1
|
Tzean Y, Chang HH, Tu TC, Hou BH, Chen HM, Chiu YS, Chou WY, Chang L, Yeh HH. Engineering Plant Resistance to Tomato Yellow Leaf Curl Thailand Virus Using a Phloem-Specific Promoter Expressing Hairpin RNA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:87-97. [PMID: 31638467 DOI: 10.1094/mpmi-06-19-0158-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Transgenic approaches employing RNA interference (RNAi) strategies have been successfully applied to generate desired traits in plants; however, variations between RNAi transgenic siblings and the ability to quickly apply RNAi resistance to diverse cultivars remain challenging. In this study, we assessed the promoter activity of a cauliflower mosaic virus 35S promoter (35S) and a phloem-specific promoter derived from rice tungro bacilliform virus (RTBV) and their efficacy to drive RNAi against the endogenous glutamate-1-semialdehyde aminotransferase gene (GSA) that acts as a RNAi marker, through chlorophyll synthesis inhibition, and against tomato yellow leaf curl Thailand virus (TYLCTHV), a begomovirus (family Geminiviridae) reported to be the prevalent cause of tomato yellow leaf curl disease (TYLCD) in Taiwan. Transgenic Nicotiana benthamiana expressing hairpin RNA of GSA driven by either the 35S or RTBV promoter revealed that RTBV::hpGSA induced stronger silencing along the vein and more uniformed silencing phenotype among its siblings than 35S::hpGSA. Analysis of transgenic N. benthamiana, 35S::hpTYLCTHV, and RTBV::hpTYLCTHV revealed that, although 35S::hpTYLCTHV generated a higher abundance of small RNA than RTBV::hpTYLCTHV, RTBV::hpTYLCTHV transgenic plants conferred better TYLCTHV resistance than 35S::hpTYLCTHV. Grafting of wild-type (WT) scions to TYLCTHV RNAi rootstocks allowed transferable TYLCTHV resistance to the scion. A TYLCTHV-inoculation assay showed that noninfected WT scions were only observed when grafted to RTBV::hpTYLCTHV rootstocks but not 35S::hpTYLCTHV nor WT rootstocks. Together, our findings demonstrate an approach that may be widely applied to efficiently confer TYLCD resistance.
Collapse
Affiliation(s)
- Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Ho-Hsiung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Tsui-Chin Tu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Yi-Shu Chiu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Wei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Li Chang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da'an District, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Mori A, Sato H, Kasai M, Yamada T, Kanazawa A. RNA silencing in the life cycle of soybean: multiple restriction systems and spatiotemporal variation associated with plant architecture. Transgenic Res 2017; 26:349-362. [PMID: 28417275 DOI: 10.1007/s11248-017-0011-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/21/2017] [Indexed: 01/12/2023]
Abstract
The expression of transgenes introduced into a plant genome is sometimes suppressed by RNA silencing. Although local and systemic spread of RNA silencing have been studied, little is known about the mechanisms underlying spatial and temporal variation in transgene silencing between individual plants or between plants of different generations, which occurs seemingly stochastically. Here, we analyzed the occurrence, spread, and transmission of RNA silencing of the green fluorescent protein (GFP) gene over multiple generations of the progeny of a single soybean transformant. Observation of GFP fluorescence in entire plants of the T3-T5 generations indicated that the initiation and subsequent spread of GFP silencing varied between individuals, although this GFP silencing most frequently began in the primary leaves. In addition, GFP silencing could spread into the outer layer of seed coat tissues but was hardly detectable in the embryos. These results are consistent with the notion that transgene silencing involves its reset during reproductive phase, initiation after germination, and systemic spread in each generation. GFP silencing was absent in the pulvinus, suggesting that its cortical cells inhibit cell-to-cell spread or induction of RNA silencing. The extent of GFP silencing could differ between the stem and a petiole or between petiolules, which have limited vascular bundles connecting them and thus deter long-distant movement of silencing. Taken together, these observations indicate that the initiation and/or spread of RNA silencing depend on specific features of the architecture of the plant in addition to the mechanisms that can be conserved in higher plants.
Collapse
Affiliation(s)
- Ayumi Mori
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hiroshi Sato
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Tetsuya Yamada
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
3
|
Marenkova TV, Deineko EV. Hybridological analysis of inheritance of mosaic nptII gene expression in transgenic tobacco plants. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416060089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Liu W, Liang Z, Wang X, Sibbald S, Hunter D, Tian L. Preservation and faithful expression of transgene via artificial seeds in alfalfa. PLoS One 2013; 8:e56699. [PMID: 23690914 PMCID: PMC3653898 DOI: 10.1371/journal.pone.0056699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022] Open
Abstract
Proper preservation of transgenes and transgenic materials is important for wider use of transgenic technology in plants. Here, we report stable preservation and faithful expression of a transgene via artificial seed technology in alfalfa. DNA constructs containing the uid reporter gene coding for β-glucuronidase (GUS) driven by a 35S promoter or a tCUP promoter were introduced into alfalfa via Agrobacterium-mediated genetic transformation. Somatic embryos were subsequently induced from transgenic alfalfa plants via in vitro technology. These embryos were treated with abscisic acid to induce desiccation tolerance and were subjected to a water loss process. After the desiccation procedure, the water content in dried embryos, or called artificial seeds, was about 12–15% which was equivalent to that in true seeds. Upon water rehydration, the dried somatic embryos showed high degrees of viability and exhibited normal germination. Full plants were subsequently developed and recovered in a greenhouse. The progeny plants developed from artificial seeds showed GUS enzyme activity and the GUS expression level was comparable to that of plants developed from somatic embryos without the desiccation process. Polymerase chain reaction analysis indicated that the transgene was well retained in the plants and Southern blot analysis showed that the transgene was stably integrated in plant genome. The research showed that the transgene and the new trait can be well preserved in artificial seeds and the progeny developed. The research provides a new method for transgenic germplasm preservation in different plant species.
Collapse
Affiliation(s)
- Wenting Liu
- College of Life Sciences, Northwest A & F University, Shaanxi, China
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Zongsuo Liang
- College of Life Sciences, Northwest A & F University, Shaanxi, China
| | - Xinhua Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Susan Sibbald
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - David Hunter
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada
| | - Lining Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Hosokawa M, Yamauchi T, Takahama M, Goto M, Mikano S, Yamaguchi Y, Tanaka Y, Ohno S, Koeda S, Doi M, Yazawa S. Phosphorus starvation induces post-transcriptional CHS gene silencing in Petunia corolla. PLANT CELL REPORTS 2013; 32:601-609. [PMID: 23397276 DOI: 10.1007/s00299-013-1391-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
The corolla of Petunia 'Magic Samba' exhibits unstable anthocyanin expression depending on its phosphorus content. Phosphorus deficiency enhanced post-transcriptional gene silencing of chalcone synthase - A in the corolla. Petunia (Petunia hybrida) 'Magic Samba' has unstable red-white bicolored corollas that respond to nutrient deficiency. We grew this cultivar hydroponically using solutions that lacked one or several nutrients to identify the specific nutrient related to anthocyanin expression in corolla. The white area of the corolla widened under phosphorus (P)-deficient conditions. When the P content of the corolla grown under P-deficient conditions dropped to <2,000 ppm, completely white corollas continued to develop in >40 corollas until the plants died. Other elemental deficiencies had no clear effects on anthocyanin suppression in the corolla. After phosphate was resupplied to the P-deficient plants, anthocyanin was restored in the corollas. The expression of chalcone synthase-A (CHS-A) was suppressed in the white area that widened under P-suppressed conditions, whereas the expression of several other genes related to anthocyanin biosynthesis was enhanced more in the white area than in the red area. Reddish leaves and sepals developed under the P-deficient condition, which is a typical P-deficiency symptom. Two genes related to anthocyanin biosynthesis were enhanced in the reddish organs. Small interfering RNA analysis of CHS-A showed that the suppression resulted from post-transcriptional gene silencing (PTGS). Thus, it was hypothesized that the enhancement of anthocyanin biosynthetic gene expression due to P-deficiency triggered PTGS of CHS-A, which resulted in white corolla development.
Collapse
Affiliation(s)
- Munetaka Hosokawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rimando AM, Pan Z, Polashock JJ, Dayan FE, Mizuno CS, Snook ME, Liu CJ, Baerson SR. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:269-83. [PMID: 21902799 DOI: 10.1111/j.1467-7652.2011.00657.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Resveratrol and related stilbenes are thought to play important roles in defence responses in several plant species and have also generated considerable interest as nutraceuticals owing to their diverse health-promoting properties. Pterostilbene, a 3,5-dimethylether derivative of resveratrol, possesses properties similar to its parent compound and, additionally, exhibits significantly higher fungicidal activity in vitro and superior pharmacokinetic properties in vivo. Recombinant enzyme studies carried out using a previously characterized O-methyltransferase sequence from Sorghum bicolor (SbOMT3) demonstrated its ability to catalyse the A ring-specific 3,5-bis-O-methylation of resveratrol, yielding pterostilbene. A binary vector was constructed for the constitutive co-expression of SbOMT3 with a stilbene synthase sequence from peanut (AhSTS3) and used for the generation of stably transformed tobacco and Arabidopsis plants, resulting in the accumulation of pterostilbene in both species. A reduced floral pigmentation phenotype observed in multiple tobacco transformants was further investigated by reversed-phase HPLC analysis, revealing substantial decreases in both dihydroquercetin-derived flavonoids and phenylpropanoid-conjugated polyamines in pterostilbene-producing SbOMT3/AhSTS3 events. These results demonstrate the potential utility of this strategy for the generation of pterostilbene-producing crops and also underscore the need for the development of additional approaches for minimizing concomitant reductions in key phenylpropanoid-derived metabolites.
Collapse
Affiliation(s)
- Agnes M Rimando
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Kasai M, Koseki M, Goto K, Masuta C, Ishii S, Hellens RP, Taneda A, Kanazawa A. Coincident sequence-specific RNA degradation of linked transgenes in the plant genome. PLANT MOLECULAR BIOLOGY 2012; 78:259-73. [PMID: 22146813 DOI: 10.1007/s11103-011-9863-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/18/2011] [Indexed: 05/23/2023]
Abstract
The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.
Collapse
Affiliation(s)
- Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hirai T, Shohael AM, Kim YW, Yano M, Ezura H. Ubiquitin promoter-terminator cassette promotes genetically stable expression of the taste-modifying protein miraculin in transgenic lettuce. PLANT CELL REPORTS 2011; 30:2255-65. [PMID: 21830129 DOI: 10.1007/s00299-011-1131-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 05/05/2023]
Abstract
Lettuce is a commercially important leafy vegetable that is cultivated worldwide, and it is also a target crop for plant factories. In this study, lettuce was selected as an alternative platform for recombinant miraculin production because of its fast growth, agronomic value, and wide availability. The taste-modifying protein miraculin is a glycoprotein extracted from the red berries of the West African native shrub Richadella dulcifica. Because of its limited natural availability, many attempts have been made to produce this protein in suitable alternative hosts. We produced transgenic lettuce with miraculin gene driven either by the ubiquitin promoter/terminator cassette from lettuce or a 35S promoter/nos terminator cassette. Miraculin gene expression and miraculin accumulation in both cassettes were compared by quantitative real-time PCR analysis, Western blotting, and enzyme-linked immunosorbent assay. The expression level of the miraculin gene and protein in transgenic lettuce was higher and more genetically stable in the ubiquitin promoter/terminator cassette than in the 35S promoter/nos terminator cassette. These results demonstrated that the ubiquitin promoter/terminator cassette is an efficient platform for the genetically stable expression of the miraculin protein in lettuce and hence this platform is of benefit for recombinant miraculin production on a commercial scale.
Collapse
Affiliation(s)
- Tadayoshi Hirai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | |
Collapse
|
10
|
Kotakis C, Vrettos N, Kotsis D, Tsagris M, Kotzabasis K, Kalantidis K. Light intensity affects RNA silencing of a transgene in Nicotiana benthamiana plants. BMC PLANT BIOLOGY 2010; 10:220. [PMID: 20939918 PMCID: PMC3017829 DOI: 10.1186/1471-2229-10-220] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 10/12/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Expression of exogenous sequences in plants is often suppressed through one of the earliest described RNA silencing pathways, sense post-transcriptional gene silencing (S-PTGS). This type of suppression has made significant contributions to our knowledge of the biology of RNA silencing pathways and has important consequences in plant transgenesis applications. Although significant progress has been made in recent years, factors affecting the stability of transgene expression are still not well understood. It has been shown before that the efficiency of RNA silencing in plants is influenced by various environmental factors. RESULTS Here we report that a major environmental factor, light intensity, significantly affects the induction and systemic spread of S-PTGS. Moreover, we show that photoadaptation to high or low light intensity conditions differentially affects mRNA levels of major components of the RNA silencing machinery. CONCLUSIONS Light intensity is one of the previously unknown factors that affect transgene stability at the post-transcriptional level. Our findings demonstrate an example of how environmental conditions could affect RNA silencing.
Collapse
Affiliation(s)
- Christos Kotakis
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
| | - Nicholas Vrettos
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, P.O. Box 1527, GR-71110 Heraklion, Crete, Greece
| | - Dimitrios Kotsis
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
| | - Mina Tsagris
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, P.O. Box 1527, GR-71110 Heraklion, Crete, Greece
| |
Collapse
|
11
|
Stangeland B, Rosenhave EM, Winge P, Berg A, Amundsen SS, Karabeg M, Mandal A, Bones AM, Grini PE, Aalen RB. AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2009; 136:110-126. [PMID: 19374717 DOI: 10.1111/j.1399-3054.2009.01218.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Arabidopsis thaliana accession C24 is a vernalization-responsive, moderately late flowering ecotype. We report that a mutation in AtMBD8, which encodes a protein with a putative Methyl-CpG-Binding Domain (MBD), in C24 background, results in a delay in flowering time during both long and short days. The atmbd8-1 mutant responded to vernalization as wild type (wt) plants. Consistent with a role in modulation of flowering time, an AtMBD8::GUS-reporter construct was expressed in the shoot meristem region and developing leaves. Full-genome transcriptional profiling revealed very few changes in gene expression between atmbd8-1 and wt plants. The expression level of FLC, the major repressor of transition to flowering, was unchanged in atmbd8-1, and in accordance with that, genes upstream of FLC were unaffected by the mutation. The expression level of CONSTANS, involved in photoperiodic control of flowering, was very similar in atmbd8-1 and wt plants. In contrast, the major promoters of flowering, FT and SOC1, were both downregulated. As FT is a regulator of SOC1, we conclude that AtMBD8 is a novel promoter of flowering that acts upstream of FT in the C24 accession. In contrast to atmbd8-1, the Colombia (Col) SALK T-DNA insertion line, atmbd8-2, did not display a delayed transition to flowering. Transcriptional profiling revealed that a substantial number of genes were differentially expressed between C24 and Col wt seedlings. Several of these genes are also differentially expressed in late flowering mutants. We suggest that these differences contribute to the contrasting effect of a mutation in AtMBD8 in the two ecotypes.
Collapse
Affiliation(s)
- Biljana Stangeland
- Department of Molecular Biosciences, University of Oslo, Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li J, Brunner AM, Meilan R, Strauss SH. Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. TREE PHYSIOLOGY 2009; 29:299-312. [PMID: 19203955 DOI: 10.1093/treephys/tpn028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High stability of transgene expression is essential for functional genomics studies using transformation approaches and for application of genetic engineering to commercial forestry. We quantified expression of two reporter genes, green fluorescent protein (GFP) and the herbicide bialaphos resistance gene (BAR), in 2256 transgenic poplar trees derived from 404 primary events, and in 106 in vitro-redifferentiated subevents, over 3 years in the greenhouse and in the field. No gene silencing (complete breakdown of expression) was observed for GFP or BAR expression in any of the primary transgenic events during the course of the study. Transgenic cassettes were physically eliminated in four subevents (2.5%) derived from three different primary events during re-organogenesis. Transgene copy number was positively correlated with transgene expression level; however, a majority of transformants (85%) carried single-copy transgenes. About one-third of the events containing two-copy inserts had repeats formed at the same chromosomal position, with direct repeats being the main type observed (87%). All events containing more than two transgene copies showed repeat formation at least at one locus, with direct repeats again dominant (77%). Loci with two direct repeats had substantially greater transgene expression level than other types of two-copy T-DNA configurations, but insert organization was not associated with stability of transgene expression. Use of the poplar rbcS promoter, which drove BAR in the transgenic constructs, had no adverse effect on transgene expression levels or stability compared with the heterologous CaMV 35S promoter, which directed GFP expression.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752, USA
| | | | | | | |
Collapse
|
13
|
Majewski P, Wołoszyńska M, Jańska H. Developmentally early and late onset of Rps10 silencing in Arabidopsis thaliana: genetic and environmental regulation. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1163-78. [PMID: 19174455 PMCID: PMC2657537 DOI: 10.1093/jxb/ern362] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 05/04/2023]
Abstract
Transgene dosage, silencing competence of the transgene loci, and photoperiod conditions were found to regulate the onset and efficiency of Rps10 silencing in two independent transgenic lines of Arabidopsis thaliana. The Rps10 gene encodes the S10 protein which is part of the small subunit of mitochondrial ribosomes. Homozygous plants presented developmentally early onset of silencing, a very efficient decrease in the level of Rps10 transcripts, as well as a severe and uniform phenotype called P1. P1 plants either died during the vegetative growth phase or were rescued by reversion resulting from inactivation of silencing. A wide variety of morphological and developmental abnormalities observed within the hemizygous transformants allowed their classification into three categories P2, P3, and P4. The most severe and early was the P2 phenotype found in only one transgenic line and most probably resulting from high competence of the transgene loci. Developmentally late onset of silencing occurred only in the short day photoperiod and was characteristic for the P3 and P4 plants. This phenomenon was attributed to conditions favourable to silencing achieved in the short day photoperiod, e.g. a greatly prolonged vegetative phase accompanied by a gradual increase of the level of Rps10 transcripts. To the best of our knowledge, this is the first report indicating that the onset of silencing depends on the photoperiod conditions in A. thaliana.
Collapse
Affiliation(s)
| | | | - Hanna Jańska
- Laboratory of Molecular Cell Biology, Faculty of Biotechnology, University of Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
14
|
Farkas MH, Mojica ERE, Patel M, Aga DS, Berry JO. Development of a rapid biolistic assay to determine changes in relative levels of intracellular calcium in leaves following tetracycline uptake by pinto bean plants. Analyst 2009; 134:1594-600. [DOI: 10.1039/b902147g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Shkolnik D, Bar-Zvi D. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:368-78. [PMID: 18363631 DOI: 10.1111/j.1467-7652.2008.00328.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The manipulation of transacting factors is commonly used to achieve a wide change in the expression of a large number of genes in transgenic plants as a result of a change in the expression of a single gene product. This is mostly achieved by the overexpression of transactivator or repressor proteins. In this study, it is demonstrated that the overexpression of an exogenous DNA-binding protein can be used to compete with the expression of an endogenous transcription factor sharing the same DNA-binding sequence. Arabidopsis was transformed with cDNA encoding tomato abscisic acid stress ripening 1 (ASR1), a sequence-specific DNA protein that has no orthologues in the Arabidopsis genome. ASR1-overexpressing (ASR1-OE) plants display an abscisic acid-insensitive 4 (abi4) phenotype: seed germination is not sensitive to inhibition by abscisic acid (ABA), glucose, NaCl and paclobutrazol. ASR1 binds coupling element 1 (CE1), a cis-acting element bound by the ABI4 transcription factor, located in the ABI4-regulated promoters, including that of the ABI4 gene. Chromatin immunoprecipitation demonstrates that ASR1 is bound in vivo to the promoter of the ABI4 gene in ASR1-OE plants, but not to promoters of genes known to be regulated by the transcription factors ABI3 or ABI5. Real-time polymerase chain reaction (PCR) analysis confirmed that the expression of ABI4 and ABI4-regulated genes is markedly reduced in ASR1-OE plants. Therefore, it is concluded that the abi4 phenotype of ASR1-OE plants is the result of competition between the foreign ASR1 and the endogenous ABI4 on specific promoter DNA sequences. The biotechnological advantage of using this approach in crop plants from the Brassicaceae family to reduce the transactivation activity of ABI4 is discussed.
Collapse
Affiliation(s)
- Doron Shkolnik
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University, Rager Blvd., Beer-Sheva 84105, Israel
| | | |
Collapse
|
16
|
Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van Dijck P, Holmström KO. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. PLANT MOLECULAR BIOLOGY 2007; 64:371-86. [PMID: 17453154 DOI: 10.1007/s11103-007-9159-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 02/28/2007] [Indexed: 05/04/2023]
Abstract
Most organisms naturally accumulating trehalose upon stress produce the sugar in a two-step process by the action of the enzymes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Transgenic plants overexpressing TPS have shown enhanced drought tolerance in spite of minute accumulation of trehalose, amounts believed to be too small to provide a protective function. However, overproduction of TPS in plants has also been found combined with pleiotropic growth aberrations. This paper describes three successful strategies to circumvent such growth defects without loosing the improved stress tolerance. First, we introduced into tobacco a double construct carrying the genes TPS1 and TPS2 (encoding TPP) from Saccharomyces cerevisiae. Both genes are regulated by an Arabidopsis RuBisCO promoter from gene AtRbcS1A giving constitutive production of both enzymes. The second strategy involved stress-induced expression by fusing the coding region of ScTPS1 downstream of the drought-inducible Arabidopsis AtRAB18 promoter. In transgenic tobacco plants harbouring genetic constructs with either ScTPS1 alone, or with ScTPS1 and ScTPS2 combined, trehalose biosynthesis was turned on only when the plants experienced stress. The third strategy involved the use of AtRbcS1A promoter together with a transit peptide in front of the coding sequence of ScTPS1, which directed the enzyme to the chloroplasts. This paper confirms that the enhanced drought tolerance depends on unknown ameliorated water retention as the initial water status is the same in control and transgenic plants and demonstrates the influence of expression of heterologous trehalose biosynthesis genes on Arabidopsis root development.
Collapse
Affiliation(s)
- Sazzad Karim
- School of Life Sciences, University of Skövde, Box 408, 541 28, Skövde, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Marenkova (Novoselia) TV, Deineko EV, Shumny VK. Mosaic expression pattern of the nptII gene in transgenic tobacco plants Nu 21. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407070101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH. Genetic containment of forest plantations. TREE GENETICS & GENOMES 2007; 3:75-100. [PMID: 0 DOI: 10.1007/s11295-006-0067-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
19
|
Meng L, Ziv M, Lemaux PG. Nature of stress and transgene locus influences transgene expression stability in barley. PLANT MOLECULAR BIOLOGY 2006; 62:15-28. [PMID: 16900326 DOI: 10.1007/s11103-006-9000-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 04/06/2006] [Indexed: 05/11/2023]
Abstract
Stress and the nature of the transgene locus can affect transgene expression stability. These effects were studied in two, stably expressing, T6 populations of barley (Hordeum vulgare): bombardment-mediated, multi-copy lines with ubiquitin-driven bar and uidA or single-copy lines from Ds-mediated gene delivery with ubiquitin-driven bar alone. Imposing the environmental stresses, water and nutrient deprivation and heat shock, did not reproducibly affect transgene expression stability; however, high frequencies of heritable transcriptional gene silencing (TGS) occurred following in vitro culture after six generations of stable expression in the multi-copy subline, T3#30, but not in the other lines studied. T3#30 plants with complete TGS had epigenetic modification patterns exactly like those in an identical sibling subline, T3#31, which had significant reduction in transgene expression in the T3 generation and was completely transcriptionally silenced in the absence of imposed stresses in the T6 generation. Complete TGS in T3#30 plants correlated with methylation in the 5'UTR and intron of the ubi1 promoter complex and condensation of chromatin around the transgenes; DNA methylation likely occurred prior to chromatin condensation. Partial TGS in T3#30 also correlated with methylation of the ubi1 promoter complex, as occurred with complete TGS. T3#30 has a complex transgene structure with inverted repeat transgene fragments and a 3'-LTR from a barley retrotransposon, and therefore the transgene locus itself may affect its tendency to silence after in vitro culture and transgene silencing might result from host defense mechanisms activated by changes in plant developmental programming and/or stresses imposed during in vitro growth.
Collapse
Affiliation(s)
- Ling Meng
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley , CA 94720, USA
| | | | | |
Collapse
|
20
|
Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G. Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:931-6. [PMID: 16903359 DOI: 10.1094/mpmi-19-0931] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polygalacturonases (PGs) hydrolyze the homogalacturonan of plant cell-wall pectin and are important virulence factors of several phytopathogenic fungi. In response to abiotic and biotic stress, plants accumulate PG-inhibiting proteins (PGIPs) that reduce the activity of fungal PGs. In Arabidopsis thaliana, PGIPs with comparable activity against BcPG1, an important pathogenicity factor of the necrotrophic fungus Botrytis cinerea, are encoded by two genes, AtPGIP1 and AtPGIP2. Both genes are induced by fungal infection through different signaling pathways. We show here that transgenic Arabidopsis plants expressing an antisense AtPGIP1 gene have reduced AtPGIP1 inhibitory activity and are more susceptible to B. cinerea infection. These results indicate that PGIP contributes to basal resistance to this pathogen and strongly support the vision that this protein plays a role in Arabidopsis innate immunity.
Collapse
Affiliation(s)
- Simone Ferrari
- Università degli Studi "La Sapienza", Dipartimento di Biologia Vegetale, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
21
|
Kohli A, Melendi PG, Abranches R, Capell T, Stoger E, Christou P. The Quest to Understand the Basis and Mechanisms that Control Expression of Introduced Transgenes in Crop Plants. PLANT SIGNALING & BEHAVIOR 2006; 1:185-95. [PMID: 19521484 PMCID: PMC2634025 DOI: 10.4161/psb.1.4.3195] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 05/19/2023]
Abstract
We discuss mechanisms and factors that influence levels and stability of expressed heterologous proteins in crop plants. We have seen substantial progress in this field over the past two decades in model experimental organisms such as Arabidopsis and tobacco. There is no question such studies have resulted in furthering our understanding of key processes in the plant cell and the elaboration of sophisticated models to explain underlying mechanisms that might influence the fate, levels and stability of expression of recombinant heterologous proteins in plants. However, very often, such information is not applicable outside these laboratory experimental models. In order to generate a knowledge basis that can be used to achieve high levels and stability of heterologous proteins in relevant crop plants it is imperative to perform such studies on the target crops. With this in mind, we discuss key elements of the process at the DNA, RNA and protein levels. We believe it is essential to discuss recombinant protein production in crops in a holistic manner in order to develop a comprehensive knowledge base that will in turn serve plant biotechnology applications well.
Collapse
Affiliation(s)
- Ajay Kohli
- Institute for Research on Environment & Sustainability (IRES); University of Newcastle upon Tyne; Newcastle, UK
| | | | - Rita Abranches
- Instituto de Tecnologia Quimica e Biologica; Plant Cell Biology Laboratory; Oeiras, Portugal and Universidade Nova de Lisboa
| | | | - Eva Stoger
- Biology VII; RWTH Aachen; Aachen, Germany
| | - Paul Christou
- ICREA; Department de Produccio Vegetal I Ciencia Forestal; Lleida, Spain
| |
Collapse
|
22
|
Marenkova TV, Deineko EV. The effect of duplications in the T-DNA on the stability of manifestation of heterologous genes in transgenic tobacco plants. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406050097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Marenkova TV, Deineko EV. A change in the stability of marker nptII and uidA gene expression in transgenic tobacco plants. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406050085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Depeiges A, Degroote F, Espagnol MC, Picard G. Translation initiation by non-AUG codons in Arabidopsis thaliana transgenic plants. PLANT CELL REPORTS 2006; 25:55-61. [PMID: 16184386 DOI: 10.1007/s00299-005-0034-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/19/2005] [Accepted: 06/28/2005] [Indexed: 05/04/2023]
Abstract
The efficiency of translation initiation at codons differing at one or two nucleotides from AUG was tested as initiation codons for the phosphinotricin-acetyltransferase gene in T-DNA plant transformation in Arabidopsis thaliana. With the exception of UUA codon that differs from AUG at two nucleotides and does not permit any detectable activity, all the other codons (AUC, GUG, ACG, and CUG) present a phosphinotrycin acetyltransferase activity that varies between 5 and 10% of the AUG activity. This low activity is sufficient to confer glufosinate resistance to some of the plants. These results indicate that, in plants as is the case in animals, non-AUG initiating codons may be used for translation initiation, namely when a low expression rate is needed.
Collapse
Affiliation(s)
- Annie Depeiges
- UMR 6547 CNRS GEEM-BIOMOVE, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France.
| | | | | | | |
Collapse
|
25
|
Ammitzbøll H, Mikkelsen TN, Jørgensen RB. Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa. ACTA ACUST UNITED AC 2006; 4:3-12. [PMID: 16209132 DOI: 10.1051/ebr:2005010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Oilseed rape (Brassica napus) is sexually compatible with its wild and weedy relative B. rapa, and introgression of genes from B. napus has been found to occur over a few generations. We simulated the early stages of transgene escape by producing F1 hybrids and the first backcross generation between two lines of transgenic B. napus and two populations of weedy B. rapa. Transgene expression and the fitness of the hybrids were examined under different environmental conditions. Expression of the transgenes was analyzed at the mRNA level by quantitative PCR and found to be stable in the hybrids, regardless of the genetic background and the environment, and equal to the level of transcription in the parental B. napus lines. Vigor of the hybrids was measured as the photosynthetic capability; pollen viability and seed set per silique. Photosynthetic capability of first generation hybrids was found to be at the same level, or higher, than that of the parental species, whereas the reproductive fitness was significantly lower. The first backcross generation had a significantly lower photosynthetic capability and reproductive fitness compared to the parental species. This is the first study that examines transgene expression at the mRNA level in transgenic hybrids of B. napus of different genetic background exposed to different environmental conditions. The data presented clarify important details of the overall risk assessment of growing transgenic oilseed rape.
Collapse
Affiliation(s)
- Henriette Ammitzbøll
- Biosystems Department, Risø National Laboratory, P.O. Box 49, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
26
|
Abstract
The discovery that plants recognize and degrade invading viral RNA caused a paradigm shift in our understanding of viral/host interactions. Combined with the discovery that plants cosuppress their own genes if they are transformed with homologous transgenes, new models for both plant intercellular communication and viral defense have emerged. Plant biologists adapted homology-based defense mechanisms triggered by incoming viruses to target individual genes for silencing in a process called virus-induced gene silencing (VIGS). Both VIGS- and dsRNA-containing transformation cassettes are increasingly being used for reverse genetics as part of an integrated approach to determining gene function. Virus-derived vectors silence gene expression without transformation and selection. However, because viruses also alter gene expression in their host, the process of VIGS must be understood. This review examines how DNA and RNA viruses have been modified to silence plant gene expression. I discuss advantages and disadvantages of VIGS in determining gene function and guidelines for the safe use of viral vectors.
Collapse
Affiliation(s)
- Dominique Robertson
- Department of Botany, North Carolina State University, Raleigh, North Carolina 27695-7612, USA.
| |
Collapse
|
27
|
Haslekås C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB. Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress. PLANT PHYSIOLOGY 2003; 133:1148-1157. [PMID: 14526116 PMCID: PMC281610 DOI: 10.1104/pp.103.025916] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 06/02/2003] [Accepted: 07/29/2003] [Indexed: 02/06/2023]
Abstract
Peroxiredoxins (Prx) are thiol-dependent antioxidants containing one (1-cysteine [-Cys]) or two (2-Cys) conserved Cys residues that protect lipids, enzymes, and DNA against reactive oxygen species. In plants, the 1-Cys Prxs are highly expressed during late seed development, and the expression pattern is dormancy related in mature seeds. We have expressed the Arabidopsis 1-Cys Prx AtPER1 in Escherichia coli and show that this protein has antioxidant activity in vitro and protects E. coli in vivo against the toxic oxidant cumene hydroperoxide. Although some 1-Cys Prxs are targeted to the nucleus, a green fluorescent protein-AtPER1 fusion protein was also localized to the cytoplasm in an onion epidermis subcellular localization assay. It has been proposed that seed Prxs are involved in maintenance of dormancy and/or protect the embryo and aleurone layer surviving desiccation against damage caused by reactive oxygen species. These hypotheses were tested using transgenic Arabidopsis lines overexpressing the barley (Hordeum vulgare) 1-Cys PER1 protein and lines with reduced levels of AtPER1 due to antisensing or RNA interference. We found no correlation between Prx levels and the duration of the after-ripening period required before germination. Thus, Prxs are unlikely to contribute to maintenance of dormancy. RNA interference lines almost devoid of AtPER1 protein developed and germinated normally under standard growth room conditions. However, seeds from lines overexpressing PER1 were less inclined to germinate than wild-type seeds in the presence of NaCl, mannitol, and methyl viologen, suggesting that Prx can sense harsh environmental surroundings and play a part in the inhibition of germination under unfavorable conditions.
Collapse
Affiliation(s)
- Camilla Haslekås
- Division of Cell and Molecular Biology, Department of Biology, University of Oslo, P.O. Box 1031 Blindern, N-0315 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
28
|
Haslekås C, Grini PE, Nordgard SH, Thorstensen T, Viken MK, Nygaard V, Aalen RB. ABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress. PLANT MOLECULAR BIOLOGY 2003; 53:313-326. [PMID: 14750521 DOI: 10.1023/b:plan.0000006937.21343.2a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The peroxiredoxin antioxidant gene AtPER1 has been considered to be specifically expressed in the embryo and aleurone layer during maturation and desiccation stages of development, and in the mature seed, typically for late embryogenesis-abundant (lea) transcripts. In the abscisic acid-insensitive abi3-1 mutant, the AtPER1 transcript level is strongly reduced, suggesting ABI3 to be a prime regulator of AtPER1. We have studied the expression pattern and regulation of AtPER1 with a series of nine promoter::GUS constructs with deletions and/or mutations in putative regulatory elements. Arabidopsis lines harbouring these constructs revealed AtPER1 promoter activity in the endosperm, especially the chalazal cyst, already when the embryo is in the late globular stage, in the embryo from the late torpedo stage, and in distinct cells of unfertilized and fertilized ovules. Early expression seems to be dependent on a putative antioxidant-responsive promoter element (ARE), while from the bent cotyledon stage endosperm and embryo expression is dependent on an ABA-responsive element (ABRE) likely to bind ABI5. The shortest promoter fragment (113 bp), devoid of ARE, ABRE and without an intact RY/Sph element thought to bind ABI3 did not drive GUS expression. The AtPER1::GUS construct also revealed expression in cotyledons, meristems and stem branching points. In general, seed and vegetative expression coincided with the expression pattern of ABI3. In plants ectopically expressing ABI3, AtPER1::GUS expression was found in true leaves, and AtPER1 could be induced by exogenous ABA and oxidative stress (H2O2 and hydroquinone). ABI3-mediated oxidative stress induction was dependent on the presence of an intact ARE element.
Collapse
Affiliation(s)
- Camilla Haslekås
- Division of Cell and Molecular Biology, Department of Biology, University of Oslo, P.O. Box 1031, Blindern, 0315 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
29
|
Haslberger AG. Codex guidelines for GM foods include the analysis of unintended effects. Nat Biotechnol 2003; 21:739-41. [PMID: 12833088 DOI: 10.1038/nbt0703-739] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexander G Haslberger
- University of Vienna and the World Health Organization FOS Program for Food Safety, Geneva, Switzerland.
| |
Collapse
|
30
|
Meza TJ, Stangeland B, Mercy IS, Skårn M, Nymoen DA, Berg A, Butenko MA, Håkelien AM, Haslekås C, Meza-Zepeda LA, Aalen RB. Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 2002; 30:4556-4566. [PMID: 12384603 PMCID: PMC137132 DOI: 10.1093/nar/gkf568] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 08/22/2002] [Accepted: 08/22/2002] [Indexed: 11/12/2022] Open
Abstract
In genetically transformed plants, transgene silencing has been correlated with multiple and complex insertions of foreign DNA, e.g. T-DNA and vector backbone sequences. Occasionally, single-copy transgenes also suffer transgene silencing. We have compared integration patterns and T-DNA/plant DNA junctions in a collection of 37 single-copy T-DNA-transformed Arabidopsis lines, of which 13 displayed silencing. Vector sequences were found integrated in five lines, but only one of these displayed silencing. Truncated T-DNA copies, positioned in inverse orientation to an intact T-DNA copy, were discovered in three lines. The whole nptII gene with pnos promoter was present in the truncated copy of one such line in which heavy silencing has been observed. In the two other lines no silencing has been observed over five generations. Thus, vector sequences and short additional T-DNA sequences are not sufficient or necessary to induce transgene silencing. DNA methylation of selected restriction endonuclease sites could not be correlated with silencing. Our collection of T-DNA/plant DNA junctions has also been used to evaluate current models of T-DNA integration. Data for some of our lines are compatible with T-DNA integration in double-strand breaks, while for others initial invasion of plant DNA by the left or by the right T-DNA end seem important.
Collapse
Affiliation(s)
- Trine J Meza
- Division of Molecular Biology, Department of Biology, University of Oslo, PO Box 1031 Blindern, N-0315 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kalantidis K, Psaradakis S, Tabler M, Tsagris M. The occurrence of CMV-specific short Rnas in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:826-33. [PMID: 12182340 DOI: 10.1094/mpmi.2002.15.8.826] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Expression or introduction of double-stranded (ds)RNA in eukaryotic cells can trigger sequence-specific gene silencing of transgenes, endogenes, and viruses. Transgenic plants producing dsRNAs with homology to viral sequences are likely to exhibit pathogen-derived resistance to the virus. Cucumber mosaic virus (CMV), a very widespread virus with over 1,000 host species, has the natural ability to suppress silencing in order to establish infection. Here, we report the generation of transgenic tobacco lines, where a DNA transgene containing an inverted repeat of CMV cDNA had been introduced. Expression of this DNA construct delivered an RNA transcript that is able to form an intramolecular double strand. Transgenic plants were challenged with CMV. Three categories of plants could be discriminated: susceptible plants, which typically reacted with milder symptoms than the wild-type control; a "recovery" phenotype, in which newly emerging leaves were free of symptoms; and plants that showed complete resistance. Northern analysis showed that the expression of CMV dsRNA caused, in some transgenic lines, the generation of short RNAs characteristic of posttranscriptional gene silencing. Those lines were CMV resistant. The correlation between the detection of short RNAs and virus resistance provides a molecular marker that makes it possible to predict success in attempts to engineer virus resistance by dsRNA.
Collapse
Affiliation(s)
- Kriton Kalantidis
- Foundation for Research and Technology, Hellas Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
32
|
Zhang C, Wu-Scharf D, Jeong BR, Cerutti H. A WD40-repeat containing protein, similar to a fungal co-repressor, is required for transcriptional gene silencing in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:25-36. [PMID: 12100480 DOI: 10.1046/j.1365-313x.2002.01331.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In higher plants, mammals, and filamentous fungi, transcriptional gene silencing is frequently associated with DNA methylation. However, recent evidence suggests that certain transgenes can be inactivated by a methylation independent mechanism. In the unicellular green alga Chlamydomonas reinhardtii, single-copy transgenes are transcriptionally silenced without discernible cytosine methylation of the introduced DNA. We have isolated a Chlamydomonas gene, Mut11, which is required for the transcriptional repression of single-copy transgenes. Mut11 appears to have a global role in gene regulation since it also affects transposon mobilization, cellular growth, and sensitivity to DNA damaging agents. In transient expression assays, a fusion protein between the predicted Mut11 gene product (Mut11p) and E. coli beta-glucuronidase localizes predominantly to the nucleus. Mut11p, a polypeptide of 370 amino acids containing seven WD40 repeats, is highly homologous to proteins of unknown function that are widely distributed among eukaryotes. Mut11p also shows similarity to the C-terminal domain of TUP1, a global transcriptional co-repressor in fungi. Based on these findings we speculate that, in Chlamydomonas, the silencing of certain single-copy transgenes and dispersed transposons integrated into euchromatic regions may occur by a mechanism(s) similar to those involving global transcriptional repressors. Our results also support the existence, in methylation-competent organisms, of a mechanism(s) of transcriptional (trans)gene silencing that is independent of DNA methylation.
Collapse
Affiliation(s)
- Chaomei Zhang
- School of Biological Sciences and Plant Science Initiative, University of Nebraska - Lincoln, E211 Beadle Center, Post Office Box 880666, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|
33
|
Jeong Br BR, Wu-Scharf D, Zhang C, Cerutti H. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci U S A 2002; 99:1076-81. [PMID: 11782532 PMCID: PMC117432 DOI: 10.1073/pnas.022392999] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the unicellular green alga Chlamydomonas reinhardtii, the epigenetic silencing of transgenes occurs, as in land plants, at both the transcriptional and posttranscriptional levels. In the case of single-copy transgenes, transcriptional silencing takes place without detectable cytosine methylation of the introduced DNA. We have isolated two mutant strains, Mut-9 and Mut-11, that reactivate expression of a transcriptionally silenced single-copy transgene. These suppressors are deficient in the repression of a DNA transposon and a retrotransposon-like element. In addition, the mutants show enhanced sensitivity to DNA-damaging agents, particularly radiomimetic chemicals inducing DNA double-strand breaks. All of these phenotypes are much more prominent in a double mutant strain. These observations suggest that multiple partly redundant epigenetic mechanisms are involved in the repression of transgenes and transposons in eukaryotes, presumably as components of a system that evolved to preserve genomic stability. Our results also raise the possibility of mechanistic connections between epigenetic transcriptional silencing and DNA double-strand break repair.
Collapse
Affiliation(s)
- Byeong-ryool Jeong Br
- School of Biological Sciences and Plant Science Initiative, University of Nebraska, E211 Beadle Center, Post Office Box 880666, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|