1
|
Guerreiro G, Deon M, Becker GS, Dos Reis BG, Wajner M, Vargas CR. Neuroprotective effects of L-carnitine towards oxidative stress and inflammatory processes: a review of its importance as a therapeutic drug in some disorders. Metab Brain Dis 2025; 40:127. [PMID: 39954226 DOI: 10.1007/s11011-025-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025]
Abstract
L-carnitine (LC) is a natural compound crucial for transporting long-chain fatty acids into mitochondria for ATP production. It is found mainly in red meat, fish, and dairy products, in addition to being synthesized by the body. LC is supplemented in patients with organic acidemias since it corrects secondary carnitine deficiency and accelerates the removal of the accumulated acyl organic acid derivative groups. Recently, it was also shown to behave as an antioxidant and an anti-inflammatory agent in various pathological conditions like hypertension, diabetes, and neurodegenerative diseases. Inflammation is a complex response to tissue damage or infection associated with oxidative stress. LC has been implicated in reducing inflammatory cytokines and other biomarkers. Recent studies suggest that LC supplementation reduces inflammation in chronic kidney disease, cardiovascular disease, and neuroinflammation. LC supplementation has been effective in reducing inflammatory markers like C-reactive protein (CRP) and interleukins (IL-6, TNF-α) in various pathologies, including septic shock and polycystic ovary syndrome (PCOS). It has also been shown to reduce cardiovascular events in patients with end-stage renal disease. In experimental models, LC revealed neuroprotective effects, improving memory and reducing neuronal death. Additionally, in spinal cord ischemia-reperfusion injury and acute myocardial infarction, LC treatment diminished inflammation and oxidative stress while improving neurological and cardiac functions. In conclusion, LC supplementation demonstrates significant potential properties in reducing inflammation and improving health outcomes in various pathological conditions, making it a subject of increasing interest in medical research. This article aims to review the literature on the anti-inflammatory and antioxidant effects of LC in different pathologies.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, RS, Brazil.
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Graziela Schmitt Becker
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Bianca Gomes Dos Reis
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, RS, Brazil.
| |
Collapse
|
2
|
Deon M, Guerreiro G, Girardi J, Ribas G, Vargas CR. Treatment of maple syrup urine disease: Benefits, risks, and challenges of liver transplantation. Int J Dev Neurosci 2023; 83:489-504. [PMID: 37340513 DOI: 10.1002/jdn.10283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/06/2023] [Accepted: 05/21/2023] [Indexed: 06/22/2023] Open
Abstract
Maple syrup urine disease (MSUD) is caused by a deficiency in the activity of the branched-chain α-ketoacid dehydrogenase (BCKD) complex, promoting the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, as well as their respective α-keto acids. MSUD is an autosomal recessive hereditary metabolic disorder characterized by ketoacidosis, ataxia, coma, and mental and psychomotor retardation. The mechanisms involved in the brain damage caused by MSUD are not fully understood. Early diagnosis and treatment, as well as proper control of metabolic decompensation crises, are crucial for patients' survival and for a better prognosis. The recommended treatment consists of a high-calorie diet with restricted protein intake and specific formulas containing essential amino acids, except those accumulated in MSUD. This treatment will be maintained throughout life, being adjusted according to the patients' nutritional needs and BCAA concentration. Because dietary treatment may not be sufficient to prevent neurological damage in MSUD patients, other therapeutic strategies have been studied, including liver transplantation. With transplantation, it is possible to obtain an increase of about 10% of the normal BCKD in the body, an amount sufficient to maintain amino acid homeostasis and reduce metabolic decompensation crises. However, the experience related to this practice is very limited when considering the shortage of liver for transplantation and the risks related to the surgical procedure and immunosuppression. Thus, the purpose of this review is to survey the benefits, risks, and challenges of liver transplantation in the treatment of MSUD.
Collapse
Affiliation(s)
- Marion Deon
- Faculdade de Farmácia, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia Girardi
- Residência em Análises Clínicas do Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Graziela Ribas
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Weiss KJ, Berger U, Haider M, Wagner M, Märtner EMC, Regenauer-Vandewiele S, Lotz-Havla A, Schuhmann E, Röschinger W, Maier EM. Free carnitine concentrations and biochemical parameters in medium-chain acyl-CoA dehydrogenase deficiency: Genotype-phenotype correlation. Clin Genet 2023; 103:644-654. [PMID: 36840705 DOI: 10.1111/cge.14316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Biallelic variants in the ACADM gene cause medium-chain acyl-CoA dehydrogenase deficiency (MCADD). This study reports on differences in the occurrence of secondary free carnitine (C0) deficiency and different biochemical phenotypes related to genotype and age in 109 MCADD patients followed-up at a single tertiary care center during 22 years. C0 deficiency occurred earlier and more frequently in c.985A>G homozygotes (genotype A) compared to c.985A>G compound heterozygotes (genotype B) and individuals carrying variants other than c.985A>G and c.199C>T (genotype D) (median age 4.2 vs. 6.6 years; p < 0.001). No patient carrying c.199C>T (genotype C) developed C0 deficiency. A daily dosage of 20-40 mg/kg carnitine was sufficient to maintain normal C0 concentrations. Compared to genotype A as reference group, octanoylcarnitine (C8) was significantly lower in genotypes B and C, whereas C0 was significantly higher by 8.28 μmol/L in genotype C (p < 0.05). In conclusion, C0 deficiency is mainly found in patients with pathogenic genotypes associated with high concentrations of presumably toxic acylcarnitines, while individuals carrying the variant c.199C>T are spared and show consistently mild biochemical phenotypes into adulthood. Low-dose carnitine supplementation maintains normal C0 concentrations. However, future studies need to evaluate clinical benefits on acute and chronic manifestations of MCADD.
Collapse
Affiliation(s)
- Katharina J Weiss
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ursula Berger
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Maliha Haider
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | | | | | - Amelie Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Wulf Röschinger
- Labor Becker MVZ GbR, Newborn Screening Unit, Munich, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
4
|
Jager EA, Schaafsma M, van der Klauw MM, Heiner‐Fokkema MR, Derks TGJ. Plasma carnitine concentrations in Medium-chain acyl-CoA dehydrogenase deficiency: lessons from an observational cohort study. J Inherit Metab Dis 2022; 45:1118-1129. [PMID: 35778950 PMCID: PMC9796739 DOI: 10.1002/jimd.12537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
Our aim was to study the effect of secondary carnitine deficiency (SCD) and carnitine supplementation on important outcome measures for persons with medium-chain Acyl-CoA dehydrogenase deficiency (MCADD). We performed a large retrospective observational study using all recorded visits of persons with MCADD in the University Medical Center Groningen, the Netherlands, between October 1994 and October 2019. Frequency and duration of acute unscheduled preventive hospital visits, exercise tolerance, fatigue, and muscle pain were considered important clinical outcomes and were studied in relation to (acyl)carnitine profile and carnitine supplementation status. The study encompassed 1228 visits of 93 persons with MCADD. >60% had SCD during follow-up. This included only persons with severe MCADD. Carnitine supplementation and SCD were unrelated to the frequency and duration of the acute unscheduled preventive hospital visits (P > 0.05). The relative risk for fatigue, muscle ache, or exercise intolerance was equal between persons with and without SCD (RR 1.6, 95% CI 0.48-5.10, P = 0.4662). No episodes of metabolic crisis were recorded in non-carnitine-supplemented persons with MCADD and SCD. In some persons with MCADD, SCD resolved without carnitine supplementation. There is absence of real-world evidence in favor of routine carnitine analysis and carnitine supplementation in the follow-up of persons with MCADD.
Collapse
Affiliation(s)
- Emmalie A. Jager
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Merit Schaafsma
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Melanie. M. van der Klauw
- Department of EndocrinologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - M. Rebecca Heiner‐Fokkema
- Laboratory of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Terry G. J. Derks
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
5
|
Boy N, Mühlhausen C, Maier EM, Ballhausen D, Baumgartner MR, Beblo S, Burgard P, Chapman KA, Dobbelaere D, Heringer-Seifert J, Fleissner S, Grohmann-Held K, Hahn G, Harting I, Hoffmann GF, Jochum F, Karall D, Konstantopoulous V, Krawinkel MB, Lindner M, Märtner EMC, Nuoffer JM, Okun JG, Plecko B, Posset R, Sahm K, Scholl-Bürgi S, Thimm E, Walter M, Williams M, Vom Dahl S, Ziagaki A, Zschocke J, Kölker S. Recommendations for diagnosing and managing individuals with glutaric aciduria type 1: Third revision. J Inherit Metab Dis 2022; 46:482-519. [PMID: 36221165 DOI: 10.1002/jimd.12566] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Chris Mühlhausen
- Department of Paediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | - Esther M Maier
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Diana Ballhausen
- Paediatric Metabolic Unit, Paediatrics, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Centre for Paediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Peter Burgard
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia, USA
| | - Dries Dobbelaere
- Department of Paediatric Metabolism, Reference Centre of Inherited Metabolic Disorders, Jeanne de Flandre Hospital, Lille, France
| | - Jana Heringer-Seifert
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Fleissner
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Karina Grohmann-Held
- Centre for Child and Adolescent Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Gabriele Hahn
- Department of Radiological Diagnostics, UMC, University of Dresden, Dresden, Germany
| | - Inga Harting
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Jochum
- Evangelisches Waldkrankenhaus Spandau, Berlin, Germany
| | - Daniela Karall
- Clinic for Paediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Michael B Krawinkel
- Institute of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Lindner
- Division of Metabolic Diseases, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - E M Charlotte Märtner
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Plecko
- Department of Paediatrics and Adolescent Medicine, Division of General Paediatrics, University Children's Hospital Graz, Medical University Graz, Graz, Austria
| | - Roland Posset
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Katja Sahm
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Eva Thimm
- Division of Experimental Paediatrics and Metabolism, Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Magdalena Walter
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Monique Williams
- Department of Paediatrics, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Stephan Vom Dahl
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, University of Düsseldorf, Düsseldorf, Germany
| | - Athanasia Ziagaki
- Centre of Excellence for Rare Metabolic Diseases, Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, University-Medicine Berlin, Berlin, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Guerreiro G, Faverzani J, Moura AP, Volfart V, Gome Dos Reis B, Sitta A, Gonzalez EA, de Lima Rosa G, Coitinho AS, Baldo G, Wajner M, Vargas CR. Protective effects of L-carnitine on behavioral alterations and neuroinflammation in striatum of glutaryl-COA dehydrogenase deficient mice. Arch Biochem Biophys 2021; 709:108970. [PMID: 34181873 DOI: 10.1016/j.abb.2021.108970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1β, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1β and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1β levels in striatum of Gcdh-/- mice. Finally, IL-1β was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil.
| | - Jéssica Faverzani
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Alana Pimentel Moura
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil
| | - Vitoria Volfart
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Bianca Gome Dos Reis
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil
| | - Esteban Alberto Gonzalez
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Stockler‐Ipsiroglu S, Potter BK, Yuskiv N, Tingley K, Patterson M, van Karnebeek C. Developments in evidence creation for treatments of inborn errors of metabolism. J Inherit Metab Dis 2021; 44:88-98. [PMID: 32944978 PMCID: PMC7891579 DOI: 10.1002/jimd.12315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Inborn errors of metabolism (IEM) represent the first group of genetic disorders, amenable to causal therapies. In addition to traditional medical diet and cofactor treatments, new treatment strategies such as enzyme replacement and small molecule therapies, solid organ transplantation, and cell-and gene-based therapies have become available. Inherent to the rare nature of the single conditions, generating high-quality evidence for these treatments in clinical trials and under real-world conditions has been challenging. Guidelines developed with standardized methodologies have contributed to improve the practice of care and long-term clinical outcomes. Adaptive trial designs allow for changes in sample size, group allocation and trial duration as the trial proceeds. n-of-1 studies may be used in small sample sized when participants are clinically heterogeneous. Multicenter observational and registry-based clinical trials are promoted via international research networks. Core outcome and standard data element sets will enhance comparative analysis of clinical trials and observational studies. Patient-centered outcome-research as well as patient-led research initiatives will further accelerate the development of therapies for IEM.
Collapse
Affiliation(s)
- Sylvia Stockler‐Ipsiroglu
- Division of Biochemical Genetics, Department of Pediatrics, and BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Beth K. Potter
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Nataliya Yuskiv
- Division of Biochemical Genetics, Department of Pediatrics, and BC Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kylie Tingley
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | - Marc Patterson
- Division of Child and Adolescent Neurology, Departments of Neurology Pediatrics and Medical GeneticsMayo Clinic Children's CenterRochesterMinnesotaUSA
| | - Clara van Karnebeek
- Departments of Pediatrics and Clinical GeneticsAmsterdam University Medical CentresAmsterdamThe Netherlands
- Department of PediatricsRadboud University Medical CentreNijmegenThe Netherlands
- Department of PediatricsBC Children's Hospital Research Institute, Centre for Molecular Medicine and TherapeuticsVancouverBritish ColumbiaCanada
| |
Collapse
|
8
|
Madsen KL, Preisler N, Rasmussen J, Hedermann G, Olesen JH, Lund AM, Vissing J. L-Carnitine Improves Skeletal Muscle Fat Oxidation in Primary Carnitine Deficiency. J Clin Endocrinol Metab 2018; 103:4580-4588. [PMID: 30219858 DOI: 10.1210/jc.2018-00953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
CONTEXT Primary carnitine deficiency (PCD) is an inborn error of fatty acid metabolism. Patients with PCD are risk for sudden heart failure upon fasting or illness if they are not treated with daily l-carnitine. OBJECTIVE To investigate energy metabolism during exercise in patients with PCD with and without l-carnitine treatment. DESIGN Interventional study. SETTING Hospital exercise laboratories and department of cardiology. PARTICIPANTS Eight adults with PCD who were homozygous for the c.95A>G (p.N32S) mutation and 10 healthy age- and sex-matched controls. INTERVENTION Four-day pause in l-carnitine treatment. MAIN OUTCOME MEASURES Total fatty acid and palmitate oxidation rates during 1-hour submaximal cycle ergometer exercise assessed with stable isotope method (U13C-palmitate and 2H2-d-glucose) and indirect calorimetry with and without l-carnitine. RESULTS Total fatty acid oxidation rate was higher in patients with l-carnitine treatment during exercise than without treatment [12.3 (SD, 3.7) vs 8.5 (SD, 4.6) µmol × kg-1 × min-1; P = 0.008]. However, the fatty acid oxidation rate was still lower in patients treated with l-carnitine than in the healthy controls [29.5 (SD, 10.1) µmol × kg-1 × min-1; P < 0.001] and in the l-carnitine group without treatment it was less than one third of that in the healthy controls (P < 0.001). In line with this, the palmitate oxidation rates during exercise were lower in the no-treatment period [144 (SD, 66) µmol × kg-1 × min-1] than during treatment [204 (SD, 84) µmol × kg-1 × min-1; P = 0.004) . CONCLUSIONS The results indicate that patients with PCD have limited fat oxidation during exercise. l-Carnitine treatment in asymptomatic patients with PCD may not only prevent cardiac complications but also boost skeletal muscle fat metabolism during exercise.
Collapse
Affiliation(s)
- Karen Lindhardt Madsen
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Nicolai Preisler
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Jan Rasmussen
- Department of Internal Medicine, The National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Gitte Hedermann
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Jess Have Olesen
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Allan Meldgaard Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
9
|
Vallance HD, Koochin A, Branov J, Rosen-Heath A, Bosdet T, Wang Z, Hazen SL, Horvath G. Marked elevation in plasma trimethylamine-N-oxide (TMAO) in patients with mitochondrial disorders treated with oral l-carnitine. Mol Genet Metab Rep 2018; 15:130-133. [PMID: 30023305 PMCID: PMC6047224 DOI: 10.1016/j.ymgmr.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/26/2022] Open
Abstract
Oral supplementation with l-carnitine is a common therapeutic modality for mitochondrial disorders despite limited evidence of efficacy. Recently, a number of studies have demonstrated that a gut microbiota-dependent metabolite of l-carnitine, trimethylamine oxide (TMAO), is an independent and dose-dependent risk factor for cardiovascular disease (CVD). Given the limited data demonstrating efficacy with oral l-carnitine therapy and the newly raised questions of potential harm, we assessed plasma TMAO levels in patients with mitochondrial disease with and without oral l-carnitine supplementation. Nine subjects were recruited and completed the study. Eight out of 9 subjects at baseline had plasma TMAO concentrations <97.5th percentile (<15.5 μM). One subject with stage 3 renal disease, had marked elevation in plasma TMAO (pre 33.98 μm versus post 101.6 μm). Following at least 3 months of l-carnitine supplementation (1000 mg per day), plasma TMAO levels were markedly increased in 7out of 9 subjects; overall, plasma TMAO significantly increased 11.8-fold (p < 0.001) from a baseline median level of 3.54 μm (interquartile range (IQR) 2.55–8.72) to 43.26 (IQR 23.99–56.04) post supplementation. The results of this study demonstrate that chronic oral l-carnitine supplementation markedly increases plasma TMAO levels in subjects with mitochondrial disorders. Further studies to evaluate both the efficacy and long term safety of oral l-carnitine supplementation for the treatment of mitochondrial disorders are warranted.
Collapse
Affiliation(s)
- H D Vallance
- Biochemical Genetics laboratory, Department of Pathology and Laboratory Medicine, BC Children's Hospital, 4480 Oak Street, Vancouver, BC, Canada
| | - A Koochin
- Adult Metabolic Diseases Clinic, Level 4 - 2775 Laurel Street, V5Z 1M0 Vancouver, BC, Canada
| | - J Branov
- Adult Metabolic Diseases Clinic, Level 4 - 2775 Laurel Street, V5Z 1M0 Vancouver, BC, Canada
| | - A Rosen-Heath
- Adult Metabolic Diseases Clinic, Level 4 - 2775 Laurel Street, V5Z 1M0 Vancouver, BC, Canada
| | - T Bosdet
- Adult Metabolic Diseases Clinic, Level 4 - 2775 Laurel Street, V5Z 1M0 Vancouver, BC, Canada
| | - Z Wang
- Department of Cellular and Molecular Medicine, Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - S L Hazen
- Department of Cellular and Molecular Medicine, Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, OH 44195, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, OH 44195,USA
| | - G Horvath
- Adult Metabolic Diseases Clinic, Level 4 - 2775 Laurel Street, V5Z 1M0 Vancouver, BC, Canada
| |
Collapse
|
10
|
Potter BK, Hutton B, Clifford TJ, Pallone N, Smith M, Stockler S, Chakraborty P, Barbeau P, Garritty CM, Pugliese M, Rahman A, Skidmore B, Tessier L, Tingley K, Coyle D, Greenberg CR, Korngut L, MacKenzie A, Mitchell JJ, Nicholls S, Offringa M, Schulze A, Taljaard M. Establishing core outcome sets for phenylketonuria (PKU) and medium-chain Acyl-CoA dehydrogenase (MCAD) deficiency in children: study protocol for systematic reviews and Delphi surveys. Trials 2017; 18:603. [PMID: 29258568 PMCID: PMC5735866 DOI: 10.1186/s13063-017-2327-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Inherited metabolic diseases (IMD) are a large group of rare single-gene disorders that are typically diagnosed early in life. There are important evidence gaps related to the comparative effectiveness of therapies for IMD, which are in part due to challenges in conducting randomized controlled trials (RCTs) for rare diseases. Registry-based RCTs present a unique opportunity to address these challenges provided the registries implement standardized collection of outcomes that are important to patients and their caregivers and to clinical providers and healthcare systems. Currently there is no core outcome set (COS) for studies evaluating interventions for paediatric IMD. This protocol outlines a study that will establish COS for each of two relatively common IMD in children, phenylketonuria (PKU) and medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. METHODS This two-part study is registered with the Core Outcome Measures in Effectiveness Trials (COMET) initiative. Part 1 includes a rapid review and development of an evidence map to identify a comprehensive listing of outcomes reported in past studies of PKU and MCAD deficiency. The review follows established methods for knowledge synthesis, including a comprehensive search strategy, two stages of screening citations against inclusion/exclusion criteria by two reviewers working independently, and extraction of important data elements from eligible studies, including details of the outcomes collected and outcome measurement instruments. The review findings will inform part 2 of our study, a set of Delphi surveys to establish consensus on the highest priority outcomes for each condition. Healthcare providers, families of children with PKU or MCAD deficiency, and health system decision-makers will be invited to participate in two to three rounds of Delphi surveys. The design of the surveys will involve parents of children with IMD who are part of a family advisory forum. DISCUSSION This protocol is a crucial step in developing the capacity to launch RCTs with meaningful outcomes that address comparative effectiveness questions in the field of paediatric IMD. Such trials will contribute high-quality evidence to inform decision-making by patients and their family members, clinicians, and policy-makers.
Collapse
Affiliation(s)
- Beth K. Potter
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
| | - Brian Hutton
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
- Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Tammy J. Clifford
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
- Canadian Agency for Drugs and Technologies in Health, Ottawa, ON Canada
| | - Nicole Pallone
- Patient/family partner and Canadian PKU & Allied Disorders Inc, Sparwood, BC Canada
| | - Maureen Smith
- Patient/family partner and Canadian Organization for Rare Disorders, Ottawa, ON Canada
| | - Sylvia Stockler
- BC Children’s Hospital and University of British Columbia, Vancouver, BC Canada
| | - Pranesh Chakraborty
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada
| | | | | | - Michael Pugliese
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
| | - Alvi Rahman
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
| | | | - Laure Tessier
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada
| | - Kylie Tingley
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
| | - Doug Coyle
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
| | | | - Lawrence Korngut
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Alex MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada
| | | | - Stuart Nicholls
- Clinical Research Unit, Children’s Hospital of Eastern Ontario, Ottawa, ON Canada
- Ontario Child Health SUPPORT Unit (OCHSU), Ottawa, ON Canada
| | - Martin Offringa
- Hospital for Sick Children and University of Toronto, Toronto, ON Canada
| | - Andreas Schulze
- Hospital for Sick Children and University of Toronto, Toronto, ON Canada
| | - Monica Taljaard
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
- Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - In collaboration with the Canadian Inherited Metabolic Diseases Research Network
- School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Drive, Ottawa, ON K1G 5Z3 Canada
- Ottawa Hospital Research Institute, Ottawa, ON Canada
- Canadian Agency for Drugs and Technologies in Health, Ottawa, ON Canada
- Patient/family partner and Canadian PKU & Allied Disorders Inc, Sparwood, BC Canada
- Patient/family partner and Canadian Organization for Rare Disorders, Ottawa, ON Canada
- BC Children’s Hospital and University of British Columbia, Vancouver, BC Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada
- University of Manitoba, Winnipeg, MB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
- McGill University Health Centre, Montreal, QC Canada
- Clinical Research Unit, Children’s Hospital of Eastern Ontario, Ottawa, ON Canada
- Ontario Child Health SUPPORT Unit (OCHSU), Ottawa, ON Canada
- Hospital for Sick Children and University of Toronto, Toronto, ON Canada
| |
Collapse
|
11
|
Boy N, Mühlhausen C, Maier EM, Heringer J, Assmann B, Burgard P, Dixon M, Fleissner S, Greenberg CR, Harting I, Hoffmann GF, Karall D, Koeller DM, Krawinkel MB, Okun JG, Opladen T, Posset R, Sahm K, Zschocke J, Kölker S. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017; 40:75-101. [PMID: 27853989 DOI: 10.1007/s10545-016-9999-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Chris Mühlhausen
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Birgit Assmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Peter Burgard
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Sandra Fleissner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Cheryl R Greenberg
- Department of Pediatrics, Children's Hospital Health Sciences Centre and University of Manitoba, Winnipeg, MB, R3A 1R9, Canada
- Department of Biochemistry and Medical Genetics, Children's Hospital Health Sciences Centre and University of Manitoba, Winnipeg, MB, R3A 1R9, Canada
| | - Inga Harting
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Daniela Karall
- Clinic for Paediatrics I, Inherited Metabolic Disorders, Medical, University of Innsbruck, Innsbruck, Austria
| | - David M Koeller
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Michael B Krawinkel
- Justus Liebig University Giessen, Institute of Nutritional Science, Giessen, Germany
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Thomas Opladen
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Roland Posset
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Katja Sahm
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
12
|
Chronic Oral L-Carnitine Supplementation Drives Marked Plasma TMAO Elevations in Patients with Organic Acidemias Despite Dietary Meat Restrictions. JIMD Rep 2016; 30:39-44. [PMID: 26936850 DOI: 10.1007/8904_2016_539] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/24/2022] Open
Abstract
Recent studies have implicated trimethylamine N-oxide (TMAO) in atherosclerosis, raising concern about L-carnitine, a common supplement for patients with inborn errors of metabolism (IEMs) and a TMAO precursor metabolized, in part, by intestinal microbes. Dietary meat restriction attenuates carnitine-to-TMAO conversion, suggesting that TMAO production may not occur in meat-restricted individuals taking supplemental L-carnitine, but this has not been tested. Here, we mine a metabolomic dataset to assess TMAO levels in patients with diverse IEMs, including organic acidemias. These data were correlated with clinical information and confirmed using a quantitative TMAO assay. Marked plasma TMAO elevations were detected in patients treated with supplemental L-carnitine, including those on a meat-free diet. On average, patients with an organic acidemia had ~45-fold elevated [TMAO], as compared to the reference population. This effect was mitigated by metronidazole therapy lasting 7 days each month. Collectively, our data show that TMAO production occurs at high levels in patients with IEMs receiving oral L-carnitine. Further studies are needed to determine the long-term safety and efficacy of chronic oral L-carnitine supplementation and whether suppression or circumvention of intestinal bacteria may improve L-carnitine therapy.
Collapse
|
13
|
Couce ML, Sánchez-Pintos P, Diogo L, Leão-Teles E, Martins E, Santos H, Bueno MA, Delgado-Pecellín C, Castiñeiras DE, Cocho JA, García-Villoria J, Ribes A, Fraga JM, Rocha H. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency. Orphanet J Rare Dis 2013; 8:102. [PMID: 23842438 PMCID: PMC3718718 DOI: 10.1186/1750-1172-8-102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/05/2013] [Indexed: 12/30/2022] Open
Abstract
Background Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited defect in the mitochondrial fatty acid oxidation pathway, resulting in significant morbidity and mortality in undiagnosed patients. Newborn screening (NBS) has considerably improved MCADD outcome, but the risk of complication remains in some patients. The aim of this study was to evaluate the relationship between genotype, biochemical parameters and clinical data at diagnosis and during follow-up, in order to optimize monitoring of these patients. Methods We carried out a multicenter study in southwest Europe, of MCADD patients detected by NBS. Evaluated NBS data included free carnitine (C0) and the acylcarnitines C8, C10, C10:1 together with C8/C2 and C8/C10 ratios, clinical presentation parameters and genotype, in 45 patients. Follow-up data included C0 levels, duration of carnitine supplementation and occurrence of metabolic crises. Results C8/C2 ratio and C8 were the most accurate biomarkers of MCADD in NBS. We found a high number of patients homozygous for the prevalent c.985A > G mutation (75%). Moreover, in these patients C8, C8/C10 and C8/C2 were higher than in patients with other genotypes, while median value of C0 was significantly lower (23 μmol/L vs 36 μmol/L). The average follow-up period was 43 months. To keep carnitine levels within the normal range, carnitine supplementation was required in 82% of patients, and for a longer period in patients homozygotes for the c.985A>G mutation than in patients with other genotypes (average 31 vs 18 months). Even with treatment, median C0 levels remained lower in homozygous patients than in those with other genotypes (14 μmol/L vs 22 μmol/L). Two patients died and another three suffered a metabolic crisis, all of whom were homozygous for the c.985 A>G mutation. Conclusions Our data show a direct association between homozygosity for c.985A>G and lower carnitine values at diagnosis, and a higher dose of carnitine supplementation for maintenance within the normal range. This study contributes to a better understanding of the relationship between genotype and phenotype in newborn patients with MCADD detected through screening which could be useful in improving follow-up strategies and clinical outcome.
Collapse
Affiliation(s)
- Maria Luz Couce
- Unidad de Diagnóstico y Tratamiento de Enfermedades Congénitas del Metabolismo, Departamento de Pediatría, Hospital Clínico Universitario, Universidad de Santiago, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Madsen KL, Preisler N, Orngreen MC, Andersen SP, Olesen JH, Lund AM, Vissing J. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-carnitine supplementation. J Clin Endocrinol Metab 2013; 98:1667-75. [PMID: 23426616 DOI: 10.1210/jc.2012-3791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND It is not clear to what extent skeletal muscle is affected in patients with medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD). l-Carnitine is commonly used as a supplement in patients with MCADD, although its beneficial effect has not been verified. DESIGN We investigated (1) fuel utilization during prolonged low-intensity exercise in patients with MCADD and (2) the influence of 4 weeks of oral l-carnitine supplementation on fuel utilization during exercise. METHODS Four asymptomatic patients with MCADD and 11 untrained, healthy, age- and sex-matched control subjects were included. The subjects performed a 1-hour cycling test at a constant workload corresponding to 55% of Vo2max, while fat and carbohydrate metabolism was assessed, using the stable isotope technique and indirect calorimetry. The patients ingested 100 mg/kg/d of l-carnitine for 4 weeks, after which the cycling tests were repeated. RESULTS At rest, palmitate oxidation and total fatty acid oxidation (FAO) rates were similar in patients and healthy control subjects. During constant workload cycling, palmitate oxidation and FAO rates increased in both groups, but increased 2 times as much in healthy control subjects as in patients (P = .007). Palmitate oxidation and FAO rates were unchanged by the l-carnitine supplementation. CONCLUSION Our results indicate that patients with MCADD have an impaired ability to increase FAO during exercise but less so than that observed in patients with a number of other disorders of fat oxidation, which explains the milder skeletal muscle phenotype in MCADD. The use of carnitine supplementation in MCADD cannot be supported by the present findings.
Collapse
Affiliation(s)
- K L Madsen
- Neuromuscular Research Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zwickler T, Haege G, Riderer A, Hörster F, Hoffmann GF, Burgard P, Kölker S. Metabolic decompensation in methylmalonic aciduria: which biochemical parameters are discriminative? J Inherit Metab Dis 2012; 35:797-806. [PMID: 22249333 DOI: 10.1007/s10545-011-9426-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 11/07/2011] [Accepted: 11/15/2011] [Indexed: 12/20/2022]
Abstract
Recurrent, life-threatening metabolic decompensations often occur in patients with methylmalonic aciduria (MMAuria). Our study evaluated (impending) metabolic decompensations in these patients aiming to identify the most frequent and reliable clinical and biochemical abnormalities that could be helpful for decision-making on when to start an emergency treatment. Seventy-six unscheduled and 179 regular visits of 10 patients with confirmed MMAuria continuously followed by our metabolic centre between 1975 and 2009 were analysed. The most frequent symptom of an impending acute metabolic decompensation was vomiting (90% of episodes), whereas symptoms of intercurrent infectious disease (29%) or other symptoms (such as food refusal and impaired consciousness) were found less often. Thirty-five biochemical parameters were included in the analysis. Among them, pathological changes of acid-base balance reflecting metabolic acidosis with partial respiratory compensation (decreased pH, pCO(2), standard bicarbonate, and base excess) and elevated ammonia were the most reliable biochemical parameters for the identification of a metabolic decompensation and the estimation of its severity. In contrast, analyses of organic acids, acylcarnitines and carnitine status were less discriminative. In conclusion, careful history taking and identification of suspicious symptoms in combination with a small number of rapidly available biochemical parameters are helpful to differentiate compensated metabolic condition and (impending) metabolic crisis and to decide when to start an emergency treatment.
Collapse
Affiliation(s)
- Tamaris Zwickler
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Touw CML, Smit GPA, de Vries M, de Klerk JBC, Bosch AM, Visser G, Mulder MF, Rubio-Gozalbo ME, Elvers B, Niezen-Koning KE, Wanders RJA, Waterham HR, Reijngoud DJ, Derks TGJ. Risk stratification by residual enzyme activity after newborn screening for medium-chain acyl-CoA dehyrogenase deficiency: data from a cohort study. Orphanet J Rare Dis 2012; 7:30. [PMID: 22630369 PMCID: PMC3543239 DOI: 10.1186/1750-1172-7-30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/25/2012] [Indexed: 12/30/2022] Open
Abstract
Background Since the introduction of medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency in population newborn bloodspot screening (NBS) programs, subjects have been identified with variant ACADM (gene encoding MCAD enzyme) genotypes that have never been identified in clinically ascertained patients. It could be hypothesised that residual MCAD enzyme activity can contribute in risk stratification of subjects with variant ACADM genotypes. Methods We performed a retrospective cohort study of all patients identified upon population NBS for MCAD deficiency in the Netherlands between 2007–2010. Clinical, molecular, and enzymatic data were integrated. Results Eighty-four patients from 76 families were identified. Twenty-two percent of the subjects had a variant ACADM genotype. In patients with classical ACADM genotypes, residual MCAD enzyme activity was significantly lower (median 0%, range 0-8%) when compared to subjects with variant ACADM genotypes (range 0-63%; 4 cases with 0%, remainder 20-63%). Patients with (fatal) neonatal presentations before diagnosis displayed residual MCAD enzyme activities <1%. After diagnosis and initiation of treatment, residual MCAD enzyme activities <10% were associated with an increased risk of hypoglycaemia and carnitine supplementation. The prevalence of MCAD deficiency upon screening was 1/8,750 (95% CI 1/7,210–1/11,130). Conclusions Determination of residual MCAD enzyme activity improves our understanding of variant ACADM genotypes and may contribute to risk stratification. Subjects with variant ACADM genotypes and residual MCAD enzyme activities <10% should be considered to have the same risks as patients with classical ACADM genotypes. Parental instructions and an emergency regimen will remain principles of the treatment in any type of MCAD deficiency, as the effect of intercurrent illness on residual MCAD enzyme activity remains uncertain. There are, however, arguments in favour of abandoning the general advice to avoid prolonged fasting in subjects with variant ACADM genotypes and >10% residual MCAD enzyme activity.
Collapse
Affiliation(s)
- Catharina M L Touw
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Centre of Groningen, PO Box 30 001, CA84, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nasser M, Javaheri H, Fedorowicz Z, Noorani Z. Carnitine supplementation for inborn errors of metabolism. Cochrane Database Syst Rev 2012; 2012:CD006659. [PMID: 22336821 PMCID: PMC7390060 DOI: 10.1002/14651858.cd006659.pub3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Inborn errors of metabolism are genetic conditions which can lead to abnormalities in the synthesis and metabolism of proteins, carbohydrates, or fats. It has been proposed that in some instances carnitine supplementation should be provided to infants with a suspected metabolic disease as an interim measure, particularly whilst awaiting test results. Carnitine supplementation is used in the treatment of primary carnitine deficiency, and also where the deficiency is a secondary complication of several inborn errors of metabolism, such as organic acidaemias and fatty acid oxidation defects in children and adults. OBJECTIVES To assess the effectiveness and safety of carnitine supplementation in the treatment of inborn errors of metabolism. SEARCH METHODS We searched the Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Trials Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library 2007, Issue 4) and MEDLINE via Ovid (1950 to July week 4 2007), LILACS (15/05/2008) and Iranmedex (15/05/2008) and also the reference lists of retrieved articles.Date of most recent search of the Group's Inborn Errors of Metabolism Register: 27 October 2011. SELECTION CRITERIA Randomised controlled trials and quasi-randomised controlled trials comparing carnitine supplementation (in different dose, frequency, or duration) versus placebo in children and adults diagnosed with an inborn error of metabolism. DATA COLLECTION AND ANALYSIS Two authors independently screened and assessed the eligibility of the identified trials. MAIN RESULTS No trials were included in the review. AUTHORS' CONCLUSIONS There are no published or ongoing randomised controlled clinical trials relevant to this review question. Therefore, in the absence of any high level evidence, clinicians should base their decisions on clinical experience and in conjunction with preferences of the individual where appropriate. This does not mean that carnitine is ineffective or should not be used in any inborn error of metabolism. However, given the lack of evidence both on the effectiveness and safety of carnitine and on the necessary dose and frequency to be prescribed, the current prescribing practice should continue to be observed and monitored with care until further evidence is available. Methodologically sound trials, reported according to the Consolidated Standards of Reporting Trials (CONSORT) statement, are required. It should be considered whether placebo-controlled trials in potentially lethal diseases, e.g. carnitine transporter disorder or glutaric aciduria type I, are ethical.
Collapse
Affiliation(s)
- Mona Nasser
- Peninsula Dental School, University of Plymouth, Plymouth,
| | | | | | | |
Collapse
|
18
|
Feillet F, Ogier H, Cheillan D, Aquaviva C, Labarthe F, Baruteau J, Chabrol B, de Lonlay P, Valayanopoulos V, Garnotel R, Dobbelaere D, Briand G, Jeannesson E, Vassault A, Vianey-Saban C. [Medium-chain acyl-CoA-dehydrogenase (MCAD) deficiency: French consensus for neonatal screening, diagnosis, and management]. Arch Pediatr 2012; 19:184-93. [PMID: 22244319 DOI: 10.1016/j.arcped.2011.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/28/2011] [Indexed: 12/30/2022]
Abstract
MCAD deficiency is the most common fatty acid oxidation disorder, with the prevalence varying from 1/10,000 to 1/27,000 in the countries adjacent to France. As the High Authority for Health has recently proposed including MCAD deficiency in the panel of diseases neonatally screened for in France, a consensus was written for the management of MCAD deficiency diagnosed either clinically or by neonatal screening. Patients may present acutely with hyperammonemia, hypoglycemia, encephalopathy, and hepatomegaly, mainly after a prolonged fast of intercurrent infection. Sudden death related to heartbeat disorders may also occur. The diagnosis of MCAD deficiency is suspected on the plasma acylcarnitine and/or the urinary organic acid profile. The diagnosis is confirmed by molecular biology and the enzymatic activity for patients who are not homozygous for the main mutation c.985A>G. However, some MCAD-deficient individuals may remain asymptomatic throughout life. The mainstay of treatment consists in avoiding prolonged fast and prescribing l-carnitine for patients who exhibit a deficiency in plasma carnitine. This management has radically modified the natural history of MCAD deficiency. This consensus will allow homogeneous management of these patients once the neonatal screening of MCAD deficiency has been introduced in France.
Collapse
Affiliation(s)
- F Feillet
- Inserm U 954, centre de référence des maladies héréditaires du métabolisme, hôpital de Brabois-Enfants, rue du Morvan, 54511 Vandœuvre, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Potter BK, Little J, Chakraborty P, Kronick JB, Evans J, Frei J, Sutherland SC, Wilson K, Wilson BJ. Variability in the clinical management of fatty acid oxidation disorders: results of a survey of Canadian metabolic physicians. J Inherit Metab Dis 2012; 35:115-23. [PMID: 21630065 DOI: 10.1007/s10545-011-9352-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 05/11/2011] [Indexed: 12/31/2022]
Abstract
INTRODUCTION There is little robust empirical evidence on which to base treatment recommendations for fatty acid oxidation disorders. While consensus guidelines are important, understanding areas where there is a lack of consensus is also critical to inform priorities for future evaluative research. METHODS We surveyed Canadian metabolic physicians on the treatment of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency, and mitochondrial trifunctional protein (MTP) deficiency. We ascertained physicians' opinions on the use of different interventions for the long-term management of patients as well as for the management of acute illness, focusing on identifying interventions characterized by high variability in opinions. We also investigated factors influencing treatment decisions. RESULTS We received 18 responses (response rate 45%). Participants focused on avoidance of fasting and increased meal frequency as interventions for the management of MCAD deficiency. For the long-chain disorders, avoidance of fasting remained the most consistently endorsed intervention, with additional highly endorsed treatments differing for VLCAD versus LCHAD/MTP deficiency. L-carnitine supplementation and restriction of dietary fat were characterized by high variability in physicians' opinions, as were several interventions specific to long-chain disorders. Social factors and patient characteristics were important influences on treatment decisions. CONCLUSIONS Based on our findings we suggest that high priority treatments for rigorous effectiveness studies could include L-carnitine supplementation (MCAD and LCHAD/MTP deficiencies), restriction of dietary fat, and, for the long-chain disorders, feeding practices for breastfed infants and the use of various supplements (essential fatty acids, carbohydrates, cornstarch, multivitamins).
Collapse
Affiliation(s)
- Beth K Potter
- Department of Epidemiology & Community Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ribas GS, Biancini GB, Mescka C, Wayhs CY, Sitta A, Wajner M, Vargas CR. Oxidative stress parameters in urine from patients with disorders of propionate metabolism: a beneficial effect of L:-carnitine supplementation. Cell Mol Neurobiol 2012; 32:77-82. [PMID: 21833551 PMCID: PMC11498622 DOI: 10.1007/s10571-011-9736-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Propionic (PA) and methylmalonic (MMA) acidurias are inherited disorders caused by deficiency of propionyl-CoA carboxylase and methylmalonyl-CoA mutase, respectively. Affected patients present acute metabolic crises in the neonatal period and long-term neurological deficits. Treatments of these diseases include a protein restricted diet and L: -carnitine supplementation. L: -Carnitine is widely used in the therapy of these diseases to prevent secondary L: -carnitine deficiency and promote detoxification, and several recent in vitro and in vivo studies have reported antioxidant and antiperoxidative effects of this compound. In this study, we evaluated the oxidative stress parameters, isoprostane and di-tyrosine levels, and the antioxidant capacity, in urine from patients with PA and MMA at the diagnosis, and during treatment with L: -carnitine and protein-restricted diet. We verified a significant increase of isoprostanes and di-tyrosine, as well as a significant reduction of the antioxidant capacity in urine from these patients at diagnosis, as compared to controls. Furthermore, treated patients presented a marked reduction of isoprostanes and di-tyrosine levels in relation to untreated patients. In addition, patients with higher levels of protein and lipid oxidative damage, determined by di-tyrosine and isoprostanes levels, also presented lower urinary concentrations of total and free L: -carnitine. In conclusion, the present results indicate that treatment with low protein diet and L: -carnitine significantly reduces urinary biomarkers of protein and lipid oxidative damage in patients with disorders of propionate metabolism and that L: -carnitine supplementation may be specially involved in this protection.
Collapse
Affiliation(s)
- Graziela S. Ribas
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS Brazil
| | - Giovana B. Biancini
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
| | - Caroline Mescka
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS Brazil
| | - Carlos Y. Wayhs
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
| | - Carmen R. Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
| |
Collapse
|
21
|
Kölker S, Christensen E, Leonard JV, Greenberg CR, Boneh A, Burlina AB, Burlina AP, Dixon M, Duran M, García Cazorla A, Goodman SI, Koeller DM, Kyllerman M, Mühlhausen C, Müller E, Okun JG, Wilcken B, Hoffmann GF, Burgard P. Diagnosis and management of glutaric aciduria type I--revised recommendations. J Inherit Metab Dis 2011; 34:677-94. [PMID: 21431622 PMCID: PMC3109243 DOI: 10.1007/s10545-011-9289-5] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 11/02/2022]
Abstract
Glutaric aciduria type I (synonym, glutaric acidemia type I) is a rare organic aciduria. Untreated patients characteristically develop dystonia during infancy resulting in a high morbidity and mortality. The neuropathological correlate is striatal injury which results from encephalopathic crises precipitated by infectious diseases, immunizations and surgery during a finite period of brain development, or develops insidiously without clinically apparent crises. Glutaric aciduria type I is caused by inherited deficiency of glutaryl-CoA dehydrogenase which is involved in the catabolic pathways of L-lysine, L-hydroxylysine and L-tryptophan. This defect gives rise to elevated glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine which can be detected by gas chromatography/mass spectrometry (organic acids) or tandem mass spectrometry (acylcarnitines). Glutaric aciduria type I is included in the panel of diseases that are identified by expanded newborn screening in some countries. It has been shown that in the majority of neonatally diagnosed patients striatal injury can be prevented by combined metabolic treatment. Metabolic treatment that includes a low lysine diet, carnitine supplementation and intensified emergency treatment during acute episodes of intercurrent illness should be introduced and monitored by an experienced interdisciplinary team. However, initiation of treatment after the onset of symptoms is generally not effective in preventing permanent damage. Secondary dystonia is often difficult to treat, and the efficacy of available drugs cannot be predicted precisely in individual patients. The major aim of this revision is to re-evaluate the previous diagnostic and therapeutic recommendations for patients with this disease and incorporate new research findings into the guideline.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children's Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Spiekerkoetter U, Bastin J, Gillingham M, Morris A, Wijburg F, Wilcken B. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 2010; 33:555-61. [PMID: 20830526 DOI: 10.1007/s10545-010-9188-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/27/2010] [Accepted: 08/06/2010] [Indexed: 12/13/2022]
Abstract
Treatment recommendations in mitochondrial fatty acid oxidation (FAO) defects are diverse. With implementation of newborn screening and identification of asymptomatic patients, it is necessary to define whom to treat and how strictly. We here discuss critical questions that are currently under debate. For some asymptomatic long-chain defects, long-chain fat restriction plays a minor role, and a normal diet may be introduced. For patients presenting only with myopathic symptoms, e.g., during exercise, treatment may be adapted to energy demand. As a consequence, patients with exercise-induced myopathy may be able to return to normal activity when provided with medium-chain triglycerides (MCT) prior to exercise. There is no need to limit participation in sports. Progression of retinopathy in disorders of the mitochondrial trifunctional protein complex is closely associated with hydroxyacylcarnitine accumulation. A strict low-fat diet with MCT supplementation is recommended to slow or prevent progression of chorioretinopathy. Additional docosahexanoic acid does not prevent the decline in retinal function but does promote nonspecific improvement in visual acuity and is recommended. There is no evidence that L-carnitine supplementation is beneficial. Thus, supplementation with L-carnitine in a newborn identified by screening with either a medium-chain or long-chain defect is not supported. With respect to the use of the odd-chain medium-chain triglyceride triheptanoin in myopathic phenotypes, randomized trials are needed to establish whether triheptanoin is more effective than even-chain MCT. With increasing pathophysiological knowledge, new treatment options have been identified and are being clinically evaluated. These include the use of bezafibrates in myopathic long-chain defects.
Collapse
Affiliation(s)
- Ute Spiekerkoetter
- Department of General Pediatrics, University Children's Hospital, Duesseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
BACKGROUND Inborn errors of metabolism are genetic conditions which can lead to abnormalities in the synthesis and metabolism of proteins, carbohydrates, or fats. It has been proposed that in some instances carnitine supplementation should be provided to infants with a suspected metabolic disease as an interim measure, particularly whilst awaiting test results. Carnitine supplementation is used in the treatment of primary carnitine deficiency, and also where the deficiency is a secondary complication of several inborn errors of metabolism, such as organic acidaemias and fatty acid oxidation defects in children and adults. OBJECTIVES To assess the effectiveness and safety of carnitine supplementation in the treatment of inborn errors of metabolism. SEARCH STRATEGY We searched the Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Trials Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library 2007, Issue 4) and MEDLINE via Ovid (1950 to July week 4 2007), LILACS (15/05/2008) and Iranmedex (15/05/2008) and also the reference lists of retrieved articles.Date of most recent search of the Group's Inborn Errors of Metabolism Register: 27 October 2008. SELECTION CRITERIA Randomised controlled trials and quasi-randomised controlled trials comparing carnitine supplementation (in different dose, frequency, or duration) versus placebo in children and adults diagnosed with an inborn error of metabolism. DATA COLLECTION AND ANALYSIS Two authors independently screened and assessed the eligibility of the identified trials. MAIN RESULTS No trials were included in the review. AUTHORS' CONCLUSIONS There are no published or ongoing randomised controlled clinical trials relevant to this review question. Therefore, in the absence of any high level evidence, clinicians should base their decisions on clinical experience and in conjunction with preferences of the individual where appropriate. This does not mean that carnitine is ineffective or should not be used in any inborn error of metabolism. However, given the lack of evidence both on the effectiveness and safety of carnitine and on the necessary dose and frequency to be prescribed, the current prescribing practice should continue to be observed and monitored with care until further evidence is available. Methodologically sound trials, reported according to the Consolidated Standards of Reporting Trials (CONSORT) statement, are required. It should be considered whether placebo-controlled trials in potentially lethal diseases, e.g. carnitine transporter disorder or glutaric aciduria type I, are ethical.
Collapse
Affiliation(s)
- Mona Nasser
- Department of Health Information, Institute for Quality and Efficiency in Health care, Dillenburger Street, 27, D-51105, Köln, Germany, D-51105.
| | | | | | | |
Collapse
|
24
|
Kruer MC, Steiner RD. The role of evidence-based medicine and clinical trials in rare genetic disorders. Clin Genet 2008; 74:197-207. [PMID: 18657147 DOI: 10.1111/j.1399-0004.2008.01041.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M C Kruer
- Division of Pediatric Neurology and Division of Developmental Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
25
|
Zwickler T, Lindner M, Aydin HI, Baumgartner MR, Bodamer OA, Burlina AB, Das AM, DeKlerk JBC, Gökcay G, Grünewald S, Guffon N, Maier EM, Morava E, Geb S, Schwahn B, Walter JH, Wendel U, Wijburg FA, Müller E, Kölker S, Hörster F. Diagnostic work-up and management of patients with isolated methylmalonic acidurias in European metabolic centres. J Inherit Metab Dis 2008; 31:361-7. [PMID: 18563634 DOI: 10.1007/s10545-008-0804-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 03/25/2008] [Accepted: 04/02/2008] [Indexed: 10/21/2022]
Abstract
The long-term outcome of patients with methylmalonic aciduria (MMA) is still uncertain due to a high frequency of complications such as chronic renal failure and metabolic stroke. The understanding of this disease is hampered by a huge variation in the management of these patients. The major aim of this study was to evaluate the current practice in different European metabolic centres. A standardized questionnaire was sent to 20 metabolic centres asking for standard procedures for confirmation of diagnosis, testing cobalamin responsiveness, dietary treatment, pharmacotherapy, and biochemical and clinical monitoring. Sixteen of 20 metabolic centres (80%) returned questionnaires on 183 patients: 89 of the patients were classified as mut(0), 36 as mut(-), 13 as cblA, 7 as cblB, and 38 as cblA/B. (1) Confirmation of diagnosis: All centres investigate enzyme activity by propionate fixation in fibroblasts; six centres also perform mutation analysis. (2) Cobalamin response: Ten centres follow standardized protocols showing large variations. A reliable exclusion of nonspecific effects has not yet been achieved by these protocols. (3) Long-term treatment: In cobalamin-responsive patients, most centres use hydroxocobalamin (1-14 mg/week i.m. or 5-20 mg/week orally), while two centres use cyanocobalamin. All cobalamin-nonresponsive patients and most cobalamin-responsive patients are supplemented with L: -carnitine (50-100 mg/kg per day). Fourteen centres use intestinal decontamination by antibiotic therapy. Most centres follow D-A-CH (n = 6) or Dewey (n = 4) recommendations for protein requirements. Fourteen centres regularly use precursor-free amino acid supplements. Standardized monitoring protocols are available in seven centres, again showing high variability.
Collapse
Affiliation(s)
- T Zwickler
- Division of Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yokoi K, Ito T, Maeda Y, Nakajima Y, Ueta A, Nomura T, Koyama N, Kato I, Suzuki S, Kurono Y, Sugiyama N, Togari H. Acylcarnitine Profiles during Carnitine Loading and Fasting Tests in a Japanese Patient with Medium-Chain Acyl-CoA Dehydrogenase Deficiency. TOHOKU J EXP MED 2007; 213:351-9. [DOI: 10.1620/tjem.213.351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kyoko Yokoi
- Department of Pediatrics and Neonatology, Nagoya City University, Graduate School of Medical Science
| | - Tetsuya Ito
- Department of Pediatrics and Neonatology, Nagoya City University, Graduate School of Medical Science
| | - Yasuhiro Maeda
- Laboratory of Hospital Pharmacy, Graduate School of Pharmaceutical Science, Nagoya City University
| | - Yoko Nakajima
- Department of Pediatrics and Neonatology, Nagoya City University, Graduate School of Medical Science
| | - Akihito Ueta
- Department of Pediatrics and Neonatology, Nagoya City University, Graduate School of Medical Science
| | | | | | - Ineko Kato
- Department of Pediatrics and Neonatology, Nagoya City University, Graduate School of Medical Science
| | - Satoshi Suzuki
- Department of Pediatrics and Neonatology, Nagoya City University, Graduate School of Medical Science
| | - Yukihisa Kurono
- Laboratory of Hospital Pharmacy, Graduate School of Pharmaceutical Science, Nagoya City University
| | - Naruji Sugiyama
- Department of Pediatrics, Aichi-Gakuin University, School of Dentistry
| | - Hajime Togari
- Department of Pediatrics and Neonatology, Nagoya City University, Graduate School of Medical Science
| |
Collapse
|
27
|
Derks TGJ, van Spronsen FJ, Rake JP, van der Hilst CS, Span MM, Smit GPA. Safe and unsafe duration of fasting for children with MCAD deficiency. Eur J Pediatr 2007; 166:5-11. [PMID: 16788829 DOI: 10.1007/s00431-006-0186-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 05/03/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To study the safe and unsafe duration of fasting in children with medium chain acyl-Coenzyme A dehydrogenase (MCAD) deficiency, the literature and the database on Dutch MCAD-deficient patients were searched for data on fasting studies in patients with MCAD deficiency. MATERIALS AND METHODS These data were extended with information on fasting studies performed on our patients with MCAD deficiency known in the Beatrix Children's Hospital, UMC Groningen, The Netherlands. The data reflect considerable inter-individual variation and overlap between safe and unsafe duration of fasting. RESULTS In six out of 35 fasting tests, symptoms were reported before hypoglycaemia was observed. Until 1 year of age, the median safe and unsafe duration of fasting was 12 hours (n=7, range 8-19 hours) and 18 hours (n=5, range 15-20 hours), respectively. After the first year of life, the median safe and unsafe duration of fasting was 18 hours (n=17, range 10-24 hours) and 20 hours (n=9, range 13-32 hours), respectively. CONCLUSION Therefore, to conclude, we recommend a maximum duration of fasting in children with MCAD deficiency of 8 hours between 6 months and 1 year of age, 10 hours in the second year of life and 12 hours thereafter. From this study, no conclusions can be drawn on the duration of fasting during situations of intercurrent illness, especially with fever.
Collapse
Affiliation(s)
- Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Huidekoper HH, Schneider J, Westphal T, Vaz FM, Duran M, Wijburg FA. Prolonged moderate-intensity exercise without and with L-carnitine supplementation in patients with MCAD deficiency. J Inherit Metab Dis 2006; 29:631-6. [PMID: 16972171 DOI: 10.1007/s10545-006-0355-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/31/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is probably the most common inborn error of fatty acid oxidation (FAO). Routine L-carnitine supplementation in the treatment of MCADD is controversial. To establish the effects of L-carnitine supplementation during prolonged moderate-intensity exercise in MCADD, five patients and three control subjects were studied during 2 hours of moderate-intensity exercise after a 12-hour fast. Patients were studied twice, once with and once without L-carnitine supplementation (50 mg/kg per day). Blood samples were collected before, during and after exercise, and analysed for routine parameters, acylcarnitines and carnitine biosynthesis intermediates. Urine was collected before and after exercise, and analysed for acylcarnitines. All patients were able to complete the exercise test without any apparent clinical or biochemical adverse effects, even without L-carnitine supplementation. A significant rise in plasma free fatty acids and octanoylcarnitine levels during exercise was seen in all patients, indicating a substantial increase in FAO during exercise. Octanoylcarnitine levels in plasma were significantly higher in patients with L-carnitine supplementation, suggesting increased clearance of accumulating acylcarnitines. A statistically significant increase of plasma and urinary free carnitine levels, as well as of plasma gamma-butyrobetaine was seen in MCADD patients without L-carnitine supplementation. These data suggest an increase in carnitine biosynthesis. In conclusion, although L-carnitine supplementation may promote clearance of accumulating acylcarnitines during moderate-intensity exercise, no apparent beneficial effect of this supplementation on clinical and biochemical parameters was observed in MCADD patients. Our results suggest that MCADD patients are able to increase carnitine biosynthesis during exercise to compensate for carnitine losses.
Collapse
Affiliation(s)
- H H Huidekoper
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Steiner RD. Evidence based medicine in inborn errors of metabolism: Is there any and how to find it. Am J Med Genet A 2005; 134A:192-7. [PMID: 15690407 DOI: 10.1002/ajmg.a.30594] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence based medicine (EBM) represents an attempt to assist healthcare providers in basing clinical decisions on the best available evidence. That evidence in the treatment realm usually takes the form of clinical trials (CTs), with the randomized controlled clinical trial (CCT or RCT) being the gold standard. Many specialties such as internal medicine have embraced EBM. Medical geneticists who care for patients with inborn errors of metabolism (IEM) have by and large not benefited from the EBM movement. IEM are rare genetic conditions, many of which are treatable. Therefore, the principles of EBM should be applicable to IEM. Notably, Archibald Cochrane, one of the founders of EBM, suffered from porphyria, an IEM. The principles of EBM as applied to IEM are explored herein. The author hypothesized that EBM has not infiltrated the specialty of medical genetics, that few controlled trials for IEM have been published, and that where CTs have been carried out in IEM they can be difficult to find with electronic bibliographic database searches. To test the hypothesis, MEDLINE searches for CTs were carried out for a few representative IEM. The search results support the hypothesis. In this article, the principles of EBM are introduced and its history reviewed as background information to lay the groundwork for further discussion. Next, the dearth of evidence base in IEM, impediments to the application of EBM to IEM, steps to be taken to improve the evidence base for IEM, and finally strategies to make it easier to find CTs for IEM in database searches are all discussed.
Collapse
Affiliation(s)
- Robert D Steiner
- Department of Pediatrics and Molecular and Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|