1
|
Quach TT, Lerch JK, Honnorat J, Khanna R, Duchemin AM. Neuronal networks in mental diseases and neuropathic pain: Beyond brain derived neurotrophic factor and collapsin response mediator proteins. World J Psychiatry 2016; 6:18-30. [PMID: 27014595 PMCID: PMC4804265 DOI: 10.5498/wjp.v6.i1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
The brain is a complex network system that has the capacity to support emotion, thought, action, learning and memory, and is characterized by constant activity, constant structural remodeling, and constant attempt to compensate for this remodeling. The basic insight that emerges from complex network organization is that substantively different networks can share common key organizational principles. Moreover, the interdependence of network organization and behavior has been successfully demonstrated for several specific tasks. From this viewpoint, increasing experimental/clinical observations suggest that mental disorders are neural network disorders. On one hand, single psychiatric disorders arise from multiple, multifactorial molecular and cellular structural/functional alterations spreading throughout local/global circuits leading to multifaceted and heterogeneous clinical symptoms. On the other hand, various mental diseases may share functional deficits across the same neural circuit as reflected in the overlap of symptoms throughout clinical diagnoses. An integrated framework including experimental measures and clinical observations will be necessary to formulate a coherent and comprehensive understanding of how neural connectivity mediates and constraints the phenotypic expression of psychiatric disorders.
Collapse
|
2
|
Abstract
Assisted reproductive technologies (ART) have revolutionized the treatment of infertility. However, many types of infertility may still not be addressable by ART. With recent successes in identifying many of the genetic factors responsible for male infertility and the future prospect of whole individual human genome sequencing to identify disease causing genes, the possible use of gene therapy for treating infertility deserves serious consideration. Gene therapy in the sperm and testis offers both opportunities and obstacles. The opportunities stem from the fact that numerous different approaches have been developed for introducing transgenes into the sperm and testis, mainly because of the interest in using sperm mediated gene transfer and testis mediated gene transfer as ways to generate transgenic animals. The obstacles arise from the fact that it may be very difficult to carry out gene therapy of the testis and sperm without also affecting the germline. Here we consider new developments in both sperm and testis mediated gene transfer, including the use of viral vectors, as well as the technical and ethical challenges facing those who would seek to use these approaches for gene therapy as a way to treat male infertility.
Collapse
Affiliation(s)
- John Parrington
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | | | | |
Collapse
|
3
|
Lewis SJ. Mendelian randomization as applied to coronary heart disease, including recent advances incorporating new technology. ACTA ACUST UNITED AC 2010; 3:109-17. [PMID: 20160203 DOI: 10.1161/circgenetics.109.880955] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sarah J Lewis
- Department of Social Medicine, University of Bristol, United Kingdom.
| |
Collapse
|
4
|
Nilles KM, London B. Knockin Animal Models of Inherited Arrhythmogenic Diseases: What Have We Learned From Them? J Cardiovasc Electrophysiol 2007; 18:1117-25. [PMID: 17573834 DOI: 10.1111/j.1540-8167.2007.00884.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mouse models are becoming an increasingly accepted method of studying human diseases. Knockin and knockout techniques have several advantages over traditional transgenic overexpression, and the versatility of the knockin mouse allows the study of both gain of function mutations through targeted mutagenesis, as well as the replacement of one gene by another functional gene. Here, we will review the methods available to generate knockin mice; provide an overview of the techniques used to study electrophysiology in the mice at the cellular, organ, and whole animal level; and highlight knockin mice that have implications for inherited arrhythmias. Specifically, we will focus on models that used knockin mice to clarify gene expression, identify similarities and differences between related genes, and model human arrhythmia syndromes. Our goal is to provide the reader with a general understanding of studies done on knockin mouse models of inherited arrhythmias as well as ideas for future directions.
Collapse
Affiliation(s)
- Kathy M Nilles
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
5
|
Oliver PL, Bitoun E, Davies KE. Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm Genome 2007; 18:412-24. [PMID: 17514509 PMCID: PMC1998876 DOI: 10.1007/s00335-007-9014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/23/2022]
Abstract
One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models.
Collapse
Affiliation(s)
- Peter L. Oliver
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Emmanuelle Bitoun
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
6
|
Abstract
Genetically engineered mice (GEM) and rats (GER) have emerged as the main mammalian models for investigating normal (physiological, or "health") and abnormal (patho-logical, or "disease") mechanisms. Regardless of the genetic manipulation, novel GEM and GER must undergo meticulous genotypic and phenotypic analyses before it is possible to predict the significance of the engineered gene with re-spect to health and disease, especially when the desire is to extrapolate the findings to humans. Numerous websites have been generated to give researchers additional tools to facilitate genotyping and phenotyping. This list of many extant sites with descriptions of their basic features provides a starting point for new and established scientists faced with the need to characterize a new GEM or GER model.
Collapse
|
7
|
Thakker DR, Hoyer D, Cryan JF. Interfering with the brain: use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol Ther 2005; 109:413-38. [PMID: 16183135 DOI: 10.1016/j.pharmthera.2005.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 12/31/2022]
Abstract
Psychiatric and neurological disorders are among the most complex, poorly understood, and debilitating diseases in medicine. The burgeoning advances in functional genomic technologies have led to the identification of a vast number of novel genes that are potentially implicated in the pathophysiology of such disorders. However, many of these candidate genes have not yet been functionalized and require validation in vivo. Traditionally, abrogating gene function is one of the primary means of examining the physiological significance of a given gene product. Several methods have been developed for gene ablation or knockdown, however, with limited levels of success. The recent discovery of RNA interference (RNAi), as a highly efficient method for gene knockdown, has been one of the major breakthroughs in molecular medicine. In vivo application of RNAi is further demonstrating the promise of this technology. Recent efforts have focused on applying RNAi-based knockdown to understand the genes implicated in neuropsychiatric disorders. However, the greatest challenge with this approach is translating the success of RNAi from mammalian cell cultures to the brain in animal models of disease and, subsequently, in patients. In this review, we describe the various methods that are being developed to deliver RNAi into the brain for down-regulating gene expression and subsequent phenotyping of genes in vivo. We illustrate the utility of various approaches with a few successful examples and also discuss the potential benefits and pitfalls associated with the use of each delivery approach. Appropriate tailoring of tools that deliver RNAi in the brain may not only aid our understanding of the complex pathophysiology of neuropsychiatric disorders, but may also serve as a valuable therapy for disorders, where there is an immense unmet medical need.
Collapse
Affiliation(s)
- Deepak R Thakker
- Psychiatry Program, Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
8
|
Bolon B. Genetically engineered animals in drug discovery and development: a maturing resource for toxicologic research. Basic Clin Pharmacol Toxicol 2005; 95:154-61. [PMID: 15504150 DOI: 10.1111/j.1742-7843.2004.pto950402.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetically engineered mice that either over-express a foreign gene (transgenic) or in which the activity of a specific gene has been removed ("knock-out") or replaced ("knock-in") will be used increasingly to investigate molecular mechanisms of disease, to evaluate innovative therapeutic targets, and to screen novel agents for efficacy and/or toxicity. Recent innovations of relevance to toxicologic researchers include the construction of genetically engineered mice with (1) multiple engineered genes, (2) mutations that can be induced at specific sites and times throughout life, and (3) the substitution of human genes for their mouse counterparts ("humanized" mice) to allow in vivo investigation of xenobiotic toxicity. Contemporary applications of genetically engineered mice in toxicology include basic mechanistic research exploiting newly engineered mouse lines as well as applied screening for genotoxicity and carcinogenicity using commercially available animals. Many caveats must be considered when interpreting genetically engineered mice-derived toxicity data, the chief of which will be the extent to which the model's phenotype has been fully characterized, the type and incidence of background lesions for the given mouse strain and engineered gene, and the possibility of misinterpreting the presence or absence of a phenotype due to compensatory physiologic processes that mask the outcome produced by the engineering event. Toxicity data acquired using genetically engineered mice currently supplements and in time likely will supplant those gathered using the present "gold standard" bioassays, as genetically engineered mice typically develop more lesions after a shorter latency period than do age- and strain-matched, wild-type mice.
Collapse
Affiliation(s)
- Brad Bolon
- GEMpath Inc., 2540 N. 400 W., Cedar City, UT 84720-8400, U.S.A.
| |
Collapse
|
9
|
Kan L, Kessler JA. New tool for an old problem: can RNAi efficiently resolve the issue of genetic redundancy? Bioessays 2005; 27:14-6. [PMID: 15612040 DOI: 10.1002/bies.20172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA interference (RNAi) has become a generally accepted tool for inhibiting gene expression in many laboratory organisms. Nagel et al.,(1) in a recent paper, give an example of how this tool can also be used to address the question of genetic redundancy. Their focus was on the redundancy in Drosophila melanogaster of the Enhancer of split gene complex [E(spl)-C] which comprises seven highly related genes. Their somewhat conflicting findings are probably the typical scenario for most RNAi experiments: some expected results and some surprises.
Collapse
Affiliation(s)
- Lixin Kan
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Ward Building 10-185, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
10
|
Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL. Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis 2005; 39:100-4. [PMID: 15170695 DOI: 10.1002/gene.20031] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
C57BL/6 is a well-characterized mouse strain that is used extensively for immunological and neurological research. The establishment of C57BL/6 ES cell lines has facilitated the study of gene-altered mice in a pure genetic background-however, relatively few such lines exist. Using a defined media supplement, knockout serum replacement (KSR) with knockout DMEM (KSR-KDMEM), we find that we can readily establish ES cell lines from blastocysts of C57BL/6J mice. Six lines were established, all of which were karyotypically normal and could be maintained in the undifferentiated state on mouse embryonic fibroblast (MEF) feeders. One line was further tested and found to be karyotypically stable and germline competent, both prior to manipulation and after gene targeting. For this cell line, efficiencies of cell cloning and chimera generation were greater when maintained in KSR-KDMEM. Our work suggests that the use of defined serum-free media may facilitate the generation of ES cells from inbred mouse strains.
Collapse
Affiliation(s)
- Jun Cheng
- Genetic Diseases Research Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
11
|
Bogue CW. Genetic Models in Applied Physiology. Functional genomics in the mouse: powerful techniques for unraveling the basis of human development and disease. J Appl Physiol (1985) 2003; 94:2502-9. [PMID: 12736192 DOI: 10.1152/japplphysiol.00209.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Now that near-complete DNA sequences of both the mouse and human genomes are available, the next major challenge will be to determine how each of these genes functions, both alone and in combination with other genes in the genome. The mouse has a long and rich history in biological research, and many consider it a model organism for the study of human development and disease. Over the past few years, exciting progress has been made in developing techniques for chromosome engineering, mutagenesis, mapping and maintenance of mutations, and identification of mutant genes in the mouse. In this mini-review, many of these powerful techniques will be presented along with their application to the study of development, physiology, and disease.
Collapse
Affiliation(s)
- Clifford W Bogue
- Yale Child Health Research Center, Section of Critical Care and Applied Physiology, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| |
Collapse
|
12
|
Miyagi T, Takeno M, Nagafuchi H, Takahashi M, Suzuki N. Flk1+ cells derived from mouse embryonic stem cells reconstitute hematopoiesis in vivo in SCID mice. Exp Hematol 2002; 30:1444-53. [PMID: 12482507 DOI: 10.1016/s0301-472x(02)00961-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Embryonic stem (ES) cells are pluripotent and can differentiate into any cell type, including the hematopoietic lineage. We examined whether hematopoietic progenitor cells derived from ES cells reconstitute hematopoiesis in irradiated SCID mice. MATERIALS AND METHODS ES cells (E14.1, H2K(b)) were cultured for 4 days in semisolid medium containing methylcellulose. Irradiated SCID mice were used as recipients of hematopoietic progenitor cells. Cell surface antigen expression was analyzed by flow cytometry. The spleens of the recipient mice were studied by hematoxylin and eosin staining and immunohistochemical staining. RESULTS After cell culture of ES cells in methylcellulose for 4 days, the cells expressing Flk1 (VEGF receptor 2), a tentative marker of hemangioblasts, were increased, whereas cells expressing CD31 (PECAM-1) and E-cadherin (nonmesodermal adhesion molecule) were dramatically reduced. Flk1+ cells expressed c-kit predominantly. Circulating leukocytes and thrombocytes were increased in irradiated SCID (H2K(d)) mice transplanted with ES cell-derived Flk1+ cells compared with vehicle-injected control mice. H2K(b+) and VE-cadherin(+) vascular endothelial cells were prominent in spleens of the recipient mice. Flow cytometric analysis demonstrated that H2K(b+) cells were increased in the bone marrow of recipient mice. In addition, Flk1+ cells accompanying enhanced c-kit expression preferentially repopulated in the bone marrow, and leukopoiesis and thrombopoiesis of the recipient mice were evident. CONCLUSION The Flk1+ hematopoietic cells derived from ES cells reconstitute hematopoiesis in vivo and may become an alternative donor source for bone marrow transplantation.
Collapse
Affiliation(s)
- Tsukasa Miyagi
- Departments of Immunology and Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | | | | | | | | |
Collapse
|
13
|
Bolon B, Galbreath E. Use of genetically engineered mice in drug discovery and development: wielding Occam's razor to prune the product portfolio. Int J Toxicol 2002; 21:55-64. [PMID: 11936900 DOI: 10.1080/10915810252826019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetically engineered mice (GEMs) that either overexpress (transgenic) or lack (gene-targeted, or "knock-out") genes are used increasingly in industry to investigate molecular mechanisms of disease, to evaluate innovative therapeutic targets, and to screen agents for efficacy and/or toxicity. High throughput GEM construction in drug discovery and development (DDD) serves two main purposes: to test whether a given gene participates in a disease condition, or to determine the function(s) of a protein that is encoded by an expressed sequence tag (EST, an mRNA fragment for a previously uncharacterized protein). In some instances, phenotypes induced by such novel GEMs also may yield clues regarding potential target organs and toxic effects of potential therapeutic molecules. The battery of tests used in phenotypic analysis of GEMs varies between companies, but the goal is to define one or more easily measured endpoints that can be used to monitor the disease course--especially during in vivo treatment with novel drug candidates. In many DDD projects, overt phenotypes are subtle or absent even in GEMs in which high-level expression or total ablation of an engineered gene can be confirmed. This outcome presents a major quandary for biotechnology and pharmaceutical firms: given the significant expense and labor required to generate GEMs, what should be done with "negative" constructs? The 14th century philosophical principle known as Occam's razor-that the simplest explanation for a phenomenon is likely the truth-provides a reasonable basis for pruning potential therapeutic molecules and targets. In the context of DDD, Occam's razor may be construed to mean that correctly engineered GEMs lacking obvious functional or structural phenotypes have none because the affected gene is not uniquely essential to normal homeostasis or disease progression. Thus, a "negative" GEM construct suggests that the gene under investigation encodes a ligand or target molecule without significant therapeutic potential. This interpretation indicates that, at least in a market-driven industrial setting, such "negative" projects should be pruned aggressively so that resources may be redirected to more promising DDD ventures.
Collapse
Affiliation(s)
- Brad Bolon
- Amgen, Inc, Thousand Oaks, California 91320-1789, USA.
| | | |
Collapse
|
14
|
Abstract
Transgenic animals, especially mice, have been used quite extensively as models for various human diseases. At first, the level of scientific inquiry was driven by the need to establish the model. In many cases, these models may be considered quite crude because of their limitations. More recently, transgenic models of disease have become more refined and are currently being used to study the pathological mechanisms behind the disease rather than to just provide a model of the disease. Using some examples from the recent literature, we will document the current level and complexity of inquiry using transgenic animals. New techniques and techniques that may prove promising will be discussed.
Collapse
Affiliation(s)
- R M Petters
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621, USA.
| | | |
Collapse
|
15
|
Abstract
DNA targeting by homologous recombination in mouse embryonic stem (ES) cells has become a widely used method for manipulating the mouse genome and for studying the role of specific genes in mammalian development. For certain studies, it is necessary to target two or more DNA sequences residing on a particular chromosome. In these situations, it would be important to distinguish whether two sequential gene targeting events in the ES cells have occurred in cis or in trans. We report here a new application of fluorescence in situ hybridization to RNA molecules present at sites of transcription that allows the identification of cis and trans gene targeting events in ES cells. The method is based on detection of transcripts from commonly used selectable marker genes inserted during homologous recombination. Transcripts are detected in interphase nuclei, making the preparation of mitotic cells unnecessary and obviating the necessity for the more technically demanding DNA detection of genes. The method is applicable to any chromosomal locus, and compared with other methods (e.g., genetic linkage testing in chimeric mice), it will greatly shorten the time required for distinguishing cis and trans gene targeting events in ES cells. The method also may be useful for detecting changes in ploidy of individual chromosomes and loss of heterozygosity of genes in single cells in culture and also in animals, for example, during processes such as tumorigenesis.
Collapse
Affiliation(s)
- Y Fan
- Departments of Cell Biology and Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
New methods enable the identification of compounds that both induce a specific cellular state and lead to identification of proteins that regulate that state. Together, developments in three critical areas: chemical diversity, phenotype-based screening and target identification, enable the systematic application of this chemical genetic approach to almost any biological problem or disease process.
Collapse
Affiliation(s)
- B R Stockwell
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, MA 02142, USA.
| |
Collapse
|
17
|
Abstract
Microinjection of DNA constructs into pronuclei of zygotes has been the method of choice for the generation of transgenic livestock. However, this procedure is characterized by low efficiency (1-4% transgenic offspring), random integration and variable expression of the transgene as well as a considerable proportion of mosaicism. Furthermore, it is extremely time consuming and costly. As a consequence, commercial application has focused on the production of recombinant proteins in the mammary gland of transgenic animals and xenotransplantation, e.g. the use of porcine organs in human organ transplantation. In addition, transgenic pigs carrying a modified porcine growth hormone (hMt-pGH) construct show significant improvements in economically important traits without adverse side effects of a GH overproduction. Improvements of transgenic technology will likely come from the generation of appropriate cell lines suitable for transfection or even homologous recombination and their subsequent use in nuclear transfer. Additionally, in the mouse a number of sophisticated molecular tools have been developed that allow precise modifications of the genome. These include the application of artificial chromosomes from yeast (YAC) or bacteria (BAC) for position-independent and copy-number-dependent expression of a transgene, the Tet-system (tetracycline inducible) for a tight temporal control of transgene expression, as well as conditional mutagenesis by applying site-specific DNA recombinases (e.g. Cre, FLP). The successful adaptation of these molecular tools to livestock will enable the fulfillment of many of the promises originally thought to be achievable when transgenic livestock were first reported.
Collapse
Affiliation(s)
- H Niemann
- Department of Biotechnology, Institut für Tierzucht und Tierverhalten (FAL), Mariensee, Neustadt, Germany.
| | | |
Collapse
|
18
|
Male-male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci U S A 2000. [PMID: 10716731 PMCID: PMC16238 DOI: 10.1073/pnas.060284797] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The detrimental effects of inbreeding on vertebrates are well documented for early stages of the life cycle in the laboratory. However, the consequences of inbreeding on long-term survival and reproductive success (Darwinian fitness) are uncertain for vertebrates in the wild. Here, we report direct experimental evidence for vertebrates that competition increases the harmful effects of inbreeding on offspring survival and reproduction. We compared the fitness of inbred (from full-sib matings) and outbred wild house mice (Mus domesticus) in large, seminatural enclosures. Inbred males sired only one-fifth as many surviving offspring as outbred males because of their poor competitive ability and survivorship. In laboratory conditions, inbreeding had relatively minor effects on male reproductive success and no effect on survivorship. Seminatural conditions did not increase inbreeding depression for females, probably because females were not competing for any critical resources. The overall reduction in fitness from inbreeding was 57%, which is 4.5 times as great as previous estimates from the laboratory. These results have important implications for medicine, conservation, evolutionary biology, and functional genomics.
Collapse
|
19
|
Meagher S, Penn DJ, Potts WK. Male-male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci U S A 2000; 97:3324-9. [PMID: 10716731 PMCID: PMC16238 DOI: 10.1073/pnas.97.7.3324] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detrimental effects of inbreeding on vertebrates are well documented for early stages of the life cycle in the laboratory. However, the consequences of inbreeding on long-term survival and reproductive success (Darwinian fitness) are uncertain for vertebrates in the wild. Here, we report direct experimental evidence for vertebrates that competition increases the harmful effects of inbreeding on offspring survival and reproduction. We compared the fitness of inbred (from full-sib matings) and outbred wild house mice (Mus domesticus) in large, seminatural enclosures. Inbred males sired only one-fifth as many surviving offspring as outbred males because of their poor competitive ability and survivorship. In laboratory conditions, inbreeding had relatively minor effects on male reproductive success and no effect on survivorship. Seminatural conditions did not increase inbreeding depression for females, probably because females were not competing for any critical resources. The overall reduction in fitness from inbreeding was 57%, which is 4.5 times as great as previous estimates from the laboratory. These results have important implications for medicine, conservation, evolutionary biology, and functional genomics.
Collapse
Affiliation(s)
- S Meagher
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
20
|
Jonkers J, van Amerongen R, van der Valk M, Robanus-Maandag E, Molenaar M, Destrée O, Berns A. In vivo analysis of Frat1 deficiency suggests compensatory activity of Frat3. Mech Dev 1999; 88:183-94. [PMID: 10534617 DOI: 10.1016/s0925-4773(99)00187-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Frat1 gene was first identified as a proto-oncogene involved in progression of mouse T cell lymphomas. More recently, FRAT/GBP (GSK-3beta Binding Protein) family members have been recognized as critical components of the Wnt signal transduction pathway. In an attempt to gain more insight into the function of Frat1, we have generated Frat1-deficient mice in which most of the coding domain was replaced by a promoterless beta-galactosidase reporter gene. While the pattern of LacZ expression in Frat1(lacZ)/+ mice indicated Frat1 to be expressed in various neural and epithelial tissues, homozygous Frat1(lacZ) mice were apparently normal, healthy and fertile. Tissues of homozygous Frat1(lacZ) mice showed expression of a second mouse Frat gene, designated Frat3. The Frat1 and Frat3 proteins are structurally and functionally very similar, since both Frat1 and Frat3 are capable of inducing a secondary axis in Xenopus embryos. The overlapping expression patterns of Frat1 and Frat3 during murine embryogenesis suggest that the apparent dispensability of Frat1 for proper development may be due to the presence of a second mouse gene encoding a functional Frat protein.
Collapse
Affiliation(s)
- J Jonkers
- The Netherlands Cancer Institute, Division of Molecular Genetics and Center of Biomedical Genetics, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Piedrahita JA, Dunne P, Lee CK, Moore K, Rucker E, Vazquez JC. Use of Embryonic and Somatic Cells for Production of Transgenic Domestic Animals. ACTA ACUST UNITED AC 1999; 1:73-87. [PMID: 16218833 DOI: 10.1089/15204559950019960] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In contrast to the highly developed genetic modification systems available for manipulating the mouse genome, at this time only simple gain of function modifications can be undertaken in domestic species. Clearly, the greatest barrier to gene targeting in domestic species has been the unavailability of cell lines that can be modified in vitro and still be used to generate a living organism. In the mouse, the embryonic stem (ES) cells and embryonic germ (EG) cells have fulfilled that role. While the nuclear transfer procedures have solved this problem in sheep and cattle, in swine ES and EG cells are still needed. In addition, targeting in domestic species is affected by the need to develop targeting constructs containing isogenic DNA regions. As a result, it is necessary to isolate the gene of interest, sequence required regions, and develop isogenic targeting constructs by technologies such as long-range PCR. On the positive side, enrichment protocols developed in the mouse can be applied to domestic species, thus facilitating the identification of correctly modified cell lines. Hence, progress in mammalian cloning, the development of EG cell lines, and advances in gene targeting presently allows the introduction of precise genetic modifications into the domestic animal genome.
Collapse
Affiliation(s)
- J A Piedrahita
- Department of Veterinary Anatomy and Public Health, Department of Animal Sciences, and Center for Animal Biotechnology and Comparative Genomics, Texas A&M University, College Station, Texas
| | | | | | | | | | | |
Collapse
|
22
|
Yang W, Mansour SL. Expression and genetic analysis of prtb, a gene that encodes a highly conserved proline-rich protein expressed in the brain. Dev Dyn 1999; 215:108-16. [PMID: 10373015 DOI: 10.1002/(sici)1097-0177(199906)215:2<108::aid-dvdy3>3.0.co;2-i] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A mouse gene, designated prtb (proline codon-rich transcript, brain expressed) was identified and characterized from a gene trap embryonic stem cell line. It encodes a proline-rich protein of 168 amino acids that shares 99% amino acid sequence identity with its human homologue and is located on the distal region of mouse chromosome 15. To determine the expression pattern and function of prtb, mice that carry the prtb(gt) allele were generated. During embryogenesis,prtb gene expression as revealed by beta-galactosidase (beta-gal) marker gene activity was highly regulated. Between embryonic day (E) 11.5 and E12.5, beta-gal activity was restricted to the developing heart. From E13.5 on, expression in the heart was extinguished. However, very strong beta-gal activity could be detected in the brains of adult mice, suggesting a role for this gene in brain function. Mice homozygous for the mutation were viable, fertile, and did not display any obvious abnormalities. This could be due to functional redundancy as Northern blot hybridization analysis clearly demonstrated that prtb(gt) is likely to be a null allele.
Collapse
Affiliation(s)
- W Yang
- Department of Human Genetics,University of Utah, Salt Lake City, USA
| | | |
Collapse
|
23
|
Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertsenstein M, Nagy A. Z/AP, a double reporter for cre-mediated recombination. Dev Biol 1999; 208:281-92. [PMID: 10191045 DOI: 10.1006/dbio.1999.9209] [Citation(s) in RCA: 439] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Cre/loxP site-specific recombination system combined with embryonic stem cell-mediated technologies has greatly expanded our capability to address normal and disease development in mammals using genetic approaches. The success of this emerging technology hinges on the production of Cre-expressing transgenic lines that provide cell type-, tissue-, or developmental stage-specific recombination between loxP sites placed in the genome. Here we describe and characterize the production of a double-reporter mouse line that provides a convenient and reliable readout of Cre recombinase activity. Throughout all embryonic and adult stages, the transgenic animal expresses the lacZ reporter gene before Cre-mediated excision occurs. Cre excision, however, removes the lacZ gene, allowing expression of the second reporter, the human alkaline phosphatase gene. This double-reporter transgenic line is able to indicate the occurrence of Cre excision in an extremely widespread manner from early embryonic to adult lineages. It will be a valuable reagent for the increasing number of investigators taking advantage of the powerful tools provided by the Cre/loxP site-specific recombinase system.
Collapse
Affiliation(s)
- C G Lobe
- Cancer Research Division, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The study of transgenic and gene-deleted (knockout) mice provides important insights into the in vivo function and interaction of specific gene products. Within the pharmaceutical industry, genetically altered mice are used predominantly in discovery research to characterize the diverse functions of one or multiple gene products or to establish animal models of human disease for proof-of-concept studies. We recently used genetically altered animals in drug discovery to examine the NF-kappaB family of transcriptional regulatory genes and to elucidate their essential role in the early onset of immune and inflammatory responses. Transgenic and knockout mice are also useful in drug development, because questions regarding risk assessment and carcinogenesis, xenobiotic metabolism, receptor- and ligand-mediated toxicity, and immunotoxicity can be evaluated using these genetically altered mice. For example, the p53 knockout mouse is one of several genetically altered mice whose use may increase the sensitivity and decrease the time and cost of rodent carcinogenicity bioassays. As with any experimental model system, data obtained from genetically altered mice must be interpreted carefully. The complete inactivation of a gene may result in altered expression of related genes or physiologic compensation for the loss of the gene product. Consideration must also be given to the genetic background of the mouse strain and the impact of strain variability on disease or toxicity models. Despite these potential limitations, knockout mice provide a powerful tool for the advancement of drugs in the pharmaceutical industry.
Collapse
Affiliation(s)
- D G Rudmann
- Department of Pathology, DuPont Pharmaceuticals Company, Newark, Delaware 19714, USA.
| | | |
Collapse
|