] [Accepted: 02/04/2002] [Indexed: 11/13/2022] Open
Abstract
The term 'gene silencing' refers to transcriptional and post-transcriptional control of gene expression. Related processes are found across kingdoms in plants and animals. We intended to test whether particular RNA constituents of a silenced plant can induce silencing in an animal. We generated Nicotiana benthamiana lines that expressed green fluorescent protein (GFP) from a transgene. Plants in which GFP expression was spontaneously silenced showed siRNAs characteristic of post-transcriptional gene silencing (PTGS). RNA extracts prepared from silenced plants were injected into a GFP-expressing strain of Caenorhabditis elegans, where they induced RNA interference (RNAi). Extracts from non-silenced plants were inactive. This directly demonstrates a relationship and a mechanistic link between PTGS and RNAi. Controls confirmed that the silencing agent was an RNA. Size fractionation on denaturing gels revealed that an RNA of approximately 85 nt was most active in inducing silencing in the worm. Northern blot analysis of the region in question did not detect a prominent GFP-specific RNA of sense or antisense polarity, indicating that the RNA species which induced silencing was present only in low concentration or did not hybridize due to formation of an intramolecular double strand. In view of its high activity, it is possible that this agent is responsible for the systemic spread of silencing in plants and it might represent the aberrant RNA, a previously postulated inducer of silencing.
Collapse
Affiliation(s)
- Alexandra Boutla
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, PO Box 1527, GR-71110 Heraklion/Crete, Greece
| | | | | | | | | |
Collapse
|
43
|
Kisielow M, Kleiner S, Nagasawa M, Faisal A, Nagamine Y. Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem J 2002; 363:1-5. [PMID: 11903040 PMCID: PMC1222444 DOI: 10.1042/0264-6021:3630001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many eukaryotic genes are expressed as multiple isoforms through the differential utilization of transcription/translation initiation sites or alternative splicing. The conventional approach for studying individual isoforms in a clean background (i.e. without the influence of other isoforms) has been to express them in cells or whole organisms in which the target gene has been deleted; this is time-consuming. Recently an efficient post-transcriptional gene-silencing method has been reported that employs a small interfering double-stranded RNA (siRNA). On the basis of this method we report a rapid alternative approach for isoform-specific gene expression. We show how the adaptor protein ShcA can be suppressed and expressed in an isoform-specific manner in a human cell line. ShcA exists in three isoforms, namely p66, p52 and p46, which differ only in their N-terminal regions and are derived from two different transcripts, namely p66 and p52/p46 mRNAs. An siRNA with a sequence shared by the two transcripts suppressed all of them. However, another siRNA whose sequence was present only in p66 mRNA suppressed only the p66 isoform, suggesting that the siRNA signal did not propagate to other regions of the target mRNA. The expression of individual isoforms was achieved by first down-regulating all isoforms by the common siRNA and then transfecting with an expression vector for each isoform that harboured silent mutations at the site corresponding to the siRNA. This allowed functional analysis of individual ShcA isoforms and may be more generally applicable for studying genes encoding multiple proteins.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Down-Regulation
- Gene Silencing
- Genetic Techniques
- HeLa Cells
- Humans
- Kinetics
- Protein Biosynthesis
- Protein Isoforms
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Malgorzata Kisielow
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66 CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 2002; 295:2456-9. [PMID: 11834782 DOI: 10.1126/science.1068836] [Citation(s) in RCA: 588] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Double-stranded RNA-mediated gene interference (RNAi) in Caenorhabditis elegans systemically inhibits gene expression throughout the organism. To investigate how gene-specific silencing information is transmitted between cells, we constructed a strain that permits visualization of systemic RNAi. We used this strain to identify systemic RNA interference-deficient (sid) loci required to spread gene-silencing information between tissues but not to initiate or maintain an RNAi response. One of these loci, sid-1, encodes a conserved protein with predicted transmembrane domains. SID-1 is expressed in cells sensitive to RNAi, is localized to the cell periphery, and is required cell-autonomously for systemic RNAi.
Collapse
Affiliation(s)
- William M Winston
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
45
|
Guo HS, Ding SW. A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J 2002; 21:398-407. [PMID: 11823432 PMCID: PMC125836 DOI: 10.1093/emboj/21.3.398] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/30/2001] [Accepted: 12/03/2001] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional gene silencing (PTGS) provides protection against viruses in plants by homology-dependent RNA degradation. PTGS initiated locally produces a mobile signal that instructs specific RNA degradation at a distance. Here we show that this signal-mediated intercellular spread of PTGS does not occur after PTGS initiation in cells expressing cucumber mosaic virus 2b protein (Cmv2b), a nucleus-localized plant viral PTGS suppressor. Silencing spread via the signal was also effectively blocked in independent assays by expressing Cmv2b only in tissues through which the signal must travel to induce PTGS in the target cells. Furthermore, the signal imported externally into the Cmv2b-expressing cells was not active in triggering degradation of the target RNA and loss of signal activity in these cells was associated with a significantly reduced transgene DNA methylation. These findings indicate that Cmv2b inhibits the activity of the mobile signal and interferes with DNA methylation in the nucleus. Signal inactivation provides a mechanistic basis for the known role of Cmv2b in facilitating virus spread to tissues outside of the primarily infected sites.
Collapse
Affiliation(s)
- Hui Shan Guo
- Molecular Virology Laboratory, Institute of Molecular Agrobiology, National University of Singapore, Singapore and Department of Plant Pathology, University of California, Riverside, CA 92521, USA Corresponding author e-mail:
| | - Shou Wei Ding
- Molecular Virology Laboratory, Institute of Molecular Agrobiology, National University of Singapore, Singapore and Department of Plant Pathology, University of California, Riverside, CA 92521, USA Corresponding author e-mail:
| |
Collapse
|
46
|
Ullu E, Djikeng A, Shi H, Tschudi C. RNA interference: advances and questions. Philos Trans R Soc Lond B Biol Sci 2002; 357:65-70. [PMID: 11839183 PMCID: PMC1692925 DOI: 10.1098/rstb.2001.0952] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In animals and protozoa gene-specific double-stranded RNA triggers the degradation of homologous cellular RNAs, the phenomenon of RNA interference (RNAi). RNAi has been shown to represent a novel paradigm in eukaryotic biology and a powerful method for studying gene function. Here we discuss RNAi in terms of its mechanism, its relationship to other post-transcriptional gene silencing phenomena in plants and fungi, its connection to retroposon silencing and possibly to translation, and its biological role. Among the organisms where RNAi has been demonstrated the protozoan parasite Trypanosoma brucei represents the most ancient branch of the eukaryotic lineage. We provide a synopsis of what is currently known about RNAi in T. brucei and outline the recent advances that make RNAi the method of choice to disrupt gene function in these organisms.
Collapse
Affiliation(s)
- Elisabetta Ullu
- Department of Internal Medicine, and Department of Cell Biology, Yale Medical School, 333 Cedar Street, New Haven, CT 06520-8022, USA.
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Xuelin Wu
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
48
|
Crété P, Leuenberger S, Iglesias VA, Suarez V, Schöb H, Holtorf H, van Eeden S, Meins F. Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:493-501. [PMID: 11849590 DOI: 10.1046/j.1365-313x.2001.01171.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sense and antisense tobacco chitinase (CHN) transgenes, Luciferase-CHN transcriptional fusions, and promoterless CHN cDNAs were introduced biolistically into CHN transformants of tobacco that never exhibit spontaneous gene silencing. All of the constructs tested induced systemic silencing of the resident CHN transgene and endogenes. Nuclear run-on transcription assays showed that local introduction of additional gene copies triggers systemic post-transcriptional gene silencing (PTGS). Together, this provides evidence that additional transgene copies need not be either highly transcribed or produce sense transcripts to evoke production of systemic PTGS signals. CHN PTGS was transmitted by top grafting, but not by reciprocal grafting of mature stems or the exchange of tissue plugs. Thus, the commonly encountered difficulties in achieving graft-transmission could reflect the method used. Silencing in sense but not antisense transformants was transmitted by grafting to a high-expressing sense CHN scion suggesting that the elaboration of mobile signals may not be an essential feature of antisense-mediated gene silencing.
Collapse
Affiliation(s)
- P Crété
- The Friedrich Miescher Institute for Biomedical Research, A branch of the Novartis Research Foundation, Maulbeerstrasse 66, CH-4058, Basel Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
A number of gene silencing phenomena that inactivate genes at the post-transcriptional level have been identified. Due to its potential for studying gene function, post-transcriptional gene silencing (PTGS) has become an intense area of research. In this review we describe the different means of inducing PTGS and discuss the possible biological roles of these artificially induced phenomena. We also discuss other features of PTGS such as the mechanism of mRNA degradation, the nature of the silencing signal and the mechanism of PTGS inhibition by viral proteins.
Collapse
Affiliation(s)
- A Chicas
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy
| | | |
Collapse
|
50
|
Candresse T, Krause-Sakate R, Richard-Forget F, Redondo E, German-Retana S, Le Gall O. Plant viruses and the recent discovery of unforeseen basic cellular processes. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:935-41. [PMID: 11570282 DOI: 10.1016/s0764-4469(01)01369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given their small genome size, the biological cycle of plant viruses is tightly integrated with the cellular processes of their host plants, so that studies of the viral biology will often provide insights into basic cellular processes. In the last decade, two such unforeseen mechanisms were discovered. One concerns intercellular communications: for their movement in infected plants, viruses use channels (plasmodesmata, phloem) also used by the plant to exchange information-rich molecules (proteins, RNAs) between cells. The second phenomenon concerns the existence, in plants, of an anti-viral defence mechanism based on the specific degradation of RNA molecules in the cytoplasm. This same mechanism, also allowing the regulation of gene expression (post-transcriptional gene silencing, PTGS) now appears to be widespread in pluricellular organisms. Besides their general interest, these new results modify drastically our vision of interactions between plant and viruses and raise numerous new research questions.
Collapse
Affiliation(s)
- T Candresse
- Equipe de virologie, UMR GD2P, IBVM, centre Inra de Bordeaux, BP 81, 33883 Villenave-d'Ornon, France.
| | | | | | | | | | | |
Collapse
|