1
|
Mohamad EA, Ahmed SM, Masoud MA, Mohamed FA, Mohammed HS. Cardioprotective Potential of Moringa Oleifera Leaf Extract Loaded Niosomes Nanoparticles - Against Doxorubicin Toxicity In Rats. Curr Pharm Biotechnol 2025; 26:289-301. [PMID: 38918977 DOI: 10.2174/0113892010303097240605105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases. METHOD The current study is intended to explore the cardioprotective effect of ethanolic Moringa Oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart. RESULTS It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status. CONCLUSION Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samya Mahmoud Ahmed
- Biochemistry Departement, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Fatma Adel Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Shaban NZ, Hegazy WA, Abu-Serie MM, Talaat IM, Awad OM, Habashy NH. Seedless black Vitis vinifera polyphenols suppress hepatocellular carcinoma in vitro and in vivo by targeting apoptosis, cancer stem cells, and proliferation. Biomed Pharmacother 2024; 175:116638. [PMID: 38688169 DOI: 10.1016/j.biopha.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor and one of the most challenging cancers to treat. Here, we evaluated the in vitro and in vivo ameliorating impacts of seedless black Vitis vinifera (VV) polyphenols on HCC. Following the preparation of the VV crude extract (VVCE) from seedless VV (pulp and skin), three fractions (VVF1, VVF2, and VVF3) were prepared. The anticancer potencies of the prepared fractions, compared to 5-FU, were assessed against HepG2 and Huh7 cells. In addition, the effects of these fractions on p-dimethylaminoazobenzene-induced HCC in mice were evaluated. The predicted impacts of selected phenolic constituents of VV fractions on the activity of essential HCC-associated enzymes (NADPH oxidase "NADPH-NOX2", histone deacetylase 1 "HDAC1", and sepiapterin reductase "SepR") were analyzed using molecular docking. The results showed that VVCE and its fractions induced apoptosis and collapsed CD133+ stem cells in the studied cancer cell lines with an efficiency greater than 5-FU. VVF1 and VVF2 exhibited the most effective anticancer fractions in vitro; therefore, we evaluated their influences in mice. VVF1 and VVF2 improved liver morphology and function, induced apoptosis, and lowered the fold expression of various crucial genes that regulate cancer stem cells and other vital pathways for HCC progression. For most of the examined parameters, VVF1 and VVF2 had higher potency than 5-FU, and VVF1 showed more efficiency than VVF2. The selected phenolic compounds displayed competitive inhibitory action on NADPH-NOX2, HDAC1, and SepR. In conclusion, these findings declare that VV polyphenolic fractions, particularly VVF1, could be promising safe anti-HCC agents.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Walaa A Hegazy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Iman M Talaat
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Clinical Sciences Department, College of Medicine, University of Sharjah, United Arab Emirates.
| | - Olfat M Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
3
|
Kah G, Chandran R, Abrahamse H. Curcumin a Natural Phenol and Its Therapeutic Role in Cancer and Photodynamic Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020639. [PMID: 36839961 PMCID: PMC9962422 DOI: 10.3390/pharmaceutics15020639] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer continues to cause an alarming number of deaths globally, and its burden on the health system is significant. Though different conventional therapeutic procedures are exploited for cancer treatment, the prevalence and death rates remain elevated. These, therefore, insinuate that novel and more efficient treatment procedures are needed for cancer. Curcumin, a bioactive, natural, phenolic compound isolated from the rhizome of the herbaceous plant turmeric, is receiving great interest for its exciting and broad pharmacological properties. Curcumin presents anticancer therapeutic capacities and can be utilized as a photosensitizing drug in cancer photodynamic therapy (PDT). Nonetheless, curcumin's poor bioavailability and related pharmacokinetics limit its clinical utility in cancer treatment. This review looks at the physical and chemical properties, bioavailability, and safety of curcumin, while focusing on curcumin as an agent in cancer therapy and as a photosensitizer in cancer PDT. The possible mechanisms and cellular targets of curcumin in cancer therapy and PDT are highlighted. Furthermore, recent improvements in curcumin's bioavailability in cancer therapy using nanoformulations and delivery systems are presented.
Collapse
|
4
|
Altememy D, Mohammadi Arvejeh P, Amini Chermahini F, Alizadeh A, Mazarei M, Khosravian P. A comparative study of combination treatments in metastatic 4t1 cells: everolimus and 5- fluorouracil versus lithium chloride and 5-fluorouracil. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e85358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Combination therapy has been one of the most pioneering and strategic approaches implemented for malignancy treatment, which can intentionally influence multiple signaling pathways involved in cancer growth and progression. In the present study, the effects of 5-fluorouracil (5FU) in combination with everolimus (EVE) or lithium chloride (LiCl) were evaluated in 4T1 metastatic breast cancer cells and compared to control and each other.
Methods and results: The resazurin assay, CompuSyn, flow cytometry, and real-time PCR were used to investigate cell proliferation, drug synergism, apoptosis, and gene expression. In comparison to the ternary combination of the drugs, the findings showed that cytotoxicity (p-value < 0.0001) and apoptosis (p-value < 0.0001) of two-by-two combinations increased dramatically as a consequence of the extreme synergy between 5FU and EVE or LiCl. Moreover, the hypoxiainducible transcription factor 1-alpha (HIF-1α) and the vascular endothelial growth factor (VEGF) downregulated considerably compared to control (p-value < 0.0001) by combination therapies of EVE-5FU and 5FU-LiCl; however, only VEGF displayed significant downregulation in comparison to single therapies.
Conclusion: The findings showed that the combination of 5FU-LiCl increased cell cytotoxicity and apoptosis significantly more than EVE-5FU but suggests a clinical potential for both to treat metastatic breast cancer encouraging validation of these results in pre-clinical models.
Collapse
|
5
|
Rahimi M, Pakravan N, Babaei A, Mohammadi M, Atafar E. Relative effect of Malayer Shahani and Asgari grapes seed extract on inducing apoptosis in human leukemia cells. J Cancer Res Ther 2021; 17:875-878. [PMID: 34528535 DOI: 10.4103/jcrt.jcrt_766_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Previous studies have suggested that consuming fruit and vegetable can lower the risk of several cancers, including breast, colorectal, and lung cancers. Aims The present study aims to investigate the in vitro anticancer effects of Shahani and Asgari grape seed extract (GSE) grown in Malayer City of Iran on HL-60 cancer. However, to the best of the author's knowledge, it is the first time in this study that the antiproliferative effect of Shahani and Asgari GSE is compared. Materials and Methods Shahani and Asgari GSE Was extraction white method of Liquid/liquid extraction with ethyl acetate. Then assessing cytotoxic activities of Shahani and Asgari GSE on the HL-60 cells was tested using MTT assay. Results The results show that compared with the control group, seed extract of both Shahani and Asgari at the various concentrations (25, 50, 100, and 200 μg/ml) had a significantly inhibitory effect on HL-60 cell proliferation that was dose dependent. However, Shahani GSE at different concentrations (50, 100, and 200 μg/ml) indicated a significantly higher inhibitory effect compared to Asgari GSE. In addition, GSE can induce cell cycle arrest at G0/G1 cells. Furthermore, GSE of Asgari and Shahani remarkably increased the induction of HL-60 cell apoptosis depending on its dose. However, at the concentration of 200 μg/ml, GSE induced cell necrosis rather than apoptosis. Conclusion Seed extract of both Shahani and Asgari at the various concentrations had a significantly inhibitory effect on HL-60 cell proliferation that was dose dependent.
Collapse
Affiliation(s)
- Maryam Rahimi
- Department of Biology, Faculty of Science, Research Institute for Grape and Raisins, Malayer University, Malayer, Iran
| | - Narges Pakravan
- Department of Chemistry, Faculty of Science, Research Institute for Grape and Raisins, Malayer University, Malayer, Iran
| | - Arash Babaei
- Department of Biology, Faculty of Science, Research Institute for Grape and Raisins, Malayer University, Malayer, Iran
| | | | - Elham Atafar
- Department of Biology, Malayer University, Malayer, Iran
| |
Collapse
|
6
|
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel) 2021; 10:antiox10091455. [PMID: 34573087 PMCID: PMC8466984 DOI: 10.3390/antiox10091455] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemoprevention of cancer is a broad term that describes the involvement of external agents to slow down or suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemoprevention. The occurrence of global cancer type varies, depending on many factors such as environmental, lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment modalities, whereas it is a painful death sentence in developing and low-income countries due to the lack of modern therapies and awareness. One best practice to identify cancer control measures is to study the origin and risk factors associated with common types. Based on these factors and the health status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are well-established therapies, cancer still stands as one of the major causes of death and a public health burden globally. Research shows that most cancers can be prevented, treated, or the incidence can be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk factors associated with different types of cancer through their chemopreventive role. This review highlights the role of bioactive compounds or natural products from plants in the chemoprevention of cancer. There are many plant based dietary factors involved in the chemoprevention process. The review discusses the process of carcinogenesis and chemoprevention using plants and phytocompounds, with special reference to five major chemopreventive phytocompounds. The article also summarizes the important chemopreventive mechanisms and signaling molecules involved in the process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis and disease progression is discussed. This will fill the research gap in search of chemopreventive natural compounds and encourage scientists in clinical trials of anticancer agents from plants.
Collapse
|
7
|
Wolf CPJG, Rachow T, Ernst T, Hochhaus A, Zomorodbakhsch B, Foller S, Rengsberger M, Hartmann M, Huebner J. Complementary and alternative medicine (CAM) supplements in cancer outpatients: analyses of usage and of interaction risks with cancer treatment. J Cancer Res Clin Oncol 2021; 148:1123-1135. [PMID: 34228225 PMCID: PMC9016053 DOI: 10.1007/s00432-021-03675-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Purpose The aim of our study was to analyze the use of complementary and alternative medicine (CAM) supplements, identify possible predictors, and analyze and compile potential interactions of CAM supplements with conventional cancer therapy. Methods We included outpatient cancer patients treated at a German university hospital in March or April 2020. Information was obtained from questionnaires and patient records. CAM–drug interactions were identified based on literature research for each active ingredient of the supplements consumed by the patients. Results 37.4% of a total of 115 patients consumed CAM supplements. Potential interactions with conventional cancer treatment were identified in 51.2% of these patients. All types of CAM supplements were revealed to be a potential source for interactions: vitamins, minerals, food and plant extracts, and other processed CAM substances. Younger age (< 62 years) (p = 0.020, φc = 0.229) and duration of individual cancer history of more than 1 year (p = 0.006, φc = 0.264) were associated with increased likelihood of CAM supplement use. A wide range of different CAM supplement interactions were reviewed: effects of antioxidants, cytochrome (CYP) interactions, and specific agonistic or antagonistic effects with cancer treatment. Conclusion The interaction risks of conventional cancer therapy with over-the-counter CAM supplements seem to be underestimated. Supplements without medical indication, as well as overdoses, should be avoided, especially in cancer patients. To increase patient safety, physicians should address the risks of interactions in physician–patient communication, document the use of CAM supplements in patient records, and check for interactions.
Collapse
Affiliation(s)
- Clemens P J G Wolf
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Tobias Rachow
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Pneumologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Konservative Tagesklinik des UniversitätsTumorCentrums (UTC), Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | | | - Susan Foller
- Klinik für Urologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Matthias Rengsberger
- Klinik und Poliklinik für Frauenheilkunde und Fortpflanzungsmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Michael Hartmann
- Apotheke des Universitätsklinikums, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jutta Huebner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Integrative Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
8
|
Entelon ® ( Vitis vinifera Seed Extract) Prevents Cancer Metastasis via the Downregulation of Interleukin-1 Alpha in Triple-Negative Breast Cancer Cells. Molecules 2021; 26:molecules26123644. [PMID: 34203721 PMCID: PMC8232270 DOI: 10.3390/molecules26123644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/03/2022] Open
Abstract
Interleukin-1 (IL1) is a proinflammatory cytokine and promotes cancer cell proliferation and invasiveness in a diversity of cancers, such as breast and colon cancer. Here, we focused on the pharmacological effect of Entelon® (ETL) on the tumorigenesis of triple-negative breast cancer (TNBC) cells by IL1-alpha (IL1A). IL1A enhanced the cell growth and invasiveness of TNBC cells. We observed that abnormal IL1A induction is related with the poor prognosis of TNBC patients. IL1A also increased a variety of chemokines such as CCL2 and IL8. Interestingly, IL1A expression was reduced by the ETL treatment. Here, we found that ETL significantly decreased the MEK/ERK signaling pathway in TNBC cells. IL1A expression was reduced by UO126. Lastly, we studied the effect of ETL on the metastatic potential of TNBC cells. Our results showed that ETL significantly reduced the lung metastasis of TNBC cells. Our results showed that IL1A expression was regulated by the MEK/ERK- and PI3K/AKT-dependent pathway. Taken together, ETL inhibited the MEK/ERK and PI3K/AKT signaling pathway and suppressing the lung metastasis of TNBC cells through downregulation of IL1A. Therefore, we propose the possibility of ETL as an effective adjuvant for treating TNBC.
Collapse
|
9
|
Rahbardar MG, Eisvand F, Rameshrad M, Razavi BM, Hosseinzadeh H. In Vivo and In Vitro Protective Effects of Rosmarinic Acid against Doxorubicin-Induced Cardiotoxicity. Nutr Cancer 2021; 74:747-760. [PMID: 34085575 DOI: 10.1080/01635581.2021.1931362] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an anticancer medicine that may trigger cardiomyopathy. Rosmarinic acid (RA) has shown antioxidant, anti-inflammatory, and anticancer effects. This investigation assessed the cardioprotective effect of RA on DOX-induced-toxicity in both in vivo and in vitro experiments. Male rats were randomized on 7 groups: (1) control, (2) DOX (2 mg/kg, per 48 h, 12d, i.p), (3) RA (40 mg/kg, 12d, i.p.), (4-6) RA (10, 20, 40 mg/kg, 16d, i.p.)+ DOX, (7) Vitamin E (200 mg/kg, per 48 h, 16d, i.p.) + DOX and then indices of cardiac function were estimated. Also, DOX and rosmarinic acid effects were examined on MCF7 cells (breast cancer cells line) to clarify that both cardiotoxicity and anticancer effects were analyzed. DOX increased heart to body weight ratio, RRI, QA, STI, QRS duration and voltage, attenuated HR, blood pressure, Max dP/dt, Min dP/dt, LVDP, enhanced MDA, declined GSH amount, and caused fibrosis and necrosis in cardiac tissue. Administration of RA ameliorated the toxic effects of DOX. In vitro studies showed that RA did not affect the cytotoxic effect of DOX. RA as an antioxidant, anti-inflammatory, and cardioprotective compound could be a promising compound to help minimize DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways. Adv Pharmacol Pharm Sci 2021; 2021:4709818. [PMID: 33748757 PMCID: PMC7954633 DOI: 10.1155/2021/4709818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chemotherapeutics can induce oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, and abnormalities in neurotransmitter metabolism leading to toxicity. Because there have been no therapeutic strategies developed to target inflammation and oxidative stress, there is a continuing need for new and improved therapy. As a result, there has been increasing interest in complementary and alternative medicine with anticancer potential. Studies have shown that the antioxidant activities and anti-inflammatory effects of citrus fruits are promising natural phytochemicals in the development of new anticancer agents. Tangeretin is a naturally polymethoxylated flavone compound extracted from the citrus peel that has shown significant intestinal absorption and adequate bioavailability, with the added benefit of promoting longevity. In addition, tangeretin is known to exhibit considerable selective toxicity to many types of cancer cell proliferation such as ovarian, brain, blood, and skin cancer. Evidence indicates that tangeretin acts through several mechanisms including growth inhibition, induction of apoptosis, autophagy, antiangiogenesis, and estrogenic-like effects. Furthermore, tangeretin works through mitigating levels of inflammatory mediators in the immune system. Using tangeretin in combination with clinically applied anticancer drugs could be a good strategy for increasing the efficiency of these agents and protecting noncancerous cells from damage caused by chemotherapy. The purpose of this review is to highlight the protective effects of a novel natural product, tangeretin against chemotherapeutic-induced toxicity. The development of chemoprevention strategies can lead to significant health care improvement in cancer survivors. Thus, study outcomes may attract more investigators to conduct tangeretin-related research and find out potentially significant impacts on health care of cancer patients and decreased health problems associated with chemotherapeutics-induced toxicity.
Collapse
|
11
|
Memariani Z, Abbas SQ, Ul Hassan SS, Ahmadi A, Chabra A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol Res 2020; 171:105264. [PMID: 33166734 DOI: 10.1016/j.phrs.2020.105264] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Although the rates of many cancers are controlled in Western countries, those of some cancers, such as lung, breast, and colorectal cancer are currently increasing in many low- and middle-income countries due to increases in risk factors caused by development and societal problems. Additionally, endogenous factors, such as inherited mutations, steroid hormones, insulin, and insulin-like growth factor systems, inflammation, oxidative stress, and exogenous factors (including tobacco, alcohol, infectious agents, and radiation), are believed to compromise cell functions and lead to carcinogenesis. Chemotherapy, surgery, radiation therapy, hormone therapy, and targeted therapies are some examples of the approaches used for cancer treatment. However, various short- and long-term side effects can also considerably impact patient prognosis based on clinical factors associated with treatments. Recently, increasing numbers of studies have been conducted to identify novel therapeutic agents from natural products, among which plant-derived bioactive compounds have been increasingly studied. Naringin (NG) and its aglycone naringenin (NGE) are abundantly present in citrus fruits, such as grapefruits and oranges. Their anti-carcinogenic activities have been shown to be exerted through several cell signal transduction pathways. Recently, different pharmacological strategies based on combination therapy, involving NG and NGE with the current anti-cancer agents have shown prodigious synergistic effects when compared to monotherapy. Besides, NG and NGE have been reported to overcome multidrug resistance, resulting from different defensive mechanisms in cancer, which is one of the major obstacles of clinical treatment. Thus, we comprehensively reviewed the inhibitory effects of NG and NGE on several types of cancers through different signal transduction pathways, the roles on sensitizing with the current anticancer medicines, and the efficacy of the cancer combination therapy.
Collapse
Affiliation(s)
- Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan.
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Aroona Chabra
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
12
|
Al Saqr A, Aldawsari MF, Alrbyawi H, Poudel I, Annaji M, Mulabagal V, Ramani MV, Gottumukkala S, Tiwari AK, Dhanasekaran M, Panizzi PR, Arnold RD, Babu RJ. Co-Delivery of Hispolon and Doxorubicin Liposomes Improves Efficacy Against Melanoma Cells. AAPS PharmSciTech 2020; 21:304. [PMID: 33150503 DOI: 10.1208/s12249-020-01846-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Hispolon is a small molecular weight polyphenol that has antioxidant, anti-inflammatory, and anti-proliferative activities. Our recent study has demonstrated hispolon as a potent apoptosis inducer in melanoma cell lines. Doxorubicin is a broad spectrum first-line treatment for various kinds of cancers. In this study, co-delivery of doxorubicin and hispolon using a liposomal system in B16BL6 melanoma cell lines for synergistic cytotoxic effects was investigated. Liposomes were prepared using a lipid film hydration method and loaded with doxorubicin or hispolon. The formulations were characterized for particle size distribution, release profile, and encapsulation efficiency (EE). In addition, in vitro cytotoxicity, in vitro cell apoptosis, and cellular uptake were evaluated. Liposomes exhibited small particle size (mean diameter ~ 100 nm) and narrow size distribution (polydispersity index (< 0.2) and high drug EE% (> 90%). The release from liposomes showed slower release compared to free drug solution as an additional time required for the release of drug from the liposome lipid bilayer. Liposome loaded with doxorubicin or hispolon exhibited significantly higher cytotoxicity against B16BL6 melanoma cells as compared to doxorubicin solution or hispolon solution. Likewise, co-delivery of hispolon and doxorubicin liposomes showed two-fold and three-fold higher cytotoxicity, as compared to hispolon liposomes or doxorubicin liposomes, respectively. In addition, co-delivery of doxorubicin and hispolon in liposomes enhanced apoptosis more than the individual drugs in the liposome formulation. In conclusion, the co-delivery of hispolon and doxorubicin could be a promising therapeutic approach to improve clinical outcomes against melanoma.
Collapse
|
13
|
Sadeghi SJ, Di Nardo G, Gilardi G. Chimeric cytochrome P450 3A4 used for in vitro prediction of food-drug interactions. Biotechnol Appl Biochem 2020; 67:541-548. [PMID: 32713008 DOI: 10.1002/bab.1993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/26/2022]
Abstract
Inhibition of cytochrome P450 (CYP)-mediated drug metabolism by dietary substances is the main cause of drug-food interactions in humans. The present study reports on the in vitro inhibition assays of human CYP3A4 genetically linked to the reductase domain of bacterial BM3 of Bacillus megaterium (BMR) resulting in the chimeric protein CYP3A4-BMR. The activity of this chimeric enzyme was initially measured colorimetrically with erythromycin as the substrate where KM values similar to published data were determined. Subsequently, the inhibition assays with three different dietary products, grapefruit juice, curcumin, and resveratrol, were carried out with the chimeric enzyme both in solution and immobilized on electrode surfaces. For the solution studies, nicotinamide adenine dinucleotide phosphate was added as the electron donor, whereas the need for this cofactor was obviated in the immobilized enzyme as it was supplied by the electrode. Inhibition of the N-demethylation of erythromycin by CYP3A4-BMR chimera was measured at increasing concentrations of the different dietary compounds with calculated IC50 values of 0.5%, 31 μM, and 250 μM for grapefruit juice, curcumin, and resveratrol measured in solution compared with 0.7%, 24 μM, and 208 μM measured electrochemically, respectively. These data demonstrate the feasibility of the use of both CYP3A4-BMR chimera as well as bioelectrochemistry for in vitro studies of not only drug-food interactions but also prediction of adverse drug reactions in this important P450 enzyme.
Collapse
Affiliation(s)
- Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Centre for Nanostructured Interfaces and Surfaces, University of Torino, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Centre for Nanostructured Interfaces and Surfaces, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Ferraz da Costa DC, Pereira Rangel L, Quarti J, Santos RA, Silva JL, Fialho E. Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy. Molecules 2020; 25:E3531. [PMID: 32752302 PMCID: PMC7436232 DOI: 10.3390/molecules25153531] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer-the most commonly occurring cancer in women-chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.
Collapse
Affiliation(s)
- Danielly C. Ferraz da Costa
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Julia Quarti
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ronimara A. Santos
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliane Fialho
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
15
|
Kowalczyk T, Sitarek P, Toma M, Picot L, Wielanek M, Skała E, Śliwiński T. An Extract of Transgenic Senna obtusifolia L. Hairy Roots with Overexpression of PgSS1 Gene in Combination with Chemotherapeutic Agent Induces Apoptosis in the Leukemia Cell Line. Biomolecules 2020; 10:E510. [PMID: 32230928 PMCID: PMC7226363 DOI: 10.3390/biom10040510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Many biologically-active plant-derived compounds have therapeutic or chemopreventive effects. The use of plant in vitro cultures in conjunction with modern genetic engineering techniques allows greater amounts of valuable secondary metabolites to be obtained without interfering with the natural environment. This work presents the first findings concerning the acquisition of transgenic hairy roots of Senna obtusifolia overexpressing the gene encoding squalene synthase 1 from Panax ginseng (PgSS1) (SOPSS hairy loot lines) involved in terpenoid biosynthesis. Our results confirm that one of PgSS1-overexpressing hairy root line extracts (SOPSS2) possess a high cytotoxic effect against a human acute lymphoblastic leukemia (NALM6) cell line. Further analysis of the cell cycle, the expression of apoptosis-related genes (TP53, PUMA, NOXA, BAX) and the observed decrease in mitochondrial membrane potential also confirmed that the SOPSS2 hairy root extract displays the highest effects; similar results were also obtained for this extract combined with doxorubicin. The high cytotoxic activity, observed both alone or in combination with doxorubicin, may be due to the higher content of betulinic acid as determined by HPLC analysis. Our results suggest synergistic effects of tested extract (betulinic acid in greater amount) with doxorubicin which may be used in the future to develop new effective strategies of cancer chemosensitization.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (P.S.); (E.S.)
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.T.); (T.Ś.)
| | - Laurent Picot
- Faculté des Sciences et Technologies, La Rochelle Université, UMRi CNRS 7266 LIENSs, CEDEX 1, F-17042 La Rochelle, France;
| | - Marzena Wielanek
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (P.S.); (E.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.T.); (T.Ś.)
| |
Collapse
|
16
|
Becit M, Aydin S. An In Vitro Study on the Interactions of Pycnogenol ® with Cisplatin in Human Cervical Cancer Cells. Turk J Pharm Sci 2020; 17:1-6. [PMID: 32454754 DOI: 10.4274/tjps.galenos.2018.97759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 01/17/2023]
Abstract
Objectives In the treatment of cancer, it is intended to increase the anticancer effect and decrease cytotoxicity using various plant-derived phenolic compounds with chemotherapeutic drugs. Pycnogenol® (PYC), a phenolic compound, has been the subject of many studies. Since the mechanisms of the interactions of PYC with cisplatin need to be clarified, we aimed to determine the effects of PYC on cisplatin cytotoxicity in human cervix cancer cells (HeLa) and to evaluate the genotoxicity of PYC. Materials and Methods The cytotoxicity of cisplatin and PYC was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HeLa cells for 24 h and 48 h. The effect of PYC against oxidative DNA damage was evaluated using the comet assay. Results The IC50 values of cisplatin were 22.4 μM and 12.3 μM for 24 h and 48 h, respectively. The IC50 values of PYC were 261 μM and 213 μM for 24 h and 48 h, respectively. For 24 h exposure, PYC significantly reduced the IC50 value of cisplatin at the selected concentrations (15.6-500 μM). For 48 h exposure, PYC did not change the cytotoxicity of cisplatin at concentrations between 15.6 and 125 μM, but significantly reduced it at concentrations of 250 μM and 500 μM. PYC alone did not induce DNA damage at concentrations of 10 μM or 25 μM; however, it significantly induced DNA damage at higher concentrations (50-100 μM). It also significantly reduced H2O2-induced DNA damage at all concentrations studied (10-100 μM). Conclusion Our results suggest that PYC may increase the cisplatin cytotoxicity in HeLa cells at nongenotoxic doses. The results might contribute to the anticancer effect of cisplatin with PYC in cervical carcinoma, but in order to confirm this result further in vitro studies with cancer cell lines and in vivo studies are needed.
Collapse
Affiliation(s)
- Merve Becit
- Atatürk University, Faculty of Pharmacy, Department of Pharmacology, Erzurum, Turkey
| | - Sevtap Aydin
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| |
Collapse
|
17
|
Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020; 10:E37. [PMID: 31952212 PMCID: PMC7023240 DOI: 10.3390/metabo10010037] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Plant-derived natural products have long been considered a valuable source of lead compounds for drug development. Natural extracts are usually composed of hundreds to thousands of metabolites, whereby the bioactivity of natural extracts can be represented by synergism between several metabolites. However, isolating every single compound from a natural extract is not always possible due to the complex chemistry and presence of most secondary metabolites at very low levels. Metabolomics has emerged in recent years as an indispensable tool for the analysis of thousands of metabolites from crude natural extracts, leading to a paradigm shift in natural products drug research. Analytical methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) are used to comprehensively annotate the constituents of plant natural products for screening, drug discovery as well as for quality control purposes such as those required for phytomedicine. In this review, the current advancements in plant sample preparation, sample measurements, and data analysis are presented alongside a few case studies of the successful applications of these processes in plant natural product drug discovery.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| |
Collapse
|
18
|
Abroodi Z, Sajedi N, Nikbakht M, Soleimani M. Estrogen Receptor Beta (ERβ) May Act as Mediator in Apoptotic Induction of Grape Seed Extract (GSE). Asian Pac J Cancer Prev 2019; 20:3729-3734. [PMID: 31870115 PMCID: PMC7173385 DOI: 10.31557/apjcp.2019.20.12.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Grape seed extract is a complex mixture of polyphenols. Its anti-tumor effects have been reported by several studies. Estrogen receptors (ERs) are commonly considered as important markers for breast cancer. The present study aimed to evaluate the apoptotic effects of GSE on MCF7 breast cancer cells and assessed the expression of ERβ during treatment of cells with GSE. MATERIAL AND METHODS The half maximal inhibitory concentration (IC50) of GSE in MCF7 breast cancer cells were calculated by treating cells with serial dilution of GSE for 48 hours and cell viability evaluated using MTT assay. Then cells assigned to three groups: control (no treatment), DMSO (cells treated with 0.05% of DMSO) and GSE group (cells treated with of GSE for 48 hours). The apoptosis assay was performed by detecting Annexin V protein by flow cytometry. The gene expression of ERβ and caspase-3 was evaluated by Real-Time PCR. RESULTS Cells in GSE group treated with GSE IC50 concentration for 48 hours. Annexin V staining assay, represented early apoptosis detected by flow cytometry analysis showed significantly higher expression (p<0.01) than control and DMSO groups. Moreover, results of Real-Time PCR showed a significant expression in ERβ and caspase-3 genes in GSE group compared to control and DMSO groups (Fold change = 2.3 and 3.5, respectively). CONCLUSION GSE may induce apoptosis in MCF7 human breast cancer cells by activation of ERβ gene.
Collapse
Affiliation(s)
| | | | | | - Mitra Soleimani
- Department of anatomical sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Salehi B, Vlaisavljevic S, Adetunji CO, Adetunji JB, Kregiel D, Antolak H, Pawlikowska E, Uprety Y, Mileski KS, Devkota HP, Sharifi-Rad J, Das G, Patra JK, Jugran AK, Segura-Carretero A, Contreras MDM. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Pro-Apoptotic Effect of Grape Seed Extract on MCF-7 Involves Transient Increase of Gap Junction Intercellular Communication and Cx43 Up-Regulation: A Mechanism of Chemoprevention. Int J Mol Sci 2019; 20:ijms20133244. [PMID: 31269652 PMCID: PMC6651466 DOI: 10.3390/ijms20133244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests dietary antioxidants reduce the risk of several cancers. Grape seeds extracts (GSE) are a rich source of polyphenols known to have antioxidant, chemopreventive and anticancer properties. Herein, we investigated the in vitro effects and putative action mechanisms of a grape seed extract (GSE) on human breast cancer cells (MCF-7). The effects of GSE were evaluated on cell proliferation, apoptosis and gap-junction-mediated cell-cell communications (GJIC), as basal mechanism involved in the promotion stage of carcinogenesis. GSE (0.05-100 μg/mL) caused a significant dose- and time-dependent inhibition of MCF-7 viability and induced apoptotic cell death, as detected by Annexin-V/Propidium Iodide. Concurrently, GSE induced transient but significant enhancement of GJIC in non-communicating MCF-7 cells, as demonstrated by the scrape-loading/dye-transfer (SL/DT) assay and an early and dose-dependent re-localization of the connexin-43 (Cx43) proteins on plasma membranes, as assayed by immunocytochemistry. Finally, real-time-PCR has evidenced a significant increase in cx43 mRNA expression. The results support the hypothesis that the proliferation inhibition and pro-apoptotic effect of GSE against this breast cancer cell model are mediated by the GJIC improvement via re-localization of Cx43 proteins and up-regulation of cx43 gene, and provide further insight into the action mechanisms underlying the health-promoting action of dietary components.
Collapse
|
21
|
Lerra L, Farfalla A, Sanz B, Cirillo G, Vittorio O, Voli F, Le Grand M, Curcio M, Nicoletta FP, Dubrovska A, Hampel S, Iemma F, Goya GF. Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics 2018; 11:E3. [PMID: 30583524 PMCID: PMC6359315 DOI: 10.3390/pharmaceutics11010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin⁻human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44⁻0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
Collapse
Affiliation(s)
- Luigi Lerra
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Annafranca Farfalla
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Beatriz Sanz
- nB nanoSacale Biomagnetics SL, 50012 Zaragoza, Spain.
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-Oncoray, 01307 Dresden, Germany.
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Gerardo F Goya
- Institute of Nanoscience of Aragon (INA), Department of Condensed Matter Physics, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
22
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
23
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 636] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
24
|
Kadooka K, Sato M, Matsumoto T, Kuhara S, Katakura Y, Fujimura T. Pig testis extract augments adiponectin expression and secretion through the peroxisome proliferator-activated receptor signaling pathway in 3T3-L1 adipocytes. Cytotechnology 2018; 70:983-992. [PMID: 29582200 DOI: 10.1007/s10616-018-0213-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/05/2018] [Indexed: 01/14/2023] Open
Abstract
Adiponectin is a key molecule whose upregulation may ameliorate symptoms of type 2 diabetes mellitus and disorders of lipid metabolism. Several plant-derived components have been shown to enhance adiponectin secretion; however, there have been no reports on the effects of animal-derived products. Therefore, in the current study, we investigated whether hot-water extracts of specific livestock by-products induce the expression of adiponectin in mouse 3T3-L1 adipocytes. Out of the 11 extracts tested, pig testis extract (PTE) was found to enhance adiponectin expression and secretion by 3T3-L1 cells. Furthermore, simultaneous treatment with PTE and daidzein, a soy phytoestrogen, synergistically enhanced adiponectin secretion. Moreover, pretreatment with an estrogen receptor β antagonist (PHTPP) diminished adiponectin secretion from daidzein-treated cells but not from PTE-treated cells. Transcriptome analyses revealed that both daidzein and PTE regulate the peroxisome proliferator-activated receptor signaling pathway, although differences in the regulation of gene expression were observed between PTE- and daidzein-treated cells. These results suggest that PTE ameliorates lipid metabolic dysfunction by promoting adipocyte differentiation and enhancing adiponectin secretion via a mechanism different from that of daidzein.
Collapse
Affiliation(s)
- Keishi Kadooka
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, Japan
| | - Mikako Sato
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, Japan.
| | - Takashi Matsumoto
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, Japan
| | - Satoru Kuhara
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Yoshinori Katakura
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Tatsuya Fujimura
- R&D Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Javadi B. Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine. Nutr Cancer 2018. [DOI: 10.1080/01635581.2018.1446095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Kumawat MK, Thakur M, Gurung RB, Srivastava R. Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Sci Rep 2017; 7:15858. [PMID: 29158566 PMCID: PMC5696518 DOI: 10.1038/s41598-017-16025-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
We report a simple one-pot microwave assisted "green synthesis" of Graphene Quantum Dots (GQDs) using grape seed extract as a green therapeutic carbon source. These GQDs readily self-assemble, hereafter referred to as "self-assembled" GQDs (sGQDs) in the aqueous medium. The sGQDs enter via caveolae and clathrin-mediated endocytosis and target themselves into cell nucleus within 6-8 h without additional assistance of external capping/targeting agent. The tendency to self-localize themselves into cell nucleus also remains consistent in different cell lines such as L929, HT-1080, MIA PaCa-2, HeLa, and MG-63 cells, thereby serving as a nucleus labelling agent. Furthermore, the sGQDs are highly biocompatible and act as an enhancer in cell proliferation in mouse fibroblasts as confirmed by in vitro wound scratch assay and cell cycle analysis. Also, photoluminescence property of sGQDs (lifetime circa (ca.) 10 ns) was used for optical pH sensing application. The sGQDs show linear, cyclic and reversible trend in its fluorescence intensity between pH 3 and pH 10 (response time: ~1 min, sensitivity -49.96 ± 3.5 mV/pH) thereby serving as a good pH sensing agent. A simple, cost-effective, scalable and green synthetic approach based sGQDs can be used to develop selective organelle labelling, nucleus targeting in theranostics, and optical sensing probes.
Collapse
Affiliation(s)
- Mukesh Kumar Kumawat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Mukeshchand Thakur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Raju B Gurung
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
27
|
Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1468957. [PMID: 29250124 PMCID: PMC5698829 DOI: 10.1155/2017/1468957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.
Collapse
|
28
|
Grace Nirmala J, Evangeline Celsia S, Swaminathan A, Narendhirakannan RT, Chatterjee S. Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells. Cytotechnology 2017; 70:537-554. [PMID: 28983752 DOI: 10.1007/s10616-017-0125-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 07/14/2017] [Indexed: 01/02/2023] Open
Abstract
Vitis vinifera. L is one of the most widely consumed fruits in the world and are rich in antioxidant abundant polyphenols. The present study was carried out to assess the antiproliferative and apoptotic effects of Vitis vinifera peel and seed extracts in an in vitro model using human epidermoid carcinoma A431 cell lines. Vitis vinifera peel and seed extracts were incubated with A431 cells to evaluate the antiproliferative, apoptotic effects and the morphological apoptotic changes induced by the extracts. Mitochondrial membrane potential was also measured after incubating the cells with extracts. At the inhibitory concentration (IC50), grape seed extract (111.11 µg/mL) and grape peel extract (319.14 µg/mL) were incubated for 24 h with A431 cells. Vitis vinifera peel and seed extracts were able to impart cytotoxic effects, induced apoptosis and apoptotic morphological changes in A431 cells significantly (p < 0.01) and this effect is associated with the interference with mitochondrial membrane potential. This reduction in mitochondrial membrane potential probably initiated the apoptotic cascade in the extracts treated cells. Vitis vinifera peel and seed phytochemicals can selectively target cancer cells and the phytochemicals that are occluded can serve as potential anticancer agents providing better efficacy in killing cancer cells.
Collapse
Affiliation(s)
- J Grace Nirmala
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University (Karunya Institute of Technology and Sciences), Karunya Nagar, Coimbatore, Tamil Nadu, 641 114, India
| | - S Evangeline Celsia
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University (Karunya Institute of Technology and Sciences), Karunya Nagar, Coimbatore, Tamil Nadu, 641 114, India
| | - Akila Swaminathan
- AU-KBC Research Centre and Department of Biotechnology, Anna University, Chennai, India
| | - R T Narendhirakannan
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University (Karunya Institute of Technology and Sciences), Karunya Nagar, Coimbatore, Tamil Nadu, 641 114, India.
| | - Suvro Chatterjee
- AU-KBC Research Centre and Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
29
|
Zhang C, Chen W, Zhang X, Zheng Y, Yu F, Liu Y, Wang Y. Grape seed proanthocyanidins induce mitochondrial pathway-mediated apoptosis in human colorectal carcinoma cells. Oncol Lett 2017; 14:5853-5860. [PMID: 29113217 PMCID: PMC5661607 DOI: 10.3892/ol.2017.6992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/17/2017] [Indexed: 01/22/2023] Open
Abstract
Grape seed proanthocyanidins (GSPs) have been reported to possess a wide array of pharmacological and biochemical properties. Recently, GSPs have been reported to inhibit various types of colorectal cancer; however, the mechanism(s) involved remain unclear. The present study investigated the effects of GSPs on HCT-116 human colorectal carcinoma cell line. Exposure of these cells to GSPs for 48 h resulted in a significant concentration-dependent inhibition of cell viability. Further investigation indicated that GSPs induced apoptosis of these cells. Analyses of mRNA expression levels using reverse transcription-quantitative polymerase chain reaction and protein expression levels by western blotting revealed that this was associated with increased expression levels of p53 tumor suppressor protein, cytochrome c, and pro-apoptotic proteins, apoptosis regulator Bax (Bax) and Bcl-2 homologous antagonist/killer. Furthermore, decreased expression levels of the anti-apoptotic protein, B cell lymphoma-2 and activation of caspase-2, caspase-3 and caspase-9 were demonstrated. GSP-induced loss of mitochondrial membrane potential was also detected by JC-1 assay. These findings suggested that GSPs induced colon cancer cell apoptosis via the mitochondrial signaling pathway. This provided evidence indicating that GSPs may provide potential chemotherapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China.,Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, P.R. China
| | - Weili Chen
- Department of Chemistry and Physics, Heihe University, Heihe, Heilongjiang 164300, P.R. China
| | - Xuhao Zhang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130031, P.R. China
| | - Yanbing Zheng
- Department of Chemistry and Physics, Heihe University, Heihe, Heilongjiang 164300, P.R. China
| | - Fengli Yu
- Department of Chemistry and Physics, Heihe University, Heihe, Heilongjiang 164300, P.R. China
| | - Yulong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
30
|
Manandhar S, Kim CG, Lee SH, Kang SH, Basnet N, Lee YM. Exostosin 1 regulates cancer cell stemness in doxorubicin-resistant breast cancer cells. Oncotarget 2017; 8:70521-70537. [PMID: 29050299 PMCID: PMC5642574 DOI: 10.18632/oncotarget.19737] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 06/26/2017] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are associated with cancer recurrence following radio/chemotherapy owing to their high resistance to therapeutic intervention. In this study, we investigated the role of exostoxin 1 (EXT1), an endoplasmic reticulum (ER)-residing type II transmembrane glycoprotein, in cancer cell stemness. DNA microarray analysis revealed that doxorubicin-resistant MCF7/ADR cells have high levels of EXT1 expression compared to its parental cell line, MCF7. These cells showed significantly higher populations of CSCs and larger populations of aldehyde dehydrogenase (ALDH+) and CD44+/CD24-cells, as compared to MCF7 cells. siRNA-mediated knockdown of EXT1 in MCF7/ADR cells significantly reduced cancer stem cell markers, populations of ALDH+and CD44+/CD24- cells, mRNA and protein expression for CD44, and mammosphere number. Furthermore, epithelial mesenchymal transition (EMT) markers and migratory behavior were also repressed with reduced EXT1. In an in vitro soft agar colony formation assay, EXT1 knockdown by short hairpin RNA (shRNA) reduced the colony formation ability of these cells. Based on these results, we suggest that EXT1 could be a promising novel target to overcome cancer cell stemness in anthracycline-based therapeutic resistance.
Collapse
Affiliation(s)
- Sarala Manandhar
- BK21 Plus Multi-Omics Based Creative Drug Research Training Team (22A20154413076), National Basic Research Laboratory of Vascular Homeostasis Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| | - Chang-Gu Kim
- BK21 Plus Multi-Omics Based Creative Drug Research Training Team (22A20154413076), National Basic Research Laboratory of Vascular Homeostasis Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| | - Sun-Hee Lee
- BK21 Plus Multi-Omics Based Creative Drug Research Training Team (22A20154413076), National Basic Research Laboratory of Vascular Homeostasis Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| | - Soo Hyun Kang
- BK21 Plus Multi-Omics Based Creative Drug Research Training Team (22A20154413076), National Basic Research Laboratory of Vascular Homeostasis Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| | - Nikita Basnet
- BK21 Plus Multi-Omics Based Creative Drug Research Training Team (22A20154413076), National Basic Research Laboratory of Vascular Homeostasis Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| | - You Mie Lee
- BK21 Plus Multi-Omics Based Creative Drug Research Training Team (22A20154413076), National Basic Research Laboratory of Vascular Homeostasis Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
31
|
Ling B, Michel D, Sakharkar MK, Yang J. Evaluating the cytotoxic effects of the water extracts of four anticancer herbs against human malignant melanoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3563-3572. [PMID: 27843296 PMCID: PMC5098531 DOI: 10.2147/dddt.s119214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant melanoma (MM) is the most dangerous type of skin cancer, killing more than 1,100 people each year in Canada. Prognosis for late stage and recurrent MM is extremely poor due to insensitivity to chemotherapy drugs, and thus many patients seek complementary and alternative medicines. In this study, we examined four commonly used anticancer herbs in traditional Chinese medicine, Hedyotis diffusa, Scutellaria barbata, Lobelia chinensis, and Solanum nigrum, for their in vitro antitumor effects toward human MM cell line A-375. The crude water extract of S. nigrum (1 g of dry herb in 100 mL water) and its 2-fold dilution caused 52.8%±13.0% and 17.3%±2.7% cytotoxicity in A-375 cells, respectively (P<0.01). The crude water extract of H. diffusa caused 11.1%±12.4% cytotoxicity in A-375 cells with no statistical significance (P>0.05). Higher concentrated formulation might be needed for H. diffusa to exert its cytotoxic effect against A-375 cells. No cytotoxicity was observed in A-375 cells treated with crude water extract of S. barbata and L. chinensis. Further high performance liquid chromatography-tandem mass spectroscopy analysis of the herbal extracts implicated that S. nigrum and H. diffusa might have adopted the same bioactive components for their cytotoxic effects in spite of belonging to two different plant families. We also showed that the crude water extract of S. nigrum reduced intracellular reactive oxygen species generation in A-375 cells, which may lead to a cytostatic effect. Furthermore, synergistic effect was achieved when crude water extract of S. nigrum was coadministered with temozolomide, a chemotherapy drug for skin cancer.
Collapse
Affiliation(s)
- Binbing Ling
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK; Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Deborah Michel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK
| |
Collapse
|
32
|
Pereira A, Bester M, Soundy P, Apostolides Z. Anti-proliferative properties of commercial Pelargonium sidoides tincture, with cell-cycle G0/G1 arrest and apoptosis in Jurkat leukaemia cells. PHARMACEUTICAL BIOLOGY 2016; 54:1831-1840. [PMID: 26794080 DOI: 10.3109/13880209.2015.1129545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Context Pelargonium sidoides DC (Geraniaceae) is an important medicinal plant indigenous to South Africa and Lesotho. Previous studies have shown that root extracts are rich in polyphenolic compounds with antibacterial, antiviral and immunomodulatory activities. Little is known regarding the anticancer properties of Pelargonium sidoides extracts. Objective This study evaluates the anti-proliferative effects of a Pelargonium sidoides radix mother tincture (PST). Materials and methods The PST was characterized by LC-MS/MS. Anti-proliferative activity was evaluated in the pre-screen panel of the National Cancer Institute (NCI-H460, MCF-7 and SF-268) and the Jurkat leukaemia cell line at concentrations of 0-150 μg/mL. The effect on cell growth was determined with sulphorhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays after 72 h. The effect on cell cycle and apoptosis induction in Jurkat cells was determined by flow cytometry with propidium iodide and Annexin V: fluorescein isothiocyanate staining. Results Dihydroxycoumarin sulphates, gallic acid as well as gallocatechin dimers and trimers were characterized in PST by mass spectrometry. Moderate anti-proliferative effects with GI50 values between 40 and 80 μg/mL were observed in the NCI-pre-screen panel. Strong activity observed with Jurkat cells with a GI50 value of 6.2 μg/mL, significantly better than positive control 5-fluorouracil (GI50 value of 9.7 μg/mL). The PST arrested Jurkat cells at the G0/G1 phase of the cell cycle and increased the apoptotic cells from 9% to 21%, while the dead cells increased from 4% to 17%. Conclusion We present evidence that P. sidoides has cancer cell type-specific anti-proliferative effects and may be a source of novel anticancer molecules.
Collapse
Affiliation(s)
- Andreia Pereira
- a Department of Biochemistry, Faculty of Natural and Agricultural Sciences , University of Pretoria , Pretoria , South Africa
| | - Megan Bester
- b Department of Anatomy, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Puffy Soundy
- c Department of Crop Sciences, Faculty of Science , Tshwane University of Technology , Pretoria , South Africa
| | - Zeno Apostolides
- a Department of Biochemistry, Faculty of Natural and Agricultural Sciences , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
33
|
Razmaraii N, Babaei H, Mohajjel Nayebi A, Assadnassab G, Ashrafi Helan J, Azarmi Y. Cardioprotective Effect of Grape Seed Extract on Chronic Doxorubicin-Induced Cardiac Toxicity in Wistar Rats. Adv Pharm Bull 2016; 6:423-433. [PMID: 27766227 PMCID: PMC5071806 DOI: 10.15171/apb.2016.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 01/11/2023] Open
Abstract
Purpose: The aim of the present study was to determine the ability of grape seed extract (GSE) as a powerful antioxidant in preventing adverse effect of doxorubicin (DOX) on heart function. Methods: Male rats were divided into three groups: control, DOX (2 mg/kg/48h, for 12 days) and GSE (100 mg/kg/24h, for 16 days) plus DOX. Left ventricular (LV) function and hemodynamic parameters were assessed using echocardiography, electrocardiography and a Millar pressure catheter. Histopathological analysis and in vitro antitumor activity were also evaluated. Results: DOX induced heart damage in rats through decreasing the left ventricular systolic and diastolic pressures, rate of rise/decrease of LV pressure, ejection fraction, fractional shortening and contractility index as demonstrated by echocardiography, electrocardiography and hemodynamic parameters relative to control group. Our data demonstrated that GSE treatment markedly attenuated DOX-induced toxicity, structural changes in myocardium and improved ventricular function. Additionally, GSE did not intervene with the antitumor effect of DOX. Conclusion: Collectively, the results suggest that GSE is potentially protective against DOX-induced toxicity in rat heart and maybe increase therapeutic index of DOX in human cancer treatment.
Collapse
Affiliation(s)
- Nasser Razmaraii
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | | | - Gholamreza Assadnassab
- Department of Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz, 5157944533, Iran
| | - Javad Ashrafi Helan
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 5166617564, Iran
| | - Yadollah Azarmi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| |
Collapse
|
34
|
Reddivari L, Charepalli V, Radhakrishnan S, Vadde R, Elias RJ, Lambert JD, Vanamala JKP. Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:278. [PMID: 27506388 PMCID: PMC4977641 DOI: 10.1186/s12906-016-1254-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
Background We have previously shown that the grape bioactive compound resveratrol (RSV) potentiates grape seed extract (GSE)-induced colon cancer cell apoptosis at physiologically relevant concentrations. However, RSV-GSE combination efficacy against colon cancer stem cells (CSCs), which play a key role in chemotherapy and radiation resistance, is not known. Methods We tested the anti-cancer efficacy of the RSV-GSE against colon CSCs using isolated human colon CSCs in vitro and an azoxymethane-induced mouse model of colon carcinogenesis in vivo. Results RSV-GSE suppressed tumor incidence similar to sulindac, without any gastrointestinal toxicity. Additionally, RSV-GSE treatment reduced the number of crypts containing cells with nuclear β-catenin (an indicator of colon CSCs) via induction of apoptosis. In vitro, RSV-GSE suppressed - proliferation, sphere formation, nuclear translocation of β-catenin (a critical regulator of CSC proliferation) similar to sulindac in isolated human colon CSCs. RSV-GSE, but not sulindac, suppressed downstream protein levels of Wnt/β-catenin pathway, c-Myc and cyclin D1. RSV-GSE also induced mitochondrial-mediated apoptosis in colon CSCs characterized by elevated p53, Bax/Bcl-2 ratio and cleaved PARP. Furthermore, shRNA-mediated knockdown of p53, a tumor suppressor gene, in colon CSCs did not alter efficacy of RSV-GSE. Conclusion The suppression of Wnt/β-catenin signaling and elevated mitochondrial-mediated apoptosis in colon CSCs support potential clinical testing/application of grape bioactives for colon cancer prevention and/or therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1254-2) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Abdel-Kawi SH, Hashem KS, Abd-Allah S. Mechanism of diethylhexylphthalate (DEHP) induced testicular damage and of grape seed extract-induced protection in the rat. Food Chem Toxicol 2016; 90:64-75. [DOI: 10.1016/j.fct.2016.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
|
36
|
Nirmala JG, Akila S, Nadar MSAM, Narendhirakannan RT, Chatterjee S. Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra16310f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytotoxic and apoptotic effects of Vitis vinifera seed gold nanoparticles on A431 cell lines.
Collapse
Affiliation(s)
- J. Grace Nirmala
- Department of Biotechnology
- School of Biotechnology and Health Sciences
- Karunya University
- Karunya Institute of Technology and Sciences
- Coimbatore – 641 114
| | - S. Akila
- Life Sciences Division
- AU-KBC Research Centre
- Madras Institute of Technology
- Anna University
- Chennai (Madras) – 600 044
| | - M. S. A. Muthukumar Nadar
- Department of Biotechnology
- School of Biotechnology and Health Sciences
- Karunya University
- Karunya Institute of Technology and Sciences
- Coimbatore – 641 114
| | - R. T. Narendhirakannan
- Department of Biotechnology
- School of Biotechnology and Health Sciences
- Karunya University
- Karunya Institute of Technology and Sciences
- Coimbatore – 641 114
| | - Suvro Chatterjee
- Life Sciences Division
- AU-KBC Research Centre
- Madras Institute of Technology
- Anna University
- Chennai (Madras) – 600 044
| |
Collapse
|
37
|
Li SG, Xu SZ, Niu Q, Ding YS, Pang LJ, Ma RL, Jing MX, Wang K, Ma XM, Feng GL, Liu JM, Zhang XF, Xiang HL, Li F. Lutein alleviates arsenic-induced reproductive toxicity in male mice via Nrf2 signaling. Hum Exp Toxicol 2015; 35:491-500. [DOI: 10.1177/0960327115595682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study aims to investigate the mechanisms involved in the action of lutein (LU) alleviating arsenic-induced reproductive toxicity using mice model. Forty male Kunming mice were received following treatments by gavage: normal saline solution (control), arsenic trioxide (ATO; 5 mg/kg/day), LU (40 mg/kg/day), and ATO + LU (5 mg/kg/day + 40 mg/kg/day). At the end, the mice were killed by cervical dislocation and weighed. Pathological examination was done on the testis. The biomedical parameters including superoxide dismutase (SOD), glutathione (GSH), total antioxidative capability, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and reproductive indexes were analyzed. The messenger RNA (mRNA) and protein expression of Nrf2, heme oxygenase 1 (HO-1), glutathione S-transferase (GST), nicotinamide adenine dinucleotide phosphate dehydrogenase, quinone 1 (NQO1) in testis were detected by real-time polymerase chain reaction and Western blot. We found that there was a decrease in sperm count; testis somatic index; the activities of SOD, GSH, total antioxidative capacity ( p < 0.01, respectively) in ATO-treated mice, while there was an increase in the levels of sperm abnormalities, MDA, and 8-OHdG than control ( p < 0.01, respectively). The groups treated with ATO + LU showed recovery of the measured parameters between those of ATO or saline-treated group. The antagonized interaction between ATO and LU was statistically significant ( p < 0.01). Mice treated with ATO + LU also showed greater mRNA expression of Nrf2, HO-1, NQO1, and GST than ATO or saline-treated groups. These findings suggest that LU alleviates reproductive toxicity induced by arsenic in male mice via Nrf2 signaling, which implicates a possible mechanism of LU in preventing the reproductive injury, and elucidates that consuming the rich plant sources of LU will alleviate the reproductive toxicity induced by chemicals.
Collapse
Affiliation(s)
- SG Li
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - SZ Xu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Q Niu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - YS Ding
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - LJ Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - RL Ma
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - MX Jing
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - K Wang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - XM Ma
- Department of Pathology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - GL Feng
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - JM Liu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - XF Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - HL Xiang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - F Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
38
|
Joshi SS, Su X, D'Souza DH. Antiviral effects of grape seed extract against feline calicivirus, murine norovirus, and hepatitis A virus in model food systems and under gastric conditions. Food Microbiol 2015; 52:1-10. [PMID: 26338111 DOI: 10.1016/j.fm.2015.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/14/2015] [Accepted: 05/25/2015] [Indexed: 01/27/2023]
Abstract
Grape seed extract (GSE) has antiviral activities against hepatitis A virus (HAV) and human norovirus surrogates (feline calicivirus (FCV-F9) and murine norovirus (MNV-1)). The objectives of this study were to determine (1) time and dose-dependence of GSE against FCV-F9, MNV-1, and HAV at room temperature (RT) and 37 °C over 24 h; and (2) GSE effects in model foods (apple juice (AJ) and 2% milk) and simulated gastric conditions at 37 °C. Viruses at ∼5 log PFU/ml were treated with 0.5-8 mg/ml GSE prepared in water, AJ, milk or gastric juices, or water over 24 h at RT or 37 °C. Infectivity of triplicate treatments was evaluated using plaque assays. GSE effects increased with time and concentration. GSE at 1 mg/ml in AJ reduced MNV-1 to undetectable levels after 1 h and by 1 log in milk after 24 h. GSE at 1 and 2 mg/ml in AJ reduced HAV to undetectable levels after 1 h, while 2 and 4 mg/ml GSE in milk caused ∼1 log reduction after 24 h. GSE at 2 mg/ml in intestinal fluid reduced FCV-F9, MNV-1 and HAV to undetectable levels after 6 h. GSE appears to be a suitable natural option for foodborne viral reduction.
Collapse
Affiliation(s)
- Snehal S Joshi
- Department of Food Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Xiaowei Su
- Department of Food Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Doris H D'Souza
- Department of Food Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
39
|
Vitis vinifera (Muscat Variety) Seed Ethanolic Extract Preserves Activity Levels of Enzymes and Histology of the Liver in Adult Male Rats with Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:542026. [PMID: 25852767 PMCID: PMC4380087 DOI: 10.1155/2015/542026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/14/2014] [Indexed: 11/17/2022]
Abstract
The effect of V. vinifera seeds on carbohydrate metabolizing enzymes and other enzymes of the liver in diabetes is currently unknown. We therefore investigated changes in the activity levels of these enzymes following V. vinifera seed extract administration to diabetic rats. Methods. V. vinifera seed ethanolic extract (250 and 500 mg/kg/day) or glibenclamide (600 μg/kg/day) was administered to streptozotocin-induced male diabetic rats for 28 consecutive days. At the end of treatment, liver was harvested and activity levels of various liver enzymes were determined. Levels of thiobarbituric acid reactive substances (TBARS) were measured in liver homogenates and liver histopathological changes were observed. Results. V. vinifera seed ethanolic extract was able to prevent the decrease in ICDH, SDH, MDH, and G-6-PDH and the increase in LDH activity levels in liver homogenates. The seed extract also caused serum levels of ALT, AST, ALP, ACP, GGT, and total bilirubin to decrease while causing total proteins to increase. Additionally, the levels of ALT, AST, and TBARS in liver homogenates were decreased. Histopathological changes in the liver were reduced. Conclusion. Near normal activity levels of various enzymes and histology of the liver following V. vinifera seed ethanolic extract administration may be due to decrease in liver oxidative stress in diabetes.
Collapse
|
40
|
Impei S, Gismondi A, Canuti L, Canini A. Metabolic and biological profile of autochthonous Vitis vinifera L. ecotypes. Food Funct 2015; 6:1526-38. [DOI: 10.1039/c5fo00110b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitis viniferaL. is a plant species rich in phenolic compounds that are usually associated with the health benefits of wine and grape consumption in the diet.
Collapse
Affiliation(s)
- Stefania Impei
- Dept. of Biology
- University of Rome “Tor Vergata”
- Rome
- Italy
| | | | - Lorena Canuti
- Dept. of Biology
- University of Rome “Tor Vergata”
- Rome
- Italy
| | | |
Collapse
|
41
|
Chung KS, Choi HE, Shin JS, Cho EJ, Cho YW, Choi JH, Baek NI, Lee KT. Chemopreventive effects of standardized ethanol extract from the aerial parts of Artemisia princeps Pampanini cv. Sajabal via NF-κB inactivation on colitis-associated colon tumorigenesis in mice. Food Chem Toxicol 2014; 75:14-23. [PMID: 25449198 DOI: 10.1016/j.fct.2014.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 12/19/2022]
Abstract
Chronic inflammation is an underlying risk factor of colon cancer, and NF-κB plays a critical role in the development of inflammation-associated colon cancer in an AOM/DSS mouse model. The aim of this study was to determine whether the standardized ethanol extract obtained from the aerial parts of Artemisia princeps Pampanini cv. Sajabal (EAPP) is effective at preventing inflammation-associated colon cancer, and if so, to identify the signaling pathways involved. In the present study, protective efficacy of EAPP on tumor formation and the infiltrations of monocytes and macrophages in colons of an AOM/DSS mouse model were evaluated. It was found that colitis and tumor burdens showed statistically meaningful improvements after EAPP administration. Furthermore, these improvements were accompanied by a reduction in NF-κB activity and in the levels of NF-κB-dependent pro-survival proteins, that is, survivin, cFLIP, XIAP, and Bcl-2. In vitro, EAPP significantly reduced NF-κB activation and the levels of IL-1β and IL-8 mRNA and pro-survival proteins in HT-29 and HCT-116 colon cancer cells. Furthermore, EAPP caused caspase-dependent apoptosis. Based on these results, the authors suggest EAPP suppresses inflammatory responses and induces apoptosis partly via NF-κB inactivation, and that EAPP could be useful for the prevention of colitis-associated tumorigenesis.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hye-Eun Choi
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Reactive Oxygen Species Medical Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eu-Jin Cho
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Young-Wuk Cho
- Reactive Oxygen Species Medical Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jung-Hye Choi
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
42
|
Hong CE, Park AK, Lyu SY. Synergistic anticancer effects of lectin and doxorubicin in breast cancer cells. Mol Cell Biochem 2014; 394:225-35. [PMID: 24878989 DOI: 10.1007/s11010-014-2099-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/15/2014] [Indexed: 01/02/2023]
Abstract
We studied the effects, either combined or alone, of lectin from Korean mistletoe (Viscum album var. coloratum agglutinin, VCA) and doxorubicin (DOX) in MCF-7 (estrogen receptor-positive) and MDA-MB231 (estrogen receptor-negative) human breast cancer cells. When VCA and DOX were combined, a strong synergistic effect was shown in cell growth inhibition, compared to VCA or DOX treatment alone. In quantitative apoptosis studies analyzed by flow cytometry, a combination of two agents showed an increase in apoptosis in both cells, compared to agents alone. Also, pro-apoptotic proteins including Bax, Bik, and Puma were increased in both cells, and the survival factor Bcl-2 was inhibited in MCF-7 cells when drugs were combined. Furthermore, VCA combined with DOX mediated S phase arrest, accompanied with a decrease of cell number at G0/G1 phase. This suggests that VCA and DOX combination may possibly lead to a novel strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Chang-Eui Hong
- Department of Biology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 500-757, Korea
| | | | | |
Collapse
|
43
|
Grape seed extract supplementation attenuates the heat stress-induced responses of jejunum epithelial cells in Simmental × Qinchuan steers. Br J Nutr 2014; 112:347-57. [PMID: 24846452 DOI: 10.1017/s0007114514001032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Grape seed extract (GSE), a rich source of polyphenols, is reported to possess antioxidant, anti-inflammatory and immunomodulatory properties. The objective of the present study was to determine whether GSE could attenuate the heat stress-induced responses of jejunum epithelial cells (JEC) in cattle. The JEC of a steer (Simmental × Qinchuan) were exposed to heat stress for 2 h in the absence (0 μg/ml) or presence (10, 20, 40 and 80 μg/ml) of GSE in the culture medium. When cultured at 40°C, JEC supplemented with GSE exhibited increased glutathione peroxidase activity (P= 0·04), viability (P= 0·004), and mRNA expression of epidermal growth factor (EGF; P= 0·03) and EGF receptor (EGFR; P = 0·01). Under the same conditions, the cells exhibited decreased mRNA expression of IL-8 (P= 0·01) and TNF-α (P= 0·03) and decreased protein concentrations of IL-1β (P= 0·02), Toll-like receptor 4 (TLR4; P= 0·04) and heat shock protein 70 (HSP70; P< 0·001). When cultured at 43°C, JEC supplemented with GSE exhibited increased catalase activity (P= 0·04), viability (P< 0·001), and mRNA expression of EGF (P< 0·001) and EGFR (P< 0·001) and decreased protein concentrations of IL-1β (P< 0·001), TLR4 (P= 0·03) and HSP70 (P< 0·001), as well as mRNA expression of IL-8 (P< 0·001), TLR4 (P= 0·002) and TNF-α (P< 0·001). Temperature × GSE concentration interactions were also observed for the concentrations of IL-1β (P< 0·001), IL-8 (P< 0·001), TNF-α (P= 0·01) and HSP70 (P= 0·04) and viability (P< 0·001) of JEC. The results of the present study indicate that GSE can attenuate the responses of JEC induced by heat stress within a certain range of temperatures.
Collapse
|
44
|
Higgins JA, Zainol M, Brown K, Jones GDD. Anthocyans as tertiary chemopreventive agents in bladder cancer: anti-oxidant mechanisms and interaction with mitomycin C. Mutagenesis 2014; 29:227-35. [PMID: 24743948 DOI: 10.1093/mutage/geu009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer is associated with high rates of recurrence making tertiary chemoprevention an attractive intervention strategy. Anthocyanins have been shown to possess chemopreventive properties and are detectable in urine after oral ingestion, with higher concentrations achievable via intravesical administration alongside current chemotherapeutic regimens. Yet their apparent ability to protect against certain DNA damage may in turn interfere with cancer treatments. Our aim was therefore to determine the potential of anthocyanins as chemopreventive agents in bladder cancer, their mode of action and effects, both alone and in combination with mitomycin C (MMC). In this study we showed that mirtoselect, a standardised mixture of anthocyanins, possesses significant anti-proliferative activity, causing growth inhibition and apoptosis in bladder cancer cell lines. The anti-oxidative potential of mirtoselect was examined and revealed significantly fewer H2O2-induced DNA strand breaks, as well as oxidised DNA bases in pre-treated cells. In contrast, endogenous levels of oxidised DNA bases were unaltered. Investigations into the possible protective mechanisms associated with these anti-oxidant properties revealed that mirtoselect chelates metal ions. In mirtoselect/MMC combination studies, no adverse effects on measures of DNA damage were observed compared to treatment with MMC alone and there was evidence of enhanced cell death. Consistent with this, significantly more DNA crosslinks were formed in cells treated with the combination. These results show that mirtoselect exerts effects consistent with chemopreventive properties in bladder cancer cell lines and most importantly does so without adversely affecting the effects of drugs used in current treatment regimens. We also provide evidence that mirtoselect's anti-oxidative mechanism of action is via metal ion chelation. Overall these results suggest that mirtoselect could be an effective chemopreventive agent in bladder cancer and provides the necessary pre-clinical data for future in vivo animal studies and clinical trials.
Collapse
Affiliation(s)
- Jennifer A Higgins
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Murizal Zainol
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
45
|
Tafrihi M, Toosi S, Minaei T, Gohari AR, Niknam V, Arab Najafi SM. Anticancer Properties of Teucrium persicum in PC-3 Prostate Cancer Cells. Asian Pac J Cancer Prev 2014; 15:785-91. [DOI: 10.7314/apjcp.2014.15.2.785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Tyagi A, Raina K, Shrestha SP, Miller B, Thompson JA, Wempe MF, Agarwal R, Agarwal C. Procyanidin B2 3,3(″)-di-O-gallate, a biologically active constituent of grape seed extract, induces apoptosis in human prostate cancer cells via targeting NF-κB, Stat3, and AP1 transcription factors. Nutr Cancer 2013; 66:736-46. [PMID: 24191894 PMCID: PMC4079462 DOI: 10.1080/01635581.2013.783602] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recently, we identified procyanidin B2 3,3(″)-di-O-gallate (B2G2) as most active constituent of grape seed extract (GSE) for efficacy against prostate cancer (PCa). Isolating large quantities of B2G2 from total GSE is labor intensive and expensive, thereby limiting both efficacy and mechanistic studies with this novel anticancer agent. Accordingly, here we synthesized gram-scale quantities of B2G2, compared it with B2G2 isolated from GSE for possible equivalent biological activity and conducted mechanistic studies. Both B2G2 preparations inhibited cell growth, decreased clonogenicity, and induced cell cycle arrest and apoptotic death, comparable to each other, in various human PCa cell lines. Mechanistic studies focusing on transcription factors involved in apoptotic and survival pathways revealed that B2G2 significantly inhibits NF-κB and activator protein1 (AP1) transcriptional activity and nuclear translocation of signal transducer and activator of transcription3 (Stat3) in PCa cell lines, irrespective of their functional androgen receptor status. B2G2 also decreased survivin expression which is regulated by NF-κB, AP1, and Stat3 and increased cleaved PARP level. In summary, we report B2G2 chemical synthesis at gram-quantity with equivalent biological efficacy against human PCa cell lines and same molecular targeting profiles at key transcription factors level. The synthetic B2G2 will stimulate more research on prostate and possibly other malignancies in preclinical models and clinical translation.
Collapse
Affiliation(s)
- Alpna Tyagi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Suraj Prakash Shrestha
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bettina Miller
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John A. Thompson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
47
|
Espino J, González-Gómez D, Moreno D, Fernández-León MF, Rodríguez AB, Pariente JA, Delgado-Adámez J. Tempranillo-derived grape seed extract induces apoptotic cell death and cell growth arrest in human promyelocytic leukemia HL-60 cells. Food Funct 2013; 4:1759-66. [PMID: 24129601 DOI: 10.1039/c3fo60267b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although grape seed extract (GSE) has proven to be effective against various cancers, few studies have investigated the effects of GSE on human leukemia. In this study, we analysed the mechanisms involved in the apoptotic effects induced by GSE on human promyelocytic leukemia HL-60 cells. Thus, GSE treatment succeeded in activating caspase-3 (P < 0.05), the activation being dose-dependent and time-dependent. Activation of caspase-3 induced by GSE was accompanied by mitochondrial membrane depolarization (P < 0.05). Moreover, disruption of mitochondrial integrity caused by GSE treatment subsequently led to activation of caspase-9 (P < 0.05), and also produced a slight increase in ROS levels (P < 0.05). Cytotoxic effects elicited by GSE treatment ultimately resulted in extensive S-phase arrest (P < 0.05) and a substantial increase in the intrinsic rate of apoptosis (P < 0.05). Our findings suggest that the GSE induces apoptotic cell death and cell growth inhibition in human leukemic HL-60 cells, which seems to be dependent on mitochondrial damage. Therefore, the GSE obtained from Tempranillo cultivars could be an effective approach to restrain uncontrolled cell proliferation and survival in leukemia cells.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain.
| | | | | | | | | | | | | |
Collapse
|
48
|
Dinicola S, Pasqualato A, Cucina A, Coluccia P, Ferranti F, Canipari R, Catizone A, Proietti S, D’Anselmi F, Ricci G, Palombo A, Bizzarri M. Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion. Eur J Nutr 2013; 53:421-31. [DOI: 10.1007/s00394-013-0542-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022]
|
49
|
Ammar ESM, Said SA, El-Damarawy SL, Suddek GM. Cardioprotective effect of grape-seed proanthocyanidins on doxorubicin-induced cardiac toxicity in rats. PHARMACEUTICAL BIOLOGY 2013; 51:339-44. [PMID: 23134235 DOI: 10.3109/13880209.2012.729065] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Doxorubicin (Dox) is an anthracycline antibiotic used as anticancer agent. However, its use is limited due to its cardiotoxicity which is mainly attributed to accumulation of reactive oxygen species. OBJECTIVE This study was conducted to assess whether the antioxidant, proanthocyanidins (Pro) can ameliorate Dox-induced cardiotoxicity in rats. MATERIALS AND METHODS Male Sprague-Dawely rats were divided into four groups. Group I was control. Group II received Pro (70 mg/kg, orally) once daily for 10 days. Group III received doxorubicin 15 mg/kg i.p. as a single dose on the 7th day and Group IV animals were treated with Pro once daily for 10 days and Dox on the 7th day. The parameters of study were serum biomarkers, cardiac tissue antioxidant status, ECG, and effect on aconitine-induced cardiotoxicity. RESULTS Cardiac toxicity of doxorubicin was manifested as a significant increase in heart rate, elevation of the ST segment, prolongation of the QT interval and an increase in T wave amplitude. In addition, Dox enhanced aconitine-induced cardiotoxicity by a significant decrease in the aconitine dose producing ventricular tachycardia (VT). Administration of Pro significantly suppressed Dox-induced ECG changes and normalized the aconitine dose producing VT. The toxicity of Dox was also confirmed biochemically by significant elevation of serum CK-MB and LDH activities as well as myocardial MDA and GSH contents and decrease in serum catalase and myocardial SOD activities. Administration of Pro significantly suppressed these biochemical changes. DISCUSSION AND CONCLUSION These results suggest that proanthocyanidins might be a potential cardioprotective agent against Dox-induced cardiotoxicity due to its antioxidant properties.
Collapse
Affiliation(s)
- El-Sayed M Ammar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | | |
Collapse
|
50
|
Pritchard JE, Dillon PM, Conaway MR, Silva CM, Parsons SJ. A mechanistic study of the effect of doxorubicin/adriamycin on the estrogen response in a breast cancer model. Oncology 2012; 83:305-20. [PMID: 22964943 DOI: 10.1159/000341394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Estrogen treatment limits the cytotoxic effects of chemotherapy in estrogen receptor-positive (ER+) breast cancer cell lines, suggesting that estrogen pathway signaling may confer chemotherapeutic resistance. This study investigates the molecular responses of ER+ breast cancer cell lines to the chemotherapeutic agent, doxorubicin, in the presence or absence of estrogen. METHODS ER+ MCF-7 and T47-D cells were cultured in hormone-starved or estrogen-containing media with or without doxorubicin at concentrations mimicking the low concentrations seen in plasma and tumor microenvironments in humans following typical bolus administration. Protein levels, phosphorylations, and interactions of estrogen-signaling molecules were assessed following these treatments, as well the effects of ER signaling inhibitors on cell proliferation. RESULTS Surprisingly, estrogen and doxorubicin co-treatment markedly induced pro-growth alterations compared to doxorubicin alone and modestly enhanced estrogen alone-induced changes. Several inhibitors suppressed cell proliferation in the presence of doxorubicin and estrogen. CONCLUSIONS These findings demonstrate that molecular changes caused by doxorubicin in ER+ breast cancer cells can be reversed by estrogen, providing molecular evidence for the poorer responses of ER+ tumors to doxorubicin in the presence of physiologic estrogen levels. Our results also suggest that the addition of drugs targeting the ER, EGFR, the SFKs, MEK, PI3K, and/or the MMP proteins to a conventional chemotherapy regimen may improve chemosensitivity.
Collapse
Affiliation(s)
- Jessica E Pritchard
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|