1
|
Choi S, Kronstad JW, Jung WH. Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi. J Microbiol Biotechnol 2024; 34:1551-1562. [PMID: 38881181 PMCID: PMC11380514 DOI: 10.4014/jmb.2405.05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Fungi employ diverse mechanisms for iron uptake to ensure proliferation and survival in iron-limited environments. Siderophores are secondary metabolite small molecules with a high affinity specifically for ferric iron; these molecules play an essential role in iron acquisition in fungi and significantly influence fungal physiology and virulence. Fungal siderophores, which are primarily hydroxamate types, are synthesized via non-ribosomal peptide synthetases (NRPS) or NRPS-independent pathways. Following synthesis, siderophores are excreted, chelate iron, and are transported into the cell by specific cell membrane transporters. In several human pathogenic fungi, siderophores are pivotal for virulence, as inhibition of their synthesis or transport significantly reduces disease in murine models of infection. This review briefly highlights siderophore biosynthesis and transport mechanisms in fungal pathogens as well the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Understanding siderophore biosynthesis and transport in pathogenic fungi provides valuable insights into fungal biology and illuminates potential therapeutic targets for combating fungal infections.
Collapse
Affiliation(s)
- Sohyeong Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
2
|
Sun L, David KT, Wolters JF, Karlen SD, Gonçalves C, Opulente DA, LaBella AL, Groenewald M, Zhou X, Shen XX, Rokas A, Hittinger CT. Functional and Evolutionary Integration of a Fungal Gene With a Bacterial Operon. Mol Biol Evol 2024; 41:msae045. [PMID: 38415839 PMCID: PMC11043216 DOI: 10.1093/molbev/msae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.
Collapse
Affiliation(s)
- Liang Sun
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kyle T David
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - John F Wolters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Steven D Karlen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Carla Gonçalves
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Dana A Opulente
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department, Villanova University, Villanova, PA 19085, USA
| | - Abigail Leavitt LaBella
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Xiaofan Zhou
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Antonis Rokas
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
3
|
Sun L, David KT, Wolters JF, Karlen SD, Gonçalves C, Opulente DA, Leavitt LaBella A, Groenewald M, Zhou X, Shen XX, Rokas A, Todd Hittinger C. Functional and evolutionary integration of a fungal gene with a bacterial operon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568075. [PMID: 38045280 PMCID: PMC10690196 DOI: 10.1101/2023.11.21.568075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determines the extant distribution of yeast enterobactin producers and cheaters.
Collapse
Affiliation(s)
- Liang Sun
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kyle T. David
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Steven D. Karlen
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Carla Gonçalves
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Dana A. Opulente
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department, Villanova University, Villanova, PA 19085, USA
| | - Abigail Leavitt LaBella
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223
| | | | - Xiaofan Zhou
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Xing-Xing Shen
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Antonis Rokas
- Evolutionary Studies Initiative and Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
4
|
Santus W, Rana AP, Devlin JR, Kiernan KA, Jacob CC, Tjokrosurjo J, Underhill DM, Behnsen J. Mycobiota and diet-derived fungal xenosiderophores promote Salmonella gastrointestinal colonization. Nat Microbiol 2022; 7:2025-2038. [PMID: 36411353 DOI: 10.1038/s41564-022-01267-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
Abstract
The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis, such as inflammatory bowel disease. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. Here we investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium, a major cause of gastroenteritis worldwide. We found that, in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella and elucidates an additional function of the gut mycobiota, revealing the importance of these understudied members of the gut ecosystem during bacterial infection.
Collapse
Affiliation(s)
- William Santus
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Amisha P Rana
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Jason R Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Kaitlyn A Kiernan
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Carol C Jacob
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Joshua Tjokrosurjo
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Brault A, Mbuya B, Labbé S. Sib1, Sib2, and Sib3 proteins are required for ferrichrome-mediated cross-feeding interaction between Schizosaccharomyces pombe and Saccharomyces cerevisiae. Front Microbiol 2022; 13:962853. [PMID: 35928155 PMCID: PMC9344042 DOI: 10.3389/fmicb.2022.962853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Although Saccharomyces cerevisiae is unable to produce siderophores, this fungal organism can assimilate iron bound to the hydroxamate-type siderophore ferrichrome (Fc) produced and secreted by other microbes. Fc can enter S. cerevisiae cells via Arn1. Unlike S. cerevisiae, Schizosaccharomyces pombe synthesizes and secretes Fc. The sib1+ and sib2+ genes encode, respectively, a Fc synthetase and an ornithine-N5-oxygenase, which are required for Fc production. When both genes were expressed in S. pombe, cross-feeding experiments revealed that S. cerevisiae fet3Δ arn1-4Δ cells expressing Arn1 could grow in the vicinity of S. pombe under low-iron conditions. In contrast, deletion of sib1+ and sib2+ produced a defect in the ability of S. pombe to keep S. cerevisiae cells alive when Fc is used as the sole source of iron. Further analysis identified a gene designated sib3+ that encodes an N5-transacetylase required for Fc production in S. pombe. The sib3Δ mutant strain exhibited a severe growth defect in iron-poor media, and it was unable to promote Fc-dependent growth of S. cerevisiae cells. Microscopic analyses of S. pombe cells expressing a functional Sib3-GFP protein revealed that Sib3 was localized throughout the cells, with a proportion of Sib3 being colocalized with Sib1 and Sib2 within the cytosol. Collectively, these results describe the first example of a one-way cross-feeding interaction, with S. pombe providing Fc that enables S. cerevisiae to grow when Fc is used as the sole source of iron.
Collapse
|
6
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
7
|
Dimopoulou A, Theologidis I, Varympopi A, Papafotis D, Mermigka G, Tzima A, Panopoulos NJ, Skandalis N. Shifting Perspectives of Translational Research in Bio-Bactericides: Reviewing the Bacillus amyloliquefaciens Paradigm. BIOLOGY 2021; 10:biology10111202. [PMID: 34827195 PMCID: PMC8614995 DOI: 10.3390/biology10111202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The continuous reduction of approved conventional microbicides, due to health concerns and the development of plant-pathogen resistance, has been urged for the use of safe alternatives in crop protection. Several beneficial bacterial species, termed biological control agents, are currently used in lieu of chemical pesticides. The approach to select such bacterial species and manufacture commercial products has been based on their biocontrol effect under optimal growth conditions, which is far from the real nutrient-limited field conditions of plant niches. It’s important to determine the complex interactions that occur among BCAs, plant host and niche microbiome to fully understand and exploit the potential of biological control agents. Furthermore, it’s crucial to acknowledge the environmental impact of their long-term use. Abstract Bacterial biological control agents (BCAs) have been increasingly used against plant diseases. The traditional approach to manufacturing such commercial products was based on the selection of bacterial species able to produce secondary metabolites that inhibit mainly fungal growth in optimal media. Such species are required to be massively produced and sustain long-term self-storage. The endpoint of this pipeline is large-scale field tests in which BCAs are handled as any other pesticide. Despite recent knowledge of the importance of BCA-host-microbiome interactions to trigger plant defenses and allow colonization, holistic approaches to maximize their potential are still in their infancy. There is a gap in scientific knowledge between experiments in controlled conditions for optimal BCA and pathogen growth and the nutrient-limited field conditions in which they face niche microbiota competition. Moreover, BCAs are considered to be safe by competent authorities and the public, with no side effects to the environment; the OneHealth impact of their application is understudied. This review summarizes the state of the art in BCA research and how current knowledge and new biotechnological tools have impacted BCA development and application. Future challenges, such as their combinational use and ability to ameliorate plant stress are also discussed. Addressing such challenges would establish their long-term use as centerfold agricultural pesticides and plant growth promoters.
Collapse
Affiliation(s)
- Anastasia Dimopoulou
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Heraklion, Greece; (A.D.); (G.M.)
| | - Ioannis Theologidis
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, 14561 Athens, Greece;
| | - Adamantia Varympopi
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.V.); (D.P.)
| | - Dimitris Papafotis
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.V.); (D.P.)
| | - Glykeria Mermigka
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Heraklion, Greece; (A.D.); (G.M.)
| | - Aliki Tzima
- Laboratory of Plant Pathology, Department of Crop Production, School of Agricultural Production Infrastructure and Environment, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Nick J. Panopoulos
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA;
| | - Nicholas Skandalis
- Health Sciences Campus, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
8
|
Tran TQ, MacAlpine HK, Tripuraneni V, Mitra S, MacAlpine DM, Hartemink AJ. Linking the dynamics of chromatin occupancy and transcription with predictive models. Genome Res 2021; 31:1035-1046. [PMID: 33893157 PMCID: PMC8168580 DOI: 10.1101/gr.267237.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
Though the sequence of the genome within each eukaryotic cell is essentially fixed, it exists within a complex and changing chromatin state. This state is determined, in part, by the dynamic binding of proteins to the DNA. These proteins—including histones, transcription factors (TFs), and polymerases—interact with one another, the genome, and other molecules to allow the chromatin to adopt one of exceedingly many possible configurations. Understanding how changing chromatin configurations associate with transcription remains a fundamental research problem. We sought to characterize at high spatiotemporal resolution the dynamic interplay between transcription and chromatin in response to cadmium stress. Whereas gene regulatory responses to environmental stress in yeast have been studied, how the chromatin state changes and how those changes connect to gene regulation remain unexplored. By combining MNase-seq and RNA-seq data, we found chromatin signatures of transcriptional activation and repression involving both nucleosomal and TF-sized DNA-binding factors. Using these signatures, we identified associations between chromatin dynamics and transcriptional regulation, not only for known cadmium response genes, but across the entire genome, including antisense transcripts. Those associations allowed us to develop generalizable models that predict dynamic transcriptional responses on the basis of dynamic chromatin signatures.
Collapse
Affiliation(s)
- Trung Q Tran
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Vinay Tripuraneni
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sneha Mitra
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Alexander J Hartemink
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
9
|
Pierce EC, Morin M, Little JC, Liu RB, Tannous J, Keller NP, Pogliano K, Wolfe BE, Sanchez LM, Dutton RJ. Bacterial-fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nat Microbiol 2021; 6:87-102. [PMID: 33139882 PMCID: PMC8515420 DOI: 10.1038/s41564-020-00800-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022]
Abstract
Microbial interactions are expected to be major determinants of microbiome structure and function. Although fungi are found in diverse microbiomes, their interactions with bacteria remain largely uncharacterized. In this work, we characterize interactions in 16 different bacterial-fungal pairs, examining the impacts of 8 different fungi isolated from cheese rind microbiomes on 2 bacteria (Escherichia coli and a cheese-isolated Pseudomonas psychrophila). Using random barcode transposon-site sequencing with an analysis pipeline that allows statistical comparisons between different conditions, we observed that fungal partners caused widespread changes in the fitness of bacterial mutants compared to growth alone. We found that all fungal species modulated the availability of iron and biotin to bacterial species, which suggests that these may be conserved drivers of bacterial-fungal interactions. Species-specific interactions were also uncovered, a subset of which suggested fungal antibiotic production. Changes in both conserved and species-specific interactions resulted from the deletion of a global regulator of fungal specialized metabolite production. This work highlights the potential for broad impacts of fungi on bacterial species within microbiomes.
Collapse
Affiliation(s)
- Emily C Pierce
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Manon Morin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jessica C Little
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roland B Liu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Joanna Tannous
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Laura M Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Stanford FA, Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes (Basel) 2020; 11:genes11111296. [PMID: 33143139 PMCID: PMC7693903 DOI: 10.3390/genes11111296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a key transition metal required by most microorganisms and is prominently utilised in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection, the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host. Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully characterised, with key components of these systems having major roles in virulence. Most recently, proteins involved in these pathways have been linked to the development of antifungal resistance. Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic fungi, and the role iron may have on the development of resistance to antifungals with emphasis on species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena Microbial Resource Collection Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-532-1395; Fax: +49-3641-532-2395
| |
Collapse
|
11
|
Soczewka P, Flis K, Tribouillard-Tanvier D, di Rago JP, Santos CN, Menezes R, Kaminska J, Zoladek T. Flavonoids as Potential Drugs for VPS13-Dependent Rare Neurodegenerative Diseases. Genes (Basel) 2020; 11:E828. [PMID: 32708255 PMCID: PMC7397310 DOI: 10.3390/genes11070828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 12/30/2022] Open
Abstract
Several rare neurodegenerative diseases, including chorea acanthocytosis, are caused by mutations in the VPS13A-D genes. Only symptomatic treatments for these diseases are available. Saccharomyces cerevisiae contains a unique VPS13 gene and the yeast vps13Δ mutant has been proven as a suitable model for drug tests. A library of drugs and an in-house library of natural compounds and their derivatives were screened for molecules preventing the growth defect of vps13Δ cells on medium with sodium dodecyl sulfate (SDS). Seven polyphenols, including the iron-binding flavone luteolin, were identified. The structure-activity relationship and molecular mechanisms underlying the action of luteolin were characterized. The FET4 gene, which encodes an iron transporter, was found to be a multicopy suppressor of vps13Δ, pointing out the importance of iron in response to SDS stress. The growth defect of vps13Δ in SDS-supplemented medium was also alleviated by the addition of iron salts. Suppression did not involve cell antioxidant responses, as chemical antioxidants were not active. Our findings support that luteolin and iron may target the same cellular process, possibly the synthesis of sphingolipids. Unveiling the mechanisms of action of chemical and genetic suppressors of vps13Δ may help to better understand VPS13A-D-dependent pathogenesis and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Piotr Soczewka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux University, CEDEX, 33077 Bordeaux, France; (D.T.-T.); (J.-P.d.R.)
- Institut National de la Santé et de la Recherche Médicale INSERM, 33077 Bordeaux, France
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux University, CEDEX, 33077 Bordeaux, France; (D.T.-T.); (J.-P.d.R.)
| | - Cláudia N. Santos
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; (C.N.S.); (R.M.)
- CEDOC—Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n° 6, 6-A Edifício CEDOC II, 1150-082 Lisboa, Portugal
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; (C.N.S.); (R.M.)
- CEDOC—Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n° 6, 6-A Edifício CEDOC II, 1150-082 Lisboa, Portugal
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| |
Collapse
|
12
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
13
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|
14
|
Martins TS, Costa V, Pereira C. Signaling pathways governing iron homeostasis in budding yeast. Mol Microbiol 2018; 109:422-432. [DOI: 10.1111/mmi.14009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Telma S. Martins
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Vítor Costa
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| | - Clara Pereira
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| |
Collapse
|
15
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
16
|
Magnesium uptake by connecting fluid-phase endocytosis to an intracellular inorganic cation filter. Nat Commun 2017; 8:1879. [PMID: 29192218 PMCID: PMC5709425 DOI: 10.1038/s41467-017-01930-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 10/24/2017] [Indexed: 12/03/2022] Open
Abstract
Cells acquire free metals through plasma membrane transporters. But, in natural settings, sequestering agents often render metals inaccessible to transporters, limiting metal bioavailability. Here we identify a pathway for metal acquisition, allowing cells to cope with this situation. Under limited bioavailability of Mg2+, yeast cells upregulate fluid-phase endocytosis and transfer solutes from the environment into their vacuole, an acidocalcisome-like compartment loaded with highly concentrated polyphosphate. We propose that this anionic inorganic polymer, which is an avid chelator of Mg2+, serves as an immobilized cation filter that accumulates Mg2+ inside these organelles. It thus allows the vacuolar exporter Mnr2 to efficiently transfer Mg2+ into the cytosol. Leishmania parasites also employ acidocalcisomal polyphosphate to multiply in their Mg2+-limited habitat, the phagolysosomes of inflammatory macrophages. This suggests that the pathway for metal uptake via endocytosis, acidocalcisomal polyphosphates and export into the cytosol, which we term EAPEC, is conserved. Metal bioavailability is frequently limited by sequestering agents which makes them inaccessible to cells. Here the authors show that cells can increase Mg2+ uptake via fluid phase endocytosis and accumulate this metal in their vacuole loaded with polyphosphate, and later can be exported to the cytosol.
Collapse
|
17
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
18
|
Paulo JA, O'Connell JD, Everley RA, O'Brien J, Gygi MA, Gygi SP. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources. J Proteomics 2016; 148:85-93. [PMID: 27432472 DOI: 10.1016/j.jprot.2016.07.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED The budding yeast Saccharomyces cerevisiae is a model system for investigating biological processes. Cellular events are known to be dysregulated due to shifts in carbon sources. However, the comprehensive proteomic alterations thereof have not been fully investigated. Here we examined proteomic alterations in S. cerevisiae due to the adaptation of yeast from glucose to nine different carbon sources - maltose, trehalose, fructose, sucrose, glycerol, acetate, pyruvate, lactic acid, and oleate. Isobaric tag-based mass spectrometry techniques are at the forefront of global proteomic investigations. As such, we used a TMT10-plex strategy to study multiple growth conditions in a single experiment. The SPS-MS3 method on an Orbitrap Fusion Lumos mass spectrometer enabled the quantification of over 5000 yeast proteins across ten carbon sources at a 1% protein-level FDR. On average, the proteomes of yeast cultured in fructose and sucrose deviated the least from those cultured in glucose. As expected, gene ontology classification revealed the major alteration in protein abundances occurred in metabolic pathways and mitochondrial proteins. Our protocol lays the groundwork for further investigation of carbon source-induced protein alterations. Additionally, these data offer a hypothesis-generating resource for future studies aiming to investigate both characterized and uncharacterized genes. BIOLOGICAL SIGNIFICANCE We investigate the proteomic alterations in S. cerevisiae resulting from adaptation of yeast from glucose to nine different carbon sources - maltose, trehalose, fructose, sucrose, glycerol, acetate, pyruvate, lactic acid, and oleate. SPS-MS3 TMT10plex analysis is used for quantitative proteomic analysis. We showcase a technique that allows the quantification of over 5000 yeast proteins, the highest number to date in S. cerevisiae, across 10 growth conditions in a single experiment. As expected, gene ontology classification of proteins with the major alterations in abundances occurred in metabolic pathways and mitochondrial proteins, reflecting the degree of metabolic stress when cellular machinery shifts from growth on glucose to an alternative carbon source. Our protocol lays the groundwork for further investigation of carbon source-induced protein alterations. Improving depth of coverage - measuring abundance changes of over 5000 proteins - increases our understanding of difficult-to-study genes in the model system S. cerevisiae and by homology human cell biology. We submit this highly comprehensive dataset as a hypothesis generating resource for targeted studies on uncharacterized genes.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| | - Jeremy D O'Connell
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Robert A Everley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Jonathon O'Brien
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Micah A Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
19
|
Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by Aspergillus fumigatus. Biochem J 2016; 473:1203-13. [DOI: 10.1042/bcj20160066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/26/2016] [Indexed: 11/17/2022]
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen for immunocompromised patients, and genes involved in siderophore metabolism have been identified as virulence factors. Recently, we identified the membrane transporters sit1 and sit2, which are putative virulence factors of A. fumigatus; sit1 and sit2 are homologous to yeast Sit1, and sit1 and sit2 gene expression was up-regulated after iron depletion. When expressed heterologously in Saccharomyces cerevisiae, sit1 and sit2 were localized to the plasma membrane; sit1 efficiently complemented ferrichrome (FC) and ferrioxamine B (FOB) uptake in yeast cells, whereas sit2 complemented only FC uptake. Deletion of sit1 resulted in a decrease in FOB and FC uptake, and deletion of sit2 resulted in a decrease in FC uptake in A. fumigatus. It is of interest that a sit1 and sit2 double-deletion mutant resulted in a synergistic decrease in FC uptake activity. Both sit1 and sit2 were localized to the plasma membrane in A. fumigatus. The expression levels of the sit1 and sit2 genes were dependent on hapX under low-but not high-iron conditions. Furthermore, mirB, and sidA gene expression was up-regulated and sreA expression down-regulated when sit1 and sit2 were deleted. Although sit1 and sit2 failed to affect mouse survival rate, these genes affected conidial killing activity. Taken together, our results suggest that sit1 and sit2 are siderophore transporters and putative virulence factors localized to the plasma membrane.
Collapse
|
20
|
Deregowska A, Skoneczny M, Adamczyk J, Kwiatkowska A, Rawska E, Skoneczna A, Lewinska A, Wnuk M. Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts. Oncotarget 2015; 6:30650-63. [PMID: 26384347 PMCID: PMC4741559 DOI: 10.18632/oncotarget.5594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/24/2015] [Indexed: 11/26/2022] Open
Abstract
Industrial yeasts, economically important microorganisms, are widely used in diverse biotechnological processes including brewing, winemaking and distilling. In contrast to a well-established genome of brewer's and wine yeast strains, the comprehensive evaluation of genomic features of distillery strains is lacking. In the present study, twenty two distillery yeast strains were subjected to electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH). The strains analyzed were assigned to the Saccharomyces sensu stricto complex and grouped into four species categories: S. bayanus, S. paradoxus, S. cerevisiae and S. kudriavzevii. The genomic diversity was mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX were the most frequently observed. Statistically significant differences in the gene copy number were documented in six functional gene categories: 1) telomere maintenance via recombination, DNA helicase activity or DNA binding, 2) maltose metabolism process, glucose transmembrane transporter activity; 3) asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4) siderophore transport, 5) response to copper ion, cadmium ion binding and 6) L-iditol 2- dehydrogenase activity. The losses of YRF1 genes (Y' element ATP-dependent helicase) were accompanied by decreased level of Y' sequences and an increase in DNA double and single strand breaks, and oxidative DNA damage in the S. paradoxus group compared to the S. bayanus group. We postulate that naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the S. bayanus group of distillery yeast strains.
Collapse
Affiliation(s)
- Anna Deregowska
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | | | - Ewa Rawska
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
21
|
Kang CM, Kang S, Park YS, Yun CW. Physical interaction between Sit1 and Aft1 upregulates FOB uptake activity by inhibiting protein degradation of Sit1 in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov080. [PMID: 26323600 DOI: 10.1093/femsyr/fov080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 11/15/2022] Open
Abstract
Previously, we reported that Aft1 regulates Sit1 by modulating the ubiquitination of Sit1 in Saccharomyces cerevisiae. Here, we report the function of the physical interaction between Sit1 and Aft1 in ferrioxamine B (FOB) uptake. The interaction between Sit1 and Aft1 induced protein localization of Sit1 to the plasma membrane, and more Sit1 was detected in the plasma membrane when Sit1 and Aft1 were coexpressed compared with Sit1 expression alone. The MSN5-deletion mutant, which failed to translocate Aft1 to the cytosolic compartment, showed lower FOB uptake activity than the wild type. However, higher free iron uptake activity was detected in the MSN5-deletion mutant. Furthermore, the strain transformed with AFT1-1(up) plasmid, which failed to regulate Aft1 via iron concentration and accumulated Aft1 in the nucleus, showed lower FOB uptake activity. The Aft1 Y179F mutant, which contained a tyrosine residue that was changed to phenylalanine, failed to interact physically with Sit1 and showed more degradation of the Sit1 and, ultimately, lower FOB uptake activity. Additionally, we found that MG132 and PMSF, which are inhibitors of proteasomes and serine proteases, respectively, increased the Sit1 protein level. Taken together, these results suggest that the protein-protein interaction between Sit1 and Aft1 is an important factor in the FOB uptake activity of Sit1.
Collapse
Affiliation(s)
- Chang-Min Kang
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Suzie Kang
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Yong-Sung Park
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| |
Collapse
|
22
|
Dos Santos SC, Teixeira MC, Dias PJ, Sá-Correia I. MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Front Physiol 2014; 5:180. [PMID: 24847282 PMCID: PMC4021133 DOI: 10.3389/fphys.2014.00180] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/19/2014] [Indexed: 12/03/2022] Open
Abstract
Multidrug/Multixenobiotic resistance (MDR/MXR) is a widespread phenomenon with clinical, agricultural and biotechnological implications, where MDR/MXR transporters that are presumably able to catalyze the efflux of multiple cytotoxic compounds play a key role in the acquisition of resistance. However, although these proteins have been traditionally considered drug exporters, the physiological function of MDR/MXR transporters and the exact mechanism of their involvement in resistance to cytotoxic compounds are still open to debate. In fact, the wide range of structurally and functionally unrelated substrates that these transporters are presumably able to export has puzzled researchers for years. The discussion has now shifted toward the possibility of at least some MDR/MXR transporters exerting their effect as the result of a natural physiological role in the cell, rather than through the direct export of cytotoxic compounds, while the hypothesis that MDR/MXR transporters may have evolved in nature for other purposes than conferring chemoprotection has been gaining momentum in recent years. This review focuses on the drug transporters of the Major Facilitator Superfamily (MFS; drug:H+ antiporters) in the model yeast Saccharomyces cerevisiae. New insights into the natural roles of these transporters are described and discussed, focusing on the knowledge obtained or suggested by post-genomic research. The new information reviewed here provides clues into the unexpectedly complex roles of these transporters, including a proposed indirect regulation of the stress response machinery and control of membrane potential and/or internal pH, with a special emphasis on a genome-wide view of the regulation and evolution of MDR/MXR-MFS transporters.
Collapse
Affiliation(s)
- Sandra C Dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Miguel C Teixeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Paulo J Dias
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
23
|
Dias PJ, Sá-Correia I. The drug:H⁺ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H⁺ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts. BMC Genomics 2013; 14:901. [PMID: 24345006 PMCID: PMC3890622 DOI: 10.1186/1471-2164-14-901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S. cerevisiae, the four ARN/SIT family members encode siderophore transporters and the two GEX family members encode glutathione extrusion pumps. The evolutionary history of DHA2, ARN and GEX genes, encoding 14-spanner MFS transporters, is reconstructed in this study. RESULTS The translated ORFs of 31 strains from 25 hemiascomycetous species, including 10 pathogenic Candida species, were compared using a local sequence similarity algorithm. The constraining and traversing of a network representing the pairwise similarity data gathered 355 full size proteins and retrieved ARN and GEX family members together with DHA2 transporters, suggesting the existence of a close phylogenetic relationship among these 14-spanner major facilitators. Gene neighbourhood analysis was combined with tree construction methodologies to reconstruct their evolutionary history and 7 DHA2 gene lineages, 5 ARN gene lineages, and 1 GEX gene lineage, were identified. The S. cerevisiae DHA2 proteins Sge1, Azr1, Vba3 and Vba5 co-clustered in a large phylogenetic branch, the ATR1 and YMR279C genes were proposed to be paralogs formed during the Whole Genome Duplication (WGD) whereas the closely related ORF YOR378W resides in its own lineage. Homologs of S. cerevisiae DHA2 vacuolar proteins Vba1, Vba2 and Vba4 occur widespread in the Hemiascomycetes. Arn1/Arn2 homologs were only found in species belonging to the Saccharomyces complex and are more abundant in the pre-WGD species. Arn4 homologs were only found in sub-telomeric regions of species belonging to the Sacharomyces sensu strictu group (SSSG). Arn3 type siderophore transporters are abundant in the Hemiascomycetes and form an ancient gene lineage extending to the filamentous fungi. CONCLUSIONS The evolutionary history of DHA2, ARN and GEX genes was reconstructed and a common evolutionary root shared by the encoded proteins is hypothesized. A new protein family, denominated DAG, is proposed to span these three phylogenetic subfamilies of 14-spanner MFS transporters.
Collapse
Affiliation(s)
| | - Isabel Sá-Correia
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
24
|
Chatfield CH, Mulhern BJ, Viswanathan VK, Cianciotto NP. The major facilitator superfamily-type protein LbtC promotes the utilization of the legiobactin siderophore by Legionella pneumophila. MICROBIOLOGY-SGM 2011; 158:721-735. [PMID: 22160401 DOI: 10.1099/mic.0.055533-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Gram-negative bacterium Legionella pneumophila elaborates the siderophore legiobactin. We previously showed that cytoplasmic LbtA helps mediate legiobactin synthesis, inner-membrane LbtB promotes export of legiobactin, and outer-membrane LbtU acts as the ferrisiderophore receptor. RT-PCR analyses now identified lbtC as an iron-repressed gene that is the final gene in an operon containing lbtA and lbtB. In silico analysis predicted that LbtC is an inner-membrane protein that belongs to the major facilitator superfamily (MFS). Although capable of normal growth in standard media, lbtC mutants were defective for growth on iron-depleted agar media. While producing normal levels of legiobactin, lbtC mutants were unable to utilize supplied legiobactin to stimulate growth on iron-depleted media and displayed an impaired ability to take up radiolabelled iron. All lbtC mutant phenotypes were complemented by reintroduction of an intact copy of lbtC. When a cloned copy of both lbtC and lbtU was introduced into a heterologous bacterium (Legionella longbeachae), the organism acquired the ability to utilize legiobactin to grow better on low-iron media. Together, these data indicate that LbtC is involved in the uptake of legiobactin, and based upon its predicted location is most likely the mediator of ferrilegiobactin transport across the inner membrane. The data are also a unique documentation of how an MFS protein can promote bacterial iron-siderophore import, standing in contrast to the vast majority of studies which have defined ABC-type permeases as the mediators of siderophore import across the Gram-negative inner membrane or the Gram-positive cytoplasmic membrane.
Collapse
Affiliation(s)
- Christa H Chatfield
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Brendan J Mulhern
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - V K Viswanathan
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Dhaoui M, Auchère F, Blaiseau PL, Lesuisse E, Landoulsi A, Camadro JM, Haguenauer-Tsapis R, Belgareh-Touzé N. Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis. Mol Biol Cell 2011; 22:2054-67. [PMID: 21490148 PMCID: PMC3113770 DOI: 10.1091/mbc.e10-11-0906] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 11/18/2011] [Accepted: 04/07/2011] [Indexed: 01/20/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, glutathione plays a major role in heavy metal detoxification and protection of cells against oxidative stress. We show that Gex1 is a new glutathione exchanger. Gex1 and its paralogue Gex2 belong to the major facilitator superfamily of transporters and display similarities to the Aft1-regulon family of siderophore transporters. Gex1 was found mostly at the vacuolar membrane and, to a lesser extent, at the plasma membrane. Gex1 expression was induced under conditions of iron depletion and was principally dependent on the iron-responsive transcription factor Aft2. However, a gex1Δ gex2Δ strain displayed no defect in known siderophore uptake. The deletion mutant accumulated intracellular glutathione, and cells overproducing Gex1 had low intracellular glutathione contents, with glutathione excreted into the extracellular medium. Furthermore, the strain overproducing Gex1 induced acidification of the cytosol, confirming the involvement of Gex1 in proton transport as a probable glutathione/proton antiporter. Finally, the imbalance of pH and glutathione homeostasis in the gex1Δ gex2Δ and Gex1-overproducing strains led to modulations of the cAMP/protein kinase A and protein kinase C1 mitogen-activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Manel Dhaoui
- Laboratoire Ubiquitine et Trafic Intracellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris-Diderot, Paris, France
- Laboratoire de Biochimie et Biologie Moléculaire 03/UR/0902, Faculté des Sciences de Bizerte, Zarzouna, Tunisia
| | - Françoise Auchère
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Institut Jacques Monod, UMR 7592 CNRS-Université Paris-Diderot, Paris, France
| | - Pierre-Louis Blaiseau
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Institut Jacques Monod, UMR 7592 CNRS-Université Paris-Diderot, Paris, France
| | - Emmanuel Lesuisse
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Institut Jacques Monod, UMR 7592 CNRS-Université Paris-Diderot, Paris, France
| | - Ahmed Landoulsi
- Laboratoire de Biochimie et Biologie Moléculaire 03/UR/0902, Faculté des Sciences de Bizerte, Zarzouna, Tunisia
| | - Jean-Michel Camadro
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Institut Jacques Monod, UMR 7592 CNRS-Université Paris-Diderot, Paris, France
| | - Rosine Haguenauer-Tsapis
- Laboratoire Ubiquitine et Trafic Intracellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris-Diderot, Paris, France
| | - Naïma Belgareh-Touzé
- Laboratoire Ubiquitine et Trafic Intracellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris-Diderot, Paris, France
| |
Collapse
|
26
|
Castells‐Roca L, Mühlenhoff U, Lill R, Herrero E, Bellí G. The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Mol Microbiol 2011; 81:232-48. [DOI: 10.1111/j.1365-2958.2011.07689.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laia Castells‐Roca
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Montserrat Roig 2, 25008‐Lleida, Spain
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps‐Universität Marburg, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps‐Universität Marburg, 35032 Marburg, Germany
| | - Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Montserrat Roig 2, 25008‐Lleida, Spain
| | - Gemma Bellí
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Montserrat Roig 2, 25008‐Lleida, Spain
| |
Collapse
|
27
|
Silva MG, Schrank A, Bailão EFLC, Bailão AM, Borges CL, Staats CC, Parente JA, Pereira M, Salem-Izacc SM, Mendes-Giannini MJS, Oliveira RMZ, Silva LKRE, Nosanchuk JD, Vainstein MH, de Almeida Soares CM. The homeostasis of iron, copper, and zinc in paracoccidioides brasiliensis, cryptococcus neoformans var. Grubii, and cryptococcus gattii: a comparative analysis. Front Microbiol 2011; 2:49. [PMID: 21833306 PMCID: PMC3153025 DOI: 10.3389/fmicb.2011.00049] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 03/03/2011] [Indexed: 01/01/2023] Open
Abstract
Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensisPb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways.
Collapse
Affiliation(s)
- Mirelle Garcia Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Goiás, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
FgEnd1 is a putative component of the endocytic machinery and mediates ferrichrome uptake in F. graminearum. Curr Genet 2009; 55:593-600. [DOI: 10.1007/s00294-009-0272-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 12/13/2022]
|
29
|
Cusick KD, Boyer GL, Wilhelm SW, Sayler GS. Transcriptional profiling of Saccharomyces cerevisiae upon exposure to saxitoxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6039-6045. [PMID: 19731715 DOI: 10.1021/es900581q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Saxitoxin is a potent neurotoxin produced by several species of dinoflagellates and cyanobacteria. The molecular target of saxitoxin in higher eukaryotes is the voltage-gated sodium channel; however, its target in lower eukaryotic organisms remains unknown. The goal of this study was to obtain the transcriptional fingerprint of the model lower eukaryote Saccharomyces cerevisiae upon exposure to saxitoxin to identify potential genes suitable for biomarker development. Microarray analyses identified multiple genes associated with copper and iron homeostasis and sulfur metabolism as significantly differentially expressed upon exposure to saxitoxin; these results were verified with quantitative reverse-transcriptase PCR (qRT-PCR). Additionally, the qRT-PCR assays were used to generate expression profiles in a subset of the differentially regulated genes across multiple exposure times and concentrations, the results of which demonstrated that overall, genes tended to respond in a consistent manner to the toxin. In general, the genes encoding the metallothioneins CUP1 and CRS5 were induced following exposure to saxitoxin, while those encoding the ferric/ cupric reductase FRE1 and the copper uptake transporter CTR1 were repressed. The gene encoding the multicopper ferroxidase FET3, part of the high-affinity iron uptake system, was also induced in all treatments, along with the STR3 gene, which codes for the cystathionine beta-lyase found in the methionine biosynthetic pathway.
Collapse
Affiliation(s)
- Kathleen D Cusick
- Center for Environmental Biotechnology, The University of Tennessee 676 Dabney Hall, Knoxville, Tennessee 37966, USA
| | | | | | | |
Collapse
|
30
|
A novel function of Aft1 in regulating ferrioxamine B uptake: Aft1 modulates Arn3 ubiquitination in Saccharomyces cerevisiae. Biochem J 2009; 422:181-91. [PMID: 19469713 DOI: 10.1042/bj20082399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aft1 is a transcriptional activator in Saccharomyces cerevisiae that responds to iron availability and regulates the expression of genes in the iron regulon, such as FET3, FTR1 and the ARN family. Using a two-hybrid screen, we found that Aft1 physically interacts with the FOB (ferrioxamine B) transporter Arn3. This interaction modulates the ability of Arn3 to take up FOB. The interaction between Arn3 and Aft1 was confirmed by beta-galactosidase, co-immunoprecipitation and SPR (surface plasmon resonance) assays. Truncated Aft1 had a stronger interaction with Arn3 and caused a higher FOB-uptake activity than full-length Aft1. Interestingly, only full-length Aft1 induced the correct localization of Arn3 in response to FOB. Furthermore, we found Aft1 affected Arn3 ubiquitination. These results suggest that Aft1 interacts with Arn3 and may regulate the ubiquitination of Arn3 in the cytosolic compartment.
Collapse
|
31
|
Deng Y, Guo Y, Watson H, Au WC, Shakoury-Elizeh M, Basrai MA, Bonifacino JS, Philpott CC. Gga2 mediates sequential ubiquitin-independent and ubiquitin-dependent steps in the trafficking of ARN1 from the trans-Golgi network to the vacuole. J Biol Chem 2009; 284:23830-41. [PMID: 19574226 DOI: 10.1074/jbc.m109.030015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sorted to the plasma membrane in cells lacking Gga2p, a monomeric clathrin-adaptor protein involved in vesicular transport from the TGN. Although Ggas have been characterized as ubiquitin receptors, we show here that ubiquitin binding by Gga2 was not required for the TGN-to-endosome trafficking of Arn1, but it was required for subsequent sorting of Arn1 into the multivesicular body. In a ubiquitin-binding mutant of Gga2, Arn1p accumulated on the vacuolar membrane in a ubiquitinated form. The yeast epsins Ent3p and Ent4p were also involved in TGN-to-vacuole sorting of Arn1p. Amino-terminal sequences of Arn1p were required for vacuolar protein sorting, as mutation of ubiquitinatable lysine residues resulted in accumulation on the vacuolar membrane, and mutation of either a THN or YGL sequence resulted in mis-sorting to the plasma membrane. These studies suggest that Gga2 is involved in sorting at both the TGN and multivesicular body and that the first step can occur without ubiquitin binding.
Collapse
Affiliation(s)
- Yi Deng
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kornitzer D. Fungal mechanisms for host iron acquisition. Curr Opin Microbiol 2009; 12:377-83. [PMID: 19540796 DOI: 10.1016/j.mib.2009.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 04/29/2009] [Accepted: 05/12/2009] [Indexed: 11/29/2022]
Abstract
The iron scarcity in the host environment presents a challenge for infecting microorganisms. Fungi can assimilate iron via reductive, nonreductive, and host molecule-specific mechanisms. Recent developments in the characterization of iron acquisition mechanisms in the four best-studied fungal pathogens reveal commonalities and differences in those mechanisms as well as in their regulatory pathways.
Collapse
Affiliation(s)
- Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel.
| |
Collapse
|
33
|
Jung WH, Sham A, Lian T, Singh A, Kosman DJ, Kronstad JW. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog 2008; 4:e45. [PMID: 18282105 PMCID: PMC2242830 DOI: 10.1371/journal.ppat.0040045] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/07/2008] [Indexed: 01/09/2023] Open
Abstract
The level of available iron in the mammalian host is extremely low, and pathogenic microbes must compete with host proteins such as transferrin for iron. Iron regulation of gene expression, including genes encoding iron uptake functions and virulence factors, is critical for the pathogenesis of the fungus Cryptococcus neoformans. In this study, we characterized the roles of the CFT1 and CFT2 genes that encode C. neoformans orthologs of the Saccharomyces cerevisiae high-affinity iron permease FTR1. Deletion of CFT1 reduced growth and iron uptake with ferric chloride and holo-transferrin as the in vitro iron sources, and the cft1 mutant was attenuated for virulence in a mouse model of infection. A reduction in the fungal burden in the brains of mice infected with the cft1 mutant was observed, thus suggesting a requirement for reductive iron acquisition during cryptococcal meningitis. CFT2 played no apparent role in iron acquisition but did influence virulence. The expression of both CFT1 and CFT2 was influenced by cAMP-dependent protein kinase, and the iron-regulatory transcription factor Cir1 positively regulated CFT1 and negatively regulated CFT2. Overall, these results indicate that C. neoformans utilizes iron sources within the host (e.g., holo-transferrin) that require Cft1 and a reductive iron uptake system. Opportunistic fungal pathogens and other invading microbes must overcome extreme iron limitation to proliferate in the mammalian host. It is not yet known which iron sources are preferred by fungal pathogens of mammals, although the mechanisms of acquisition are beginning to be explored. Some fungi produce iron-chelating siderophores to capture iron from host proteins, while others appear to require a membrane-bound iron permease–ferroxidase system. We describe the ability of the encapsulated yeast Cryptococcus neoformans to use host iron sources including transferrin and heme, and we identify an iron permease that is required for full disease progression in experimental mouse models. The permease is required for iron utilization from transferrin but not heme during growth in laboratory culture. This result when combined with the observed slow growth of the permease mutant during the experimental infections implicates transferrin as an important iron source in the host. However, we find that mutants lacking the permease eventually do cause disease, thus revealing that additional iron sources such as heme and other uptake mechanisms are available to C. neoformans. Finally, we noted that the permease mutant showed particularly poor growth in the brains of infected animals, suggesting that transferrin may be an especially important iron source in this tissue.
Collapse
Affiliation(s)
- Won Hee Jung
- The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Sham
- The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshun Lian
- The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arvinder Singh
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York, United States of America
| | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York, United States of America
| | - James W Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touzé N. Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1. Traffic 2008; 9:1372-91. [PMID: 18489705 DOI: 10.1111/j.1600-0854.2008.00766.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic plasma membrane transporters are subjected to a tightly regulated intracellular trafficking. The yeast siderophore iron transporter1 (Sit1) displays substrate-regulated trafficking. It is targeted to the plasma membrane or to a vacuolar degradative pathway when synthesized in the presence or absence of external substrate, respectively. Sorting of Sit1 to the vacuolar pathway is dependent on the clathrin adaptor Gga2, and more specifically on its C-GAT subdomain. Plasma membrane undergoes substrate-induced ubiquitylation dependent on the Rsp5 ubiquitin protein ligase. Sit1 is also ubiquitylated in an Rsp5-dependent manner in internal compartments when expressed in the absence of substrate. In several rsp5 mutants including cells deleted for RSP5, Sit1 expressed in the absence of substrate is correctly targeted to the endosomal pathway but its sorting to multivesicular bodies (MVBs) is impaired. Consequently, it displays endosome to plasma membrane targeting, with kinetics similar to those observed in vps mutants defective for MVB sorting. Plasma membrane Sit1 is modified by Lys63-linked ubiquitin chains. We also show for the first time in yeast that modification by this latter type of ubiquitin chains is required directly or indirectly for efficient MVB sorting, as it is for efficient internalization at the plasma membrane.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Département de Biologie Cellulaire, Laboratoire Trafic Intracellulaire des Protéines dans la Levure, Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 6 et 7, 75251 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
35
|
Weissman Z, Shemer R, Conibear E, Kornitzer D. An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 2008; 69:201-17. [PMID: 18466294 DOI: 10.1111/j.1365-2958.2008.06277.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fungal pathogen Candida albicans is able to utilize haemin and haemoglobin as iron sources. Haem-iron utilization is facilitated by Rbt5, an extracellular, glycosylphophatidylinositol (GPI)-anchored, haemin- and haemoglobin-binding protein. Here, we show that Rbt5 and its close homologue Rbt51 are short-lived plasma membrane proteins, degradation of which depends on vacuolar activity. Rbt5 facilitates the rapid endocytosis of haemoglobin into the C. albicans vacuole. We relied on recapitulation of the Rbt51-dependent haem-iron utilization in Saccharomyces cerevisiae to identify mutants defective in haemoglobin utilization. Homologues of representative mutants in S. cerevisiae were deleted in C. albicans and tested for haemoglobin-iron utilization and haemoglobin uptake. These mutants define a novel endocytosis-mediated haemoglobin utilization mechanism that depends on acidification of the lumen of the late secretory pathway, on a type I myosin and on the activity of the ESCRT pathway.
Collapse
Affiliation(s)
- Ziva Weissman
- Department of Molecular Microbiology, Technion-B. Rappaport Faculty of Medicine, and the Rappaport Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | | | | | | |
Collapse
|
36
|
Haas H, Eisendle M, Turgeon BG. Siderophores in fungal physiology and virulence. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:149-87. [PMID: 18680426 DOI: 10.1146/annurev.phyto.45.062806.094338] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Maintaining the appropriate balance of iron between deficiency and toxicity requires fine-tuned control of systems for iron uptake and storage. Both among fungal species and within a single species, different systems for acquisition, storage, and regulation of iron are present. Here we discuss the most recent findings on the mechanisms involved in maintaining iron homeostasis with a focus on siderophores, low-molecular-mass iron chelators, employed for iron uptake and storage. Recently siderophores have been found to be crucial for pathogenicity of animal, as well as plant-pathogenic fungi and for maintenance of plant-fungal symbioses.
Collapse
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
37
|
Johnson L. Iron and siderophores in fungal-host interactions. ACTA ACUST UNITED AC 2007; 112:170-83. [PMID: 18280720 DOI: 10.1016/j.mycres.2007.11.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/13/2007] [Accepted: 11/29/2007] [Indexed: 12/20/2022]
Abstract
Most fungi and bacteria express specific mechanisms for the acquisition of iron from the hosts they infect for their own survival. This is primarily because iron plays a key catalytic role in various vital cellular reactions in conjunction with the fact that iron is not freely available in these environments due to host sequestration. High-affinity iron uptake systems, such as siderophore-mediated iron uptake and reductive iron assimilation, enable fungi to acquire limited iron from animal or plant hosts. Regulating iron uptake is crucial to maintain iron homeostasis, a state necessary to avoid iron-induced toxicity from iron abundance, while simultaneously supplying iron required for biochemical demand. Siderophores play diverse roles in fungal-host interactions, many of which have been principally delineated from gene deletions in non-ribosomal peptide synthetases, enzymes required for siderophore biosynthesis. These analyses have demonstrated that siderophores are required for virulence, resistance to oxidative stress, asexual/sexual development, iron storage, and protection against iron-induced toxicity in some fungal organisms. In this review, the strategies fungi employ to obtain iron, siderophore biosynthesis, and the regulatory mechanisms governing iron homeostasis will be discussed with an emphasis on siderophore function and relevance for fungal organisms in their interactions with their hosts.
Collapse
Affiliation(s)
- Linda Johnson
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand.
| |
Collapse
|
38
|
Abstract
High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as "Trojan horse" toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed.
Collapse
Affiliation(s)
- Marcus Miethke
- Philipps Universität Marburg, FB Chemie Biochemie, Hans Meerwein Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
39
|
Rustici G, van Bakel H, Lackner DH, Holstege FC, Wijmenga C, Bähler J, Brazma A. Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study. Genome Biol 2007; 8:R73. [PMID: 17477863 PMCID: PMC1929147 DOI: 10.1186/gb-2007-8-5-r73] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 01/31/2007] [Accepted: 05/03/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies in comparative genomics demonstrate that interspecies comparison represents a powerful tool for identifying both conserved and specialized biologic processes across large evolutionary distances. All cells must adjust to environmental fluctuations in metal levels, because levels that are too low or too high can be detrimental. Here we explore the conservation of metal homoeostasis in two distantly related yeasts. RESULTS We examined genome-wide gene expression responses to changing copper and iron levels in budding and fission yeast using DNA microarrays. The comparison reveals conservation of only a small core set of genes, defining the copper and iron regulons, with a larger number of additional genes being specific for each species. Novel regulatory targets were identified in Schizosaccharomyces pombe for Cuf1p (pex7 and SPAC3G6.05) and Fep1p (srx1, sib1, sib2, rds1, isu1, SPBC27B12.03c, SPAC1F8.02c, and SPBC947.05c). We also present evidence refuting a direct role of Cuf1p in the repression of genes involved in iron uptake. Remarkable differences were detected in responses of the two yeasts to excess copper, probably reflecting evolutionary adaptation to different environments. CONCLUSION The considerable evolutionary distance between budding and fission yeast resulted in substantial diversion in the regulation of copper and iron homeostasis. Despite these differences, the conserved regulation of a core set of genes involved in the uptake of these metals provides valuable clues to key features of metal metabolism.
Collapse
Affiliation(s)
- Gabriella Rustici
- EMBL Outstation-Hinxton, European Bioinformatics Institute, Cambridge CB10 1SD, UK
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Harm van Bakel
- Complex Genetics Group, UMC Utrecht, Department of Biomedical Genetics, 3584 CG Utrecht, The Netherlands
- Genomics Laboratory, UMC Utrecht, Department for Physiological Chemistry, 3584 CG Utrecht, The Netherlands
| | - Daniel H Lackner
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Frank C Holstege
- Genomics Laboratory, UMC Utrecht, Department for Physiological Chemistry, 3584 CG Utrecht, The Netherlands
| | - Cisca Wijmenga
- Complex Genetics Group, UMC Utrecht, Department of Biomedical Genetics, 3584 CG Utrecht, The Netherlands
- Genetics Department, University Medical Center Groningen, Groningen, The Netherlands
| | - Jürg Bähler
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Alvis Brazma
- EMBL Outstation-Hinxton, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| |
Collapse
|
40
|
Froissard M, Belgareh-Touzé N, Dias M, Buisson N, Camadro JM, Haguenauer-Tsapis R, Lesuisse E. Trafficking of siderophore transporters in Saccharomyces cerevisiae and intracellular fate of ferrioxamine B conjugates. Traffic 2007; 8:1601-16. [PMID: 17714436 PMCID: PMC2171038 DOI: 10.1111/j.1600-0854.2007.00627.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.
Collapse
Affiliation(s)
- Marine Froissard
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Naïma Belgareh-Touzé
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Marylène Dias
- Chimie, Ingénierie Moléculaire et Matériaux d’Angers (CIMMA)Unité Mixte de Recherche 6200 CNRS, Université d’Angers, France
| | - Nicole Buisson
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Jean-Michel Camadro
- Laboratoire d’Ingénierie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Rosine Haguenauer-Tsapis
- Laboratoire Trafic intracellulaire des protéines dans la levure, Département de biologie Cellulaire, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
| | - Emmanuel Lesuisse
- Laboratoire d’Ingénierie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques MonodUnité Mixte de Recherche 7592 CNRS-Universités Paris 6 et 7, France
- Emmanuel Lesuisse,
| |
Collapse
|
41
|
Park YS, Kim JH, Chang HI, Kim SW, Paik HD, Kang CW, Kim TH, Sung HC, Yun CW. New and efficient method using Saccharomyces cerevisiae mutants for identification of siderophores produced by microorganisms. Curr Genet 2007; 52:187-90. [PMID: 17665200 DOI: 10.1007/s00294-007-0145-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 07/04/2007] [Accepted: 07/10/2007] [Indexed: 11/29/2022]
Abstract
The separation and identification of siderophores produced by microorganisms is a time-consuming and an expensive procedure. We have developed a new and efficient method to identify siderophores using well-established Saccharomyces cerevisiae deletion mutants. The Deltafet3,arn strains fail to sustain growth, even when specific siderophores are supplied, and mutants are siderophore-specific: Deltafet3,arn2 for triacetylfusarinine C (TAFC), Deltafet3,arn1,sit1 for ferrichrome (FC), and Deltafet3,sit1 for ferrioxamine B (FOB). The culture broth of Fusarium graminearum was separated by HPLC, and each peak was subjected to a plate assay using S. cerevisiae mutants. We have found that each peak contained specific siderophores produced by F. graminearum, and these coincided with reference siderophores. This method is quite novel because nobody tried this method to identify the siderophores. Furthermore, this method will save time and cost in the identification of siderophores produced by microorganisms.
Collapse
Affiliation(s)
- Yong-Sung Park
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yahong C, Ruxiu C, Ke Z. Study the effect of Vitamin K on intracellular NAD level in yeast by fluorescence spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 67:235-9. [PMID: 17254841 DOI: 10.1016/j.saa.2006.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 07/04/2006] [Indexed: 05/13/2023]
Abstract
The intracellular NAD level plays a pivotal role in numerous biological processes such as rhythm, senescence, cancer and death. The study of the intracellular NAD level has been one of the "hotspots" in biomedical research. We investigated the effect of Vitamin K on intracellular NAD level in yeast by fluorescence spectrum in this paper. Plasma membrane redox system of yeast was found to be greatly promoted by the addition of Vitamin K(3) or Vitamin K(1). Ferricyanide reduction catalyzed by Vitamin K was accompanied by the decrease in intracellular NADH concentration and the increase in intracellular NAD level of yeast cells.
Collapse
Affiliation(s)
- Chen Yahong
- Department of Chemistry, Zhoukou Normal University, Zhoukou 466000, China
| | | | | |
Collapse
|
43
|
Haydon MJ, Cobbett CS. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:1705-19. [PMID: 17277087 PMCID: PMC1851824 DOI: 10.1104/pp.106.092015] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/28/2007] [Indexed: 05/13/2023]
Abstract
Zinc (Zn) is an essential micronutrient required by all cells but is toxic in excess. We have identified three allelic Zn-sensitive mutants of Arabidopsis (Arabidopsis thaliana). The gene, designated ZINC-INDUCED FACILITATOR1 (ZIF1), encodes a member of the major facilitator superfamily of membrane proteins, which are found in all organisms and transport a wide range of small, organic molecules. Shoots of zif1 mutants showed increased accumulation of Zn but not other metal ions. In combination with mutations affecting shoot-to-root Zn translocation, zif1 hma2 hma4 triple mutants accumulated less Zn than the wild type but remained Zn sensitive, suggesting that the zif1 Zn-sensitive phenotype is due to altered Zn distribution. zif1 mutants were also more sensitive to cadmium but less sensitive to nickel. ZIF1 promoter-beta-glucuronidase fusions were expressed throughout the plant, with strongest expression in young tissues, and predominantly in the vasculature in older tissues. ZIF1 expression was highly induced by Zn and, to a lesser extent, by manganese. A ZIF1-green fluorescent protein fusion protein localized to the tonoplast in transgenic plants. MTP1 has been identified as a tonoplast Zn transporter and a zif1-1 mtp1-1 double mutant was more sensitive to Zn than either of the single mutants, suggesting ZIF1 influences a distinct mechanism of Zn homeostasis. Overexpression of ZIF1 conferred increased Zn tolerance and interveinal leaf chlorosis in some transgenic lines in which ZIF1 expression was high. We propose that ZIF1 is involved in a novel mechanism of Zn sequestration, possibly by transport of a Zn ligand or a Zn ligand complex into vacuoles.
Collapse
Affiliation(s)
- Michael J Haydon
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
44
|
Winkelmann G. Ecology of siderophores with special reference to the fungi. Biometals 2007; 20:379-92. [PMID: 17235665 DOI: 10.1007/s10534-006-9076-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Ecology of siderophores, as described in the present review, analyzes the factors that allow the production and function of siderophores under various environmental conditions. Microorganisms that excrete siderophores are able to grow in natural low-iron environments by extracting residual iron from insoluble iron hydroxides, protein-bound iron or from other iron chelates. Compared to the predominantly mobile bacteria, the fungi represent mostly immobile microorganisms that rely on local nutrient concentrations. Feeding the immobile is a general strategy of fungi and plants, which depend on the local nutrient resources. This also applies to iron nutrition, which can be improved by excretion of siderophores. Most fungi produce a variety of different siderophores, which cover a wide range of physico-chemical properties in order to overcome adverse local conditions of iron solubility. Resource zones will be temporally and spatially dynamic which eventually results in conidiospore production, transport to new places and outgrow of mycelia from conidiospores. Typically, extracellular and intracellular siderophores exist in fungi which function either in transport or storage of ferric iron. Consequently, extracellular and intracellular reduction of siderophores may occur depending on the fungal strain, although in most fungi transport of the intact siderophore iron complex has been observed. Regulation of siderophore biosynthesis is essential in fungi and allows an economic use of siderophores and metabolic resources. Finally, the chemical stability of fungal siderophores is an important aspect of microbial life in soil and in the rhizosphere. Thus, insolubility of iron in the environment is counteracted by dissolution and chelation through organic acids and siderophores by various fungi.
Collapse
Affiliation(s)
- Günther Winkelmann
- Institut für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany.
| |
Collapse
|
45
|
Labbé S, Pelletier B, Mercier A. Iron homeostasis in the fission yeast Schizosaccharomyces pombe. Biometals 2007; 20:523-37. [PMID: 17211681 DOI: 10.1007/s10534-006-9056-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Accepted: 11/28/2006] [Indexed: 01/22/2023]
Abstract
Schizosaccharomyces pombe has acquisition processes for iron, an essential nutrient. One pathway consists to produce, excrete, and capture siderophore-iron complexes. A second pathway requires enzymatic reduction of ferric iron at the cell surface prior to uptake by a permease-oxidase complex. Genes encoding proteins involved in iron assimilation are transcriptionally regulated as a function of iron availability. Under high iron conditions, the GATA-type regulator Fep1 represses the expression of iron uptake genes. The repressor function of Fep1 requires the presence of the Tup11 or Tup12 transcriptional co-repressor. Under low iron conditions, two regulatory mechanisms occur. First, the iron transport genes are highly induced. Second, there is a transcription factor cascade implicating the heteromeric CCAAT-binding complex that turns off a set of genes encoding iron-utilizing proteins, presumably to avoid a futile expenditure of energy in producing iron-using proteins that lack the necessary cofactor to function. Thus, collectively, these regulatory responses to variations in iron concentrations ensure that iron is present within cells for essential biochemical reactions, yet prevent the accumulation of iron or iron-using proteins to deleterious levels.
Collapse
Affiliation(s)
- Simon Labbé
- Département de Biochimie, Faculté de médecine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, Canada J1H 5N4.
| | | | | |
Collapse
|
46
|
López-Errasquín E, González-Jaén MT, Callejas C, Vázquez C. A novel MFS transporter encoding gene in Fusarium verticillioides probably involved in iron-siderophore transport. MYCOLOGICAL RESEARCH 2006; 110:1102-10. [PMID: 16938445 DOI: 10.1016/j.mycres.2006.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 05/09/2006] [Accepted: 06/01/2006] [Indexed: 11/19/2022]
Abstract
The major facilitator superfamily (MFS) is a ubiquitous group of proteins involved in the transport of a wide range of compounds, including toxins produced by fungal species. In this paper, a novel MFS encoding gene (Fusarium iron related gene or FIR1), which had shown an up-regulation in fumonisin-inducing conditions, has been identified and characterized. The deduced protein sequence, which predicted 14 transmembrane domains typical of MFS transporters and its phylogenetic relationships with representative members of MFS transporters suggested a possible function of FIR1 as a siderophore transporter. A real-time RT-PCR protocol has been developed to analyse the expression pattern of the FIR1 gene in relation to siderophore production. The results indicated that the synthesis of extracellular siderophores by F. verticillioides observed in absence of extracellular iron was repressed in iron-supplemented cultures and showed a good correspondence with FIR1 gene expression. However, the pattern of FIR1 gene expression observed suggested that this gene did not seem to be functionally related to fumonisin production.
Collapse
Affiliation(s)
- Elena López-Errasquín
- Departamento de Microbiología III, Universidad Complutense de Madrid, José Antonio Nováis 2, Madrid 28040, Spain
| | | | | | | |
Collapse
|
47
|
Philpott CC. Iron uptake in fungi: a system for every source. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:636-45. [PMID: 16806534 DOI: 10.1016/j.bbamcr.2006.05.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Fungi have a remarkable capacity to take up iron when present in any of a wide variety of forms, which include free iron ions, low-affinity iron chelates, siderophore-iron chelates, transferrin, heme, and hemoglobin. Appropriately, these unicellular eukaryotes express a variety of iron uptake systems, some of which are unique to fungi and some of which are present in plants and animals, as well. The reductive system of uptake relies upon the external reduction of ferric salts, chelates, and proteins prior to uptake by a high-affinity, ferrous-specific, oxidase/permease complex. This system recognizes a broad range of substrates. The non-reductive system exhibits specificity for siderophore-iron chelates, and transporters of this system exhibit multiple substrate-dependent intracellular trafficking events.
Collapse
Affiliation(s)
- Caroline C Philpott
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
48
|
Kim HJ, Rakwal R, Shibato J, Iwahashi H, Choi JS, Kim DH. Effect of textile wastewaters on Saccharomyces cerevisiae using DNA microarray as a tool for genome-wide transcriptomics analysis. WATER RESEARCH 2006; 40:1773-82. [PMID: 16630640 DOI: 10.1016/j.watres.2006.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 12/28/2005] [Accepted: 02/13/2006] [Indexed: 05/08/2023]
Abstract
Textile mill effluents (TMEs) discharged from the textile industry can be considered as one class of hypothetical toxicants in the environment. To investigate the potential toxicity of TMEs, we applied cDNA microarray technology to examine the genome-wide expression profiles in model eukaryote, Saccharomyces cerevisiae. The results revealed a rich source of genetic information for the yeast cells that were exposed to the untreated and treated TMEs. Among the 5956 valid genes, 275 genes were up-regulated and 40 genes were down-regulated for the untreated TMEs. On the other hand, only 90 genes were up-regulated, and 29 genes were down-regulated upon exposure to the treated TMEs. The changes in gene expression were also confirmed by RT-PCR. The potent up- and down-regulation of genes suggest that yeast cells undergo genome-wide changes in mRNA expression, indicative of a stress response. Additionally, a classification into specific functional gene categories indicated that untreated and even treated TMEs still had toxicity. Especially, the genes related to oxidative stress, such as AHP1, ATX1, GRX1, TRX1 and TRX2, were up-regulated in treated TMEs that can directly reach to surface and ground waters, and sediments.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Bai C, Chan F, Wang Y. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant. Biochem J 2005; 389:27-35. [PMID: 15725072 PMCID: PMC1184536 DOI: 10.1042/bj20050223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, the transcription factor Aft1p plays a central role in regulating many genes involved in iron acquisition and utilization. An aft1Delta mutant exhibits severely retarded growth under iron starvation. To identify the functional counterpart of AFT1 in Candida albicans, we transformed a C. albicans genomic DNA library into aft1Delta to isolate genes that could allow the mutant to grow under iron-limiting conditions. In the present paper, we describe the unexpected discovery in this screen of CaMNN5. CaMnn5p is an alpha-1,2-mannosyltransferease, but its growth-promoting function in iron-limiting conditions does not require this enzymatic activity. Its function is also independent of the high-affinity iron transport systems that are mediated by Ftr1p and Fth1p. We obtained evidence suggesting that CaMnn5p may function along the endocytic pathway, because it cannot promote the growth of end4Delta and vps4Delta mutants, where the endocytic pathway is blocked at an early and late step respectively. Neither can it promote the growth of a fth1Delta smf3Delta mutant, where the vacuole-cytosol iron transport is blocked. Expression of CaMNN5 in S. cerevisiae specifically enhances an endocytosis-dependent mechanism of iron uptake without increasing the uptake of Lucifer Yellow, a marker for fluid-phase endocytosis. CaMnn5p contains three putative Lys-Glu-Xaa-Xaa-Glu iron-binding sites and co-immunoprecipitates with 55Fe. We propose that CaMnn5p promotes iron uptake and usage along the endocytosis pathway under iron-limiting conditions, a novel function that might have evolved in C. albicans.
Collapse
Affiliation(s)
- Chen Bai
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | - Fong Yee Chan
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | - Yue Wang
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
van Bakel H, Strengman E, Wijmenga C, Holstege FCP. Gene expression profiling and phenotype analyses ofS. cerevisiaein response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol Genomics 2005; 22:356-67. [PMID: 15886332 DOI: 10.1152/physiolgenomics.00055.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exhaustive microarray time course analyses of Saccharomyces cerevisiae during copper starvation and copper excess reveal new aspects of metal-induced gene regulation. Aside from identifying targets of established copper- and iron-responsive transcription factors, we find that genes encoding mitochondrial proteins are downregulated and that copper-independent iron transport genes are preferentially upregulated, both during prolonged copper deprivation. The experiments also suggest the presence of a small regulatory iron pool that links copper and iron responses. One hundred twenty-eight genes with putative roles in metal metabolism were further investigated by several systematic phenotype screens. Of the novel phenotypes uncovered, hsp12-Δ and arn1-Δ display increased sensitivity to copper, cyc1-Δ and crr1-Δ show resistance to high copper, vma13-Δ exhibits increased sensitivity to iron deprivation, and pep12-Δ results in reduced growth in high copper and low iron. Besides revealing new components of eukaryotic metal trafficking pathways, the results underscore the previously determined intimate links between iron and copper metabolism and mitochondrial and vacuolar function in metal trafficking. The analyses further suggest that copper starvation can specifically lead to downregulation of respiratory function to preserve iron and copper for other cellular processes.
Collapse
Affiliation(s)
- Harm van Bakel
- Complex Genetics Group, Division of Biomedical Genetics-Department of Medical Genetics, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|